
A Forward and Backward Stagewise Algorithm for Nonconvex
Loss Functions with Adaptive Lasso

Xingjie Shia, Yuan Huangb, Jian Huangc, and Shuangge Mad,*

aDepartment of Statistics, Nanjing Univ6ersity of Finance and Economics

bDepartment of Biostatistics, University of Iowa

cDepartment of Applied Mathematics, The HongKong Polytechnic University

dDepartment of Biostatistics, Yale School of Public Health

Abstract

Penalization is a popular tool for multi- and high-dimensional data. Most of the existing

computational algorithms have been developed for convex loss functions. Nonconvex loss

functions can sometimes generate more robust results and have important applications. Motivated

by the BLasso algorithm, this study develops the Forward and Backward Stagewise (Fabs)

algorithm for nonconvex loss functions with the adaptive Lasso (aLasso) penalty. It is shown that

each point along the Fabs paths is a δ-approximate solution to the aLasso problem and the Fabs

paths converge to the stationary points of the aLasso problem when δ goes to zero, given that the

loss function has second-order derivatives bounded from above. This study exemplifies the Fabs

with an application to the penalized smooth partial rank (SPR) estimation, for which there is still a

lack of effective algorithm. Extensive numerical studies are conducted to demonstrate the benefit

of penalized SPR estimation using Fabs, especially under high-dimensional settings. Application

to the smoothed 0–1 loss in binary classification is introduced to demonstrate its capability to

work with other differentiable nonconvex loss function.

Keywords

Forward and backward stagewise; Penalization; Nonconvex loss; Adaptive Lasso

1. Introduction

In multi- and high-dimensional regression analysis, penalization has been a popular

technique. Consider a generic regression problem with a vector of unknown regression

coefficients β. A penalization approach considers the objective function

*Correspondence to: Shuangge Ma. Address: 60 College ST, LEPH 206, New Haven, CT 06520, USA. shuangge.ma@yale.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Supplementary document
Supplementary material related to this article can be found online.

HHS Public Access
Author manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Comput Stat Data Anal. 2018 August ; 124: 235–251. doi:10.1016/j.csda.2018.03.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Q(β; λ) = L(β) + λρ(β), (1)

where L(β) is the loss function, λ(> 0) is the data-dependent tuning parameter, and ρ(·) is

the penalty function. In the literature, multiple families of loss functions have been

considered, including for example likelihood-based, estimating-equation-based, U-statistic-

based, and others. A large number of penalty functions have been developed, including for

example Lasso (and its variants such as adaptive Lasso), Bridge, MCP, SCAD, and many

others. We refer to Bühlmann and van de Geer (2011), Hastie et al. (2015), and others for

detailed discussions on penalization methods, theories, and applications.

In the literature, most effort has been on convex loss functions, for which both concave and

convex penalties have been examined. In either case, non-differentiability at the origin is

usually introduced for sparsity-inducing in order to conduct variable selection, making the

study on computation as challenging as that on methodology and theory. Concave penalties,

such as Bridge, SCAD, and MCP, have received extensive attention because of their

satisfactory theoretical properties (Gasso et al., 2009). On the other hand, convex penalties

have also been popular because of their significant advantage that global optimal solutions

can be efficiently computed. In the convex penalty family, the most popular is Lasso (and its

variants). Multiple effective algorithms have been developed for computing Lasso estimates

for convex loss functions, such as the class of iterative shrinkage-thresholding algorithm

(Becker et al., 2011), alternating direction method of multipliers (Boyd et al., 2011), LARS

(Efron et al., 2004), coordinate descent (Friedman et al., 2007), and others.

The aforementioned algorithms, although successful in multiple aspects, are not directly

applicable to nonconvex loss functions. Nonconvex loss functions have certain desirable

features and have been the choice of many studies. Let Xi be the length-p vector of

covariates and yi be the response for observation i. One example is the smoothed maximal

rank loss (Lin and Peng, 2013)

L(β) = − 1
n(n − 1) ∑

i ≠ j

n
I(yi ≥ y j)S(Xi

⊤β − X j
⊤β), (2)

where S is a smoothing function used to approximate the indicator function and obtain a

more approachable loss than the original maximal rank loss proposed by Han (1987). This

smoothed maximal rank loss is a special case of the smoothed partial rank loss discussed in

Section 4. Another popular example is the 0–1 loss for which a smoothed version is

L(β) = 1
n ∑

i = 1

n
S(− yiXi

⊤β) . (3)

Nguyen and Sanner (2013) proposes several approximate algorithms for minimizing the 0–1

loss. However, their algorithms can only accommodate low dimensional data for which the

Shi et al. Page 2

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number of covariates is much smaller than the sample size. Other nonconvex loss functions

can be seen in a wide array of rank-based estimations including the AUC loss, pairwise-

difference rank loss, maximum score loss, and others.

In general, nonconvex loss functions are computationally more challenging than convex loss

functions. Many gradient-free optimization methods can be used to minimize the loss

functions mentioned above, and the Nelder-Mead (NM) simplex algorithm and the genetic

algorithm (GA) are the most commonly used ones. The major advantage of these algorithms

lies in their generality. The NM algorithm has been developed for minimizing the rank loss

(Cavanagh and Sherman, 1998). The GA is a heuristic search algorithm inspired by the basic

principles of biological evolution and natural selection. It performs well in many

optimization problems with highly complex search spaces. With low dimensional covariates,

their superior performance has been well documented (Cavanagh and Sherman, 1998;

Sivanandam and Deepa, 2007). However, they do not scale well to high dimensionality.

In this article, our goal is to develop an effective computational algorithm for aLasso

penalized estimation with differentiable nonconvex loss functions. The aLasso penalty takes

the form of ∑l = 1
p wl | βl|, where w = (w1, …, wp)′ is the weight vector. For a tuning

parameter λ, the nonconvex minimization problem is

min
β

L(β) + λ ∑
l = 1

p
wl | βl | . (4)

We assume that the sets of stationary points for estimation (4) are nonempty for all λ. The

development has been partly motivated by the BLasso (Zhao and Yu, 2007) – which has

been developed to approximate the solution paths of Lasso penalization – because of its

simplicity, computational efficiency, and parallelizable strategy. It has been proved that if the

loss function is differentiable and strictly convex, then the BLasso paths converge to the

Lasso paths. However, the applicability of BLasso to nonconvex and convex-but-not-strictly-

convex loss functions is not clear. Advancing from the BLasso and other studies, we

consider nonconvex loss functions. We develop the Fabs (forward and backward stagewise)

algorithm, which simplifies the minimization procedures in BLasso. We establish the

approximate optimality and convergence of the Fabs solution paths. As an application, we

consider the aLasso penalized estimation with the nonconvex SPR (smoothed partial rank)

and smoothed 0–1 losses. The “SPR+penalization” method has been shown in the literature

to be useful for many practical problems (Song and Ma, 2010; Lin and Peng, 2013).

However, the published studies have focused on low dimensional data with a small p. There

is still a lack of effective computational algorithms for high dimensional data. Applying Fabs

to this method not only demonstrates its application but more importantly provides an

effective solution to this important method. Applications of Fabs are also demonstrated with

the “0–1 loss+aLasso” method.

The rest of the article is organized as follows. For the integrity of this study and also to

motivate the proposed algorithm, we briefly review the BLasso algorithm in Section 2. In

Shi et al. Page 3

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Section 3, we develop the Fabs algorithm and establish its approximate optimality and

convergence properties. In Section 4, we apply the Fabs to penalized estimation with the

nonconvex SPR loss. In Section 5, we apply the Fabs to solve the binary classification

problem under the 0–1 loss with the aLasso penalty. Concluding remarks are in Section 6.

2. The BLasso algorithm

BLasso is closely related to the forward stagewise (FS) algorithm. FS has received a lot of

attention because of not only its simplicity and computational efficiency but also its

remarkable connection to the Lasso penalization with a convex loss. Hastie et al. (2007)

characterizes FS as a monotone Lasso in that the FS and Lasso paths coincide if the Lasso

solution has a monotone coordinate path, which, however, rarely happens in practice. With

novel modifications to the FS, the BLasso algorithm produces an approximation to the Lasso

path without making the monotonicity assumption. Similar to the FS, Blasso is iterative. At

each iteration, Blasso can take a backward step which moves the estimate along one

coordinate towards zero if this step can lead to a decrease of the objective function.

Otherwise, it takes a forward step, in the same way as the FS. BLasso requires a convex loss

but poses no constraint on differentiability, although its convergence to the Lasso paths is

only established under strict convexity and differentiability. Hence here we describe the

Blasso algorithm under the assumption of a differentiable L(β).

To better motivate the Fabs, we show the BLasso’s forward and backward steps for

estimation (4). At iteration t, the coordinate k for taking the backward step is determined by

k = arg min
l ∈ 𝒜t

L βt −
sign(βl

t)
wl

1lε , (5)

where 1l denotes the length-p vector with the lth component being 1 and the rest being 0, ε
is the step size, and t is the index set of β̂t’s nonzero components. If

Q(βt −
sign(βk

t)
wk

1kε; λt) < Q(βt; λt), a backward update is made by

βt + 1 = βt −
sign(βk

t)
wk

1kε, λt + 1 = λt . (6)

Otherwise a forward step is taken on coordinate k that satisfies

k = arg min
l = 1, …, p

L βt −
sign ∇lL(βt)

wl
1lε , (7)

where ∇ denotes partial derivative. And the forward update is

Shi et al. Page 4

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

βt + 1 = βt −
sign ∇kL(βt)

wk
1kε, λt + 1 = min λt, L(βt) − L(βt + 1)

ε . (8)

The complete BLasso algorithm is presented in Appendix A.

3. The Fabs algorithm

Motivated by BLasso, we develop the Fabs which works for a differentiable but not-

necessarily-convex loss function to approximately solve estimation (4). By assuming

differentiability, the Fabs effectively uses the gradient information which helps reduce

computational cost dramatically. Without the convexity constraint, the Fabs is more flexible

and able to cover many high-dimensional models (n ≪ p) and nonconvex loss functions.

3.1. Method

The Fabs is an iterative algorithm with each iteration conducting either a backward or

forward step on the selected coordinate with a fixed step size. When evaluating the loss

function, the Fabs takes advantage of the differentiability and uses the partial gradient

∇L(βt). Specifically, we use the first-order Taylor expansion to obtain dominant terms of

L(βt) at each iteration. In a backward step, we have

L βt −
sign(βl

t)
wl

1lε = L(βt) − ∇lL(βt)
sign(βl

t)
wl

ε + O(ε2) . (9)

In a forward step, we have

L βt −
sign ∇lL(βt)

wl
1lε = L(βt) −

|∇lL(βt)|
wl

ε + O(ε2) . (10)

When ε is small, a backward step determines the coordinate k by

k = arg min
l ∈ 𝒜t

− ∇lL(βt)
sign(βl

t)
wl

. (11)

A backward step can reduce the penalty λtρ(βt) by λtε, at the risk of increasing L(βt) by
|∇Lk|

wk
. It will be taken if the former is bigger. Otherwise, a forward step will be taken, where

the coordinate k can be determined by

Shi et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

k = arg max
l = 1, …, p

|∇lL(βt)|
wl

. (12)

The complete algorithm is presented in Algorithm 1.

The intuition behind (12) is simple: if a forward step is taken, we update the current estimate

in the direction that has the largest absolute gradient of L (evaluated at βt̂ and normalized by

the aLasso weight). It is clear from (10) that a forward step always reduces the loss function

L(βt). By applying forward/backward steps iteratively, the Fabs approximately solves (4).

Remark 1 (Connection with BLasso)—Blasso evaluates L(βt ±
1lε

wl
)(l = 1, …, p) in

searching for the direction for update in both forward and backward steps. Unlike BLasso

which directly evaluates the loss function, the Fabs conducts the first-order Taylor expansion

and uses the gradient ∇L(βt). This not only simplifies the minimization procedure but also

reduces the computational burden dramatically (See Example 1 in Section 4 for numerical

results).

3.2. Statistical properties

In this section, we examine performance of the Fabs paths and discuss their convergence

property. We first describe the behaviour of a forward step. Then we introduce the δ-

optimality conditions, which are the popular Karush-Kuhn-Tucker (KKT) conditions up to a

tolerance δ (Gasso et al., 2009). Using these conditions, we establish in Theorem 1 that the

Fabs generates a δ-approximate solution to estimation (4), and in Proposition 1 the

convergence as the stepsize ε → 0. Proofs are provided in Appendix B.

Lemma 1—For any t such that β̂t+1 is updated by a forward step, Fabs has the following

properties:

1. If a forward step is made by updating βl
t where l ∈ t, it can only be made by

βl
t + 1 = βl

t +
sign(βl

t)
wl

ε.

2. ρ(β̂t+1) = p(β̂t) + ε.

Algorithm 1

Fabs for the aLasso penalty

Step 1 (Initialization) With a small step size ε(> 0), set t = 0, and take an initial forward step:

 k = arg maxl = 1, …, p
|∇lL(0)|

wl
 and 0 = {k},

Shi et al. Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 β0 = −
sign(∇kL(0))

wk
1kε,

 λ0 = 1
ε L(0) − L(β0) .

Step 2 (Backward and Forward steps)

 2.1 Determine the backward direction:

 k = arg min
l ∈ 𝒜t − ∇lL(βt)

sign(βl
t)

wl
,

 Δk = −
sign(βk

t)
wk

1k.

 2.2 If Q(βt̂ + Δkε; λt) < Q(βt̂; (λt), take a backward step β̂t+1 = β̂t + Δkε, and λt+1 = λt.

 Otherwise, force a forward step, and relax λ if necessary:

 k = arg maxl = 1, …, p
|∇lL(βt)|

wl
 and t+1 = t ∪ {k},

 βt + 1 = βt −
sign(∇kL(βt))

wk
1kε,

 λt + 1 = min λt, 1
ε [L(βt) − L(βt + 1)] .

Step 3 (Iteration) Update t = t + 1, and repeat Steps 2 and 3 until λt ≤ λmin, where λmin is the lower
bound of the tuning parameter.

3. Q(βt̂+1;λt+1) ≤ Q(β̂t; λt).

Lemma 1 shows that with a forward step, the updated coefficient increases in absolute

magnitude, indicating that the solution path is monotone if no backward step is taken.

Therefore, Lemma 1 (1) provides an intuitive connection between the FS algorithm and

monotone Lasso. Second, Lemma 1 (2) shows that the penalty function always increases by

a constant ε in a forward step. Last, Lemma 1 (3) shows that by taking a forward step, the

objective function Q(βt+1; λt+1) is no greater than Q(βt; λt). Since a backward step is taken

if Q(β̂t+1; λt) ≤ Q(β̂t; λt) (in this case, λt+1 = λt), the objective function Q is guaranteed to

decrease in both forward and backward steps along the Fabs’ iterations.

Definition 1 (δ-approximate solution)—If a vector β ∈ ℝp satisfies the following δ-

optimality conditions (δ ≥ 0) for all 1 ≤ l ≤ p

|∇lL(β) + λwlsign(βl) | ≤ δ, if βl ≠ 0, (13)

|∇lL(β) | ≤ λwl + δ, if βl = 0, (14)

Shi et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

then we call β a δ-approximate solution for estimation (4)

Theorem 1—If the second-order derivatives of L are bounded from above, then every point

βt̂ along the Fabs path is a δ-approximate solution for one of the stationary points of

estimation (4), with the associated tuning parameter λt and δ = m
w∗

ε, where m is the upper

bound of the second-order derivatives of L and w* = minl{wl}.

Theorem 1 guarantees the satisfactory properties of each point along the Fabs path. When ε
= 0, the δ-optimality conditions reduce to the KKT conditions. Immediately we have

Proposition 1.

Proposition 1—If L has upper-bounded second-order derivatives, as ε → 0, each point

along the Fabs paths converges to one stationary point of estimation (4).

Proposition 1 holds under mild conditions. Without any convexity assumption on L, it

guarantees that the solution found by the Fabs converges to one stationary point for

estimation (4). It accommodates loss functions that are not convex, including those popular

ones mentioned in Section 1.

Remark 2—When the loss function is differentiable and convex with continuous

predictors, estimation (4) leads to a unique and well-defined Lasso path (Tibshirani, 2013).

For our case here with a nonconvex loss, it is not clear whether estimation (4) has a unique

solution and whether the Fabs can find the global or even local optimizers. The Fabs path

consists of a sequence of solutions such that each solution is an approximation to one of the

stationary points of the aLasso problem with the same tuning λ. We note that convergence to

a stationary point is a common theoretical result in nonconvex optimization. For the Fabs,

the initial estimate zero is a stationary point and global optimal for λ = ∞. For all the

following steps, β̂t+1 is updated by a forward or backward step from β̂t with a stepsize ε.

Even when the stepsize ε → 0, it is not clear whether the obtained solution is the global

optimal, a local one, or even a saddle point. To escape from potential saddle points, stronger

conditions on the loss functions, for example the strict saddle property (Ge et al., 2015), are

needed, but further investigation is beyond the scope here. Our numerical Example 1 in

Section 4 shows that the Fabs’ performance is competitive to NM and GA which likely

provide local optimal solutions.

Remark 3—When L is convex but not necessarily strictly convex, the KKT conditions are

necessary and sufficient for global optimal solutions. Therefore, the Fabs solutions converge

to the global optimizers by Proposition 1. A visualization of such convergence can be found

in the supplementary document. The convergence of BLasso is developed under strict

convexity, which requires n ≥ p for the linear model. In this sense, the Fabs extends the

convergence result of BLasso to accommodate high-dimensional settings. Another

interesting finding for Proposition 1 under the additional convexity assumption is that there

is an intuitive connection between the Fabs and FS algorithms: the Fabs path is an

approximation to the Lasso path since it finds solutions that satisfy an approximate version

Shi et al. Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of Lasso’s KKT conditions. The FS algorithm is equivalent to the Fabs when there is no

backward step.

3.3. Software

To facilitate data analysis in this study and beyond, we have developed an R program with

the computational core written in C to reduce computer time. The code and description are

publicly available at https://github.com/shuanggema. With a modular structure, the code can

be easily revised and extended to other models and settings.

4. Application to the penalized SPR estimation

4.1. Penalized SPR estimation

The SPR has been investigated in multiple publications. It effectively “avoids” specifying

the link function and thus has the much desired robustness properties (robust to model mis-

specification). Despite its usefulness and extensive attention to methodology and theory,

there is a lack of research on computation with the penalized SPR. In what follows, we apply

Fabs to the penalized SPR, which not only demonstrates the application of Fabs but also

provides an effective computational solution to the useful SPR technique. The SPR is

applicable to multiple data types. Here we consider censored survival data, and other simpler

data types can be analyzed similarly.

Denote T and C as the survival and censoring times, respectively. Under right censoring, we

observe y = min(T, C) and δ = I(T ≤ C). Consider the transformation model

g(T) = β⊤X + e,

where e is the random error with an unknown distribution, and g(·) is monotone increasing

but otherwise unspecified. Denote the observed data on n iid subjects as {(yi, δi, Xi), i = 1,

…, n}. The rank-based loss function is defined as

L(β) = − 1
n(n − 1) ∑

i ≠ j

n
δ jI(yi ≥ y j)I(Xi

⊤β ≥ X j
⊤β) . (15)

As this loss function is not continuous, approximations are usually adopted. Specifically, the

SPR loss function is defined as

L(β; σ) = − 1
n(n − 1) ∑

i ≠ j

n
δ jI(yi ≥ y j)Sσ(Xi

⊤β − X j
⊤β), (16)

where σ is a tuning parameter, and Sσ(u) = 1
1 + exp(− u/σ) is the sigmoid function (Song et al.,

2007). When p is moderate to large, penalization has been applied to the SPR estimation.

Multiple published studies have established satisfactory statistical properties of the SPR

Shi et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/shuanggema

approach, both with and without penalization. However, the computational aspect has not

been well examined mostly because of the nonconvexity of the loss function. Here we apply

Fabs to the SPR estimation with an aLasso penalty.

Computational complexity—The computational complexity of each Fabs step is lucid.

The gradient ∇L can be evaluated in O(pn2) calculations. O(p log p) calculations are needed

to find the coordinate k that has the largest
|∇kL|

wk
. Thus, at each step, O(pn2) calculations are

required. To produce the whole path, roughly O(1
ε) steps are needed (Zhao and Yu, 2007).

Thus, overall, O(pn2
ε) calculations are needed to compute the solution path. With the

computational complexity increasing slowly with p, the whole Fabs path is computationally

affordable. This advantage is clearly observed from the computer time presented in Table 1.

It is also worth noting that the forward and backward steps are both simple, and computation

can be conducted in a parallel manner to further reduce computer time.

Tuning parameter—Accuracy of the sigmoid approximation depends on the tuning

parameter σ. Theoretical investigation on its order under low-dimensional settings is

conducted in Song et al. (2007), which develops a one-step approach to select σ with an

initial value σ = 1/ n. Below, we show that the selection of σ is not needed with Fabs. Let

β̂t(σ, ε) denote the solution of the penalized SPR at step t with σ, ε, and the associated λt(σ,
ε). We have the following property.

Theorem 2—For any positive constant c, β̂t(cσ, cε) = cβ̂t(σ, ε) and λt(cσ, cε) = λt(σ, ε)/c
for each t.

Remark 4—Theorem 2 implies that the solution path βt̄(σ, ε) is determined up to location

by the ratio of σ and ε. This property holds for other loss functions that involve smoothing

using the sigmoid function, such as the smoothed 0–1 loss illustrated in Section 5.

According to Theorem 2, we can run a grid of ε on a small fixed σ. In our simulation, we set

σ = 1/ n and use the grid ε ∈ {0.02, 0.01, 0.001}. Our numerical study suggests that Fabs is

relatively robust to the choice of ε. Following Lin and Peng (2013), we use the number of

nonzero coefficient estimates (| t|) as an approximation to the generalized degree of

freedom and select the optimal t or λt along the solution path by maximizing

BICt = log − L(βt; σ) − |𝒜t | log n
2n .

4.2. Simulation

Simulation is designed to demonstrate the favorable performance of the Fabs compared to

the benchmark algorithms (Example 1) and to showcase the advantages of SPR by making

use of the Fabs compared to other model-based estimators (Examples 2 and 3).

In Example 1, the benchmark algorithms considered include BLasso, NM, and GA. For the

Lasso penalty, NM and GA algorithms are directly applicable to the penalized SPR loss

function using the R function optim and package GA (Scrucca, 2013), respectively. The

Shi et al. Page 10

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

benchmark algorithms, especially GA, are computationally extensive. Therefore, we

consider low-dimensional cases with p = 10 and 20. In Example 2, we consider a linear

model with three random error distributions. The alternative estimators considered include

the least squares (LS) and least absolute deviation (LAD). In Example 3, we consider a right

censored response under the accelerated failure time model with three random error

distributions. We consider the Cox model as an alternative. As the Fabs is computationally

fast, we consider high-dimensional cases for Example 2 and 3 with p = 500. For GA and

LAD, the Lasso penalty is ready to be applied using existing packages, therefore, we adopt

Lasso in Examples 1 and 2, which is a special case of aLasso with weights all equal to 1. In

all examples, the true coefficient β* = (1, 1, −1, −1, 0p−4). For covariates, we consider

multivariate normal distributions with mean 0p and correlation matrix AR(ϱ) (auto-

regressive). More model specifications are described below.

Example 1—Consider data with a right censored response under the accelerated failure

time model

log(Ti) = β ∗ ⊤Xi + ei,

where ei is the random error. The censoring times are generated independently, and the

censoring rate is about 20%. We consider two distributions for the random errors: N(0,1) and

t4. We consider the correlation matrix AR(0.3) for X. Combinations of n= (200, 400) and p =

(10, 20) are used to observe the increase of computational cost. For all algorithms that

involve gradients, the gradient computation is written in C, and the rest of the computation is

in R. GA requires no knowledge or gradient information about the loss surface (Sivanandam

and Deepa, 2007), but is extremely time-consuming and takes a large number of iterations to

converge. Therefore, we present the GA results based on maximal 100 iterations under

which the estimates are roughly comparable to the other algorithms.

We consider the runtime (in second) for generating the whole solution path to evaluate

computational cost. We evaluate the loss function’s percentage decrease (PD) as L(0) − L(β)
L(0)

and estimation error (Error) as β
‖β‖2

− β∗

‖β∗‖2

2
 for β̂ at the finishing end of the solution path

corresponding to λ = 0. For the low-dimensional case here, this unpenalized estimator is a

natural choice. Results are based on 200 replicates and shown in Table 1. We see that Fabs is

much faster than BLasso, and both are significantly faster than NM and GA. When p
increases from 10 to 20, the computer time of Fabs increases almost linearly. This enables

Fabs to accommodate high dimensionality, which is not feasible with NM and GA. We

observe a decrease in PD and an increase in Error when the noise distribution changes from

N(0, 1) to t4. NM and GA have slightly large PD and Error. Fabs and BLasso have similar

PD and Error, but Fabs is considerably faster. Figure 1 plots the solution paths of one

replicate with (n, p) = (200, 20) and t4 random error. For Fabs, the solution paths generated

under different ε values are similar with a smaller ε corresponding to a smoother path. In

contrast, the NM and GA paths show more fluctuations. For BLasso, the solution paths are

similar to those of Fabs.

Shi et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 2—Consider data with a continuous response under the linear regression model

Ti = β ∗ ⊤Xi + ei .

With n = 200 and p = 500, three distributions are considered for the random error: N(0,1),

0.7N(0, 1)+0.3Cauchy(0, 1), and t2. With the high dimensionality, penalization is necessary.

Tuning parameter λ is selected by 10-fold cross-validation for LS and LAD, and by BIC for

SPR.

Besides Error (defined in the same way as under Example 1), we also evaluate variable

selection performance using the true positive rate (TPR) and false positive rate (FPR):

TPR =
∑i = 1

p I(βi
∗ ≠ 0)I(βi ≠ 0)

∑i = 1
p I(βi

∗ ≠ 0)
, FPR =

∑i = 1
p I(βi

∗ = 0)I(βi ≠ 0)

∑i = 1
p I(βi

∗ = 0)
.

Results are based on 200 replicates and shown in Table 2. With both Fabs and BLasso, the

numerical results of SPR are robust across all values of ε’s. Fabs and BLasso have similar

Error, TPR, and FPR across all scenarios. All methods have better performance with ϱ = 0.3.

When the random errors are normally distributed, LS is appropriate. In this case, SPR has

comparable performance as LS for ϱ = 0.3, indicating its good efficiency. When the

correlation is high, LS is preferred with smaller FPR/Error and higher TPR. With the

contaminated and heavy-tailed random errors, SPR significantly outperforms LS and LAD

for all ε.

Example 3—Consider data with a right censored response under the accelerated failure

time model. With n = 200 and p = 500, three error distributions are considered: the extreme

value (EV) distribution with density f(e) = exp(e − exp(e)) that corresponds to the Cox

model, N(0,1), and t4. The censoring times are generated independently, and the censoring

rate is about 20%. We consider the popular Cox model based analysis. Both SPR and Cox

are penalized by aLasso, where the weights are calculated from marginal analysis.

Summary results based on 200 replicates are shown in Table 3. As previously observed, both

the Fabs and BLasso estimates are not sensitive to ε, and all three methods have better

performance under weak correlation. With the EV and Normal errors, SPR shows slightly

better performance than Cox. With the t4 errors, SPR generated by both Fabs and BLasso is

favored with significantly better estimation and variable selection accuracy.

4.3. Real data examples

We demonstrate the practical application of Fabs to the SPR estimation using two real

survival data examples. First, we consider the loan data which has n ≫ p. For a more

challenging task, we consider the data on skin cutaneous melanoma (SKCM) which has n ≪
p. We compare the SPR estimation with the popular Cox model penalized by aLasso.

Shi et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 1 (loan data)—The dataset is available at the Lending Club (LC) website

(https://www.lendingclub.com/info/download-data.action). We retrieve data for the period

between June 2007 and March 2015 and retain the records of loans scheduled with 64

payments for two high risk groups (LC grade F and G). Records with loans that were in the

process of being repaid are removed, and records with loans that did not default over the

study period are censored. The goal of analysis is to identify borrowers’ characteristics (both

main effects and interactions) that are associated with default risk. The processed data

contain records for a total of 2626 high-risk borrowers with 797 defaults. The financial

characteristics analyzed include self-reported annual income, loan amount, employment

length, number of inquiries, verification status of self-reported annual income, debt to

income ratio, number of derogatory public record, credit balance, number of accounts, and

account utilization rate.

We apply aLasso-SPR and present the Fabs paths in the supplementary document. Estimates

using both aLasso-SPR and aLasso-Cox are presented in Table 4. With different modeling

strategies, the two sets of coefficients are not directly comparable. Specifically, for aLasso-

SPR, positive estimates are associated with a lower risk, while for aLasso-Cox, positive

estimates are associated with a higher risk. As shown in Table 4, both methods identify self-

reported annual income as having an important main effect with a higher income associated

with a lower default risk. aLasso-SPR also identifies loan amount as positively associated

with default risk. Unlike aLasso-Cox which selects only main effects, aLasso-SPR also

selects a few interaction terms. Quick literature search suggests that the aLasso-SPR findings

are consistent with those published.

We also evaluate prediction performance. We conduct 300 random splits of the 2626

observations. In each split, we randomly select 1970 (75%) as the training set and the rest

656 as the testing set. We apply all three methods to the training set, obtain estimated

coefficients, and predict default risk in the testing set. Prediction accuracy is evaluated using

the censoring-adjusted AUC (C-statistics) as described in Uno et al. (2011) and implemented

using the R package survAUC. The average AUCs are 0.571, 0.569, and 0.568 for aLasso-

SPR, non-penalized SPR, and aLasso-Cox, respectively. Comparing these AUCs using a

paired nonparametric test suggests that the differences are significant with p-values 1.4 ×

10−7 (aLasso-SPR versus aLasso-Cox) and 9.4 × 10−10 (aLasso-SPR versus non-penalized

SPR).

Example 2 (SKCM data)—We analyze the SKCM dataset downloaded from The Cancer

Genome Atlas (https://tcga-data.nci.nih.gov). After removing samples with missing survival

time and genes with minimal expression variations, we obtain 17,944 gene expressions on

278 patients for downstream analysis.

We report the estimates of aLasso-SPR and aLasso-Cox in Table 4. See the supplementary

document for the whole Fabs path and tuning parameter selection plot for aLasso-SPR.

aLasso-SPR identifies genes CREG1, DDX60, IFI5, MAD1L1, and TTYH2. Literature

search suggests that these genes have strong associations with cancer and the signs are

consistent with biomedical literature. For example, Znidar et al. (2016) suggests that

upregulation of DDX60 is associated with reduced tumor growth. Zhang et al. (2013) reports

Shi et al. Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.lendingclub.com/info/download-data.action
https://tcga-data.nci.nih.gov

a consistently significant increase of anti-viral responses of host cells in the presence of

IFIT5 and concludes that IFIT5 is an important enhancer in innate immune response.

Toiyama et al. (2007) proposes that TTYH2 is implicated in tumor growth and metastasis by

directly altering tumor cell properties (aggregation) after observing enhanced adhesion and

cell-cell aggregation in low TTYH2-expressing Caco-2 and DLD-1 cell lines. Ohta et al.

(2002) shows that Mad1 (alias for MAD1L1) gene transfer inhibits the proliferation of

human melanoma cells.

Prediction performance is evaluated. The average AUCs are 0.585 and 0.531 for aLasso-SPR

and aLasso-Cox, respectively. Comparing the AUCs using a paired nonparametric test

suggests that the difference is significant with p-value 2.2 × 10−16.

5. Application to the penalized smoothed 0–1 loss

To demonstrate the application of Fabs to other nonconvex loss functions, we consider

binary classification with the Lasso penalized 0–1 loss (0–1-Lasso) for which the smoothed

0–1 loss is defined in (3). Alternative methods for comparison include the Lasso penalized

SVM (SVM-Lasso, Zhu et al., 2004) and Lasso penalized logistic regression (LR-Lasso).

We also include results from unpenalized 0–1 loss (0–1), which is feasible when the sample

size is larger than the dimension. We follow the simulation setup in Zhu et al. (2004) and

directly copy their numerical results for SVM-Lasso. LR-Lasso is implemented by the R

package glmnet.

Following Zhu et al. (2004), two classes of equal sample size 50 are generated. In the first

class, the two input variables x1 and x2 are independently generated from N(0,1). In the

second class, an additional constraint is applied such that 4.5 ≤ x1
2 + x2

2 ≤ 8. Besides x1 and

x2, we sequentially augment the inputs with additional two, four, six, and eight standard

normal noise inputs. For input variables {xj, j = 1, …, p}, the dictionary of basis functions is

𝒟 = { 2x j, 2x jx j′, x j
2, j, j′ = 1, …, p}. Let q be the number of basis functions. Classification

error is evaluated on a testing dataset of sample size 1000, and the results based on 200

replicates are shown in Table 5.

We observe that 0–1-Lasso and SVM-Lasso outperform LR-Lasso. The 0–1-Lasso has

comparable performance as SVM-Lasso for a small to moderate number of basis functions

(q = 5, 14, and 27). When the number of basis functions increase further (q = 44 and 65), the

0–1-Lasso outperforms SVM-Lasso. We note that among all the basis functions, only the

quadratic basis functions x1
2 and x2

2 are truly effective. Therefore, when q increases, noises

increase, posing more challenges for classification. The 0–1-Lasso handles the noises well

and performs robustly as noises increase. Comparing 0–1-Lasso and 0–1, we can see that

without variable selection using Lasso, the non-penalized 0–1 loss is significantly affected

by noise inputs. Figure 2 depicts the solution path of 0–1-Lasso generated by the Fabs for q

= 5 based on one replicate. We can see that 0–1-Lasso picks up x1
2 and x2

2 earlier than LR-

Lasso. This confirms Fabs’ effectiveness in this nonconvex example.

Shi et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6. Discussion

For practical data analysis, the development of effective computational algorithms is as

important as the development of methodologies and theories. In this study, we have

developed the Fabs approach for computing penalized estimation with nonconvex loss

functions and the aLasso penalty. Statistical properties of the Fabs paths have been

investigated theoretically and numerically. Development in this study complements the

existing literature on computing penalized convex loss functions. Another important

contribution is to deliver an effective computational solution to the penalized SPR

estimation, which has been well developed in the literature but with its computational aspect

not carefully studied. Simulation and data analysis show that the Fabs algorithm can

generate parameter paths and estimates with satisfactory properties

Beyond our emphasis on the SPR estimation, we have also included a brief application to the

smoothed 0–1 loss in binary classification to demonstrate the capability of the Fabs to work

with other differentiable nonconvex loss functions. For high-dimensional cases, penalty

terms are usually included which bring additional complexity to the problems. The Fabs

algorithm, developed for aLasso in this study, can generate solution paths with performance

guaranteed to be more efficient than the heuristic algorithms. It may be of interest to have

more focused studies on various interesting loss functions in the future.

Our development has been focused on aLasso which is a popular sparsity-inducing penalty.

It is of interest to generalize the development to other convex penalties. In the supplementary

document, we develop an Fabs algorithm for general convex penalties and illustrate its

performance using a data example. However, we have not been able to establish the

convergence properties for more general penalties and postpone such research to the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Shi’s work was supported by the National Natural Science Foundation of China (Grant No. 71501089). Ma’s work
was supported by National Institutes of Health (R01 CA204120) and National Bureau of Statistics of China (Grant
No. 2016LD01). We are grateful to the editor and two referees for their valuable comments and constructive
suggestions, which led to a substantial improvement of this manuscript.

Appendix A

The BLasso algorithm

Algorithm 0

BLasso for the aLasso penalty

Step 1 (Initialization) With a small step size ε(> 0), set t = 0, and k = arg maxl = 1, …, p
|∇lL(0)|

wl
 and 0 = {k},

where ∇ denotes the partial derivative;

Shi et al. Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 β0 = −
sign(∇kL(0))

wk
1kε, where 1k is a length-p vector with the kth element being 1 and the rest being 0;

 λ0 = 1
ε L(0) − L(β0) .

Step 2 (Backward and Forward steps)

 2.1 Find the backward direction:

 k = arg min
l ∈ 𝒜t L βt −

sign(βl
t)

wl
1lε ,

 Δk = −
sign(βk

t)
wk

1k.

 2.2 If Q(βt̂ + Δkε; λt) < Q(βt̂; λt), take a backward step as β̂t+1 = β̂t + Δkε, and λt+1 = λt.

 Otherwise, force a forward step, and relax λ if necessary:

 k = arg minl = 1, …, p L βt −
sign(∇lL(βt))

wl
1lε and t+1 = t ∪ k,

 βt + 1 = βt −
sign(∇kL(βt))

wk
1kε,

 λt + 1 = min λt, 1
ε [L(βt) − L(βt + 1)] .

Step 3 (Iteration) Update t = t + 1, and repeat Steps 2 and 3 until λt ≤ λmin, where λmin is the lower bound of the tuning
parameter.

Appendix B

Proof

Proof of Lemma 1

1. When a forward step is taken, for all l ∈ t,

Q βt −
sign(βl

t)
wl

1lε; λt ≥ Q(βt; λt) . (B.1)

A forward step reduces L(β̂t). That is, L(β̂t+1) < L(β̂t). If βl
t + 1 = βl

t −
sign(βl

t)
wl

ε,

ρ(β̂t+1) < ρ(β̂t). Then we have

L(βt + 1) + λtρ(βt + 1) < L(βt) + λtρ(βt),

Shi et al. Page 16

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which contradicts inequality (B.1). Therefore, if a forward step is made by

updating βl
t where l ∈ t, it can only be made by

βl
t + 1 = βl

t +
sign(βl

t)
wl

ε .

2. Without loss of generality, assume that in step t + 1, the kth coordinate of βt̂ is

updated by a forward step. Then

βk
t + 1 = βk

t −
sign(∇kL(βt))

wk
ε .

If βk
t = 0, we have ρ(β̂t+1) = ρ(β̂t) + ε. If βk

t ≠ 0, we have βk
t + 1 = βk

t +
sign(βk

t)
wk

ε

and ρ(β̂t+1) = ρ(β̂t) + ε.

3.
In a forward step, λt + 1 = {λt, L(βt) − L(βt + 1)

ε }. If λt + 1 = L(βt) − L(βt + 1)
ε , then

Q(βt + 1; λt + 1) = L(βt + 1) + λt + 1ε + λt + 1ρ(βt) ≤ L(βt + 1) + λt + 1ε + λtρ(βt) = Q(βt; λt) .

If λt+1 = λt, then λt ≤ L(βt) − L(βt + 1)
ε . Therefore,

Q(βt + 1; λt + 1) = L(βt + 1) + λt + 1ρ(βt + 1) = L(βt + 1) + λt ρ(βt) + ε

≤ L(βt + 1) + λtρ(βt) + L(βt) − L(βt + 1)
ε ε = Q(βt; λt) .

Lemma 2

For any t such that βt̂+1 is updated by a forward step, if λt + 1 = L(βt) − L(βt + 1)
ε , then for all l

∈ t, Q(βt ±
1l
wl

ε; λt) ≥ Q(βt; λt).

Proof of Lemma 2

If a forward step is taken, from λt + 1 = L(βt) − L(βt + 1)
ε ≤ λt, we have

L(βt) − L(βt + 1) ≤ λtε = λt ρ(βt + 1) − ρ(βt) . (B.2)

Therefore

Shi et al. Page 17

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

L(βt) + λtρ(βt) ≤ L(βt + 1) + λtρ βt + 1 = min
l

L βt −
sign(∇lL(βt))

wl
1lε + λtρ βt + 1

≤ min
l ∈ 𝒜t

L βt −
sign(∇lL(βt))

wl
1lε + λtρ βt + 1 = min

l ∈ 𝒜t
L βt −

sign(βl
t)

wl
1lε + λtρ βt + 1

≤ L βt +
sign(βl

t)
wl

1lε + λtρ βt +
sign(βl

t)
wl

1lε = Q βt +
sign(βl

t)
wl

1lε; λt .

Combining this inequality with (B.1), for l ∈ t, we have

Q βt ±
sign(βl

t)
wl

1lε; λt ≥ Q(βt; λt) . (B.3)

Proof of Theorem 1

We prove this theorem by checking the δ-optimality conditions for problem (4).

For l ∈ t, with Taylor expansion,

L(βt ±
sign(βl

t)
wl

1lε) ≤ L(βt) ± ∇lL(βt)
sign(βl

t)
wl

ε + m
2wl

2ε2, (B.4)

where m is the upper bound of the second-order partial derivatives of L. Combining (B.3)

from Lemma 2 with (B.4), we have

|∇lL(βt) + λwlsign(βl
t) | ≤ δ, (B.5)

where δ = maxl
m

2wl
ε = m

2w∗
ε. The δ-optimality condition (13) is satisfied.

For l ∉ t, with Taylor expansion,

L βt −
sign(∇lL(βt))

wl
1lε ≤ L(βt) − ∇lL(βt)

sign(∇lL(βt))
wl

ε + m

2wl
2ε2 .

Combining this inequality with inequality (B.2), we have

Shi et al. Page 18

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

|∇lL(βt) | ≤

L(βt) − L βt −
sign(∇lL(βt))

wl
1lε

ε wl + m
2wl

ε ≤
L(βt) − L βt + 1

ε wl + m
2wl

ε ≤ λtwl + δ .

The δ-optimality condition (14) is satisfied.

Proof of Theorem 2

We prove this theorem by induction.

Initial step

t = 0.

Let kc denote the coordinate selected with cσ and cε. By Algorithm 1, kc = k for t = 0. In

this case,

β0(cσ, cε) = −
sign(∇kc

L(0; cσ))

wkc
1kc

cε = −
sign(∇kL(0; σ))

wk
1kcε = cβ0(σ, ε) .

Then we have

λ0(cσ, cε) =
L(0; cσ) − L β0(cσ, cε); cσ

cε =
L(c0; cσ) − L cβ0(σ, ε); cσ

cε =
L(0; σ) − L β0(σ, ε); σ

cε = λ0(σ, ε)
c .

Induction step

t = t + 1.

Assume β̂t(cσ, cε) = cβ̂t(σ, ε) and λt(cσ, cε) = λt(σ, ε)/c. Let uij
t (σ, ε) =

(Xi − X j)
⊤βt(σ, ε)

σ .

Immediately we have uij
t (cσ, cε) = uij

t (σ, ε). By definition, it also holds that L (β̂t(cσ, cε); cσ)

= L (β̂t(σ, ε); σ). Then

∇lL βt(cσ, cε); cσ = − 1
n(n − 1) ∑

i ≠ j

n
δ jI(yi ≥ y j)

exp (− uij
t (cσ, cε))

[1 + exp (− uij
t (cσ, cε))]2

Xil − X jl
cσ

= − 1
n(n − 1) ∑

i ≠ j

n
δ jI(yi ≥ y j)

exp (− uij
t (σ, ε))

[1 + exp (− uij
t (σ, ε))]2

Xil − X jl
cσ = ∇lL βt(σ, ε); σ /c .

Obviously, the order of {∇lL (β̂t(cσ, cε); cσ), l = 1, …, p} is the same as that of {∇lL (β̂t(σ,
ε); σ), l = 1, …, p}. Therefore, kc = k, regardless of a forward or backward step.

Shi et al. Page 19

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Next we show that if a backward (forward) step is taken for βt̂+1(σ, ε), then a backward

(forward) step will be taken for β̂t+1(cσ, cε) as well. It is sufficient to show

Q βt(σ, ε) −
sign(βk

t (σ, ε))
wk

1kε; λt(σ, ε) − Q βt(σ, ε), λt(σ, ε)

= Q βt(cσ, cε) −
sign(βkc

t (cσ, cε))
wkc

1kc
cε; λt(cσ, cε) − Q βt(cσ, cε), λt(cσ, cε) .

(B.6)

For the loss function,

L βt(cσ, cε) −
sign(βkc

t (cσ, cε))
wkc

1kc
cε; cσ − L βt(cσ, cε); cσ

= L cβt(σ, ε) −
sign(βk

t (σ, ε))
wk

1kcε; cσ − L βt(σ, ε); σ

= L βt(σ, ε) −
sign(βk

t (σ, ε))
wk

1kε; σ − L βt(σ, ε); σ .

(B.7)

For the penalty function,

λt(cσ, cε)ρ βt(cσ, cε) −
sign(βkc

t (cσ, cε))
wkc

1kc
cε − λt(cσ, cε)ρ(βt(cσ, cε))

= λt(σ, ε)
c ρ cβt(σ, ε) −

sign(βk
t (σ, ε))

wk
1kcε − λt(σ, ε)

c ρ(cβt(σ, ε))

= λt(σ, ε)ρ βt(σ, ε) −
sign(βk

t (σ, ε))
wk

1kε − λt(σ, ε)ρ(βt(σ, ε)) .

(B.8)

By (B.7) and (B.8), we conclude that (B.6) holds.

If a backward step is taken, then

Shi et al. Page 20

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

βt + 1(cσ, cε) = βt(cσ, cε) −
sign(βkc

t (cσ, cε))

wkc
1kc

cε = cβt(σ, ε) −
sign(cβk

t (σ, ε))
wk

1kcε

= c βt(σ, ε) −
sign(βk

t (σ, ε))
wk

1kε = cβt + 1(σ, ε),

and

λt + 1(cσ, cε) = λt(cσ, cε) = λt(σ, ε)
c = λt + 1(σ, ε)

c .

If a forward step is taken, then

βt + 1(cσ, cε) = βt(cσ, cε) −
sign ∇kc

L βkc
t (cσ, cε); cσ

wkc
1kc

cε = cβt(σ, ε) −
sign ∇kL cβk

t (σ, ε); cσ

wk
1kcε

= c βt(σ, ε) −
sign ∇kL βk

t (σ, ε); σ

wk
1kε = cβt + 1(σ, ε),

and

λt + 1(cσ, cε) = min λt(cσ, cε), 1
cε L βt(cσ, cε); cσ − L βt + 1(cσ, cε); cσ

= min 1
c λt(σ, ε), 1

cε L βt(σ, ε); σ − L βt + 1(σ, ε); σ = 1
c min λt(σ, ε), 1

ε L βt(σ, ε); σ − L βt + 1(σ, ε); σ

= λt + 1(σ, ε)
c .

Therefore, by induction, βt̂(cσ, cε) = cβt̂(σ, ε) and λt(cσ, cε) = λt(σ, ε)/c for each t.

References

Becker S, Bobin J, Candès EJ. Nesta: a fast and accurate first-order method for sparse recovery. SIAM
Journal on Imaging Sciences. 2011; 4(1):1–39.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends® in Machine Learning.
2011; 3(1):1–122.

Bühlmann P, van de Geer S. Statistics for high-dimensional data: methods, theory and applications.
Springer Science & Business Media; 2011.

Cavanagh C, Sherman RP. Rank estimators for monotonic index models. Journal of Econometrics.
1998; 84(2):351–381.

Efron B, Hastie T, Johnstone I, Tibshirani R, et al. Least angle regression. The Annals of statistics.
2004; 32(2):407–499.

Shi et al. Page 21

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Friedman J, Hastie T, Höfling H, Tibshirani R, et al. Pathwise coordinate optimization. The Annals of
Applied Statistics. 2007; 1(2):302–332.

Gasso G, Rakotomamonjy A, Canu S. Recovering sparse signals with a certain family of nonconvex
penalties and dc programming. IEEE Transactions on Signal Processing. 2009; 57(12):4686–4698.

Ge R, Huang F, Jin C, Yuan Y. Escaping from saddle points—online stochastic gradient for tensor
decomposition. Conference on Learning Theory. 2015:797–842.

Han AK. Non-parametric analysis of a generalized regression model: the maximum rank correlation
estimator. Journal of Econometrics. 1987; 35(2–3):303–316.

Hastie T, Taylor J, Tibshirani R, Walther G, et al. Forward stage-wise regression and the monotone
lasso. Electronic Journal of Statistics. 2007; 1:1–29.

Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso and generalizations.
CRC Press; 2015.

Lin H, Peng H. Smoothed rank correlation of the linear transformation regression model.
Computational Statistics & Data Analysis. 2013; 57(1):615–630.

Nguyen T, Sanner S. Algorithms for direct 0–1 loss optimization in binary classification. ICML. 2013;
(3):1085–1093.

Ohta Y, Hamada Y, Saitoh N, Katsuoka K. Effect of the transcriptional repressor mad1 on proliferation
of human melanoma cells. Experimental dermatology. 2002; 11(5):439–447. [PubMed: 12366697]

Scrucca L. Ga: A package for genetic algorithms in r. Journal of Statistical Software. 2013; 053(1):1–
37.

Sivanandam S, Deepa S. Introduction to genetic algorithms. Springer Science & Business Media;
2007.

Song X, Ma S. Penalised variable selection with u-estimates. Journal of nonparametric statistics. 2010;
22(4):499–515. [PubMed: 21904440]

Song X, Ma S, Huang J, Zhou X-H. A semiparametric approach for the nonparametric transformation
survival model with multiple covariates. Biostatistics. 2007; 8(2):197–211. [PubMed: 16670240]

Tibshirani RJ. The lasso problem and uniqueness. Electronic Journal of Statistics. 2013; 7:1456–1490.

Toiyama Y, Mizoguchi A, Kimura K, Hiro J, Inoue Y, Tutumi T, Miki C, Kusunoki M. Ttyh2, a human
homologue of the drosophila melanogaster gene tweety, is up-regulated in colon carcinoma and
involved in cell proliferation and cell aggregation. World journal of gastroenterology: WJG. 2007;
13(19):2717. [PubMed: 17569141]

Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L. On the c-statistics for evaluating overall adequacy
of risk prediction procedures with censored survival data. Statistics in medicine. 2011; 30(10):
1105–1117. [PubMed: 21484848]

Zhang B, Liu X, Chen W, Chen L. Ifit5 potentiates antiviral response through enhancing innate
immune signaling pathways. Acta Biochim Biophys Sin. 2013; 45(10):867–874. [PubMed:
23942572]

Zhao P, Yu B. Stagewise lasso. The Journal of Machine Learning Research. 2007; 8:2701–2726.

Zhu J, Rosset S, Tibshirani R, Hastie TJ. 1-norm support vector machines. Advances in Neural
Information Processing Systems. 2004; 16:49–56.

Znidar K, Bosnjak M, Cemazar M, Heller LC. Cytosolic dna sensor upregulation accompanies dna
electrotransfer in b16. f10 melanoma cells. Molecular Therapy-Nucleic Acids. 2016; 5:e322.
[PubMed: 27271988]

Shi et al. Page 22

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Solution paths for one simulated replicate under Example 1 with (n, p) = (200, 20) and t4

random error. Solid/Dashed lines represent variables with truly nonzero/zero coefficients.

Left: Fabs with step size 0.02 (top) and 0.001 (bottom). Middle: Blasso with step size 0.02

(top) and 0.001 (bottom). Right: NM (top) and GA (bottom), where the horizontal lines

correspond to the anchor variable.

Shi et al. Page 23

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Solution paths for binary classification when q = 5 based on one replicate. The black and red

color represent the significant basis functions x1
2 and x2

2, respectively. Left: Lasso penalized

logistic regression. Right: Lasso penalized 0–1 loss by the Fabs.

Shi et al. Page 24

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 25

Ta
b

le
 1

Si
m

ul
at

io
n

E
xa

m
pl

e
1.

 I
n

ea
ch

 c
el

l,
th

e
th

re
e

ro
w

s
ar

e
th

e
m

ea
ns

 o
f

PD
, E

rr
or

, a
nd

 r
un

tim
e

(i
n

se
co

nd
s)

.

e
(n

, p
)

ε
=

0.
02

ε
=

0.
01

ε
=

0.
00

1
N

M
G

A
F

ab
s

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

B
L

as
so

N
(0

,1
)

(2
00

, 1
0)

0.
70

2
0.

70
4

0.
70

7
0.

70
6

0.
70

9
0.

70
7

0.
71

5
0.

71
5

0.
01

4
0.

01
7

0.
01

4
0.

01
7

0.
01

4
0.

01
6

0.
01

7
0.

01
7

1.
75

6.
5

3.
39

14
.2

7
36

.1
6

14
9.

75
99

.7
3

90
7.

9

(2
00

, 2
0)

0.
71

6
0.

72
0.

72
3

0.
72

3
0.

72
6

0.
72

5
0.

73
4

0.
73

3

0.
03

5
0.

03
7

0.
03

4
0.

03
6

0.
03

5
0.

03
7

0.
04

4
0.

03
9

1.
9

19
.1

2
10

.9
6

37
.6

3
53

.1
7

38
9.

77
48

2.
59

10
76

.4
5

(4
00

, 1
0)

0.
69

8
0.

70
2

0.
70

6
0.

70
7

0.
70

9
0.

70
8

0.
71

5
0.

71
5

0.
00

8
0.

01
0.

00
8

0.
00

8
0.

00
7

0.
00

8
0.

00
9

0.
00

9

2.
92

14
.0

1
7.

77
34

.0
8

91
.6

6
39

0.
48

37
3.

24
33

95
.3

9

(4
00

, 2
0)

0.
69

9
0.

70
5

0.
70

7
0.

71
0.

71
2

0.
71

2
0.

71
9

0.
71

9

0.
01

7
0.

01
9

0.
01

6
0.

01
7

0.
01

6
0.

01
6

0.
02

1
0.

02
1

4.
84

33
.2

7
12

.3
4

82
.5

1
13

7.
15

96
4.

44
16

82
.4

40
77

.9
5

t 4

(2
00

, 1
0)

0.
65

0.
65

0.
65

4
0.

65
4

0.
65

6
0.

65
4

0.
66

2
0.

66
2

0.
02

2
0.

02
5

0.
02

3
0.

02
5

0.
02

2
0.

02
4

0.
02

5
0.

02
5

1.
51

5.
51

3.
5

13
.3

2
33

.1
9

13
9.

62
91

.5
3

81
9.

73

(2
00

, 2
0)

0.
65

0.
65

3
0.

65
8

0.
65

8
0.

66
1

0.
65

9
0.

66
8

0.
66

8

0.
04

9
0.

05
2

0.
05

1
0.

05
3

0.
05

1
0.

05
4

0.
06

3
0.

05
8

1.
82

20
.1

4
8.

06
39

.0
4

55
.5

1
39

2.
56

48
9.

37
10

70
.8

4

(4
00

, 1
0)

0.
64

9
0.

65
4

0.
65

8
0.

65
9

0.
66

1
0.

66
0.

66
6

0.
66

6

0.
01

3
0.

01
4

0.
01

1
0.

01
2

0.
01

0.
01

2
0.

01
2

0.
01

2

4.
07

13
.2

8
9.

78
33

.2
6

89
.1

1
37

7.
61

35
8.

18
31

71
.1

5

(4
00

, 2
0)

0.
65

3
0.

65
9

0.
66

1
0.

66
2

0.
66

5
0.

66
4

0.
67

2
0.

67
2

0.
02

2
0.

02
3

0.
02

0.
02

1
0.

01
9

0.
02

0.
02

6
0.

02
5

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 26

e
(n

, p
)

ε
=

0.
02

ε
=

0.
01

ε
=

0.
00

1
N

M
G

A
F

ab
s

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

B
L

as
so

4.
66

33
.9

5
14

.0
5

81
.8

7
12

8.
78

92
5.

51
17

58
.9

40
09

.0
1

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 27

Ta
b

le
 2

Si
m

ul
at

io
n

E
xa

m
pl

e
2.

 I
n

ea
ch

 c
el

l,
m

ea
n

(u
pp

er
)

an
d

sd
 (

lo
w

er
).

ϱ
=

0.
3

ϱ
=

0.
7

ε
=

0.
02

ε
=

0.
01

ε
=

0.
00

1
ε

=
0.

02
ε

=
0.

01
ε

=
0.

00
1

L
S

L
A

D
B

L
as

so
F

ab
s

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

L
S

L
A

D
B

L
as

so
F

ab
s

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

N
(0

,1
)

E
rr

or
0.

01
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

15
0.

42
0.

16
0.

13
0.

22
0.

18
0.

29
0.

30

0.
01

0.
03

0.
01

0.
01

0.
01

0.
01

0.
02

0.
01

0.
11

0.
15

0.
14

0.
12

0.
19

0.
15

0.
18

0.
19

T
PR

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

0.
82

0.
96

0.
98

0.
90

0.
95

0.
88

0.
86

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
04

0.
17

0.
11

0.
10

0.
18

0.
13

0.
19

0.
20

FP
R

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
7N

(0
, 1

)
+

 0
.3

C
au

ch
y(

0,
 1

)

E
rr

or
3.

63
0.

26
0.

04
0.

03
0.

03
0.

03
0.

04
0.

04
3.

67
0.

76
0.

30
0.

29
0.

38
0.

37
0.

42
0.

45

1.
12

0.
79

0.
03

0.
02

0.
03

0.
02

0.
04

0.
03

1.
01

0.
84

0.
18

0.
18

0.
20

0.
19

0.
17

0.
16

T
PR

0.
10

0.
92

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
05

0.
60

0.
85

0.
88

0.
77

0.
78

0.
73

0.
71

0.
29

0.
23

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
15

0.
21

0.
19

0.
18

0.
19

0.
20

0.
19

0.
19

FP
R

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

t 2

E
rr

or
1.

63
0.

10
0.

05
0.

05
0.

05
0.

06
0.

07
0.

08
2.

38
0.

58
0.

40
0.

44
0.

46
0.

49
0.

53
0.

52

1.
81

0.
14

0.
04

0.
04

0.
05

0.
08

0.
06

0.
10

1.
70

0.
10

0.
22

0.
21

0.
19

0.
17

0.
14

0.
15

T
PR

0.
56

0.
98

1.
00

1.
00

1.
00

0.
99

1.
00

0.
99

0.
28

0.
60

0.
76

0.
71

0.
69

0.
66

0.
63

0.
62

0.
46

0.
08

0.
00

0.
00

0.
00

0.
04

0.
00

0.
04

0.
30

0.
14

0.
22

0.
21

0.
21

0.
19

0.
17

0.
18

FP
R

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 28

Ta
b

le
 3

Si
m

ul
at

io
n

E
xa

m
pl

e
3.

 I
n

ea
ch

 c
el

l,
m

ea
n

(u
pp

er
)

an
d

sd
 (

lo
w

er
).

ϱ
=

0.
3

ϱ
=

0.
7

ε
=

0.
02

ε
=

0.
01

ε
=

0.
00

1
ε

=
0.

02
ε

=
0.

01
ε

=
0.

00
1

C
ox

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

B
L

as
so

F
ab

s
C

ox
B

L
as

so
F

ab
s

B
L

as
so

F
ab

s
B

L
as

so
F

ab
s

E
V

E
rr

or
0.

04
0.

03
0.

03
0.

03
0.

03
0.

03
0.

03
0.

41
0.

37
0.

35
0.

37
0.

37
0.

39
0.

38

0.
05

0.
03

0.
02

0.
02

0.
02

0.
02

0.
02

0.
21

0.
20

0.
21

0.
19

0.
21

0.
20

0.
20

T
PR

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
80

0.
78

0.
78

0.
78

0.
77

0.
76

0.
76

0.
04

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
20

0.
20

0.
21

0.
20

0.
21

0.
21

0.
21

FP
R

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

N
(0

,1
)

E
rr

or
0.

08
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

46
0.

34
0.

35
0.

35
0.

37
0.

34
0.

37

0.
10

0.
02

0.
01

0.
02

0.
01

0.
02

0.
01

0.
21

0.
21

0.
20

0.
21

0.
20

0.
21

0.
20

T
PR

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
73

0.
78

0.
80

0.
78

0.
77

0.
78

0.
78

0.
05

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
22

0.
20

0.
21

0.
20

0.
22

0.
20

0.
22

FP
R

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

t 4

E
rr

or
0.

53
0.

05
0.

04
0.

05
0.

04
0.

05
0.

04
1.

32
0.

43
0.

43
0.

43
0.

43
0.

43
0.

43

0.
79

0.
05

0.
03

0.
05

0.
03

0.
05

0.
03

1.
32

0.
21

0.
17

0.
21

0.
17

0.
21

0.
16

T
PR

0.
82

0.
99

1.
00

0.
99

1.
00

0.
99

1.
00

0.
46

0.
70

0.
71

0.
70

0.
72

0.
69

0.
71

0.
27

0.
04

0.
00

0.
04

0.
00

0.
04

0.
00

0.
29

0.
19

0.
18

0.
19

0.
18

0.
20

0.
18

FP
R

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 29

Table 4

Analysis of LC and SKCM data.

Variables aLasso-Cox aLasso-SPR

 LC data

self-reported annual income (log) −0.256 0.081

loan amount (log) −0.028

employment length*number of inquiries −0.012

verification status*debt to income ratio −0.005

verification status*number of public record −0.013

debt to income ratio*credit balance 0.004

number of accounts*account utilization rate −0.003

 SKCM data

ABCC1 0.047

ABCC2 0.154

FBP2 0.054

INTS1 0.068

MAD1L1 0.199 −0.005

SHPK 0.147

SRCAP 0.195

UBE2O 0.160

UNC45A 0.001

CREG1 0.009

DDX60 0.050

IFIT5 0.005

TTYH2 −0.011

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 30

Ta
b

le
 5

Si
m

ul
at

io
n

fo
r

bi
na

ry
 c

la
ss

if
ic

at
io

n.
 I

n
ea

ch
 c

el
l,

m
ea

n
(s

d)
 o

f
cl

as
si

fi
ca

tio
n

er
ro

r.

p
−

2
q

SV
M

-L
as

so
L

R
-L

as
so

0–
1-

L
as

so
0–

1

0
5

0.
07

3
(0

.0
10

)
0.

08
1

(0
.0

23
)

0.
07

5
(0

.0
12

)
0.

07
6

(0
.0

16
)

2
14

0.
07

4
(0

.0
14

)
0.

08
1

(0
.0

22
)

0.
07

5
(0

.0
10

)
0.

10
0

(0
.0

25
)

4
27

0.
07

4
(0

.0
09

)
0.

09
4

(0
.0

43
)

0.
07

6
(0

.0
11

)
0.

11
5

(0
.0

23
)

6
44

0.
08

2
(0

.0
09

)
0.

08
7

(0
.0

33
)

0.
07

2
(0

.0
13

)
0.

12
1

(0
.0

29
)

8
65

0.
08

4
(0

.0
11

)
0.

08
9

(0
.0

43
)

0.
07

6
(0

.0
19

)
0.

13
6

(0
.0

33
)

Comput Stat Data Anal. Author manuscript; available in PMC 2019 August 01.

	Abstract
	1. Introduction
	2. The BLasso algorithm
	3. The Fabs algorithm
	3.1. Method
	Remark 1 (Connection with BLasso)

	3.2. Statistical properties
	Lemma 1

	Algorithm 1
	3.3. Software

	4. Application to the penalized SPR estimation
	4.1. Penalized SPR estimation
	Computational complexity
	Tuning parameter
	Theorem 2
	Remark 4

	4.2. Simulation
	Example 1
	Example 2
	Example 3

	4.3. Real data examples
	Example 1 (loan data)
	Example 2 (SKCM data)

	5. Application to the penalized smoothed 0–1 loss
	6. Discussion
	Appendix A
	Algorithm 0
	Appendix B
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

