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Abstract

HAC estimators are known to produce test statistics that reject too frequently in finite
samples. One neglected reason comes from using the OLS residuals when constructing
the HAC estimator. If the regression matrix contains high leverage points, such as from
outliers, then the OLS residuals will be negatively biased. This reduces the variance of
the OLS residuals and the HAC estimator takes this to signal a more accurate coefficient
estimate. Transformations to reflate the OLS residuals and offset the bias have been
used in the related HC literature for many years, but these have been overlooked in
the HAC literature. Using a suite of simulations I provide strong evidence in favour of
replacing the OLS residual-based HAC estimator with estimators related to extensions
of either of the two main HC alternatives. In an empirical application I show how
different inference from using the alternative HAC estimators can be important, not
only from a statistical perspective, but also from an economic one as well.
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1 Introduction

Accurate inference about the estimated coefficients from an ordinary least squares (OLS)

regression model relies crucially on a consistent estimator of the coefficient covariance ma-

trix. It is widely understood that if the OLS residuals have heteroskedasticity and/or serial

correlation, then the usual coefficient covariance matrix will not be consistent and if it is

used to perform inference, then it will lead erroneous conclusions. To overcome this, alterna-

tive covariance matrix estimators have been proposed in the literature which are consistent

to unknown forms of heteroskedasticity (HC), see Eicker (1963) and White (1980) and/or

autocorrelation (HAC), see Newey and West (1987). However, the performance of these

so-called robust estimators can differ significantly in finite samples encountered in empirical

applications.

Focusing on the HAC covariance matrix estimator, a number of authors including for ex-

ample: Andrews (1991), Andrews and Monahan (1992), Burnside and Eichenbaum (1996),

Christiano and den Haan (1996), Den Haan and Levin (1997) and West (1997) have shown in

various simulation studies that estimating HAC covariance matrices with small to moderate

sample sizes (as encountered in macroeconomics for example), tend to produce coefficient

standard error estimates that lead to test statistics that are oversized (i.e., they reject the

null hypothesis in a two-sided test too frequently) and confidence intervals with shorter

length than otherwise.

As a means of achieving a more efficient estimator the HAC literature has devoted much

attention to the problem of selecting the optimal kernel (Andrews 1991), the right bandwidth

(Andrews 1991 and Newey and West 1994) or whether or not to pre-whiten the OLS residuals

beforehand (Andrews and Monahan 1992 and den Haan and Levin 2000). However, only

minor attention has been given to potential problems caused from using the OLS residuals as

an estimate for the unobserved stochastic error term in the regression model. Note that the

standard HAC estimator is just a generalisation of the consistent covariance matrix estimator

popularised by White (1980). While this covariance matrix estimator (sometimes called the

Eicker-White estimator or ‘HC0’ in the HC literature) is asymptotically consistent, it was
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soon understood that the HC0 estimator could be seriously biased in finite samples. As a

result, alternative estimators were suggested instead. These use transformations of the OLS

residuals to offset the bias and do have improved finite sample properties (see MacKinnon

and White 1985). These alternative estimators have been used in the cross-section literature

and available in many statistical software packages for some time. However, no attention

has been given in the HAC literature to extend these alternative HC estimators to the HAC

setting, although Davidson and Mackinnon (1993) did conjecture that doing so might provide

some improvement.

The potential problem with using the OLS residuals is that they are negatively biased esti-

mator of the true unobserved stochastic error process. This means that the OLS residuals

will usually be smaller than otherwise and hence the variance of the OLS residuals will also

be smaller. The covariance matrix estimator takes these smaller variance estimates to signify

more accurate coefficient estimates, leading to smaller standard errors and hence oversized

test statistics and under covered confidence intervals. The bias in the OLS residuals is related

to the predictor matrix itself, and is more apparent if the predictor matrix is ‘unbalanced’

in which case some observations exert more influence on the regression fit than others, such

as when the data contain outliers (see Chesher and Jewitt 1987).

In the HAC literature, only two previous studies have investigated ways of overcoming the

downward bias problem in the OLS residuals (see Keener et al. 1991 and Kuan and Hsieh

2008). Keener et al. (1991) attempt to estimate the bias term explicitly and then remove

it as part of the estimation procedure, but only for a finite number of lags. Whereas Kuan

and Hsieh (2008) suggested using the forecast error residuals in place of the OLS residuals.

However, neither consider using the alternative estimators already available in the HC lit-

erature. Furthermore, both methods have some issues that seem to have prevented them

from being used in practice. In relation to using the forecast errors, Diebold (2015) argues

this technique can be unsatisfactory as the convergence of the model coefficients to their

population values as the sample size increases can introduce non-stationarities into the es-

timated forecast errors. An additional issue is the practical aspect that a portion of the

sample is lost in the estimation process. The method proposed by Keener et al. (1991) is
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also unsatisfactory because it is not guaranteed to generate a positive definite covariance

matrix. This is because it uses a sharp truncation when estimating the long-run coefficient

covariance matrix. While in their simulation results the occurrence of this was small, the

fact that the occurrence has a non-zero probability makes using it less appealing in practice.

Instead of these two methods, I propose replacing the OLS residuals with either one of the

alternative residuals related to the HC estimators ‘HC3’ and ‘HC4m’ when estimating the

HAC coefficient covariance matrix. The reason for doing this is that these two alternatives

have been shown to be the better performing estimators (in the sense of generating empirical

sizes closer to the true nominal size) from the HC literature. To examine if these alternative

estimators provide some improvement compared to the OLS residuals, I undertake a suite

of simulations based on the work of Andrews (1991), but expanded to include Student-t

and Chi-squared distributed random variables in addition to Gaussian distributed random

variables. Both of these distributions are more likely to lead to unbalanced predictor matrices

and therefore more negatively biased OLS residuals.

My simulation results show that across all scenarios considered here the alternative esti-

mators from the HC setting outperform the OLS residual-based HAC estimator. Although

the improved performance comes at a cost of a more variable variance estimator. However,

Simonoff (1993) suggests that since variances are estimated primarily to be used for infer-

ence, then a more useful method of comparison for such estimators could be related to their

intended use, such as evaluations based on the true nominal size of test statistics or the true

coverage probability of confidence intervals.

One situation when HAC estimators play an important role is in tests comparing predictive

accuracy (Diebold and Mariano 1995). These tests can involve small samples or data with

large outliers depending on the type of loss function used to compute the loss differential.

As such, these tests could generate DM test statistics which are more likely to be oversized

due to negatively biased OLS residual-based estimates of the standard error used to compute

the DM test statistic. The results of this paper suggest the proposed alternative estimators

will be more appropriate to use in these types of situations. To demonstrate I replicate the
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empirical application of Diebold and Mariano (1995), but using the UK Pound/US Dollar

exchange rate, and compare the performance of the OLS residual-based HAC estimator to

the two alternative estimators and find that the null hypothesis is rejected less frequently

when using the latter than it is using the former over a range of sample sizes and forecast

horizons.

The remainder of the paper is organised as follows: Section 2 introduces the sample kernel-

based HAC covariance matrix estimator as well as an explanation of why the OLS residuals

are negatively biased and discusses how to offset it. Section 3 presents the Monte Carlo

simulation design and the simulation results comparing the OLS residuals-based HAC esti-

mator to the two proposed alternatives. Section 4 documents an application involving tests

comparing predictive accuracy using the OLS residual and the two alternative residual esti-

mators, while Section 6 concludes. Auxiliary computations as well as additional simulation

results are presented in the Appendix.

2 Alternative HAC Covariance Matrix Estimators

2.1 HAC Covariance Matrix Estimation and OLS Residual Bias

The standard linear regression model can be expressed as:

yt = x′tβ0 + εt t = 1, . . . , T (1)

Where there are T observations on the scalar response variable, yt, and the vector of predictor

variables, xt = (xt1, xt2, . . . , xtN)′. The scalar stochastic error term, εt, is unobserved, while

β0 is an unknown N × 1 vector of population coefficients that indicate how the predictors

relate to the responses. In matrix notation this relationship is written as:

Y = Xβ0 + ε (2)
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In this case Y is a T × 1 vector of responses, X is a T ×N matrix of predictors with rows

x′t, while ε is a T × 1 vector of errors. The asymptotic covariance matrix for the estimated

coefficients, β̂T , can be specified as:

Var
(√

T
(
β̂T − β0

))
= Q−1

xx Ω0Q
−1
xx (3)

The ‘T ’ subscript signifies that the estimation is based on a sample size of T . Q−1
xx is the

probability limit of
(

1
T
X ′X

)−1
while Ω0 is the long run covariance matrix of X ′ε, which has

the following form:

Ω0 = Var
(

1√
T
X ′ε

)
(4)

= E
(

1

T
X ′εε′X

)
(5)

= E

(
1

T

T∑
t=1

T∑
s=1

xtεtεsx
′
s

)
(6)

Note, as T −→ ∞ this expression becomes equivalent to 2π times the spectral density of

X ′ε at frequency zero (see den Haan and Levin 1997). A consistent estimator of Ω0 is:

Ω̂T =
T

T −N

T−1∑
j=1

κ

(
j

ST

)(
Γ̂j + Γ̂′j

)
(7)

Γ̂j =
1

T

T∑
t=j+1

xtε̂tε̂t−jx
′
t−j (8)

Here κ (·) is a real-valued kernel function, ST is a bandwidth parameter, and the term

T/ (T −N) is a small sample adjustment recommended by Andrews (1991) to offset the

effect of estimating the coefficient vector β̂T . Note, non-kernel-based methods for consistently

estimating Ω0 exist as well, see for example Kiefer et al. (2000) or West (1997), but these

methods do not seem to be as popular as the kernel-based method and are not readily

available in many of the main statistical software packages.

The kernel function apportions declining weights on covariance terms further apart in time

and is based on the assumption that these more distant covariance terms should have rela-

tively less impact on the overall variance of the process as t −→ T . The two most commonly
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used kernel functions in empirical applications tend to be the Bartlett (BT) and Quadratic

Spectral Density (QS) kernels. The BT kernel was used in the first kernel-based HAC es-

timator introduced into the econometrics literature by Newey and West (1987) and can be

defined as:

κBT (x) =


1− |x| for |x| ≤ 1

0 otherwise

(9)

Notice that the BT kernel assigns linearly declining weights as x increases and reach zero at

the value ST . In this setting the bandwidth parameter is also referred to as a lag truncation

parameter since lags of order x > ST receive zero weights. The QS kernel was introduced

into the HAC estimator literature by Andrews (1991) and was also shown to be the optimal

kernel (in an asymptotic truncated mean squared error sense). The QS kernel can be defined

as:

κQS (x) =
25

12π2x2

(
sin (6πx/5)

6πx/5
− cos (6πx/5)

)
(10)

The QS kernel assigns weights that decline non-linearly, reaching zero at a lag order of about

1.2 times the bandwidth parameter ST and then oscillates around zero for higher lag orders

up to the sample length T (for a more fuller explanation see den Haan and Levin 1997).

Other kernels which may be used, but which are less popular than the preceding two are the

Truncated, Parzan and Tukey-Hanning kernels. See Andrews (1991) for a comprehensive

analysis of these alternative kernels.

There are two alternative methods of computing an appropriate bandwidth parameter; either

as a function of the sample size (fixed interval) or a function of the data (data-dependent or

automatic). Newey and West (1987) originally used a fixed interval denoted as m. We can

relate their term to the bandwidth parameter using the expression ST = m+ 1. Asymptotic

theory related to using the fixed interval bandwidth assumes it grows as T −→ ∞ but at a

rate more slowly than T does so that m/T −→ 0.

Various ‘rules of thumb’ have been suggested for determining m, one such method is m =

4 (T/100)2/9 as recommended by Wooldridge (2013). In contrast, the automatic or data-

dependent method uses the idea that the bandwidth should not simply be based on the
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sample size, but should also consider the time series features of the data in addition to the

kernel used (see Andrews 1991 and Newey and West 1994).

Finally, the OLS residual is used in place of the unobservable stochastic error process. In

this specification the HAC estimator is closely related to the HC estimator of White (1980).

Both of these estimators use the squared OLS residuals as an estimate of the variance of

the unobserved stochastic error term. Asymptotically, this has been established to be a

consistent estimator for both; however, using this specification can lead to seriously biased

estimates in finite samples. The reason for this is that the OLS residuals are a downward

biased estimator for the true stochastic error process (for more detail see Meloun and Militký

2001). To see this note that the OLS residual is just a by-product of Least Squares estimation:

ε̂ = Y −Xβ̂T = Y − Ŷ = (IT − P )Y = MY = M (Xβ0 + ε) = Mε (11)

Where IT is an identity matrix, P is the projection matrix defined as X (X ′X)−1X ′ while

M is the orthogonal projection matrix (also called the ‘annihilator matrix’). Equation (11)

shows that the OLS residuals are in fact a linear combination of the true stochastic errors and

the predictors (or regressors). This is more evident when considering the tth OLS residual

given as:

ε̂t = εt (1− ht)−
T∑
i 6=t

Ptiεi (12)

When the error variances are heteroskedastic then the covariance matrix for ε is given as

Var (ε | X) = Σ which is a diagonal matrix with the individual variance terms along the

main diagonal. However, Var (ε̂ | X) 6= Σ, in fact the variance is defined as:

Var (ε̂ | X) = Var (Mε | X) = MVar (ε | X)M = M (Σ)M = Σ− PΣ− ΣP + PΣP (13)

Hence, the variance of the tth error term is equal to σ2
t , whereas, the variance of the tth OLS

residual is instead given by:

σ̂2
t = σ2

t (1− ht)2 − 2

(
εt (1− ht)

T∑
i 6=t

Ptiεi

)
+

(
T∑
i 6=t

Ptiεi

)2

(14)
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The ht, t = 1, . . . , T appearing in Equations (12) and (14) are sometimes referred to as the

‘leverage points’. They indicate the amount of influence exerted on the fitted response value

ŷt by the actual response value yt. The leverage points are computed from the diagonal

elements of the projection matrix, P . It is always the case that 0 ≤ ht ≤ 1 and since

trace (P ) = N , the number of columns in the predictor matrix, the average size of the

ht can be computed as N/T . When values of ht are close to the mean value, then the

predictor matrix X is described as being ‘well balanced’ since no one observation dominates

the estimated fit more so than any other. As a rough guide, Hoaglin and Welsch (1978)

suggested that a ‘reasonable rule of thumb’ for large leverage points as being values for ht

greater than 2N/T in magnitude.

Given the bounds on the values ht may take, it becomes clear that the possibility of severe

negative bias arises when there are large leverage points. This is because the OLS residuals

associated to these large leverage points have smaller magnitude on average. The covariance

matrix estimator takes the smaller OLS residuals as evidence of small error variances and

hence a sign of more accurate coefficient estimates (Chesher and Jewitt 1987). The negative

bias will tend to be more pronounced if the sample size is small, max (ht) is close to 1,

or if the data has positive autocorrelation (Künsch 1989). It is this that leads to smaller

standard errors and hence oversized hypothesis tests and under covered confidence intervals.

The direction of the bias is important as well. If it were positive then tests would be relatively

more conservative and reject less often. It is the fact that the bias is negative that leads to

the unappealing size properties in practice.

2.2 Alternative Residual Estimators

In the HC covariance matrix estimator literature there have been no less than six different

estimators besides the OLS residual-based estimator proposed. These alternative estimators

have become known by the labels: HC1, HC2, HC3, HC4, HC4m and HC5, while the

original Eicker-White estimator is known as HC0. The first three (HC1, HC2 and HC3) were

originally introduced by MacKinnon and White (1985). HC1 is the most basic estimator
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and is just a simple degrees of freedom adjustment of HC0. The HC3 estimator as it is

known today is based on the specification suggested by Davidson and Mackinnon (1993)

as an approximation of the jackknife version originally proposed in MacKinnon and White

(1985). However, Hansen (2016) shows that this approximation is really just an alternative

expression for the original estimator. The latter three (HC4, HC4m and HC5) were suggested

by Cribari-Neto (2004), Cribari-Neto and da Silva (2011), and Cribari-Neto et al. (2007)

respectively. All three are closely related in design with HC4m and HC5 based on alterations

of the HC4 estimator.

A range of different simulation studies related to cross-section data have demonstrated that

these alternative residuals generally perform much better than the HC0 estimator, (see for

example; MacKinnon and White 1985, Cribari-Neto et al. 2000, Kauermann and Carroll

2001, or Godfrey 2006, as well as the detailed simulation results of Long and Ervin 2000),

in producing test statistics with empirical size being closer to the true nominal size. The

way they achieve this is to offset the negative bias present in the OLS residuals via various

transformations that ‘inflate’ them. Given these alternatives have been successful in the

HC literature, it seems reasonable to assume there would be a commiserate improvement

in the empirical size properties of test statistics in the HAC estimator setting. An idea

that seems to have been first mentioned by Davidson and Mackinnon (1993). However, it

does not appear as if this has been investigated at all in the HAC literature as yet, were

most attention has been devoted to determining the optimal kernel function to use, the

best method of computing the bandwidth parameter and whether or not one should use

pre-whitened residuals.

I suggest replacing the OLS residual-based HAC estimator with these alternative estimators

from the HC setting and investigate if doing so also leads to an improvement in finite sample

performance. The previously cited studies suggest that of the six alternatives, the HC3 and

the more recent HC4m estimators seem to dominate the others (in the sense of generating

test statistics closest to the true nominal size). As well be shown, the HC3 estimator has

some appealing theoretical properties to go along with the empirical justification. However,

in some situations, particularly when the data contain high leverage points, the HC4m
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estimator tends to outperform the HC3 estimator. Hence, I will focus on using these two

alternative estimators in place of the standard HAC estimator based on the OLS residuals.

Note, while no other study has investigated using these alternative residuals from the HC

literature, two previous studies in the HAC literature have acknowledged the problem of

estimating the coefficient covariance matrix using the OLS residuals in finite samples. The

first was by Keener et al. (1991), they presented an expression for the bias in the covariance

matrix estimator and suggested a new estimator with the bias removed. However, they

used a method that appeared to be similar to a truncated kernel HAC covariance matrix

estimator. The problem with this, which the authors do note, is that it is not guaranteed to

generate an estimator which is positive definite.

The second was by Kuan and Hsieh (2008), they discuss using an alternative residual as

well; however, they recommended using the forecast error residual. Their method is not

without some problems either. Firstly, it is slightly more computational intensive than the

method I am suggesting and requires dropping a portion of the sample in estimation (in

their paper Kuan and Hsieh 2008 drop the first 10% of their data set). A bigger concern

though is in the way the forecast errors are computed by recursively re-estimating the OLS

model on an increasing sample size. This procedure can introduce non-stationarities into

the estimated forecast errors as the model coefficients converge to their population values

(Diebold 2015). Nonetheless, both studies report simulation results which indicate that

addressing the negative bias in the residuals can lead to more correctly sized test statistics

compared to the HAC estimator using the OLS residuals.

I now describe the two transformations applied to the OLS residuals to construct the HC3 and

HC4m estimators respectively. To do so I introduce the following two alternative residuals.

The first alternative residual is the one used in the HC3 specification. Hansen (2016) refers

to it as the prediction error residual and gives it the label of ε̃t. It can be defined as:

ε̃t =
ε̂t

(1− ht)
(15)

The appealing feature of this residual is it partially offsets the impact of the leverage points on
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the OLS residuals. The second alternative residual is the one used in the HC4m specification.

It differs from the HC3 method by specifying a function for the discount factor applied the

term (1− ht) instead of a constant as with the HC3 estimator. Since Cribari-Neto and

da Silva (2011) did not propose an explicit name for this residual I will refer to it in this

paper as the ‘modified discounted error’ residual and label it as ε̇m. The ‘m’ is to signify it

is a modification of an existing estimator. It can be defined as:

ε̇m,t =
ε̂t

(1− ht)δt/2
(16)

Where δt = min {γ1, Tht/N}+ min {γ2, Tht/N} for t = 1, . . . , T . In this expression γ1 and

γ2 are two real-valued positive constants which need to be set by the researcher. Based

on a variety of factors the authors suggest setting γ1 = 1.0 and γ2 = 1.5. This leads to

a discount factor with a maximum value of 2.5, which is very close to the figure used to

compute ε̃t, and could be one reason why its performance in the HC literature is usually

close to that of the prediction error residual. This specification attempts to correct for overly

large leverage points in the predictor matrix. Cribari-Neto and Zarkos (2001) show that the

presence of high leverage points can be more detrimental to the finite sample performance

of the coefficient covariance matrix estimator than the intensity of heteroskedasticity.

Computing the leverage points is not a difficult task. If the QR decomposition is used as the

method of computing the regression function Equation (2), then Davidson and Mackinnon

(1993) provide a technique for calculating the leverage points, ht, as a by-product.1 For a

detailed explanation please refer to the Appendix.

As already mentioned, both the alternative residuals have shown improved performance

relative to the OLS residuals in previous empirical results in the cross-section literature.

However, it must be shown that they both still lead to a consistent estimator for the popula-

tion HAC estimator as described in Equation (3). To prove consistency using the alternative

residuals, all that one must show is that either alternative residual is a consistent estimator

for the true stochastic error term in Equation (17), since the alternative residuals are both

1Additionally Davidson and Mackinnon (1993) also note that another benefit in using the QR decom-
position is that it produces the most accurate results.
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just a transformation of the OLS residuals. This is stated in Proposition 1.

Proposition 1. If standard regularity conditions for Least Squares estimation with mixing

time series processes hold (for example Theorem 3.78 from White 2000), then the leverage

points are asymptotically negligible, and as a consequence, the alternative residuals are a

consistent estimator of the population error process.

The implication of Proposition 1 is that existing proofs in the literature for the consistency

of HAC covariance matrix estimators, see for example: Newey and West (1987), Andrews

(1991), Hansen (1992), de Jong and Davidson (2000), de Jong (2000), or Jansson (2002),

remain applicable. The proof is presented in Appendix.

3 Monte Carlo Simulation Analysis

3.1 Simulation Design

In my simulation experiments I follow the same basic set-up as first used in Andrews (1991)

and which has also been employed by other studies related to investigating the performance

of different HAC estimators (see for example, Andrews and Monahan 1992, West 1997, Kiefer

et al. 2000, and Kuan and Hsieh 2008). All the simulations contain the following features:

each predictor and the error term are modelled as an AR(1) or MA(1) process. The error

term is then specified to be either: homoskedastic (HOM) or heteroskedastic by making the

error term correlated with either the first non-constant predictor (HET1) or correlated with

all the predictors (HET2). The method of doing this is explained shortly.

One potential limitation with the simulations used by the previous studies is that they all only

considered Gaussian distributed random variables. In the literature related to simulations

analysing the properties of HC covariance matrix estimators, Chesher and Jewitt (1987)

recommended that the actual predictors (or design) matrix used in simulations should also

be varied across different simulations. As has already been discussed, points of high leverage

are one important source of downward bias in the OLS residuals and as a consequence the
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associated HAC covariance matrix estimator. Hence, to get a more comprehensive analysis

of the performance of different HAC covariance matrix estimators based on the alternative

residuals it seems prudent to use distributions in which the generation of large leverage

points are relatively more probable.

To achieve this, I follow Godfrey (2006) and also consider random variables generated from a

Student-t distribution with 5 degrees of freedom as well as a Chi-squared distribution with 2

degrees of freedom, in addition to a Gaussian distribution (each of which are abbreviated to

‘ST’, ‘CS’, or ‘GA’ respectively in the tables and figures to follow). The Student-t distribution

is used as an example of a symmetric non-Gaussian distribution with more mass located

towards the tails of the distribution (i.e., ‘fat tailed’) and hence a greater probability of

producing large deviations from the mean relative to a Gaussian distribution. In comparison,

the Chi-squared distribution is an example of a non-normal and asymmetric distribution and

so will provide the possibility of generating extreme values from only the right half of the

distribution.

Before using any random variables I normalise them to have zero mean and unit variance.

Let ν represent the degrees of freedom parameter, then for the Student-t random variables,

which already have a zero mean, this is achieved by dividing the generated random variables

by ν/ (ν − 2). However, with the Chi-squared random variables it was necessary to also

demean the random variables by subtracting ν before dividing by 2ν to get a process with

mean zero and unit variance.

In all simulations the linear regression model used is of the form:

yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + εt t = 1, . . . , 128 (17)

I set βi i = 0, . . . , 4 to 1 in all experiments. Each predictor xti i = 1, . . . , 4 and the error

process εt are generated as follows: First a set of random variables, ξti, where i = 1, . . . , 5 and

t = 1, . . . , 128, are generated from one of the three distributions (standardised with mean

zero and unit variance) previously mentioned. The ξti are then used to construct AR(1) or
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MA(1) processes as follows:

AR(1) : zt = φzt−1 + η (ξt) MA(1) : zt = η (ξt) + θη (ξt−1) (18)

The variable, η, is a rescaling factor and is necessary to ensure the overall variance of the

generated processes remains unity. To achieve this I give η the following structure depending

on which process is being generated:

η =


(1− φ2)

1/2
if AR(1) process

(1 + θ2)
−1/2

if MA(1) process

(19)

When generating either AR(1) or MA(1) model process, I use a range of values for both

φ and θ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}, giving 19 different model processes in total including

the case of 0 (i.e., no dependence). Note the initial condition for all generated processes

was drawn from the stationary distribution for either a AR(1) or MA(1) model. To aide

comparison each simulation is grouped by the residual being analysed. Within each group I

seed the random number generator with the same value so that the same stream of (pseudo)

random numbers is generated. Doing this removes a possible source of difference between

the alternative residuals and the OLS residuals and ensures greater comparability. In each

new experiment a new set of predictors and error term is generated. Finally, as in Andrews

(1991), I also transform the predictor matrix X before estimating the model to ensure that

1
T
X ′X = IT .

The errors generated by this method as just described are independent of the predictors

and are therefore homoskedastic (HOM). In addition two different forms of heteroskedastic

(HET) errors are then constructed by introducing multiplicative heteroskedasticity to the

error term of the HOM model in Equation (17). This is achieved by multiplying εt with

k−1/2
∣∣∣∑k

i=1 xti

∣∣∣ (i.e., only the non-constant predictors). This technique is standard in the

HAC simulation literature and was first used by Andrews (1991), but has also been employed

by Andrews and Monahan (1992), West (1997), Kiefer et al. (2000), and Kuan and Hsieh

(2008). For the first form of heteroskedasticity (HET1) k = 1, which means the error
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term is correlated with the first non-constant predictor (xt1) only. Whereas for the second

form of heteroskedasticity (HET2) k = 4, and so the error term is correlated with all the

non-constant predictors. Using this specification for the two forms of heteroskedasticity

ensures that the variance of the overall error process generated remains unity for each form

of heteroskedasiticty investigated in the Monte Carlo simulations.

There are a number of choices that must be made when estimating the HAC covariance

matrix for the estimated coefficients in Equation (17), such as which kernel to use, how to

specify the bandwidth parameter and whether to apply a pre-whitening adjustment or not.

Given that I am solely focused on comparing the performance of three different residuals, I

seek to avoid using methods which might accentuate any differences between them. Kiefer

et al. (2000) made the important observation that if an automatic bandwidth parameter

and/or pre-whitening adjustment is used then different test statistics can result depending

on any transformation applied to the data before estimating a regression model. This means

that different test statistics could result which would impact the ability to fairly compare

the three different residuals.

To overcome this potential invariance problem, they recommend using a fixed interval band-

width parameter and avoid pre-whitening, which I have done in the following simulations.

It is worth mentioning that the standard pre-whitening method as documented in Andrews

and Monahan (1992) can impart additional bias into the estimation during the re-colouring

stage. The source of this extra bias comes from the bias in estimating the VAR(1) model pa-

rameters (see the discussion in Sul et al. 2005). Additionally, Kuan and Hsieh (2008) suggest

that pre-whitening can be avoided in practice based on the results of their simulations.

I focus primarily on using the BT kernel in the various simulations; however, the choice of

kernel is less important so long as the same kernel is used for each residual. To determine

the fixed interval bandwidth parameter I use the integer part of 4 (T/100)2/9. As a check, I

also consider simulations using the QS kernel and the Andrews (1991) data-dependent band-

width using an AR(1) process estimated by regression. Generally, the estimated automatic

bandwidth parameter showed only a relatively small difference between the three differ-
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ent residuals across the experiments considered. Furthermore, the choice of kernel and/or

method of determining the bandwidth parameter was found not to materially impact any of

the simulation results. Nonetheless, I only present results based on the BT kernel and the

fixed interval bandwidth (however, these extra results are available upon request).

To ascertain the finite sample properties of the two alternative residuals discussed in Section 2

relative to the OLS residual I undertake three different simulation experiments. The first

experiment will be a fixed–T simulation in which a range of comparison statistics for a single

coefficient hypothesis test using a HAC estimator based on one of the three different residuals

will be computed for a sample size of 128 observations. The second experiment entails an

increasing–T simulation. In this case the empirical size for single and a joint coefficient

hypothesis test will be calculated as in the fixed–T case but for an increasing sequence of

sample sizes starting at 64 observations, ending at 512 observations, and increasing by one

observation with each new simulation. The final experiment will investigate the empirical

power of single and joint coefficient hypotheses tests based on a fixed sample size of 128

observations.

I choose to focus primarily on a sample size of 128 observation for the first and third exper-

iments because it is a common length used in the simulation studies previously cited and is

about the size of data sets frequently encountered in macroeconomics; being just over ten

years for monthly data or 32 years for quarterly data. Additionally, this is a relatively small

sample size and will highlight the impact of downward bias when estimating the coefficient

covariance matrix using the OLS residuals.

In the fixed–T simulation the main variable of interest is the estimated asymptotic variance

of the OLS coefficient of the first non-constant predictor, x1, that is, the ‘estimand’ is the

(2, 2) element of the 5 × 5 coefficient covariance matrix Var
(√

T
(
β̂T − β0

))
which I will

denote as v̂22. It has a true value of 1 throughout all the simulations undertaken, no matter

which process or form of heteroskdasticity is used.

For each variance estimator and each scenario, the following statistics are also computed: the

bias of the variance estimator, the variance estimator’s standard deviation, the root mean
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squared error (RMSE) of the variance estimator, the empirical size, the average confidence

interval width, the fixed interval bandwidth parameter used and the average maximal lever-

age point (ht) of the predictor matrix. To evaluate the empirical size, I conduct the following

single coefficient (two-sided) hypothesis test:

H0 : β1 = 1 (20)

H1 : β1 6= 1 (21)

The test statistic based on the asymptotic Gaussian approximation is given as:

z =
β̂1 − 1√

1
T
v̂22

(22)

And then compute the proportion of times out of the 10,000 repetitions the null hypothesis

is rejected at the nominal size of α = 0.05. Finally, the confidence interval width is defined

as 2
(
zα/2

√
1
T
v̂22

)
, with α also set equal to 0.05.

The increasing–T simulations have the same features as the fixed–T simulations but only

focuses on estimating the empirical size using a sample range of 64 to 512, incrementing the

sample size by one observation with each new simulation (449 different simulations in total).

This range of sample sizes will provide more granularity about the impact of sample size

on empirical size estimation than previous simulations have been able to provide. To keep

the number of simulations manageable I focus only on the heteroskedastic cases (HET1 and

HET2) and use φ = 0.5 for the AR(1) process and θ = 0.5 for the MA(1) process. I use this

value for both processes as it provides a moderate amount of dependence and at least with

the autoregressive process, mimics the growth rates of some macroeconomic variables such

as US GDP as noted by West (1997).

In addition to the single coefficient hypotheses test I also investigate a joint test that all the
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non-constant coefficients are jointly equal to one:

H0 : β1 = β2 = β3 = β4 = 1, against (23)

H1 : at least one βi 6= 1, i = 1, . . . , 4 (24)

To do this, I use the standard Wald test (see for example White 2000) defined as:

W = T
(
Rβ̂T − r

)′ (
RV̂β̂TR

′
)−1 (

Rβ̂T − r
)

(25)

Where T is the sample size for that particular simulation (64, . . . , 512), R is a 4×5 dimension

matrix defined as [0 : I4], and r is a 4 × 1 column vector of 1s. β̂T are the OLS coefficient

estimates and V̂β̂T is the associated HAC estimated coefficient covariance matrix. The em-

pirical size is then computed as was the case in the fixed–T simulations using a nominal size

α = 0.05.

The final experiment focuses on comparing empirical power for tests using the three different

residuals. I use the same model as in Equation (17) as well as the same data generation

processes used in the fixed–T and increasing–T simulations. Again, I focus exclusively on a

model parameter of 0.5 for the AR(1) and MA(1) generated processes. Each simulation used

one of the three different distributions considered and only the two forms of heteroskedasticity

(HET1 and HET2) were examined. I undertake the same two hypotheses tests as in the

increasing–T experiment: one involving the first non-constant predictor and the second

involving all the non-constant predictors. In each case, the model is generated with a set

of alternative coefficient values βi i = 0, . . . , 4 and βi is given a value from an equally

spaced grid of 100 values from 0.01 to 2 (with 1 the true value under the null hypothesis). I

then test the following two hypotheses: 1) H0 : β1 = 1 using a standard t–test as described

by Equation (22) and 2) H0 : β1 = β2 = β3 = β4 = 1 using the Wald test described by

Equation (25) and calculate the frequency of rejections of the null hypothesis for each test

using a nominal size of α = 0.05 and 10,000 repetitions.

Given the large number of simulations to be undertaken, all computations were programmed
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in C++ making extensive use of the ‘Armadillo’ template Linear Algebra library (Sanderson

2010), which provides a convenient interface to optimised (and multi-threaded) linear algebra

libraries such as OpenBLAS.2

3.2 Simulation Results

As a starting point it will be useful to compare the performance of the two alternative resid-

uals relative to the OLS residual when the underlying model analysed uses independently

and identically distributed (iid) data. To do this I generate two sets of 128 random variables

from the three different distributions and then construct the responses, Y , using the predic-

tors, X, the error process, ε, and with all the βi set equal to 1 as specified by Equation (17).

The model is then estimated by regression and I compute the suite of statistics discussed

previously in relation to the fixed–T simulations using the three different types of residuals.

The results are presented in Table 1.

From Table 1 we can make the following comments: all the residuals produce estimands

which are biased. As was discussed, the OLS residuals produce estimates of v̂22 which are

negatively biased and the amount of the bias increases as the average maximum leverage

point increases such as with the two non-Gaussian distributions. In comparison, both of the

alternative residuals estimands are positively biased. The impact of the different directions of

bias becomes apparent when looking at the empirical sizes produced using each residual. The

OLS residual results in oversized test statistics in all cases. In contrast, the two alternative

residuals produce test statistics with empirical sizes much closer to the true nominal size

across the three different distributions considered.

2OpenBLAS is an open source C library which provides access to BLAS and LAPACK. These are the
standard numerical linear algebra libraries used extensively by many modern numerical computing software
such as R or MATLAB. It can be accessed from http://www.openblas.net/.
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Table 1: Alternative Residual Estimator Comparison

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

Gaussian distributed random variables

ε̂ 0.953 -0.047 0.275 0.279 0.063 0.335 4 0.123
ε̃ 1.065 0.065 0.312 0.319 0.052 0.354 4 0.123
ε̇m 1.082 0.082 0.320 0.330 0.050 0.357 4 0.123

Student-t distributed random variables with degrees of freedom = 5

ε̂ 0.933 -0.067 0.464 0.469 0.065 0.327 4 0.231
ε̃ 1.100 0.100 0.656 0.663 0.051 0.353 4 0.231
ε̇m 1.143 0.143 0.782 0.795 0.048 0.359 4 0.231

Chi-squared distributed random variables with degrees of freedom = 2

ε̂ 0.916 -0.084 0.538 0.544 0.080 0.321 4 0.265
ε̃ 1.112 0.112 0.754 0.762 0.061 0.351 4 0.265
ε̇m 1.164 0.164 0.840 0.856 0.058 0.358 4 0.265

Note: Numbers represent simulation results from 10,000 replications with iid data. In each case the
number of observations, T , was set to 128, while the number of variables, N , was set to 4. The
‘Estimand’ refers to the estimated value of the variance for the first non-constant coefficient, v̂22, which
has a true value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical
size was computed by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and
calculating the average number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers
to the average estimated confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the

fixed interval bandwidth parameter computed as the integer part of 4 (T/100)2/9 and used with a BT
kernel. ‘maxht’ refers to the average of largest estimated leverage point from the generated matrix of
predictors, values larger than 2N/T = 0.0625 are considered to be points of high leverage (see Hoaglin
and Welsch 1978).

Fixed–T simulation plots related to the empirical size simulations for AR(1) and MA(1)

processes using the three different residuals are presented in Figures 1 and 2 respectively.

The first column corresponds to Gaussian distributed simulations, the second column relates

Student-t (with 5 degrees of freedom) distributed simulations, and the last column corre-

sponds to Chi-squared (with 2 degrees of freedom) distributed simulation results. The first

row relates to errors which are homoskedastic, while rows two and three correspond to errors

with heteroskedasticity specified by HET1 and HET2 respectively. For comparison purposes

the nominal size used (α = 0.05) as well as the average maximum leverage point for each

simulation is also plotted. More detailed fixed–T simulation results related to the single

coefficient test case similar to Table 1 are provided in Tables A1–A6 in the Appendix.
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Figure 1: AR(1) Process with T = 128 and N = 4

It is clear that in all of the AR(1) fixed–T simulations the empirical size computed using

the two alternative residuals outperform the OLS residuals, particularly with lower levels

of dependence. The difference is largest for the two non-Gaussian distributions which are

associated with larger average maximum leverage points as well. It is interesting to observe

how all the empirical sizes appear symmetric for all the process parameter values analysed,

with the centre located at a parameter value of 0. Using the Hoaglin and Welsch (1978) ‘rule

of thumb’ to distinguish points of high leverage which for the present case is equal to 0.0625,

indicates many of the fixed–T empirical size simulations are potentially being affected. The

degree of heteroskedasticity present in the errors also seems to be linked to the difference

in the empirical sizes obtained from the alternative residuals and the OLS residuals with a

larger gap associated with HET1 and HET2 compared to the homoskedastic case. However,

the gap between the OLS residuals and the two other residuals empirical sizes narrows for

more highly persistent AR processes with φ > ±0.8. The reason why this happens might

have something to do with changes that occur to the leverage points for different values of

φ. Notice also how the average maximum leverage point has a concave parabolic shape over
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the set of parameter values, reaching a maximum value at φ = 0 (which is opposite of the

empirical size results). This point is the same point where the gap between the empirical

sizes is largest as well.
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Figure 2: MA(1) Process with T = 128 and N = 4

The fixed–T simulation results for the MA(1) processes are generally consistent with those

of the AR(1) results, except the performance of the two alternative residuals relative to

the OLS residual does not deteriorate as θ increases towards the endpoints of the parameter

space considered. Furthermore, the gap between the empirical sizes for each residual appears

to remain relatively steady for all the parameter values analysed.

For both processes, the modified discounted residuals perform marginally better than the

prediction error residuals, especially for the non-Gaussian distributions and for parameter

values for φ and θ close to 0. This reflects the findings of Cribari-Neto and da Silva (2011)

who also found only a marginal improvement in empirical size performance between the two

in relation to cross-section data. It could be argued that this is be due to the fact that the

maximum discount factor that can be applied by the modified discounted error residuals

method is 2.5 while that of the prediction error residuals is only slightly lower at 2.
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Finally, I briefly summarise the results from Tables A1–A4. The OLS residual always pro-

vides the most oversized and most downward biased estimand while the modified discounted

residual always produced the least oversized and the most upward biased estimate for the

variance term v̂22. Recall, the more upward or positive biased a variance estimator is, the less

likely it is to produce oversized test statistics. The bias is largest for Chi-squared distributed

errors with HET1 and smallest for Gaussian homoskedastic errors. The standard deviation

and RMSE of the estimand is always largest for the modified discounted error residual and

smallest for the OLS residual and these increase when the error term has HET1-type mul-

tiplicative heteroskedasticity.

The fixed–T simulations help illustrate just how points of high leverage in the predictor

matrix can adversely impact coefficient variance estimation and the test statistics computed

from them. However, when the sample size increases, we would expect to see some reduction

in this and therefore some convergence in the empirical sizes resulting from the three differ-

ent residuals. This is the main reason for undertaking the increasing–T simulations. The

empirical size results are displayed in Figure 3 for the single coefficient test and Figure 4

for the joint coefficient test. In both cases a Gaussian distribution was assumed and the

nominal size (α) was set to 0.05. Results for the two alternative distributions are illustrated

in Figures A1–A4 in the Appendix.

While there is a noticeable amount of variability in the three plots, all three residuals produce

over sized test statistics for the single coefficient test. Nonetheless, the OLS residuals are

dominated by the two alternative residuals, especially at smaller sample sizes (less than 200

observations). Each of the three residuals show a downward movement towards the nominal

size of 0.05 as the sample size increases; however, the OLS residuals appear to asymptote

relatively faster than the other two residuals.
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Figure 3: Gaussian AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5

This finding seems to be because of the increasing sample size reducing the impact of larger

leverage points on the OLS Residuals. Recall, the transformation process applied to ε̂ in

order to generate the two alternative residuals has already offset this effect to some degree.

The AR(1) processes appear to generate the largest oversized test statistics, while the MA(1)

processes appear to cause a smaller deterioration in the empirical sizes of the test statistics

across all three residuals and was also evident when comparing Figures 1 and 2. For sample

sizes less than approximately 200 observations the modified discounted residuals out performs

the prediction error residuals by a small margin, but this difference disappears as the sample

size increases. These findings also carry over to the Student-t and Chi-squared distributions

as well, where the oversized problem in small samples for all three residuals is more evident.
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Figure 4: Gaussian AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5

Comparable to Figure 3, all residuals produce Wald test statistics that are significantly

oversized.3 This finding adds to the list of previous studies which have discussed the poor

empirical size properties of Wald test statistics (see Chesher and Austin 1991 for the cross-

section case and Burnside and Eichenbaum 1996, Christiano and den Haan 1996, and Kiefer

et al. 2000 for the time series case).

What is notable; however, is the scale of the deterioration in the empirical size of the

Wald test statistic based on the OLS residuals when the data are both dependent and

heteroskedastic such as with the AR(1)-HET1 simulation. For this experiment the empirical

size is almost five times that of the true nominal size. These findings indicate that joint

tests, even with only a small number of coefficients, are likely to be very unreliable when

the sample size is relatively small to modest and the data have some dependence and/or

heteroskedasticity. For larger sample sizes (such as 500 observations and above), there is some

3Note, there are two up-ticks in the empirical size plots located around sample sizes of 100 and 273
observations. At these two points the fixed interval bandwidth, which is a function of T , increases from 3 to
4 and from 4 to 5 respectively. Burnside and Eichenbaum (1996) suggest that an increase in the bandwidth
parameter used in estimation, all else equal, will cause a deterioration in the performance of the Wald test
statistic.
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improvement evident in the empirical size estimated using all three residuals, although the

OLS residuals continue to remain the worst performer. Similar to the single coefficient case

the small out performance noted for the modified discounted residuals over the prediction

error residuals appears to disappear at larger samples sizes. The joint test results also

indicate that size distortions appear to be more of an issue for the AR(1) processes than

the MA(1) processes as was also the case with the single coefficient test case. The two

non-Gaussian distributions show similar results in relation to the relative empirical size

performance of the three different residuals as in the Gaussian case.

It is interesting that the gap between the empirical size estimated using the OLS residual

and the other two residuals for all the different cases considered persists for a majority of the

sample sizes investigated. Indeed, even up to a sample size as large as 500 observations there

still remains a small difference between the OLS residuals and the two alternatives. This

indicates that when the data are moderately dependent and possibly heteroskedastic then

there is a real benefit from using the alternative residuals in estimating the HAC covariance

matrix instead of relying on the OLS residuals. It is interesting to contrast this finding about

sample size with those of Long and Ervin (2000) in the HC literature. Their results lead

them to recommend using the prediction error residuals for (iid cross-section data) sample

sizes of around 250 observations. In the case of time series data, it would appear that when

there is moderate dependence in the data, then a similar type recommendation would be to

use the alternative residual-based estimators for sample sizes of up to 500 observation in the

time dimension, approximately twice as large as their number in the cross-section.

The proof of consistency of the alternative residuals in the Appendix relies on the asymptotic

negligibility of the leverage points. While the preceding results appears to support this, I now

investigate this using simulation. To do this I undertake three ‘large sample’ experiments

using sample sizes of 1,000, 5,000 and 10,000 observations. Each regression model continues

to have four predictors plus a constant as with the previous simulations. I again consider

three distributions and use the BT kernel with a fixed interval bandwidth parameter. The

model used for each simulation is an AR(1) with φ = 0.5 and the form of heteroskedasticity

is HET1. These specifications were chosen because autoregressive models and heteroskedas-
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ticity of the form of HET1 tended to result in the worst empirical size performance in the

simulations when using a sample size of 128. The simulation results comparing the OLS

residuals with the two alternative residuals are presented in Table A7 in the Appendix.

Comparing these results to those in Table A1 which uses a sample size of 128 (also in

the Appendix), it becomes clear that increasing the sample size does materially reduce the

magnitude of the average maximum leverage point observed. For example, in the Gaussian

distribution case, the average maximum leverage point from a sample size of 128 is 0.12,

in addition the estimated empirical size for the comparable simulation set-up is 0.102 for

ε̂, 0.086 for ε̃, and 0.082 for ε̇m. In contrast, the average maximum leverage point attained

declines to only 0.003 when the sample size is increased to 10,000 observations while the

estimated empirical size for each residual is approximately the same value and all are close

to the true nominal size of 0.05.

Having established that the alternative residuals offer superior empirical size performance

relative to the traditional OLS residuals, I now move to see if this result comes at any

loss of test power. Size-corrected power curves for the single coefficient test and Gaussian

distributed random variables are presented in Figure 5, while those for the joint coefficient

test are presented in Figure 6. Size-corrected power curves of Student-t and Chi-squared

distributed random variables are presented in the Appendix in Figures A1–A4.
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Figure 5: Gaussian AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure 6: Gaussian AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5

All the plots illustrate that even with different processes as well as different types of het-
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eroskedasticity in the model’s error term, there is no apparent change in test power when

using either the prediction error residuals or the modified discounted error residuals in place

of the OLS residuals.

The results from all three different simulations presented so far document the better perfor-

mance of the two alternative residual estimators relative to the OLS residuals in the sense

that their empirical size is closest to the true nominal size obtained from the approximat-

ing standard normal distribution relative to the OLS residual without any loss in power.

However, it is important to highlight some of the (potentially) less attractive attributes of

the two alternative residual estimators as well. Generally the alternative residual estimators

achieve their improved empirical size results by having more variation in the estimate of the

variance term compared to the OLS residual-based estimate. As a consequence, this leads

to wider estimated coefficient confidence intervals as well.

The impact of this to confidence interval widths for different model parameter values, dis-

tributions and forms of heteroskedasticity for the prediction error and modified discounted

error residuals is illustrated in Figures 7 and 8. The plots display average coefficient confi-

dence interval widths estimated using the prediction error and the modified discounted error

residuals as a ratio of the OLS residual-based confidence interval width. A value greater

than one indicates that the estimated width is longer than the width estimated using the

OLS residual on average.

In all cases investigated both alternative residuals have longer confidence intervals relative to

OLS residuals, ranging from just under 10% longer for Gaussian distributed variables to just

over 20% longer for Chi-squared distributed variables. Furthermore, the estimated average

widths for the two variables is largest for values of φ or θ closer to 0, which corresponds

to the region where the average maximum leverage point reaches its largest value as well.

However, such a result is not really a negative though if we think about why we estimate

variances in the first place. We want these quantities to compute test statistics. Hence, what

is important is that the test statistic leads to the correct inference, that is to say, the test

statistic is corrected sized. This is the argument used by Simonoff (1993) when he suggested
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that it was advisable to use a variance estimator that might be more variable if it gives the

right inference compared to using a less variable estimator that performs relatively poorly

in inference.

Comparing the prediction error residuals to the discounted residuals, we see that the former

always has a smaller relative confidence interval width in all simulations undertaken. One

reason that the modified discounted error residual has more variation could be because the

discount factor used in its construction can take one of four possible values. Whereas, the

prediction error’s ‘discount factor’ is a constant value.
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Figure 7: AR(1) Process with T = 128 and N = 4
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Figure 8: MA(1) Process with T = 128 and N = 4

4 Empirical Application

4.1 Exchange Rate Forecasting Evaluation

In this Section I use an empirical application to demonstrate how inference can differ de-

pending on which residual is used in estimating the HAC covariance matrix. Differences

in inference are important not only from a statistical point of view but also because they

could have a real economic impact as well. To do this I replicate the forecasting accuracy

comparison exercise from Diebold and Mariano (1995) where a consistent estimate of the

long run covariance matrix is necessary to compute the DM test statistic. However, I focus

on the UK Pound Sterling/US Dollar exchange rate (UKP/USD) instead of using the Dutch

guilder/US Dollar exchange rate as Diebold and Mariano (1995) originally did since it ceased

trading when the Euro was introduced in 2002.

There are two reasons for focusing on the UKP/USD exchange rate. Firstly, the data are
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easily obtainable from the Bank of England’s (BOE) web site.4 Secondly, the period of early

1990s saw significant instability in the UK Pound exchange rate as a result of the UK first

joining the European Exchange Rate Mechanism in October 1990 and then its subsequence

exit two years later in September 1992. Such dramatic events are likely to result in large

outliers which could potentially be points of high leverage.

The series to be forecast is the three-month change (measured monthly) in the nominal

UKP/USD end of month spot exchange rate (in US cents). I will compare the accuracy of

two forecasts of the UKP/USD exchange rate. The first forecast assumes no change in the

exchange rate (i.e., a random walk model), whereas the second is the forecast implicit in the

three-month UKP/USD forward rate and is computed as the difference between the three-

month forward rate and the spot rate. Diebold and Mariano (1995) considered the period

1977:01–1991:12, giving them 180 observations. The exchange rate data from the BOE on

the forward rates for the UKP/USD exchange rate begin in 1979:01, so I use this date as my

starting point and I set the last observation to be 2015:12, giving a total of 443 observations.

The three time series are plotted in Figure 9. Note the large amount of variability in the

spot UKP/USD exchange rate, especially during the early 1990s for the reasons previously

highlighted.

When testing for equal forecast accuracy Diebold and Mariano (1995) stressed that any

loss type could be used; however, in the empirical application the authors only considered a

symmetric loss function (absolute loss). However, potential users of forecasts for the exchange

rate, such as by exporters or importers for instance, are more likely to be concerned about

unanticipated appreciations or depreciations. For example, an exporter located in the UK

will be more concerned with positive forecast errors as opposed to negative forecast errors

as the former represents an appreciation of the UK Pound relative to the US Dollar while

the latter reflects a depreciation of the UK Pound relative to the US Dollar. By the same

token, an importer in the UK will be more concerned with negative forecast errors than

positive forecast errors since these represent a depreciation of the UK Pound relative to the

US Dollar.

4http://www.bankofengland.co.uk/
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Figure 9: Exchange Rate Forecasts

In this context, it is more realistic to compare forecasting accuracy using an asymmetric loss

function. One such loss type is the ‘Linex’ loss function which has the following form:

L(et) = exp(θet)− θet − 1 (26)

The parameter θ controls the amount of asymmetry in the loss function. If θ > 0, there

are large losses from positive forecast errors and the losses increase in magnitude the bigger

the value of θ. Whereas, if θ < 0, large losses are incurred from negative forecast errors

and the losses increase the smaller the value of θ is (for a detailed discussion see Elliot and

Timmermann 2004). Plots for the loss differential using the Linex loss function and values

of θ equal to ±0.2 are presented in Figure 10a for positive losses and Figure 10b for negative

losses. These values for θ were selected after considered a range of values from ±0.1–0.5

because they generated outliers without being too large in absolute terms. The resultant

loss differentials should cause a greater downward bias impact to the OLS residual-based

HAC estimated standard error than to the estimator using the alternative residuals.
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Figure 10: Asymmetric Loss Function Comparison

The DM test involves regressing each of the two forecast loss differentials in Figure 10 on a

constant and test if the estimated constant is statistically different from zero using a t–test

computed with a HAC standard error. To be agnostic about the time period considered

or sample size used, I compute a sequence of DM test statistics from a series of rolling

regressions using different window lengths, starting at 40 observations and increasing by 20

observations until reaching 180 observations, over the full sample and then calculate the

proportion of rejections using a nominal size of α = 0.05. This same procedure is done for

each of the three different residuals and when computing the HAC standard error of the

constant term in the regression I use a BT kernel with a fixed interval bandwidth. This

is also the same set-up used in Diebold and Mariano (1995). The results are displayed in

Table 2.
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Table 2: Proportion of DM Test Rejections

Rolling Regression Window Length

Residual 40 60 80 100 120 140 160 180

θ = 0.2

ε̂ 0.26 0.34 0.49 0.49 0.55 0.59 0.74 0.81
ε̃ 0.24 0.30 0.47 0.45 0.51 0.54 0.67 0.74
ε̇m 0.24 0.30 0.47 0.45 0.51 0.54 0.67 0.74

θ = −0.2

ε̂ 0.02 0.04 0.01 0.00 0.00 0.00 0.00 0.00
ε̃ 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00
ε̇m 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00

Note: Numbers represent the proportion of rejections of the null hypothesis
of equal predictive accuracy at α = 0.05 for a given rolling regression window
length and residual estimator. The HAC standard errors were computed using
a BT kernel and a fixed interval bandwidth parameter computed as the integer

part of 4 (T/100)2/9.

DM tests using a HAC standard error computed with either the prediction error or the

modified discounted error residuals result in fewer rejects of the null hypothesis of equal

predictive accuracy for both the positive and negative loss differentials. Also, the results for

the two alternative residuals are identical for both the positive and negative loss differential

cases and this could be because of the reasons previously highlighted. The evidence is

stronger for the positive loss differential test results than it is for the negative loss differential

test results and might be a consequence of there being only a few non zero values for the

negative loss differential.

Focusing on the positive loss differential DM test results, the proportion of rejections starts

out fairly similar when using a rolling window size equal to 40 observations; nonetheless, the

proportion of rejections obtained by the OLS residuals relative to the other two residuals

starts to diverge as the sample size increase. One explanation for this is finding is that using

a bigger window length means that the more extreme values will remain in the sample used to

compute the DM test statistic for larger proportion of the tests undertaken. In comparison,

with a smaller sample size, these same large values will more quickly drop out of the test

computation as the window moves through the full sample. Finally, the results highlight how

inference could change depending on which residual is used to estimate the HAC standard

error and in some cases this difference could also have economic consequences.
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5 Implications and Recommendations

The simulation and empirical results provides evidence towards using either of the alternative

residuals in place of the OLS residuals in HAC covariance matrix estimation, especially

for relatively small samples and data with outliers and/or asymmetries. Test statistics

computed using HAC covariance matrix estimators using the alternative residuals suffer less

size distortions relative to those based on the OLS residuals without any loss of power.

This finding indicates that alleviating the downward bias from the OLS residuals is more

important than mean squared error minimisation in the estimation of the HAC covariance

matrix to achieve a more accurate test size and supports the argument of Simonoff (1993)

in relation to variance estimators in general.

The simulation results related to joint coefficient testing provides additional evidence that

researchers should be cautious about using Wald-type joint tests even with a small number

of restrictions when the sample size they are working with is relatively small and the data

being investigated are weakly dependent and/or heteroskedastic.

Making the alternative residuals available in exiting statistical software would not be overly

difficult either. Most statistical programs use the QR decomposition as the method of

computing the solution to the Least Squares estimation problem. Furthermore, it is often

the case that software which does provide robust covariance matrix estimation tends to offer

both HC and HAC estimators, and so routines already exist to compute the alternative

residuals at least for the HC version of the covariance matrix estimator (see for instance the

‘Sandwich’ R package of Zeileis 2004).

Of the two different alternative residuals, the modified discounted errors tended to perform

slightly better than the prediction errors in small samples and when the data have points

of high leverage. However, this gap quickly reduces as the sample size increases and comes

at a price of noticeable larger variance estimates and hence wider confidence intervals. This

increased variability seems to come from the discounting term used to compute the modified

discounted error residual taking one of four possible values.
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Given the improvements in empirical size from using the modified discounted error com-

pared to the prediction error are not too great (indeed, they were identical in the empirical

application of Section 4) and the since the former requires slightly more involved computa-

tions, it would seem that the prediction errors would generally be suitable for most empirical

applications in practice.

The difference in inference that resulted from replacing the OLS residuals with the alter-

native residuals in the Wald-type tests in the simulations and empirical application raises

the possibility that similar differences might be observed in tests which use the OLS resid-

uals explicitly such as in Likelihood Ratio or Lagrange Multiplier tests. This might be an

interesting avenue for future research.

Finally, it is worth emphasising that if there is a very high degree of dependence in the data

being analysed, then it is not appropriate to relay on HAC estimators to provide correctly

sized test statistics, even in large samples. In these situations, it is recommended that

researchers try specifying the dynamics of their model more fully (such as including relevant

lagged variables in the model) or investigate alternative parametric methods such as Feasible

Generalised Least Squares (see for example Hamilton 1994).

6 Conclusion

In the presence of heterskedasticity and/or autocorrelation the traditional coefficient covari-

ance matrix is inconsistent and hence standard inference is incorrect. As an alternative, the

HAC coefficient covariance matrix can be used and is consistent to both heteroskedasticity

and autocorrelation of unknown forms. The problem is that in finite samples the perfor-

mance of the HAC estimator can differ greatly and has been shown to produce oversized test

statistics.

One of the primary reasons for the oversized test statistics is the use of the OLS residuals

in the construction of the coefficient covariance matrix which tend to downward biased in

finite samples. The degree of bias is related to how balanced or unbalanced the predictor
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matrix is as indicated by the presence or absence of high leverage points. High points of

leverage causes the OLS residuals to be smaller than otherwise and this leads to smaller

error variance estimates.

The downward bias in the OLS residuals can be partially offset using well known methods

from the related HC literature. The better performing alternatives include the prediction

error and modified discounted error residuals. Both use a transformation of the OLS residuals

which inflate those residuals linked to high points of leverage and thereby result in more

correctly sized test statistics. To date, these HC related residuals have not been analysed

in relation to HAC estimation, although two related studies have shown that offsetting the

OLS residual bias does help to improve the empirical size of test statistics.

A suite of simulations combined with an empirical application provides strong support for

replacing the OLS residual with either the prediction error or modified discounted error

residual in the construction of the HAC estimator. Both alternative residuals help to re-

duce the tendency for HAC covariance matrix estimators to produce oversized test statistics

in finite samples. This recommendation is especially important in sample sizes less than

500 observations as highlighted in the simulation experiments with error processes having

heteroskedasticity and moderate amounts of dependence.

The difference in inference from using the OLS residuals or one of the two alternative residuals

was shown to also have potentially real economic significance as well. Using a forecasting

comparison application with data containing large outliers it was found that there was a

greater tendency to reject the null hypothesis of equal predictive accuracy when using the

OLS residuals than was the case when using the two alternative residuals.
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Appendix

Estimating the Leverage Points

For any matrix of predictors with full column rank N , it is possible to perform the QR

decomposition. This involves finding a T × N matrix Q and a N × N upper triangular

matrix R such that:

X = QR and Q′Q = IT

The second condition implies that the columns of Q are orthonormal (i.e., they each have

unit Euclidean norm). We can construct the projection matrix P given the matrix Q as:

P = QQ′

And then ht = diag (P ). However, when T is large this method is not recommended and a

vastly more efficient procedure for computing ht is:

ht =
N∑
i=1

Q2
ti

Consistency of the Alternative Residuals

Suppose the standard regularity conditions for Least Squares estimation with mixing time

series processes holds (for example Theorem 3.78 from White 2000). Next, recall the two

alternative residuals, ε̃t, and ε̇m,t, as well as the two discount factors applied to the term

(1− ht) which were defined in Equations (15) and (16). Let ε̌t ∈ {ε̃t, ε̇m,t} and let ζ ∈

{1, δt/2}. I use Hansen (2016) Section 6.21 to show that ε̌t − εt
p−→ 0 as T −→ ∞. The
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proof of this statement proceeds as follows:

ε̌t − εt = ε̌t − ε̂t + ε̂t − εt

|ε̌t − εt| ≤ |ε̌t − ε̂t|+ |ε̂t − εt|

≤
∣∣∣ε̂t (1− ht)−ζ − ε̂t

∣∣∣+ |ε̂t − εt|

≤ |ε̂t|
∣∣∣(1− ht)−ζ − 1

∣∣∣+ |ε̂t − εt|

≤ |ε̂t − εt + εt|
∣∣∣(1− ht)−ζ − 1

∣∣∣+ |ε̂t − εt|

≤ (|εt|+ |ε̂t − εt|)
∣∣∣(1− ht)−ζ − 1

∣∣∣+ |ε̂t − εt|

≤
(
|εt|+

∣∣∣x′t (β̂T − β0

)∣∣∣) ∣∣∣(1− ht)−ζ − 1
∣∣∣+
∣∣∣x′t (β̂T − β0

)∣∣∣
≤
(
|εt|+ ‖xt‖

∥∥∥β̂T − β0

∥∥∥) ∣∣∣(1− ht)−ζ − 1
∣∣∣+ ‖xt‖

∥∥∥β̂T − β0

∥∥∥
≤
(
|εt|+ ‖xt‖

∥∥∥β̂T − β0

∥∥∥) ∣∣∣∣∣1− (1− ht)ζ

(1− ht)ζ

∣∣∣∣∣+ ‖xt‖
∥∥∥β̂T − β0

∥∥∥
max

1≤t≤T
|ε̌t − ε̂t| ≤ max

1≤t≤T

(
|εt|+ ‖xt‖

∥∥∥β̂T − β0

∥∥∥) ∣∣∣∣∣1− (1− ht)ζ

(1− ht)ζ

∣∣∣∣∣+ max
1≤t≤T

‖xt‖
∥∥∥β̂T − β0

∥∥∥
= op (1) + op

(
T−1/2+1/r

)
= op

(
T−1/2+1/r

)
Where the third last line makes use of the assumption E |εt|r < ∞ for r ≥ 1 as well as

Theorem 6.22.1 of Hansen (2016) which shows that the leverage points are asymptotic neg-

ligible, i.e., max
1≤t≤T

ht = op (1). In addition,
∥∥∥β̂T − β0

∥∥∥ = Op

(
T−1/2

)
from Theorem 6.3.2

in Hansen (2016). Finally, we can invoke Theorem 5.12.1 (Hansen 2016) to show that

T−1/r max
1≤t≤T

‖xt‖
p−→ 0. Hence:

ε̌t = εt + op
(
T−1/2+1/r

)
As a result, the alternative errors are a uniformly consistent estimator for the true stochastic

errors, εt, and as such, exiting asymptotic results proving consistency of the sample kernel-

based HAC covariance matrix estimator remain valid.
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Alternative Residual Estimator Comparison Tables

Table A1: Guassian AR(1) process with φ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.281 0.281 0.468 0.546 0.092 0.386 4 0.120
ε̃ 1.428 0.428 0.528 0.680 0.078 0.408 4 0.120
ε̇m 1.450 0.450 0.540 0.703 0.076 0.411 4 0.120

HET1: Residuals are correlated with x1

ε̂ 3.341 2.341 1.915 3.024 0.106 0.613 4 0.120
ε̃ 3.817 2.817 2.255 3.608 0.086 0.654 4 0.120
ε̇m 3.917 2.917 2.343 3.741 0.082 0.662 4 0.120

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.696 0.696 1.040 1.252 0.102 0.435 4 0.120
ε̃ 1.938 0.938 1.227 1.545 0.082 0.464 4 0.120
ε̇m 1.989 0.989 1.275 1.614 0.078 0.470 4 0.120

Note: Numbers represent simulation results from 10,000 replications using an AR(1) process for the pre-
dictors and the error with φ = 0.5 and data ∼ N (0, 1). In each case the number of observations, T , was
set to 128, while the number of variables, N , was set to 4. The ‘Estimand’ refers to the estimated value of
the variance for the first non-constant coefficient, v̂22, which has a true value of 1. ‘RMSE’ refers to the
root mean squared error of the estimand. The empirical size was computed by testing the null hypothesis,
H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and calculating the average number of times the null
was rejected at the nominal size of 0.05. ‘Width’ refers to the average estimated confidence interval width
when using a nominal size of 0.05. ‘BW’ refers to the fixed interval bandwidth parameter computed as the

integer part of 4 (T/100)2/9 and used with a BT kernel. ‘maxht’ refers to the average of largest estimated
leverage point from the generated matrix of predictors, values larger than 2N/T = 0.0625 are considered
to be points of high leverage (see Hoaglin and Welsch 1978).

Table A2: Guassian MA(1) process with θ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.149 0.149 0.375 0.403 0.075 0.367 4 0.121
ε̃ 1.283 0.283 0.425 0.510 0.062 0.387 4 0.121
ε̇m 1.303 0.303 0.435 0.530 0.060 0.390 4 0.121

HET1: Residuals are correlated with x1

ε̂ 3.075 2.075 1.624 2.634 0.091 0.590 4 0.121
ε̃ 3.525 2.525 1.933 3.180 0.071 0.631 4 0.121
ε̇m 3.622 2.622 2.016 3.307 0.067 0.639 4 0.121

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.566 0.566 0.887 1.052 0.085 0.420 4 0.121
ε̃ 1.796 0.796 1.057 1.323 0.067 0.449 4 0.121
ε̇m 1.846 0.846 1.103 1.390 0.063 0.455 4 0.121

Note: Numbers represent simulation results from 10,000 replications using an MA(1) process for the
predictors and the error with θ = 0.5 and data ∼ N (0, 1). In each case the number of observations, T ,
was set to 128, while the number of variables, N , was set to 4. The ‘Estimand’ refers to the estimated value
of the variance for the first non-constant coefficient, v̂22, which has a true value of 1. ‘RMSE’ refers to the
root mean squared error of the estimand. The empirical size was computed by testing the null hypothesis,
H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and calculating the average number of times the null
was rejected at the nominal size of 0.05. ‘Width’ refers to the average estimated confidence interval width
when using a nominal size of 0.05. ‘BW’ refers to the fixed interval bandwidth parameter computed as the

integer part of 4 (T/100)2/9 and used with a BT kernel. ‘maxht’ refers to the average of largest estimated
leverage point from the generated matrix of predictors, values larger than 2N/T = 0.0625 are considered
to be points of high leverage (see Hoaglin and Welsch 1978).
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Table A3: Student-t AR(1) process with φ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.253 0.253 0.638 0.686 0.098 0.378 4 0.193
ε̃ 1.430 0.430 0.760 0.873 0.079 0.403 4 0.193
ε̇m 1.463 0.463 0.796 0.921 0.077 0.408 4 0.193

HET1: Residuals are correlated with x1

ε̂ 4.416 3.416 5.317 6.320 0.122 0.670 4 0.193
ε̃ 5.680 4.680 9.945 10.991 0.093 0.741 4 0.193
ε̇m 6.082 5.082 12.333 13.338 0.087 0.758 4 0.193

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.946 0.946 2.441 2.617 0.113 0.450 4 0.193
ε̃ 2.427 1.427 3.816 4.074 0.083 0.494 4 0.193
ε̇m 2.570 1.570 4.457 4.725 0.076 0.505 4 0.193

Note: Numbers represent simulation results from 10,000 replications using an AR(1) process for the pre-
dictors and the error with φ = 0.5 and data ∼ t(5) standardised to have unit variance. In each case the

number of observations, T , was set to 128, while the number of variables, N , was set to 4. The ‘Estimand’
refers to the estimated value of the variance for the first non-constant coefficient, v̂22, which has a true
value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical size was com-
puted by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and calculating the
average number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers to the average
estimated confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the fixed interval

bandwidth parameter computed as the integer part of 4 (T/100)2/9 and used with a BT kernel. ‘maxht’
refers to the average of largest estimated leverage point from the generated matrix of predictors, values
larger than 2N/T = 0.0625 are considered to be points of high leverage (see Hoaglin and Welsch 1978).

Table A4: Student-t MA(1) process with θ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxhii

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.122 0.122 0.572 0.585 0.083 0.358 4 0.200
ε̃ 1.290 0.290 0.695 0.753 0.064 0.383 4 0.200
ε̇m 1.324 0.324 0.736 0.804 0.062 0.388 4 0.200

HET1: Residuals are correlated with x1

ε̂ 4.308 3.308 5.525 6.439 0.108 0.658 4 0.200
ε̃ 5.680 4.680 10.906 11.867 0.075 0.733 4 0.200
ε̇m 6.138 5.138 13.863 14.784 0.069 0.753 4 0.200

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.845 0.845 2.348 2.495 0.098 0.437 4 0.200
ε̃ 2.351 1.351 3.878 4.106 0.069 0.484 4 0.200
ε̇m 2.510 1.510 4.650 4.888 0.064 0.496 4 0.200

Note: Numbers represent simulation results from 10,000 replications using an MA(1) process for the pre-
dictors and the error with θ = 0.5 and data ∼ t(5) standardised to have unit variance. In each case the

number of observations, T , was set to 128, while the number of variables, N , was set to 4. The ‘Estimand’
refers to the estimated value of the variance for the first non-constant coefficient, v̂22, which has a true
value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical size was computed
by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and calculating the average
number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers to the average estimated
confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the fixed interval bandwidth

parameter computed as the integer part of 4 (T/100)2/9 and used with a BT kernel. ‘maxht’ refers to
the average of largest estimated leverage point from the generated matrix of predictors, values larger than
2N/T = 0.0625 are considered to be points of high leverage (see Hoaglin and Welsch 1978).
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Table A5: Chi-squared AR(1) process with φ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.236 0.236 0.670 0.710 0.100 0.374 4 0.220
ε̃ 1.430 0.430 0.820 0.926 0.080 0.401 4 0.220
ε̇m 1.469 0.469 0.863 0.982 0.078 0.406 4 0.220

HET1: Residuals are correlated with x1

ε̂ 4.982 3.982 6.611 7.717 0.154 0.696 4 0.220
ε̃ 6.562 5.562 10.202 11.619 0.115 0.784 4 0.220
ε̇m 7.050 6.050 11.576 13.061 0.109 0.807 4 0.220

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.996 0.996 2.393 2.592 0.126 0.449 4 0.220
ε̃ 2.584 1.584 3.634 3.964 0.093 0.503 4 0.220
ε̇m 2.759 1.759 4.083 4.445 0.086 0.517 4 0.220

Note: Numbers represent simulation results from 10,000 replications using an AR(1) process for the pre-

dictors and the error with φ = 0.5 and data ∼ χ2
(2) standardised to have mean zero and unit variance.

In each case the number of observations, T , was set to 128, while the number of variables, N , was set to
4. The ‘Estimand’ refers to the estimated value of the variance for the first non-constant coefficient, v̂22,
which has a true value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical
size was computed by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and
calculating the average number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers
to the average estimated confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the

fixed interval bandwidth parameter computed as the integer part of 4 (T/100)2/9 and used with a BT
kernel. ‘maxht’ refers to the average of largest estimated leverage point from the generated matrix of
predictors, values larger than 2N/T = 0.0625 are considered to be points of high leverage (see Hoaglin
and Welsch 1978).

Table A6: Chi-squared MA(1) process with θ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

HOM: Residuals are uncorrelated with the predictors

ε̂ 1.107 0.107 0.609 0.618 0.087 0.354 4 0.229
ε̃ 1.295 0.295 0.767 0.822 0.068 0.381 4 0.229
ε̇m 1.335 0.335 0.817 0.882 0.065 0.387 4 0.229

HET1: Residuals are correlated with x1

ε̂ 4.997 3.997 7.176 8.214 0.144 0.691 4 0.229
ε̃ 6.754 5.754 11.480 12.841 0.108 0.786 4 0.229
ε̇m 7.315 6.315 13.129 14.568 0.102 0.812 4 0.229

HET2: Residuals are correlated with all xi (i = 1, . . . , 4)

ε̂ 1.929 0.929 2.469 2.638 0.119 0.439 4 0.229
ε̃ 2.567 1.567 3.951 4.250 0.085 0.497 4 0.229
ε̇m 2.765 1.765 4.500 4.833 0.077 0.513 4 0.229

Note: Numbers represent simulation results from 10,000 replications using an MA(1) process for the

predictors and the error with θ = 0.5 and data ∼ χ2
(2) standardised to have mean zero and unit variance.

In each case the number of observations, T , was set to 128, while the number of variables, N , was set to
4. The ‘Estimand’ refers to the estimated value of the variance for the first non-constant coefficient, v̂22,
which has a true value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical
size was computed by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and
calculating the average number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers
to the average estimated confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the

fixed interval bandwidth parameter computed as the integer part of 4 (T/100)2/9 and used with a BT
kernel. ‘maxht’ refers to the average of largest estimated leverage point from the generated matrix of
predictors, values larger than 2N/T = 0.0625 are considered to be points of high leverage (see Hoaglin
and Welsch 1978).
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Table A7: Large Sample AR(1) process with φ = 0.5

Residual Estimand Bias Std. Dev. RMSE Size Width BW maxht

Gaussian distributed random variables with sample size = 1,000

ε̂ 4.272 3.272 1.016 3.426 0.066 0.255 6 0.021
ε̃ 4.347 3.347 1.039 3.505 0.063 0.257 6 0.021
ε̇m 4.362 3.362 1.045 3.520 0.063 0.257 6 0.021

Gaussian distributed random variables with sample size = 5,000

ε̂ 4.486 3.486 0.511 3.523 0.062 0.117 9 0.005
ε̃ 4.502 3.502 0.514 3.539 0.061 0.117 9 0.005
ε̇m 4.505 3.505 0.514 3.542 0.061 0.117 9 0.005

Gaussian distributed random variables with sample size = 10,000

ε̂ 4.544 3.544 0.373 3.563 0.055 0.083 11 0.003
ε̃ 4.552 3.552 0.374 3.571 0.055 0.084 11 0.003
ε̇m 4.553 3.553 0.374 3.573 0.055 0.084 11 0.003

Student-t distributed random variables with sample size = 1,000

ε̂ 7.140 6.140 8.724 10.667 0.064 0.314 6 0.058
ε̃ 7.611 6.611 11.924 13.634 0.060 0.321 6 0.058
ε̇m 7.744 6.744 13.092 14.727 0.059 0.323 6 0.058

Student-t distributed random variables with sample size = 5,000

ε̂ 8.151 7.151 10.322 12.557 0.057 0.153 9 0.022
ε̃ 8.322 7.322 12.892 14.826 0.055 0.153 9 0.022
ε̇m 8.368 7.368 13.742 15.592 0.055 0.154 9 0.022

Student-t distributed random variables with sample size = 10,000

ε̂ 8.301 7.301 6.620 9.855 0.054 0.110 11 0.015
ε̃ 8.393 7.393 7.295 10.386 0.054 0.110 11 0.015
ε̇m 8.416 7.416 7.489 10.539 0.053 0.111 11 0.015

Chi-squared distributed random variables with sample size = 1,000

ε̂ 8.195 7.195 6.672 9.813 0.076 0.340 6 0.053
ε̃ 8.561 7.561 7.246 10.473 0.071 0.347 6 0.053
ε̇m 8.653 7.653 7.401 10.646 0.069 0.348 6 0.053

Chi-squared distributed random variables with sample size = 5,000

ε̂ 8.835 7.835 3.398 8.540 0.060 0.162 9 0.015
ε̃ 8.916 7.916 3.462 8.639 0.059 0.163 9 0.015
ε̇m 8.935 7.935 3.478 8.664 0.059 0.163 9 0.015

Chi-squared distributed random variables with sample size = 10,000

ε̂ 9.015 8.015 2.546 8.409 0.056 0.117 11 0.009
ε̃ 9.056 8.056 2.572 8.457 0.055 0.117 11 0.009
ε̇m 9.066 8.066 2.578 8.468 0.055 0.117 11 0.009

Note: Numbers represent simulation results from 10,000 replications with three different distributions:
Gaussian, N (0, 1), Student-t, t(5), and Chi-squared, χ2

(2). Each is used to generate an AR(1) process

with φ = 0.5 and scaled such that the variance is unity. The error term is constructed to be correlated
with the first non-constant predictor (HET1). In each simulation the number of variables, N , was set to
4. The ‘Estimand’ refers to the estimated value of the variance for the first non-constant coefficient, v̂22,
which has a true value of 1. ‘RMSE’ refers to the root mean squared error of the estimand. The empirical
size was computed by testing the null hypothesis, H0 : β1 = 1 against the alternative, H1 : β1 6= 1 and
calculating the average number of times the null was rejected at the nominal size of 0.05. ‘Width’ refers
to the average estimated confidence interval width when using a nominal size of 0.05. ‘BW’ refers to the

fixed interval bandwidth parameter computed as the integer part of 4 (T/100)2/9 and used with a BT
kernel. ‘maxht’ refers to the average of largest estimated leverage point from the generated matrix of
predictors.
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Alternative Residual Estimator Comparison Figures
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Figure A1: Student-t AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A2: Student-t AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A3: Chi-squared AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A4: Chi-squared AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5

52



0.0

0.2

0.4

0.6

0.8

1.0
AR(1)−HET1

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0
AR(1)−HET2

0.0

0.2

0.4

0.6

0.8

1.0
MA(1)−HET1

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0
MA(1)−HET2

ε̂ ε~ ε
⋅
m α

Size Corrected Power Curve Comparison
Single coefficient test

E
m

p
ir

ic
a
l 

p
ow

er

Alternative hypotheses

Figure A5: Student-t AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A6: Student-t AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A7: Chi-squared AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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Figure A8: Chi-squred AR(1) & MA(1) Processes with φ = 0.5 & θ = 0.5
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