

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

Newcastle University ePrints - eprint.ncl.ac.uk

Drovandi CC, Moores MT, Boys RJ. Accelerating pseudo-marginal MCMC

using Gaussian processes. Computational Statistics & Data Analysis 2017,

118, 1-17.

Copyright:

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:

https://doi.org/10.1016/j.csda.2017.09.002

Date deposited:

03/10/2017

Embargo release date:

14 September 2018

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=241631
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=241631
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csda.2017.09.002

Accelerating Pseudo-Marginal MCMC using Gaussian Processes

Christopher C. Drovandia,b,∗, Matthew T. Mooresc, Richard J. Boysd

aQueensland University of Technology, Brisbane, Australia, 4000

bAustralian Centre of Excellence for Mathematical and Statistical Frontiers

cUniversity of Warwick, Coventry CV4 7AL, United Kingdom

dNewcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Abstract

The grouped independence Metropolis-Hastings (GIMH) and Markov chain within
Metropolis (MCWM) algorithms are pseudo-marginal methods used to perform Bayesian
inference in latent variable models. These methods replace intractable likelihood cal-
culations with unbiased estimates within Markov chain Monte Carlo algorithms. The
GIMH method has the posterior of interest as its limiting distribution, but suffers from
poor mixing if it is too computationally intensive to obtain high-precision likelihood
estimates. The MCWM algorithm has better mixing properties, but tends to give
conservative approximations of the posterior and is still expensive. A new method is
developed to accelerate the GIMH method by using a Gaussian process (GP) approx-
imation to the log-likelihood and train this GP using a short pilot run of the MCWM
algorithm. This new method called GP-GIMH is illustrated on simulated data from a
stochastic volatility and a gene network model. The new approach produces reason-
able posterior approximations in these examples with at least an order of magnitude
improvement in computing time. Code to implement the method for the gene network
example can be found at http://www.runmycode.org/companion/view/2663.

Keywords: Gaussian processes, likelihood-free methods, Markov processes, particle
Markov chain Monte Carlo, pseudo-marginal methods, state space models

1. Introduction

Bayesian inference for high-dimensional latent variable models is currently challeng-
ing. In particular Markov chain Monte Carlo (MCMC) samplers can suffer from poor

∗Corresponding Address: School of Mathematical Sciences, Queensland University of Technology,
P.O. Box 2434, Brisbane, Queensland, 4001, Australia

Email addresses: c.drovandi@qut.edu.au (Christopher C. Drovandi),
M.T.Moores@warwick.ac.uk (Matthew T. Moores), richard.boys@newcastle.ac.uk (Richard J.
Boys)

Preprint submitted to Elsevier August 29, 2017

mixing due to correlation between the parameter of interest and the latent variables.
Beaumont [5] and Andrieu and Roberts [3] have introduced pseudo-marginal methods
to improve the statistical efficiency of MCMC. These methods work by replacing the
actual likelihood with an unbiased likelihood estimate in the Metropolis-Hastings ra-
tio. This allows proposals for the Markov chain to be made directly on the space of
the parameter of interest, rather than conditional on the value of a set of the latent
variables.

One of these methods, the grouped independence Metropolis-Hastings (GIMH) method
by Beaumont [5], recycles the likelihood estimate for the current value of the chain to
the next iteration. Andrieu and Roberts [3] have shown that the GIMH method has the
desired posterior as its limiting distribution, which is why it has received considerable
attention in the literature (Andrieu et al. [2]; Doucet et al. [11]). However, a drawback
of the GIMH method is that it can suffer from poor mixing if it is too computationally
expensive to estimate the likelihood with high precision.

The other method, the Markov chain within Metropolis (MCWM, Beaumont [5]) algo-
rithm, estimates the likelihood at both the current and proposed values of the Markov
chain at every iteration. This method generally possesses better mixing properties as
it is able to escape an overestimated likelihood value by re-estimating it at the next
MCMC iteration. However, the MCWM method does not have the posterior distribu-
tion of the parameter of interest as its limiting distribution. Because of this, MCWM
has received comparatively less attention.

In this paper we make use of a Gaussian process (GP) to accelerate the GIMH method
while at the same time accepting some approximation to the posterior distribution.

Wilkinson [37] proposes that GPs be used to accelerate approximate Bayesian compu-
tation (ABC) methods where the likelihood is approximated by generating many model
simulations from each proposed parameter value, and measuring the distance between
observed and simulated data through a careful choice of summary statistics. Here GPs
are used to emulate the actual (ABC) log-likelihood surface based on noisy estimates
obtained through simulation. The method iteratively uses the GP to discard implausi-
ble parts of the parameter space, re-trains the GP in the updated not-implausible part
of the parameter space and continues this process until the GP fit has been deemed
as satisfactory. The final GP is then used within an MCMC method to predict the
log-likelihood surface at all proposed values of the parameter of interest. GPs have
also been used for ABC by Meeds and Welling [29], Gutmann and Corander [20] and
Järvenpää et al. [24].

We follow a similar approach to Wilkinson [37] to accelerate pseudo-marginal methods.
However, one key difference is that we take advantage of the pseudo-marginal literature.
In particular, we use a short run of the MCWM method as a natural approach to obtain
training samples for the GP in non-negligible regions of the posterior support. The
MCWM method is ideal for training the GP as it has better mixing properties and is
less prone to sticky periods than the GIMH method. Medina-Aguayo et al. [28] develop

2

sufficient conditions for the geometric ergodicity and hence the existence of an invariant
distribution of MCWM. Our experience with MCWM is that it is generally conservative
(inflated posterior variance), allowing the tails of the posterior to be explored. The
fitted GP is used instead of expensive likelihood estimates within the GIMH method.
We introduce further novelties into our method to make it practically useful.

The paper has the following outline. In Sections 2.1 and 2.2 we provide a brief overview
of pseudo-marginal methods and GPs, respectively. In Section 2.3 we present our new
method, GP-GIMH, which uses the MCWM algorithm to train the GP and subsequently
uses the GP to accelerate the GIMH method. Finally, in Section 4, we conclude with a
discussion.

2. Accelerated Pseudo-Marginal MCMC

In this section we give some background on pseudo-marginal MCMC methods and
Gaussian processes before describing how, by emulating the log-likelihood using a GP,
we can accelerate pseudo-marginal MCMC.

2.1. Pseudo-Marginal MCMC

Suppose we have observed data y in Y which is described by a statistical model with
likelihood function p(y|θ) and depends on an unknown parameter θ in Rd. Prior
beliefs about the parameter are summarised by the prior density p(θ). We assume
that the model requires, or is facilitated by, an auxiliary variable x in X, whose value
is not of direct interest. In this scenario the complete data likelihood is p(y,x|θ) =
p(y|x,θ)p(x|θ) and leads to the observed data likelihood p(y|θ) =

∫
X
p(y|x,θ)p(x|θ)dx.

Ideally this observed data likelihood is combined with the prior to make inferences about
the parameters via the posterior density p(θ|y) ∝ p(y|θ)p(θ). However, in non-toy
problems the observed data likelihood is an analytically intractable integral. There-
fore the parameter posterior is accessed as the marginal of the joint posterior for all
unknowns, that is, via p(θ|y) =

∫
X
p(θ,x|y)dx.

A standard Bayesian approach for fitting such a latent variable model is to develop
an MCMC algorithm that samples the joint posterior p(θ,x|y) and marginalises by
ignoring the x samples. A common approach is to develop an MCMC algorithm us-
ing two blocks, θ and x, that iteratively samples from the full conditionals p(θ|x,y)
and p(x|θ,y). A key problem with such algorithms is that they can mix poorly be-
cause of high posterior correlation between the blocks θ and x. Further, for non-trivial
state space models, p(x|θ,y) cannot be sampled directly and is difficult to sample effi-
ciently (see Andrieu et al. [2] for a discussion). In an attempt to overcome the mixing
issue, Beaumont [5] develop algorithms that replace the computationally intractable
likelihood p(y|θ) with an unbiased estimate p̂(y|θ). The underpinning mathematics of
these pseudo-marginal MCMC algorithms is studied in Andrieu and Roberts [3] and

3

they develop conditions under which they indeed have the correct posterior distribu-
tion p(θ|y) as their limiting distribution. A simple example of an unbiased likelihood
estimate is one obtained through importance sampling, namely

p̂(y|θ) =
1

N

N∑
i=1

p(y|xi,θ)p(xi|θ)

g(xi)
,

where x1, . . . ,xN
iid∼ g(x) and g is an importance density defined on X. Alternative

approaches to obtaining an unbiased likelihood estimate are available. For example,
Andrieu et al. [2] show that when the model of interest is a state-space model, the like-
lihood p(y|θ) can be estimated unbiasedly using a particle filter with N particles. Such
pseudo-marginal methods are referred to as particle Markov chain Monte Carlo (PM-
CMC). We consider models in the state-space form in Section 3 and use the bootstrap
particle filter of Gordon et al. [19] to obtain an unbiased likelihood estimator.

Bérard et al. [6] establish a log-normal central limit theorem for the particle filter.
In PMCMC, the likelihood is estimated with multiplicative noise, p̂(y|θ) = Wp(y|θ),
where the random weight W is strictly positive with E[W] = 1. The CLT defines a

limiting distribution for the noise in which logW
d−→ N (−ασ2/2, ασ2) as the dimension

(of the state space X) T → ∞. Here σ2 is the asymptotic variance of the estimator,
and α is the asymptotic ratio of T to N as both T,N → ∞, and is usually taken to
be 1. Doucet et al. [11] observe that this limiting distribution is a good fit for the
noise, even for modest values of T and N . The log-normal CLT is very useful for
theoretical analysis of PMCMC algorithms as shown, for example, by Doucet et al. [11]
and Medina-Aguayo et al. [28]. We assume log-normality of p̂(y|θ) in our GP model.

The first algorithm developed by Beaumont [5], known as grouped independence Metropolis-
Hastings (GIMH), is shown in Appendix A. This is essentially a standard Metropolis-
Hastings algorithm in which the intractable likelihood at a new proposal θ∗ is replaced
by an unbiased likelihood estimate. Note that the likelihood at the current value θ is
not re-estimated but simply recycled from the previous iteration.

Andrieu and Roberts [3] show that the GIMH algorithm has the posterior p(θ|y) as its
limiting distribution. If we denote all the random numbers (assumed to be uniformly
distributed without loss of generality) used to produce an unbiased likelihood estimate
as η ∈ [0, 1]s and considering a target posterior distribution on the extended space
of (θ,η), the θ marginal target of interest is proportional to p(θ)E[p̂(y|θ,η)] where
p̂(y|θ,η) is the likelihood estimate given the random numbers and the expectation
is taken with respect to the distribution of η given θ. The unbiased nature of the
likelihood estimator implies that the expectation is p(y|θ) giving the desired posterior
distribution as the target. This theoretically appealing property has led to the GIMH
method becoming more prominent in the literature (e.g. Andrieu et al. [2], Doucet
et al. [11] and Sherlock et al. [34]) compared to the other approach of Beaumont [5],
the Monte Carlo within Metropolis (MCWM) algorithm. However, the GIMH method
can get stuck when the likelihood is substantially overestimated at any given iteration.

4

Doucet et al. [11] suggest that for good performance in the GIMH algorithm, the log-
likelihood should be estimated with a standard deviation between 1.0 and 1.7. However,
in complex applications, it may be computationally difficult to achieve this goal.

The MCWM algorithm of Beaumont [5] is the same as GIMH except for an extra step
where the likelihood at the current θ is re-estimated and not recycled from the previous
iteration; see Appendix A. Although MCWM requires roughly double the amount of
computational effort per iteration relative to GIMH, it does not suffer from stickiness in
the Markov chain. However, the drawback is that the limiting distribution of MCWM
is only the posterior p(θ|y) in the limit as N →∞. Medina-Aguayo et al. [28] develop
sufficient conditions for the geometric ergodicity and hence the existence of an invariant
distribution of MCWM for large enough N . The conditions are that the idealised chain
(the chain that uses exact likelihood evaluations) is geometrically ergodic, the weights
W are uniformly integrable and the weights satisfy uniform exponential bounds on
their densities close to 0. These conditions are quite weak when the parameter space
is compact. In our experience, MCWM generally produces an approximate posterior
that is less precise than the actual posterior for finite N , and thus could be considered
a conservative method in the sense that the posterior variances are overestimated.

Our aim is to accelerate the GIMH method by emulating the (unobserved) true log-
likelihood surface as a function of θ with a GP, where the GP is trained in relevant
parts of the parameter space based on the output of a short run of MCWM.

2.2. Gaussian Processes

Gaussian processes can be used as a prior distribution to describe uncertainty about
an unknown function f(·). They are characterised by a mean function mβ(θ) and
covariance function Cγ(θ,θ′) = cov{f(θ), f(θ′)}, where β and γ are so-called hyper-
parameters of the GP. A Gaussian process has the property that the joint distribution
for the values of the function at a finite collection of points has a multivariate normal
distribution; see, for example, Rasmussen and Williams [33]. In this paper, the func-
tion we wish to emulate is the log-likelihood function f(θ) = log p(y|θ). We assume a
GP prior with mean function mβ(θ) = β0 +

∑p
k=1 βkθk +

∑p
k=1 βk+pθ

2
k, where θk is the

kth component of the parameter vector θ and β = (β0, β1, . . . , β2p)
>. We also assume

that the log-likelihood surface is smooth and so take a squared exponential covariance
function

Cγ(θ,θ′) = δc exp

{
−1

2

p∑
k=1

(θk − θ′k)2

r2k

}
,

with hyper-parameters γ = (δc, r1, . . . , rp)
>.

Only noisy estimates of the likelihood are available and so we need to model their
sampling distribution. We rely on the log-normal CLT [6] and assume multiplicative
noise with variance δ. This assumption is not quite correct as the estimates are not

5

exactly log-normal for finite N , even when drawn from a particle filter. Additionally,
there may be some dependence of their accuracy on the parameter value θ. Nevertheless
we believe that this description captures the key aspects of the sampling distribution
and has the great benefit of simplifying the form of GP prediction. Specifically, taking
account of the variability in the function evaluations requires that we add a nugget term
to the covariance function, so that cov{f̂(θ), f̂(θ′)} = Cγ(θ,θ′)+δ1(θ = θ′), where 1(·)
denotes the indicator function, which is 1 if its argument is true and 0 otherwise. We
can estimate the GP hyperparameter ξ = (β,γ, δ) using a training sample containing
evaluations of the log-likelihood estimates at a set of J (input) values Θ. We denote
this training sample by DT = {θj, f̂(θj)}Jj=1.

Denote the J×1 vectors of log-likelihood estimates and (prior) mean functions as f(Θ)
and mβ(Θ), where f(Θ)j = f̂(θj) and mβ(Θ)j = mβ(θj), and the J × J covariance
matrix derived from the covariance function as Cγ(Θ,Θ) where Cγ(Θ,Θ)ij = Cγ(θi,θj).
Under the GP model assumption, we have that f(Θ) ∼ N{mβ(Θ), Cγ(Θ,Θ) + δI},
where I is the J × J identity matrix. This result is obtained by integrating over the
random variables describing the actual function values at the training input values and
is thus often referred to as the marginal likelihood. The hyperparameter can therefore
be estimated via maximising the log marginal likelihood, that is, taking

ξ̂ = arg min
ξ

(
{f(Θ)−mβ(Θ)}>{Cγ(Θ,Θ) + δI}−1{f(Θ)−mβ(Θ)}+ log |Cγ(Θ,Θ) + δI|

)
.

(1)

In practice the estimate is obtained using a numerical scheme and so we use multiple
starting values for the optimisation process in order to obtain a result that we believe
to be close to the maximum marginal likelihood estimate.

The fitted GP is the posterior distribution of the log-likelihood function in light of the
observed training data. It can be used to predict the value of the log-likelihood function
f(θ) at any value θ as its posterior distribution is f(θ)|DT ∼ N{m∗(θ), s∗(θ)2}, where

m∗(θ) = mβ̂(θ) + Cγ̂(Θ,θ)>{Cγ̂(Θ,Θ) + δ̂I}−1{f(Θ)−mβ̂(Θ)}, (2)

s∗(θ)2 = Cγ̂(θ,θ)− Cγ̂(Θ,θ)>{Cγ̂(Θ,Θ) + δ̂I}−1Cγ̂(Θ,θ), (3)

and Cγ̂(Θ,θ) is a J×1 vector, with Cγ̂(Θ,θ)j = Cγ̂(θj,θ). Note that the computational

complexity of the GP prediction is O(J3). If the hyperparameter estimate ξ̂ and the
training data DT are static then the inverse computation {Cγ̂(Θ,Θ) + δ̂I}−1 can be
re-used for each new θ. However, if additional training data is added then the inverse
must be re-computed. In such cases it is of interest to limit the number of training
points J .

2.3. Pseudo-Marginal MCMC using Gaussian Processes

This section describes how to deploy a GP to accelerate the GIMH algorithm. The new
algorithm, called GP-GIMH, is given in Algorithm 1. More detail about each of the
steps is given below.

6

As described in the previous section, we use a pilot run of the MCWM algorithm to
generate the design points Θ, during which we record the parameter value and both
estimated log-likelihood values encountered during the MCWM algorithm (even those
from rejected proposals) in the training sample. Our motivation for using MCWM to
determine the training sample for the GP is three-fold: (i) it harnesses the observed
data and thus most of the training points will be parameter values with non-negligible
posterior density; (ii) it has good mixing properties ensuring that the GP is trained at
a wide range of plausible θ values; and (iii) the MCWM method is conservative and so
it can provide good coverage of the tails of the posterior distribution. However, since
MCWM is conservative, it may visit parameter regions where the log-posterior is very
low (especially for proposals rejected by the algorithm) and so we suggest removing
points with very low log-posterior (ignoring the normalising constant independent of
θ) values from the training sample so that the training of the GP focuses on plausible
regions of the parameter space.

Once the GP is fitted, giving the functions m∗(θ) and s∗(θ), one might consider an
algorithm that samples from the following approximate posterior

pGP(θ|y) ∝ exp

{
m∗(θ) +

s∗(θ)2

2

}
p(θ),

where the exponential term is the mean of the log-normal distribution implied by the GP
assumption. A standard MCMC algorithm could be applied to sample from pGP (θ|y).
However, for pGP(θ|y) to be a reasonable approximation of p(θ|y) we require s∗(θ) to
not be too large across important parts of the parameter space. When s∗(θ) is too
large at a proposed value θ∗, i.e. s∗(θ∗) > ε for some chosen threshold ε, we apply an
intervention. Also, to reduce computation, we would like to limit the number of times
where interventions are necessary. To achieve this, we adopt a GIMH-style algorithm.
Instead of evaluating the mean of the log-normal density directly, we simulate a log-
likelihood estimate from the fitted GP, N{m∗(θ∗), s∗(θ∗)2}. When s∗(θ∗) > ε and θ∗

is accepted, there is an increased risk of obtaining a sticky period at θ∗. If s∗(θ∗) > ε
and θ∗ is rejected we do not apply an intervention. The intervention involves obtaining
a more accurate GP prediction to check if θ∗ was wrongly accepted or to help reduce
sticky periods. We obtain K independent estimates of f(θ∗) = log p(y|θ∗) using the
same method (e.g. importance sampling or particle filter estimates) as in the training
phase and determine their mean. Under the log-normal CLT, this mean also has a
normal distribution: f̄K(θ∗) ∼ N{f(θ∗), δ̂/K} where δ̂ is the maximum likelihood
estimate of δ found in (1). We can incorporate this information into our beliefs about
the log-likelihood at this point using a simple Bayes update, to give

f(θ∗)|DT , f̄K(θ∗) ∼ N

(
m∗(θ∗)/s∗(θ∗)2 +Kf̄K(θ∗)/δ̂

1/s∗(θ∗)2 +K/δ̂
.

1

1/s∗(θ∗)2 +K/δ̂

)
, (4)

Therefore the total number of independent log-likelihood estimates needed to secure
a sufficiently accurate GP prediction is roughly K = dδ̂{ε−2 − s∗(θ∗)−2}e. If these

7

multiple estimates can be farmed out across say A available processors then the number
of estimates in each batch to achieve this goal is dK/Ae.
We allow a burn-in phase consisting of B iterations where such additional likelihood
estimates can be appended to the training sample DT . The motivation for this burn-in
phase is to assist the GP in being trained in important regions not explored sufficiently
in the MCWM phase. We find in Section 3 that the burn-in phase is useful in ap-
plications where it is very expensive to estimate the likelihood. The computational
drawback of the burn-in phase is that the matrix inversion in (2) and (3) must be re-
computed. However, in demanding applications these additional matrix inversions can
be relatively cheap. It would be feasible to re-estimate the GP hyperparameter after
the burn-in phase if desired. We note that the relative computing time for this should
be short in complex applications as the current hyperparameter estimate can be used
as a starting value.

It might be tempting to continually grow the training sample through the entire al-
gorithm and thereby obtain a more accurate GP across more of the parameter space.
However, not only would this require additional time-consuming calculations of matrix
inverses (of increasing size) but we also find that, as this alters the GP fit in areas pre-
viously explored, it creates unusual trace plots; essentially the target distribution of the
algorithm is changing. We discuss this in more detail in Section 4. Once the additional
training data at θ∗ is obtained we perform another Metropolis-Hastings accept/reject
step but where the log-likelihood estimate is simulated based on (4).

The value of ε controls the level of uncertainty allowed in the GP prediction when
parameter values are accepted. If ε is set too large then a parameter value may be
accepted with a grossly overestimated log-likelihood value and lead to stickiness in the
Markov chain, similar behaviour that can be observed in the standard GIMH method.
Smaller values of ε will lead to runs that are generally less sticky, but more computation
is required to satisfy the constraint s∗(θ∗) < ε. Recall that Doucet et al. [11] suggest
that the log-likelihood should be estimated with a standard deviation of roughly 1
for the GIMH method to have similar statistical efficiency to a standard Metropolis-
Hastings method where the likelihood is available. For our examples we find that ε < 2
is a suitable choice.

In practice we choose ε by performing some very short pilot runs and ensuring that for
the majority of accepted θ∗ we have s∗(θ∗) < ε. Some insight into a suitable value of
ε may also be obtained by inspecting the empirical distribution of the GP prediction
standard deviations at the training points {s∗(θj), θj ∈ DT}. If ε is not in the upper tail
of this distribution then this indicates that the GP training set DT requires additional
training points as otherwise many additional log-likelihood estimates will be needed in
GP-GIMH and little algorithmic speed-up will be obtained.

The speed-up of the GP-GIMH approach is roughly F/(2ρF +G) where F is the time
taken to run GIMH for Q iterations, 2ρF is the time for L iterations of the MCWM pre-
computation step where ρ = L/Q and the value of 2 denotes the fact that two likelihood

8

estimations are required at each iteration of MCWM, and G is the remaining time of the
GP-GIMH method. In this paper we assume that F is very large; it is computationally
demanding to estimate the likelihood. In such cases G may be negligible in comparison,
in which case the speed-up is roughly Q/(2L). Thus it is of interest to set L small.
However, if L is set too small then G may become non-negligible since the GP may
be too uncertain across much of the parameter space. Furthermore we note that L
will naturally need to increase as the parameter dimension grows (although it may be
of interest to increase Q as well). The value of G will also likely increase with the
parameter dimension since it becomes increasingly difficult to train the GP in areas
of non-negligible posterior support. In summary, the GP-GIMH approach does suffer
from the curse of dimensionality. Nonetheless, in Section 3, we demonstrate that it is
possible to achieve significant speed-ups on non-trivial models of moderate dimension.
It is important to note that the above discussion only considers the computational
gains. We generally find also with GP-GIMH that sticky periods can be mitigated,
adding to the overall efficiency gains of GP-GIMH.

Our approach uses the MCWM algorithm to train the GP whereas Wilkinson [37] uses
a history matching approach, which iteratively fits a GP to samples drawn from a
hypercube, which shrinks upon each successive GP fit. This process may be expensive
in moderate dimensions if uninformative priors are used and it does not exploit the
correlation between parameters as our approach does. We compare the two training
approaches on one of the examples later. Our remaining MCMC algorithm that uses
GP predictions is similar to Wilkinson [37]. However, we include the novel aspects of
obtaining additional likelihood estimates when required and a burn-in phase.

All computations involving GPs are facilitated by the gpml package [33] in Matlab,
particularly the functions minimize and gp. The function minimize runs the optimisa-
tion process to estimate the hyperparameter. The function gp returns the mean and
variance of the GP prediction with and without the nugget. However, we note that
in (2) and (3), information regarding the expensive matrix inversion can be pre-stored
as the training sample is static for all iterations in GP-GIMH after the burn-in phase.
Further, the gp function contains extensive error checking and additional unnecessary
computations for our purposes. Thus we implement our own function, based on gp, to
obtain the mean and variance of the GP prediction. We find that GP-GIMH based on
our GP prediction code runs roughly two to three times faster compared to the version
that uses gp.

2.4. Related Literature

GPs have been used for the emulation of complex deterministic models by Kennedy
and O’Hagan [25, 26] and for complex stochastic models by Henderson et al. [21, 22]
and Baggaley et al. [4]. Conrad et al. [10] use local polynomials or GPs in a Metropolis-
Hastings algorithm to reduce the number of model evaluations that are required. How-
ever, the focus of Conrad et al. [10] is not on applications where a stochastic likelihood
estimator is available.

9

Algorithm 1 GP-GIMH algorithm.

Input: threshold ε, burn-in B and the number of MCMC iterations (iters)
Output: MCMC output θ1, . . . ,θiters

1: Perform an MCWM algorithm for L iterations to help determine an initial training
sample. See the text for more details. The training sample after these processes is
denoted as DT = {θj, f̂(θj)}Jj=1

2: Estimate the hyperparameter ξ = (β,γ, δ) of a GP using the training sample DT
3: Simulate φ0 ∼ LN{m∗(θ0), s∗(θ0)2} from the GP with hyperparameter ξ̂. θ0 can

be chosen based on the MCWM pilot run
4: for i = 1 to iters do
5: Propose θ∗ ∼ q(·|θi−1)
6: Simulate φ∗ ∼ LN{m∗(θ∗), s∗(θ∗)2} from the GP with hyperparameter ξ̂

7: Compute α = min
{

1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
8: Draw u ∼ U(0, 1)
9: if u < α then

10: if s∗(θ∗) ≤ ε then
11: Set φi = φ∗ and θi = θ∗

12: else
13: Obtain A batches of dK/Ae independent likelihood estimates and update

m∗(θ∗) and s∗(θ∗) using (4)
14: If i ≤ B then append the likelihood estimates to the training sample DT .
15: Simulate φ∗ ∼ LN{m∗(θ∗), s∗(θ∗)2} from the GP with hyperparameter ξ̂

16: Compute α = min
{

1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
17: if u < α then
18: Set φi = φ∗ and θi = θ∗

19: else
20: Set φi = φi−1 and θi = θi−1

21: end if
22: end if
23: else
24: Set φi = φi−1 and θi = θi−1

25: end if
26: end for

Tran et al. [35] develop a variational Bayes approach that can be used in any applica-
tion where an unbiased likelihood estimator is available to approximate the posterior
more efficiently compared to GIMH. However, the variational approximation is typi-
cally of a parametric form and assumptions are sometimes made that the parameters
are independent a posteriori.

Rasmussen [32] use GPs to accelerate the Hamiltonian Monte Carlo (HMC) method for
Bayesian inference when posterior density evaluation is expensive. The proposal distri-

10

bution in HMC involves (approximately) solving a Hamiltonian system, and requires
several evaluations of the posterior distribution. The GP is trained from a pilot HMC
run and used to approximate posterior evaluations required in the HMC proposal. This
method remains exact as the GP is used only for the proposal and a Metropolis-Hastings
(MH) correction is applied to account for the fact that the Hamiltonian is only solved
approximately. The MH correction step requires an evaluation of the (expensive) exact
posterior density.

A related literature is on the delayed-acceptance MCMC method [9]. Here each pro-
posed parameter goes through an initial Metropolis-Hastings step where the actual
posterior density is replaced by a computationally cheap posterior approximation. The
idea of the method is that ‘poor’ proposals can be rejected quickly and the majority of
‘promising’ proposals make it through to the next Metropolis-Hastings stage, which in-
volves evaluations of the exact posterior density. The second Metropolis-Hastings step
is constructed so that the Markov chain has the correct limiting distribution. As an ex-
ample, Golightly et al. [17] perform Bayesian inference for Markov jump processes using
the corresponding linear noise approximation in the screening Metropolis-Hastings step.
Sherlock et al. [34] consider a more general approach and use a k nearest neighbour
surrogate within a delayed-acceptance MCMC algorithm when the likelihood is expen-
sive or when the likelihood is estimated unbiasedly. Although the delayed-acceptance
MCMC approach is exact, Golightly et al. [17] and Sherlock et al. [34] report efficiency
gains of generally less than an order of magnitude. Our motivation here is to obtain a
significant speed-up in very complex applications whilst accepting some approximation
to the posterior.

3. Examples

In the examples below we consider models that can be placed in the state space formu-
lation. For likelihood estimation we use the bootstrap particle filter [19]. The particle
filter is implemented in C whilst the rest of the code is written in Matlab.

3.1. Stochastic Volatility Example

3.1.1. Model and Data

We illustrate our method by analysing data simulated from a stochastic volatility model
in Chopin et al. [8]; this paper (and some of the references therein) give more details
of the model construction and its interpretation. The observation at time t is scalar
and has distribution yt ∼ N (µ+βvt, vt), where vt denotes the evolving and unobserved
variance of the observation process. Here µ and β are static parameters. The evolution

of the state process follows λvt = zt−1 − zt +
∑k

j=1 fj, where k ∼ Po(λξ2/w2), c1:k
iid∼

U(t− 1, t), f1:k
iid∼ Exp(ξ/w2), and zt = e−λzt−1 +

∑k
j=1 e

−λ(t−cj)fj, and Po, U and Exp
denote the Poisson, uniform and exponential distributions respectively. Here w2, ξ and

11

0 1000 2000 3000 4000 5000
−4

−2

0

2

4

t

y

Figure 1: Data simulated from the stochastic volatility model of Section 3.1.1.

λ are additional static parameters so that the full parameter set is θ = (w2, µ, ξ, β, λ).
We assume our prior has independent components with w2, ξ ∼ Exp(5), µ, β ∼ N (0, 2)
and λ ∼ Exp(1). Also we initialise the z-process using z0 ∼ Ga(ξ2/w2, ξ/w2), that is, a
gamma distribution with mean ξ and standard deviation w.

The observed data for this example has been generated from the model using the same
parameter values as in Chopin et al. [8], namely w2 = 0.0625, µ = 0, ξ = 0.25, β = 0
and λ = 0.01. However, our data are a longer series with 5000 observations (as opposed
to their 1000 observations). The length of our time series creates a challenging problem
for PMCMC algorithms. The data are shown in Figure 1.

3.1.2. Implementation Details

Unbiased likelihood estimates are determined by using the bootstrap particle filter of
Gordon et al. [19] with N = 800 particles. This value of N produces an estimated
log-likelihood with a standard deviation of roughly 2.5 at the true parameter value.
For the GIMH method, we also consider N = 500 and N = 1000 so that an essentially
un-optimised GP-GIMH approach is compared to a close-to-optimal GIMH run. To
further improve the performance of GIMH, we use the multiple-core PMCMC approach
of Drovandi [12] which uses multiple cores (here A = 16 cores) to obtain independent
likelihood estimates for each proposed parameter value and takes the average in order to
reduce the variance of the estimated likelihood. We run 100K iterations of GIMH. We
also consider MCWM with N = 800 but only run it for 50K iterations as this algorithm
requires two likelihood estimates at each iteration. We use the 16 cores in a similar
way to improve the accuracy of MCWM. To use as a gold standard for comparison
purposes, we run the GIMH algorithm for 400K iterations (with N = 800).

For the MCWM pre-computation step of GP-GIMH we use L = 1500, producing ≈
3000 likelihood estimates. During this step, we adapt the covariance matrix of the

12

multivariate normal random walk proposal every 10th iteration, following an initial 50
iterations. Recall that this MCWM output is only used to train the GP. We do not take
advantage of any parallel computing in the MCWM pre-computation phase to illustrate
that GP-GIMH can be effective even when the likelihood is not estimated as precisely
as in our implementations of the standard GIMH and MCWM methods. The max-
imum log-posterior estimate encountered during the MCWM pre-computation phase
is roughly −4610. We discard any log-posterior estimates below −4700. The main
motivation for selecting this value is to eliminate two extreme log-likelihood estimates
(-8926 and -6362) from the training. There are 18 other log-likelihood estimates that
are also below this chosen threshold. To investigate the effect of the training sample
size, J , we use all samples obtained from the MCWM pre-computing step and also
thin the output by a factor of 2, producing (roughly) J = 1500 and J = 3000. For
comparison purposes the remaining part of GP-GIMH (again 100K iterations) uses the
same multivariate normal random walk as GIMH/MCWM. No burn-in phase is used
for GP-GIMH (i.e. no additional log-likelihood estimates are added to the training sam-
ple). We consider ε values of 1, 1.5 and 2. When the tolerance condition is not met, we
obtain dK/Ae batches of A = 16 independent likelihood estimates. We also make the
16 cores available in the remaining part of the GP-GIMH algorithm as Matlab auto-
matically parallelises some of the computations. We run the full GP-GIMH procedure
independently five times for each combination of J and ε.

To simplify comparisons between methods, we assume that a suitable starting value and
multivariate normal random walk covariance matrix have already been determined,
which are used for each algorithm (except the MCWM pre-computing phase, which
adaptively determines a covariance matrix). Here we use the true parameter value to
initialise the chain (unless otherwise stated) and an updating matrix obtained from
some pilot runs. We note that, in reality, it is likely that the GP-GIMH algorithm
would be faster at determining a suitable covariance matrix given that pilot runs can
be performed quickly. This could also be a strong motivation for using a GP-GIMH
algorithm if exact inferences are necessary (up to Monte Carlo error). We now explore
the accuracy of the GP-GIMH algorithm in determining the posterior distribution.

3.1.3. Results

We find the marginal posterior estimates of GP-GIMH are insensitive to the choices of
ε (see Appendix B). Very occasionally there is a distortion in the posterior tail when
ε = 2.0. Given the insensitivity to ε, in Figures 2 (J ≈ 1500) and 3 (J ≈ 3000) we
only present results for ε = 1. Shown in the figures are results from the 5 independent
runs of GP-GIMH, as well as the results produced by GIMH (gold standard run) and
MCWM. One possible metric to assess the accuracy of the results from the different
approximations is the total variation (TV) distance between the posterior estimates
(e.g. kernel density estimates from the posterior samples, see Appendix K for more
details) obtained from an approximation and the gold standard run. It is important
to note that even the GIMH run suffers from Monte Carlo variability. Tables 1 and 2

13

Table 1: Upper triangular part of the posterior correlation matrix for θ obtained from the gold standard
GIMH/GP-GIMH (first run with J ≈ 1500 and ε = 1.0) algorithms for the stochastic volatility model.

µ ξ β λ
w2 -0.91/-0.90 -0.03/0.00 -0.05/-0.02 0.03/0.01
µ 0.02/0.02 0.05/0.01 -0.03/0.00
ξ 0.63/0.68 -0.07/-0.06
β -0.40/-0.33

in Appendix C show the TV distances between the univariate and bivariate posteriors,
respectively, for the results obtained from GIMH (N = 800), MCWM and GP-GIMH
(results averaged over 5 runs) with respect to the gold standard GIMH run. Due to the
computational expense of computing the TV over two dimensions we only consider GP-
GIMH results for ε = 1.0 and J ≈ 3000. From the tables it is clear that, unsurprisingly,
GIMH is the most accurate. However, GP-GIMH appears to be more accurate than
MCWM, except for any marginal or bivariate posterior that involves the parameter λ.
Figures 2 and 3 show a clear bias in the estimated posterior from GP-GIMH for λ.
Further, it appears that the GP-GIMH algorithm has more difficulty approximating
the posterior distributions that show some skewness.

One drawback of GP-GIMH is there is some between-run variability, which is more
apparent for the posterior distributions that deviate away from symmetry. It is likely
that this variability comes from different GP fits resulting from different MCWM pre-
computing runs. From Figure 3 it appears that the between-run variability is reduced
slightly when using the larger training sample size, J ≈ 3000. We attempt to validate
this numerically. Here we consider the TV distances between the marginal densities
produced from an individual run of GP-GIMH and the average marginal densities over
the five runs of GP-GIMH. We then average these five distances to produce a single
measure of the between-run variability. The table for different combinations of ε and
J are shown in Appendix C. It is indeed evident that the between-run variability is
generally reduced for larger J . Further, when J ≈ 1500, we see an increase in the
between-run TV distances for the parameters ξ, β and λ when ε is increased to 2.0.
This is due to the distortion in the tails of these posteriors that is occasionally present
when ε = 2.0. When J ≈ 3000, we see an increase in the between-run TV for λ when ε
is increased for the same reason.

Table 1 shows the upper triangular part of the estimated posterior correlation matrix
from a run of GIMH and one of the runs of GP-GIMH. It is evident that GP-GIMH is
able to produce reasonable estimates of the posterior correlation matrix in this exam-
ple, confirming that the algorithm could be useful for determining a suitable proposal
distribution for GIMH.

Table 2 shows the run times (averaged over the 5 independent runs) for GP-GIMH
(excluding the MCWM pre-computing phase and GP fitting) for different combinations

14

-0.08 -0.05 -0.02 0.01 0.04 0.07 0.1

w2

0

10

20

GP-GIMH
GIMH (gold)
MCWM

-0.3 -0.2 -0.1 0 0.1 0.2

µ

0

2

4

6

8

0.3 0.4 0.5 0.6

ξ

0

5

10

0 0.02 0.04 0.06 0.08 0.1

β

0

10

20

30

40

50

0 0.01 0.02 0.03

λ

0

50

100

150

Figure 2: Estimated marginal posterior densities for the stochastic volatility example from runs of the
gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five independent runs of
the GP-GIMH (black solid) algorithm with J ≈ 1500 and ε = 1.

-0.08 -0.05 -0.02 0.01 0.04 0.07 0.1

w2

0

10

20

GP-GIMH
GIMH (gold)
MCWM

-0.3 -0.2 -0.1 0 0.1 0.2

µ

0

2

4

6

8

0.3 0.4 0.5 0.6

ξ

0

5

10

0 0.02 0.04 0.06 0.08 0.1

β

0

10

20

30

40

50

0 0.01 0.02 0.03

λ

0

50

100

150

Figure 3: Estimated marginal posterior densities for the stochastic volatility example from runs of the
gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five independent runs of
the GP-GIMH (black solid) algorithm with J ≈ 3000 and ε = 1.

15

Table 2: Average run times for GP-GIMH (excluding the MCWM pre-computing phase and GP fitting)
for different combinations of J and ε for the stochastic volatility example. The average time for GP
training and fitting is 2.1 hours.

Configuration avg run time (h)
ε = 1.0, J ≈ 1500 0.6
ε = 1.5, J ≈ 1500 0.6
ε = 2.0, J ≈ 1500 0.7
ε = 1.0, J ≈ 3000 1.1
ε = 1.5, J ≈ 3000 1.1
ε = 2.0, J ≈ 3000 1.2

of J and ε. There is little sensitivity to the run times with respect to ε. Intuitively, the
run time should decrease with an increase in ε, however only a very small proportion
of iterations had s∗(θ∗) > ε even when ε = 1. The increase in computing time for
larger J can be explained by the additional computation involved in generating the GP
prediction. There is actually a complex interaction between J and ε with respect to
the computing time, as we highlight in the next example.

Table 3 compares the statistical and computational efficiency of the three algorithms.
The results for GP-GIMH are based on average results over the five runs. The effective
sample size (ESS) for each parameter in each parameter set is calculated from the
output of each algorithm using the coda package in R [30]. An overall summary of the
algorithm output is taken as the minimum ESS value or the average ESS value over all
parameters in the output. Shown also is the clock time in hours. For GP-GIMH, the
time represents the cumulative time for the pre-computation step, GP fitting (allocated
10 minutes for J ≈ 1500 and 20 minutes for J ≈ 3000) and the remaining MCMC
algorithm. For a final measure of performance we look at the ESS measures divided by
the computing time. Here the GIMH method is slightly more efficient than MCWM.
The GIMH method is able to better take advantage of the 16 cores, which results in an
increase in acceptance rate from 6% (single core) to 19% (16 cores), whereas the use
of additional cores does not greatly affect the acceptance rate for MCWM (although
it does improve the posterior accuracy). The GP-GIMH algorithm eclipses both of
the other two in terms of statistical efficiency. This is due to the increased acceptance
rate of GP-GIMH relative to GIMH and the fact that GP-GIMH is run for double the
number of iterations compared with MCWM. The GP-GIMH method has a much higher
acceptance rate than GIMH as the log-likelihood estimates generated from the fitted GP
generally have much less noise relative to the log-likelihood estimates obtained from the
bootstrap filter. The total computing time of the GP-GIMH algorithm is considerably
lower than the other two. Improved performance on both the ESS and computing time
leads to an overall performance gain of one to two orders of magnitude for GP-GIMH
over GIMH and MCWM. We also run the GP-GIMH method with 5 different Markov
chain starting values (obtained from the MCWM pre-computation step) and obtain

16

Table 3: Comparison of the computational and statistical efficiency of the GIMH, GP-GIMH and
MCWM algorithms for the stochastic volatility model. For GP-GIMH the results are averaged over
the five independent runs for each combination of J and ε.

method acc rate (%) min ESS avg ESS time (hrs) min ESS/time avg ESS/time
GIMH (N = 500) 11 541 955 32 17 30
GIMH (N = 800) 19 815 1899 77 11 25
GIMH (N = 1000) 22 696 1737 81 9 21

MCWM 34 653 1385 77 8 18
J ≈ 1500, ε = 1.0 30 1457 3399 2.7 559 1305
J ≈ 1500, ε = 1.5 29 1448 3074 2.6 565 1207
J ≈ 1500, ε = 2.0 29 1324 2645 2.8 501 1012
J ≈ 3000, ε = 1.0 30 1501 3651 3.2 471 1146
J ≈ 3000, ε = 1.5 30 1574 3564 3.2 500 1135
J ≈ 3000, ε = 2.0 30 1434 3308 3.3 441 1023

similar efficiency results (based on run 1 with J ≈ 3000 and ε ∈ {1.0, 2.0}).
Finally we consider whether or not the quality of the GP fit has an impact on the
approximation error we observe for GP-GIMH. We do this by comparing the GP pre-
diction with other log-likelihood estimates at training points not used to determine
the GP fit. Specifically we use the fitted GP from the first run of the MCWM pre-
computation step and the training points (and log-likelihood estimates) from the other
four MCWM pre-computation runs. The fit is assessed using a standardised residual

ri =
f̂(θi)−m∗(θi)√

s∗(θi)2 + δ̂
.

Note that the nugget is included in the GP variance term as the comparisons are made
with noisy log-likelihood estimates. In Appendix D, we show normal quantile-quantile
plots of the standardised residuals and plots of these residuals against parameter value
components. Note that we only include residuals at training points with an accurate
GP prediction (standard deviation below ε) as it is only at these points that the GP
prediction alone is used. Appendix D shows the residual plots for different combinations
of ε and J . It is evident that the residuals depart further from normality with an increase
in ε. However, from the sensitivity results in Appendix B, it appears that the GP-GIMH
method is somewhat robust to the lack of normality in this example. In some cases
there is a small amount of curvature in the residuals when plotted against the training
samples of each parameter component.

3.2. Gene Network Example

3.2.1. Model and Data

Golightly and Wilkinson [18] consider a Markov jump process for an autoregulatory

17

0 10 20 30 40 50
0

5

10

15

20

seconds

ob
se

rv
ed

 c
ou

nt

DNA
RNA
P
P

2

Figure 4: Data simulated from the gene network model of Section 3.2.1.

gene network consisting of four species DNA, RNA, P and P2 and explain its relevance
and application. The system is described by eight reactions

DNA + P2
c1DNA×P2−−−−−−→ DNA · P2, 2P

c5P(P−1)/2−−−−−−→ P2,

DNA · P2
c2(k−DNA)−−−−−−→ DNA + P2, P2

c6P2−−→ 2P,

DNA
c3DNA−−−−→ DNA + RNA, RNA

c7RNA−−−−→ ∅,

RNA
c4RNA−−−−→ RNA + P, P

c8P−−→ ∅,

where k is a conservation constant (number of copies of the gene) and c = (c1, . . . , c8)
are the stochastic rate constants governing the speed at which the system evolves. We
study the scenario in Golightly and Wilkinson [18] where data are simulated using
rates c = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1), with k = 10, and initial species levels
(DNA,RNA,P,P2) = (5, 8, 8, 8). We simulate equi-spaced data as the next 100 ob-
servations (on all species) recorded at 0.5 unit time intervals (see Figure 4). We now
investigate how our method performs in making inferences from these simulated data
for the stochastic rate constants. Note that we assume that the conservation constant k
and initial species levels are known as this is typical in designed experiments (and is
as in Golightly and Wilkinson [18]). Note that we assume these data are observed
without error. Even though the observed counts are small, due to the large number of
species, this model does not allow a computationally tractable likelihood function. As
in Fearnhead et al. [15], we take independent half-Cauchy priors for the parameters,
with density p(ci) ∝ 1/(1+4c2i), ci > 0 for i = 1, . . . , 8. Also, in our analysis, we remove
the positivity constraint on the rate parameters by working on the log scale, that is,
with θi = log ci for i = 1, . . . , 8.

One approach to perform inference for such models is to assume that each species is
observed with Gaussian error with a standard deviation of σ [23]. This facilitates an
analysis using a standard particle MCMC approach with a bootstrap filter. More accu-
rate inferences are obtained with a low value of σ, with the correct posterior obtained in

18

the limit as σ → 0. However as σ decreases, more particles (N) are required to obtain an
accurate likelihood estimate and this makes the procedure increasingly computationally
demanding.

3.2.2. Implementation Details

Here we use σ = 0.6 and N = 6000 for the bootstrap particle filter. As mentioned
earlier, the smaller the value of σ the closer the approximate posterior is to the true
posterior with the drawback that a larger N is required to estimate the likelihood
to a reasonable level of precision. At the true parameter value, the log-likelihood is
estimated with a standard deviation of 1.9 when N = 6000. Similar to the previous
example, pilot runs of GIMH are used to determine a suitable covariance matrix for a
multivariate random walk proposal, which all methods use. For simplicity we start all
chains at the true parameter value (unless otherwise stated). We run GIMH for 100K
iterations and MCWM for 50K iterations and make available the A = 16 cores. At the
true parameter value, the standard deviation of the log-likelihood estimate is roughly
0.75 when using the 16 cores. We also consider N = 4000, 5000 and 8000 for GIMH
(70K iterations for N = 8000). For comparison purposes we consider a gold standard
GIMH run of 350K iterations (with N = 6000).

For the GP-GIMH algorithm, we use a similar approach to the previous example. We
first run the MCWM pre-computation step for L = 2000 iterations. During this step,
after an initial 50 iterations, we adapt the covariance matrix of the multivariate normal
random walk proposal every 10th iteration. Again we do not use the A = 16 cores in
the MCWM pre-computing phase. The maximum log-posterior encountered during the
MCWM pre-computation phase is roughly −708 and we do not discard any proposals
(the minimum is −789). To investigate the effect of the training sample size, J , we
compare the results of using a GP trained on all likelihood estimates from the MCWM
pre-computing step with that of a GP trained on the same estimates but after thinning
the parameter output by a factor of two, producing training data with (roughly) J =
4000 and J = 2000. The remaining part of GP-GIMH (again 100K iterations) uses the
same multivariate normal random walk as GIMH/MCWM. No burn-in phase is used
for GP-GIMH (in Section 3.2.4 we consider the impact of using a burn-in phase). We
consider ε values of 1.2, 1.5 and 2 and make the 16 cores available. When the tolerance
condition is not met, we obtain dK/Ae batches of A = 16 independent likelihood
estimates. We run the full GP-GIMH procedure independently five times for each
combination of J and ε.

Code to implement our method for this example can be found at http://www.runmycode.
org/companion/view/2663.

3.2.3. Results

Before discussing posterior approximations, we compare our MCWM training procedure
with the history matching approach of Wilkinson [37]. The full details are provided in

19

-3 -2 -1 0 1

θ
1

0

0.5

1

1.5

GP-GIMH
GIMH (gold)
MCWM

-1 0 1 2 3

θ
2

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0

θ
3

0

0.5

1

1.5

2

-3 -2.5 -2 -1.5 -1 -0.5

θ
4

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

θ
5

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

θ
6

0

0.2

0.4

0.6

0.8

1

-2.5 -2 -1.5 -1 -0.5

θ
7

0

0.5

1

1.5

2

2.5

3

-3.5 -3 -2.5 -2 -1.5 -1

θ
8

0

0.5

1

1.5

2

Figure 5: Estimated marginal posterior densities for the gene network example from runs of the gold
standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five independent runs of the
GP-GIMH (black solid) algorithm with J ≈ 2000 and ε = 1.2. The results for GIMH and MCWM are
based on N = 6000.

Appendix E. We find that with less training time our trained GP is able to predict much
more accurately than the history matching trained GP for samples from the posterior
distribution generated from the exact GIMH method.

As before we find that the GP-GIMH results are generally insensitive to ε, though we
occasionally observe incorrect tail behaviour when ε = 2; see the plots in Appendix
F. The marginal posterior density estimates for the different approaches are shown in
Figures 5 (with J ≈ 2000 for GP-GIMH) and 6 (with J ≈ 4000 for GP-GIMH). Both
GP-GIMH implementations use a tolerance of ε = 1.2. We also show the univariate and
bivariate TV distances between the different approximations and the gold standard run
in Appendix G. In general it is evident that the GP-GIMH method is producing results
not quite as accurate as GIMH but more accurate than MCWM for this example. From
the between-run TV distances shown in Appendix G, it is evident that the between-run
variability is reduced when increasing J . Again, for some of the parameters, we see an
increase in the between-run TV distances when ε = 2.0.

From Table 4 it is evident that GP-GIMH is capturing the true posterior correlation

20

-3 -2 -1 0 1

θ
1

0

0.5

1

1.5

GP-GIMH
GIMH (gold)
MCWM

-1 0 1 2 3

θ
2

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0

θ
3

0

0.5

1

1.5

2

-3 -2.5 -2 -1.5 -1 -0.5

θ
4

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

θ
5

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

θ
6

0

0.2

0.4

0.6

0.8

1

-2.5 -2 -1.5 -1 -0.5

θ
7

0

0.5

1

1.5

2

-3.5 -3 -2.5 -2 -1.5 -1

θ
8

0

0.5

1

1.5

2

Figure 6: Estimated marginal posterior densities for the gene network example from runs of the gold
standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five independent runs of the
GP-GIMH (black solid) algorithm with J ≈ 4000 and ε = 1.2.

21

Table 4: Upper triangular part of the posterior correlation matrix for θ obtained from the gold standard
GIMH/GP-GIMH (first run with J ≈ 2000 and ε = 1.2) algorithms for the gene network model.

θ2 θ3 θ4 θ5 θ6 θ7 θ8
θ1 0.98/0.97 0.03/0.06 0.00/-0.02 -0.01/-0.04 0.00/-0.04 0.03/0.06 -0.01/0.01
θ2 0.03/0.05 0.00/-0.01 -0.01/-0.04 -0.01/-0.04 0.04/0.05 -0.01/0.02
θ3 -0.01/0.02 -0.01/-0.07 -0.01/-0.07 0.70/0.71 -0.02/-0.01
θ4 0.00/0.06 0.01/0.07 -0.01/-0.02 0.70/0.73
θ5 0.99/0.99 0.00/-0.04 0.01/0.09
θ6 0.00/-0.04 0.01/0.09
θ7 -0.01/-0.04

Table 5: Average run times for GP-GIMH (excluding the MCWM pre-computing phase and GP fitting)
for different combinations of J and ε for the gene network example. The average time for GP training
and fitting is around 4 hours.

Configuration avg run time (h)
ε = 1.2, J ≈ 2000 1.9
ε = 1.5, J ≈ 2000 1.9
ε = 2.0, J ≈ 2000 2.3
ε = 1.2, J ≈ 4000 2.9
ε = 1.5, J ≈ 4000 2.5
ε = 2.0, J ≈ 4000 2.6

matrix quite accurately. In the GIMH run, there is a period where the Markov chain
does not move for roughly 1700 iterations, which highlights the difficulty encountered
with the GIMH approach. With the GP-GIMH method, as long as ε is set low enough,
we do not observe such sticking behaviour. Trace plots from the different approaches
are shown in Appendix H.

Table 5 shows the run times (averaged over the five independent runs) for GP-GIMH
for different combinations of J and ε. Note that these times exclude the MCWM pre-
computing phase and GP fitting. Again these times appear to be fairly insensitive to
the tolerance level ε. It is interesting to note that there is only a small increase in run
times for J ≈ 4000. The increase in time for GP prediction is offset by the fact that the
GP is trained at more points so that unreliable GP predictions (with s∗(θ∗) > ε) occur
less often. Furthermore, there is lower variability in the run times with J ≈ 4000: in the
15 runs of GP-GIMH with J ≈ 4000 (five independent runs for each of three different ε
values) the standard deviation of the run time is 0.9 hours whereas the corresponding
number for J ≈ 2000 is 1.3 hours.

The computational, statistical and overall efficiency of the different approaches is shown
in Table 6. Again it is clear that the GP-GIMH algorithm offers generally at least an
order of magnitude improvement in overall efficiency, resulting from the large reduc-

22

Table 6: Comparison of the computational and statistical efficiency of the GIMH, GP-GIMH and
MCWM algorithms for the gene network model. For GP-GIMH the results are averaged over the five
independent runs for each combination of J and ε. † 70K iterations are used for GIMH when N = 8000.

method acc rate (%) min ESS avg ESS time (hrs) min ESS/time avg ESS/time
GIMH (N = 4000) 7 517 700 58 9 12
GIMH (N = 5000) 9 689 902 78 9 12
GIMH (N = 6000) 10 537 984 108 5 9
GIMH (N = 8000)† 12 684 944 123 6 8

MCWM 19 445 769 121 4 6
J ≈ 2000, ε = 1.2 13 956 1452 5.9 176 260
J ≈ 2000, ε = 1.5 13 868 1389 5.9 149 240
J ≈ 2000, ε = 2.0 13 495 1190 6.3 81 194
J ≈ 4000, ε = 1.2 13 892 1419 7.1 132 206
J ≈ 4000, ε = 1.5 13 971 1476 6.7 151 226
J ≈ 4000, ε = 2.0 13 716 1354 6.8 110 204

tion in computing time and a slightly higher acceptance rate than GIMH. The overall
efficiency for GP-GIMH depends little on J in this example. There is perhaps a slight
decrease in overall efficiency as ε increases, especially for ε = 2. We also run the
GP-GIMH method with 5 different Markov chain starting values (obtained from the
MCWM pre-computation step) and obtain similar efficiency results (based on run 1
with J ≈ 4000 and ε ∈ {1.2, 2.0}).
The GP residual plots are shown in Appendix I. As with the previous example, the
normality assumption of the residuals is increasingly violated with an increase in ε.
Again there is a small amount of curvature in some of the residual plots, however
generally the GP appears to fit reasonably well.

3.2.4. Increasing Accuracy with GP-GIMH

Finally, we attempt to use the increased efficiency of the GP-GIMH approach to target
a smaller value of σ. The idea is to obtain an approximate solution to a more accurate
posterior (in the sense that it is closer to the true posterior) rather than an exact solution
to a less accurate posterior. Here we set σ = 0.4 and use N = 10000 for the MCWM
pre-computing step. Given the challenging nature of this problem, we use the 16 cores
in the MCWM pre-computing step to obtain a more accurate log-likelihood estimate at
each iteration of the MCWM phase by taking the average of 16 independent likelihood
estimates. Using the 16 cores, the log-likelihood estimate has a standard deviation
of roughly 2.2 at the true parameter value. The MCWM pre-computing phase is run
for 2000 iterations with an adaptive MCMC strategy as detailed earlier. None of the
training samples are discarded. We use ε = 1.2 for the remaining GP-GIMH algorithm
with a multivariate normal proposal estimated from a few pilot runs of the method.
Once the proposal distribution is determined, GP-GIMH is run for 100K iterations.

23

Given that all 16 cores are already used to obtain a single log-likelihood estimate,
additional likelihood estimates required when s∗(θ∗) > ε can only be obtained in batches
of size 1, increasing the time needed to generate these additional likelihood estimates
(compounded by the fact that we use the larger N = 10000 to accommodate the smaller
σ). Given the complexity of this application, we examine the impact of including for
the first time a burn-in phase. Here we use B = 20000.

Since the likelihood cannot be estimated accurately even with the 16 cores here, GIMH
does not perform well with N = 10000 (acceptance rate of 6% over 10K iterations).
Instead we trial GIMH using N = 14000 (with this choice the standard deviation of
the log-likelihood estimate is roughly 1.6 at the true value).

For GP-GIMH, the MCWM phase takes 10 hours. The remaining part of the GP-GIMH
algorithm takes 7.5 hours without the burn-in phase and 2.3 hours with the burn-
in phase. The improvement in computing time afforded with the burn-in is however
reduced in that 20K less iterations can be used for inference. Using the burn-in period
would be even more beneficial if more iterations were performed. Appendix J shows that
the posterior estimates obtained by GP-GIMH depend very little on whether a burn-
in is used. The GIMH method takes roughly 470 hours to run only 100K iterations.
Further, there is a dramatic reduction in acceptance rate, down from 35% for GP-GIMH
to 12% for GIMH (note that this is even with smaller random walk standard deviations
to improve the acceptance rate). This amounts to an efficiency improvement of roughly
100 times for GP-GIMH (with and without the burn-in).

Posterior distribution estimates are shown in Figure 7 for GP-GIMH (σ = 0.4 with
burn-in phase) and GIMH (for both σ = 0.6 and σ = 0.4). It is important to note that
the GIMH posterior estimates with σ = 0.4 are rough as they are based on a low ESS
(average ESS over parameters of about 80). There is a marked shift in the posteriors
towards the true values for θ3 and θ7 when σ is reduced to 0.4, which the GP-GIMH
approach is able to capture accurately. There is a gain in precision for θ4 and θ8, which
GP-GIMH is also able to capture. The GP-GIMH approach is recovering the skewed
posteriors (θ1, θ2, θ7 and θ8) with less accuracy, with the method appearing to spend
too much time in the right tails. Overall, the GP-GIMH method is performing well
here given the massive improvement in efficiency. The results of GIMH suggest that
the posteriors are moving away from the true parameter values for θ1 and θ2 when σ
is reduced. This might be explained by the fact that only a relatively small (partially
observed) dataset is used here, and so the parameter values most favourable for the
dataset generated may be away from the true parameter values.

4. Discussion

In this paper we have presented an approach to accelerate pseudo-marginal methods
using GPs. We expect our method to be useful in applications with a relatively low
number of parameters and where precise likelihood estimation is very expensive. For ac-

24

-3 -2 -1 0 1

θ
1

0

0.5

1

1.5
GP-GIMH σ = 0.4
GIMH σ = 0.4
GIMH σ = 0.6

-1 0 1 2 3

θ
2

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0

θ
3

0

0.5

1

1.5

2

2.5

3

-3 -2.5 -2 -1.5 -1 -0.5

θ
4

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

θ
5

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

θ
6

0

0.2

0.4

0.6

0.8

1

-2.5 -2 -1.5 -1 -0.5

θ
7

0

0.5

1

1.5

2

2.5

3

-3.5 -3 -2.5 -2 -1.5 -1

θ
8

0

0.5

1

1.5

2

2.5

3

Figure 7: Estimated marginal posterior densities for the gene network example from GIMH with
σ = 0.6 (red dash) and GP-GIMH with σ = 0.4 and a burn-in phase of B = 20000 iterations (black
solid).

25

curate posterior approximations, we also require that the underlying true log-likelihood
surface can be well approximated with a GP. Thus we require a smooth log-likelihood
function.

Other choices for the mean function, covariance function and observation model may
be selected. Such selections are likely to be problem dependent, for example some
noisy log-likelihood functions might be better modelled with an error variance that
depends on θ, such as heteroscedastic GP models [16, 27]. In practice one may use
a model selection procedure [33, chap. 5] to determine the most appropriate GP for
a given training sample. Järvenpää et al. [24] use a GP with input-dependent noise
for ABC and discuss model selection in this context. However, a more sophisticated
GP will result in more complex computations involving the GP. This requires further
investigation.

In this article we have not investigated the optimal standard deviation of the log-
likelihood estimator to use in the MCWM pre-computing phase. Such an investigation
would require an extensive and significant simulation study. Here we found success
when the standard deviation of the log-likelihood estimator is roughly 2 in the MCWM
pre-computing phase. This is of interest as it is larger than that recommended for
GIMH [11], which suggests that our approach should be useful in complex scenarios.

Here we used a multivariate normal random walk proposal in the MCMC. Alternatively,
the pre-computed approximation to the log-likelihood could also be used to design
improved proposals for GP-GIMH. The covariance function of the GP could be viewed
as a smoothed representation of the geometry of the parameter space. Where there
is strong dependence between parameters, information such as gradient and curvature
can be utilised to propose large moves with high acceptance probability. For example,
Zhang et al. [39] incorporate a pre-computation step in their approximate Hamiltonian
Monte Carlo method (see also Rasmussen [32]).

Our approach could also be used to accelerate approximate Bayesian inferences when an
expensive biased likelihood estimator is used. Alquier et al. [1] present a noisy MCMC
framework that provides bounds on the error when a biased likelihood estimator is
used in an MCMC method. Another example is the synthetic likelihood of Wood [38]
(see also Price et al. [31]), which assumes a multivariate normal approximation for the
likelihood of a summary statistic, with a mean and covariance matrix estimated by
repeated model simulation.

A GP surrogate may be incorporated into delayed-acceptance MCMC to facilitate exact
Bayesian inferences in the presence of models where only an unbiased likelihood esti-
mator is available or those with expensive likelihood functions. There is scope here to
adapt the GP during the MCMC algorithm by adding training samples when necessary
and/or re-estimating hyperparameters.

If exact results are necessary, the output of our GP-GIMH approach may be used to
form an importance distribution for importance sampling (IS) or sequential Monte Carlo
(SMC). The IS and SMC approaches have been extended to allow for unbiased likelihood

26

estimators to be used (see Chopin et al. [8], Tran et al. [36], Duan and Fulop [14] and
Drovandi and McCutchan [13]). The IS and SMC methods are of additional interest
as they produce also an estimate of the evidence, which can be used for fully Bayesian
model comparisons; see, for example, Drovandi and McCutchan [13] and Carson et al.
[7].

Acknowledgements

CCD was supported by an Australian Research Council’s Discovery Early Career Re-
searcher Award funding scheme (DE160100741). MTM was supported by the UK
Engineering and Physical Sciences Research Council as part of a programme grant
(EP/K014463/1). The authors are grateful to Andy Golightly for useful comments on
an earlier draft. The authors are also grateful to an Associate Editor and two referees
for their helpful suggestions that led to improvements in the presentation and content
of this paper.

References

[1] Alquier, P., Friel, N., Everitt, R., Boland, A., 2016. Noisy Monte Carlo: Conver-
gence of Markov chains with approximate transition kernels. Statistics and Com-
puting 26 (1), 29–47.

[2] Andrieu, C., Doucet, A., Holenstein, R., 2010. Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 72 (3), 269–342.

[3] Andrieu, C., Roberts, G. O., 2009. The pseudo-marginal approach for efficient
Monte Carlo computations. The Annals of Statistics 37 (2), 697–725.

[4] Baggaley, A. W., Boys, R. J., Golightly, A., Sarson, G. R., Shukurov, A., 12 2012.
Inference for population dynamics in the neolithic period. The Annals of Applied
Statistics 6 (4), 1352–1376.

[5] Beaumont, M. A., 2003. Estimation of population growth or decline in genetically
monitored populations. Genetics 164 (3), 1139–1160.

[6] Bérard, J., Del Moral, P., Doucet, A., 2014. A lognormal central limit theorem for
particle approximations of normalizing constants. Electronic Journal of Probability
19 (94), 1–28.

[7] Carson, J., Crucifix, M., Preston, S., Wilkinson, R. D., 2017. Bayesian model selec-
tion for the glacial-interglacial cycle. To appear in Journal of the Royal Statistical
Society: Series C (Applied Statistics).

27

[8] Chopin, N., Jacob, P. E., Papaspiliopoulos, O., 2013. SMC2: an efficient algo-
rithm for sequential analysis of state space models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 75 (3), 397–426.

[9] Christen, J. A., Fox, C., 2005. Markov chain Monte Carlo using an approximation.
Journal of Computational and Graphical Statistics 14 (4), 795–810.

[10] Conrad, P. R., Marzouk, Y. M., Pillai, N. S., Smith, A., 2016. Accelerating asymp-
totically exact MCMC for computationally intensive models via local approxima-
tions. Journal of the American Statistical Association 111 (516), 1591–1607.

[11] Doucet, A., Pitt, M. K., Deligiannidis, G., Kohn, R., 2015. Efficient implementa-
tion of Markov chain Monte Carlo when using an unbiased likelihood estimator.
Biometrika 102 (2), 295–313.

[12] Drovandi, C. C., 2014. Pseudo-marginal algorithms with multiple CPUs.
http://eprints.qut.edu.au/61505/.

[13] Drovandi, C. C., McCutchan, R. A., 2016. Alive SMC2: Bayesian model selection
for low-count time series models with intractable likelihoods. Biometrics 72 (2),
344–353.

[14] Duan, J.-C., Fulop, A., 2015. Density-tempered marginalized sequential Monte
Carlo samplers. Journal of Business & Economic Statistics 33 (2), 192–202.

[15] Fearnhead, P., Giagos, V., Sherlock, C., 2014. Inference for reaction networks using
the linear noise approximation. Biometrics 70 (2), 457–466.

[16] Goldberg, P. W., Williams, C. K. I., Bishop, C. M., 1998. Regression with input-
dependent noise: a Gaussian process treatment. In: Advances in Neural Informa-
tion Processing Systems (NIPS). Vol. 10. The MIT Press, pp. 493–499.

[17] Golightly, A., Henderson, D. A., Sherlock, C., 2015. Delayed acceptance particle
MCMC for exact inference in stochastic kinetic models. Statistics and Computing
25 (5), 1039–1055.

[18] Golightly, A., Wilkinson, D. J., 2005. Bayesian inference for stochastic kinetic
models using a diffusion approximation. Biometrics 61 (3), 781–788.

[19] Gordon, N. J., Salmond, D. J., Smith, A. F. M., 1993. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In: Radar and Signal Process-
ing, IEE Proceedings F. Vol. 140. pp. 107–113.

[20] Gutmann, M. U., Corander, J., 2016. Bayesian optimization for likelihood-free
inference of simulator-based statistical models. Journal of Machine Learning Re-
search 17 (1), 4256–4302.

28

[21] Henderson, D. A., Boys, R. J., Krishnan, K. J., Lawless, C., Wilkinson, D. J.,
2009. Bayesian emulation and calibration of a stochastic computer model of mi-
tochondrial dna deletions in substantia nigra neurons. Journal of the American
Statistical Association 104 (485), 76–87.

[22] Henderson, D. A., Boys, R. J., Wilkinson, D. J., 2010. Bayesian calibration of a
stochastic kinetic computer model using multiple data sources. Biometrics 66 (1),
249–256.

[23] Holenstein, R., 2009. Particle Markov chain Monte Carlo. Ph.D. thesis, The Uni-
versity Of British Columbia.

[24] Järvenpää, M., Gutmann, M., Vehtari, A., Marttinen, P., 2016. Gaussian process
modeling in approximate Bayesian computation to estimate horizontal gene trans-
fer in bacteria. arXiv:1610.06462 [stat.ML]ArXiv preprint.
URL https://arxiv.org/abs/1610.06462

[25] Kennedy, M. C., O’Hagan, A., 2000. Predicting the output from a complex com-
puter code when fast approximations are available. Biometrika 87 (1), 1–13.

[26] Kennedy, M. C., O’Hagan, A., 2001. Bayesian calibration of computer models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3),
425–464.

[27] Kersting, K., Plagemann, C., Pfaff, P., Burgard, W., 2007. Most likely het-
eroscedastic Gaussian process regression. In: Proceedings of the 24th International
Conference on Machine Learning (ICML). Vol. 227 of ACM International Confer-
ence Proceeding Series. pp. 393–400.

[28] Medina-Aguayo, F. J., Lee, A., Roberts, G. O., 2016. Stability of noisy Metropolis–
Hastings. Statistics and Computing 26 (6), 1187–1211.

[29] Meeds, E., Welling, M., 2014. GPS-ABC: Gaussian process surrogate approximate
Bayesian computation. In: Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence (UAI). Quebec City, Canada, pp. 593–602.

[30] Plummer, M., Best, N., Cowles, K., Vines, K., 2006. CODA: Convergence diagnosis
and output analysis for MCMC. R News 6 (1), 7–11.
URL http://CRAN.R-project.org/doc/Rnews/

[31] Price, L. F., Drovandi, C. C., Lee, A., Nott, D. J., 2017. Bayesian syn-
thetic likelihood. Journal of Computational and Graphical Statistics doi:
10.1080/10618600.2017.1302882.

[32] Rasmussen, C. E., 2003. Gaussian processes to speed up hybrid Monte Carlo for
expensive Bayesian integrals. In: Bernardo, J., Bayarri, M., Berger, J., Dawid,

29

A., Heckerman, D., Smith, A., West, M. (Eds.), Bayesian Statistics. Vol. 7. pp.
651–659.

[33] Rasmussen, C. E., Williams, C. K. I., 2006. Gaussian processes for machine learn-
ing. The MIT Press, Cambridge, Massachusetts.

[34] Sherlock, C., Golightly, A., Henderson, D. A., 2017. Adaptive, delayed-acceptance
MCMC for targets with expensive likelihoods. Journal of Computational and
Graphical Statistics 26 (2), 434–444.

[35] Tran, M.-N., Nott, D. J., Kohn, R., 2017. Variational Bayes with intractable like-
lihood. To appear in Journal of Computational and Graphical Statistics.

[36] Tran, M.-N., Scharth, M., Pitt, M. K., Kohn, R., 2014. Importance sampling
squared for Bayesian inference in latent variable models. Available at SSRN
2386371.

[37] Wilkinson, R., 2014. Accelerating ABC methods using Gaussian processes. Journal
of Machine Learning Research 33, 1015–1023.

[38] Wood, S. N., August 2010. Statistical inference for noisy nonlinear ecological dy-
namic systems. Nature 466, 1102–1107.

[39] Zhang, C., Shahbaba, B., Zhao, H., 2017. Precomputing strategy for Hamilto-
nian Monte Carlo method based on regularity in parameter space. Computational
Statistics 32 (1), 253–279.

30

