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Abstract

Model misspecification is a potential problem for any parametric-model based analysis. However, 

the measurement and consequences of model misspecification have not been well formalized in 

the context of causal inference. A measure of model misspecification is proposed, and the 

consequences of model misspecification in non-experimental causal inference methods are 

investigated. The metric is then used to explore which estimators are more sensitive to 

misspecification of the outcome and/or treatment assignment model. Three frequently used 

estimators of the treatment effect are considered, all of which rely on the propensity score: (1) full 

matching, (2) 1:1 nearest neighbor matching, and (3) weighting. The performance of these 

estimators is evaluated under two different sampling designs: (1) simple random sampling (SRS) 

and (2) a two-stage stratified survey. As the degree of misspecification of either the propensity 

score or outcome model increases, so does the bias and the root mean square error, while the 

coverage decreases. Results are similar for the simple random sample and a complex survey 

design.
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1. Introduction

Model misspecification is a potential problem for nearly all methods that use parametric 

models, which leads to worries about incorrect inferences from misspecified models. 

However, to this point there has been relatively little formal investigation of model 

misspecification, including characterization of the extent of misspecification and how that 

might impact methods’ performance. Here we propose a metric of misspecification and 

investigate the consequences of model misspecification within the context of causal 

inference in non-experimental studies, where there have been longstanding debates about 

whether misspecification of the treatment assignment model or the outcome model is more 

detrimental to estimation of treatment effects. Even though the measure for the degree of 

model misspecification presented in this article is used here in the context of causal 

inference, it can easily by applied to assess the impact of model misspecification in other 

model-based methods.

Randomized clinical trials (RCTs) are considered the gold standard for estimating causal 

effects. In an RCT, the researcher knows the treatment assignment mechanisms, allowing 

unbiased estimators of causal effects. Nevertheless, it is not unusual to find circumstances 

where a random assignment of the treatment is unfeasible or unethical. When this happens, 

researchers need to rely on non-experimental data.

A main drawback of non-experimental data is that the treatment assignment is not random, 

therefore there may be confounders that are related to the outcome and differ between 

treatment and comparison groups. Failure to address confounding will lead to biased 

estimators of causal effects. One way to mitigate confounding by observed characteristics is 

using the propensity score, which models the probability of being assigned to the treatment 

group given the set of confounders.

Non-experimental studies provide a particularly interesting case study for examining model 

misspecification because model misspecification can be an issue in two ways when using 

propensity score methods to estimate causal effects: first, in estimating the propensity score, 

and second, in the outcome model. Since the true treatment assignment mechanism is hardly 

ever known when working with non-experimental data, different approaches have been 

suggested to model and estimate the propensity score. While some authors have proposed 

nonparametric estimation procedures (Hahn, 1998; Imbens, 2004; Ho et al., 2011), it is 

common practice to estimate the propensity score parametrically via logistic regression.

Models are also used in the outcome analysis. Work by Cochran and Rubin (1973), Rubin 

(1973b), Carpenter (1977), Rubin (1979), Rosenbaum and Rubin (1984), Robins and 

Rotnitzky (1995), Heckman and Todd (2009), Rubin and Thomas (2000), Glazerman et al. 

(2003) Imai and Van Dyk (2004), Abadie and Imbens (2006) and Ho et al. (2007) suggested 

that adjusting for confounders in an outcome model may significantly improve inference on 

causal effects.

Thus, model assisted estimation of causal effects is a common practice in causal inference. 

However, there have been relatively few formal investigations of the consequences of model 

misspecification for different propensity score methods, and whether the degree of 
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misspecification of the treatment assignment model has greater ramifications on the bias or 

mean squared error of the estimate than that of the outcome model. Previous studies of 

model misspecification in the context of causal inference have grouped misspecified models 

in broad ad-hoc categories such as “incorrect model” or “wrong model” (Drake, 1993; Kang 

and Schafer, 2007; Robins et al., 2007). To our knowledge, this is the first attempt to 

systematically quantify the degree of model misspecification and evaluate its impact on two 

of the more commonly used estimation procedures (i.e., propensity score matching and 

weighting) under different survey designs.

Complex survey designs provide an extra layer of complexity when estimating causal 

effects. Non-experimental studies often use complex survey data, but there is relatively little 

guidance on how to incorporate the survey design in propensity score methods. Zanutto et al. 

(2005) and Zanutto (2006) discussed the use of propensity score subclassification with 

complex survey data, as illustrated in Hornik et al. (2001). Work by Austin et al. (2016) and 

Lenis et al. (2017) extended the use of propensity score matching to complex survey data. 

Similarly, Ridgeway et al. (2015) provided some insight on how to compute inverse 

probability of treatment weighting (IPTW) estimators using complex survey data; however, 

it is unclear whether model misspecification would have different implications in the 

complex survey context.

This paper is organized as follows: in Section 2, we present key definitions and assumptions 

needed for the estimation of causal effects in the context of non-experimental data. Section 3 

reviews the methods implemented in our simulation study. Section 4 contains the details of 

our simulation study. In Section 5, the main results are presented, followed by the discussion 

and main conclusions in Section 6.

2. Definitions and Assumptions

2.1. The Causal Inference Framework

Traditionally, causal treatment effects are defined using the Rubin Causal Model (RCM) 

(Rubin, 1974). In the RCM, an individual treatment effect, associated with a binary 

treatment assignment T, is defined in terms of potential outcomes. For each unit i, Yi(t) with 

t = 0, 1, represents the outcome that would have been observed if unit i received the 

treatment t. Thus, the treatment effect for the ith unit is equal to Yi(1) − Yi(0). Notice that for 

any unit i, the pair (Yi(0), Yi(1)) is not observable - only one of the two potential outcomes 

is observed. Explicitly, the observed outcome, Yi, is defined as:

Y i = Y i(1) × T i + Y i(0) × (1 − T i) . (1)

Equation (1) is referred as the “consistency of the observed outcome assumption” (Hernan 

and Robins, 2017). Given that the unit level treatment effects cannot be estimated directly, 

we are often interested in estimating average treatment effects. At the population level, the 

most commonly defined average effects are: (1) the population average treatment effect 

(PATE) and (2) the population average treatment effect on the treated (PATT).
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The PATE is defined as average effect across the population:

PATE = E [Y(1) − Y(0)] . (2)

Under randomization of the treatment, units in the treated group and the units in the control 

group have similar distributions of covariates (observed and unobserved) and potential 

outcomes. In this way, the average outcome computed among the units in the treated group 

serves as a good counterfactual for the average outcome computed among the units in the 

control group. The differences between these two averages is an estimator of the population 

average treatment effect (PATE).

The PATT is defined as the average causal effect, computed only among those units in the 

population who were actually treated:

PATT = E [Y(1) − Y(0) ∣ T = 1] . (3)

When the treatment is randomized, it holds that the PATE is equal to the PATT. In non-

experimental studies, where the treatment and comparison groups may be quite different 

from one another on confounders and effects, the PATT and the PATE can be different.

When randomization is not feasible, additional assumptions are required to identify and 

estimate treatment effects. In particular, a crucial assumption in the estimation of treatment 

effects is referred to as “ignorability” (Rosenbaum and Rubin, 1983). To further describe the 

implications of this assumption, we define for all i, Xi as q–dimensional vector of covariates, 

i.e., Xi = (X1,i, …, Xq,i). Ignorability assumes that X contains all possible confounders: all 

variables related to treatment assignment and outcome. In other words, given the set of 

observed covariates X, the treatment assignment is independent of the potential outcomes. 

The ignorability assumption means that the treatment assignment is random, conditionally 

on observed characteristics of the units in the sample. This implies that:

(Y i(0); Y i(1)) ⫫ T i ∣ Xi . (4)

Another key assumption of the RCM is the Stable Unit Treatment Value Assumption 

(SUTVA). The implication of this assumption is twofold: (1) the treatment assignment of 

any unit does not affect the potential outcomes of other units (often referred to as non-

interference) and (2) there is only one version of the treatment, implying that the treatment is 

comparable across units (Rubin, 1980).

2.2. PATT versus SATT

While many researchers are interested in estimating causal effects at a population level, data 

from a study sample can only be used to truly and consistently estimate a sample ATE 

(SATE). Estimation of the PATE requires one to have access to data on the full target 

population of interest, which is rare in practice. The SATE represents the difference in 
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average outcomes if everyone in the survey sample received the treatment versus everyone in 

the survey sample receiving the control condition. An unbiased estimator of the SATE 

(SATT) will correctly estimate the PATE (PATT) only when the sample distribution of the 

relevant variables is similar to its target population counterpart. One sampling design that 

guarantees this is a simple random sample (SRS), but this kind of sampling technique is 

hardly ever used. In general, most surveys are the result of complex sampling designs. 

Therefore, unless survey weights are used to weight the sample back to the population, using 

sample information to estimate a treatment effect will result in a consistent estimator for the 

SATE (SATT) but not for the PATE (PATT).

3. Propensity Score Methods

In this section we present three commonly used techniques to estimate population causal 

effects: (1) propensity score full matching, (2) 1:1 nearest neighbor propensity score 

matching, and (3) treatment on the treated weighting. While we focus on estimating the 

PATT in this paper, variations on these methods can also be used to estimate the PATE 

(Abadie and Imbens, 2006; Ridgeway et al., 2015).

3.1. Propensity Score Full and 1:1 Nearest Neighbor Matching

Matching estimators have been widely used in the context of non-experimental studies. They 

help reduce bias in the estimation of causal effects (Rubin, 1973a), are intuitive, and 

relatively easy to implement. Fundamentally, matching matches individual observations (i.e., 

comparison to treated units) on a set of observed covariates. The main goal of this matching 

approach is to generate a new sample (i.e., the matched sample), such that for every treated 

unit there is (at least) one comparison unit with similar values of observed covariates. The 

outcome of interest is then compared between the matched treated and matched comparison 

subjects to estimate the causal effect. One main disadvantage of this procedure resides in the 

fact that as the number of variables on which units are matched increases, the chances of 

finding matched pairs with similar observed characteristics decreases exponentially. Thus, 

matching directly on a set of covariates is only feasible in large samples and/or if a small set 

of covariates are used in the matching procedure. This is why propensity score matching can 

be useful. Rosenbaum and Rubin (1983) showed that a similar (or balanced) distribution of 

the observed characteristics can also be achieved when the matching procedure is based on 

the propensity score instead of the entire set of observed covariates. Guidelines regarding the 

implementation of propensity score matching in the context of complex survey data can be 

found in Austin et al. (2016) and Lenis et al. (2017)

We consider two types of matching methods: full matching and 1:1 nearest neighbor 

matching. Full matching (Stuart and Green, 2008) essentially forms a number of small 

subclasses based on the propensity score, where each subclass has at least one treated and at 

least one comparison subject, but may have multiple treated or multiple comparison. 

Weights according to the number of treated per subclass are used to estimate the effects to 

ensure that the comparison group better resembles the treated group. It can be thought of as 

an approach that is in between using 10 propensity score subclasses and weighting, where 

each subject is essentially its own subclass, described further below. Nearest neighbor 1:1 
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matching selects one comparison subject for each treated subject, based on propensity 

scores. Analysis proceeds by comparing outcomes between the matched treated and matched 

comparison subjects. Full details can be found in Stuart (2010).

3.2. Treatment on the Treated Weighting

An alternative approach to estimate causal effects is to compute a weighted estimator that 

weights subjects using a function of the propensity score. In the context of simple random 

samples (SRS), an IPTW estimator of the ATT requires, as a first step, the computation of 

propensity score based weights. The units in the comparison group receive a weight equal to 

the odds of receiving treatment, while the treated receive a weight equal to one (a different 

weighting strategy needs to be implemented when the goal is to estimate the ATE (Austin, 

2011)). This serves to weight the comparison group to look similar to the treatment group, 

thus estimating the ATT (Robins et al., 2000; Harder et al., 2010).

After the propensity score weights are computed, a weighted difference in means (exposed 

versus unexposed) can be computed in order to estimate the ATT. Furthermore, weighted 

regression models can be fit to estimate causal effects (Joffe et al., 2004). This approach 

allows for the estimation of causal effects adjusting for relevant confounders. Ridgeway et 

al. (2015) developed a strategy to compute a propensity score weighted estimator using 

complex survey data.

3.3. Degree of Misspecification (DoM)

Relatively little previous work has explicitly addressed the level of misspecification in the 

propensity score and outcome model when assessing the impact of misspecification in the 

estimation of causal effects. Robins et al. (2007) evaluated the impact of model 

misspecification when implementing doubly robust estimators and concluded that “the 

relative performance of the estimators will very much depend on the data generating process 

and the nature of the model misspecifications” (p. 555). In a different but related context, 

Stuart and Jo (2015) examined violation of the assumptions underlying propensity score 

methods and instrumental variables methods and attempted to equate the extent of the 

violation of the key assumption of each approach.

In this article we propose a measure of the DoM of a model and explore how the DoM 

impacts the performance of the estimators considered. Controlling the DoM will allow us to: 

(1) evaluate how robust the considered estimators are to different levels of DoM and (2) 

assess whether the same level of DoM in each model (i.e., propensity score and outcome) 

has the same impact on the performance of the estimators considered.

Throughout this paper, we will use η to represent the DoM for a given model. For a given 

dependent variable, Z, we define μi as the mean of Z conditional on a set of predictors (i.e., 

E [Zi|Xi]) (here Xi represents the set of predictors. This set can also contain the treatment 

indicator. Notice that this is implies a slight abuse in notation since in Section 2 we defined 

Xi as a set of confounders that did not include the treatment indicator). We assume that there 

is a function gC such that μi = gC(Xi). Thus, η can be defined as:
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η = 1
N ∑

i = 1

N ∣ g(Xi) − gC(Xi) ∣
σ

gC
(5)

Here N represents the population size, gC(Xi) is the predicted conditional mean under the 

correct model specification for unit i with i = 1, …, n, ĝ(Xi) is the predicted conditional 

mean under a given model specification for unit i with i = 1, …, n. The symbol σ
gC

represents the standard deviation of the predicted conditional means under the correct model 

specification. Thus when g = gC, we have that η = 0 and when g ≠ gC η > 0. Therefore we 

have that η ∈ [0, ∞), and as η increases, so does the degree of misspecification of a given 

model.

This measure of DoM has some desirable properties: (1) is unit independent, which 

facilitates the comparisons across different working models and types of dependent variables 

(e.g., continuous, binary, categorical, etc.), (2) the magnitude is informative (i.e., higher 

values of η are associated higher degree of misspecification), (3) since η is computed in the 

population, it is not affected by sample size or the survey design.

Notice that η is defined as a parameter in our simulation study and since its computation 

requires knowledge of the true parametric model, it cannot be used in a real data analysis. 

Since our simulation study involves the estimation of the propensity score and outcome 

model, we have a DoM associated with the estimation of the propensity model (ηT) and a 

DoM related to the outcome model (ηY).

The DoM of the propensity score model is defined as:

ηT = 1
N ∑

i = 1

N ∣ πi − πi
C ∣

σ
πC

. (6)

Here π̂i is the predicted probability of being assigned to the treatment group under a given 

model specification, π̂i
C is the predicted probability of being assigned to the treatment group 

under the correct model specification and σπ̂C is the standard deviation of the predicted 

probabilities of being assigned to the treatment group under the correct model specification. 

The DoM associated with the outcome of interest is defined as:

ηY = 1
N ∑

i = 1

N ∣ Y i − Y i
C ∣

σ
YC

. (7)
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Here Ŷi is the predicted observed outcome under a given model specification, Ŷi
C is the 

predicted observed outcome under the correct model specification and σŶC is the standard 

deviation of the predicted observed outcomes under the correct model specification.

3.4. Methods examined

In our simulation study (see Section 4) we compute three propensity score based methods to 

estimate the PATT, all using the propensity score: (1) full matching, (2) 1:1 matching, and 

(2) weighting. For all approaches we incorporate the survey weights in the estimation of the 

propensity score model, since Lenis et al. (2017) show that doing so could lead to more 

efficient estimators of the PATT.

Full matching is implemented as described in Stuart and Green (2008). The 1:1 nearest 

neighbor matching is done without replacement and using a greedy algorithm; results were 

nearly identical when an optimal algorithm was used instead. When the sample is obtained 

using a complex survey design, we follow Lenis et al. (2017) to implement the matching. 

Since we are assuming a non-response rate of 0% we do not implement the weight transfer 

described in Lenis et al. (2017). Weighting is implemented to estimate the ATT as described 

above. When the sample is the result of a complex survey design, we follow Ridgeway et al. 

(2015). That is, the survey weights are incorporated in the estimation of the propensity score 

model, and the final weights used in the outcome analysis are constructed by multiplying 

each survey weight by the propensity score based weights.

When survey models are used, we use the R package “survey” (Lumley, 2004, 2016) to 

account for the survey design and weights in the estimation procedure.

4. Simulation Study

4.1. The Data Generating Mechanism (DGM)

Our simulation study closely follows the one presented by Austin et al. (2016), with some 

modifications: (1) the PATT and the SATT differ from one another and (2) the degree of 

misspecification of the working models for the propensity score and outcome can be 

controlled.

As in Austin et al. (2016), we consider the case of a population of size N = 1, 000, 000, 

divided into 10 strata. Each strata contains 20 clusters, each composed of 5, 000 units.

We consider two confounders Cl with l = 1,2 and a data generating mechanism for the 

baseline covariates such that: (1) the probability density function is Normal, (2) the 

covariates are independent (i.e., correlation between the covariates is set equal to 0), (3) the 

standard deviation for each covariate is equal to 1 and, (4) the means vary across strata and 

cluster. Explicitly, for each strata j, the mean of the covariates deviates in μlj from 0, where 

μlj are obtained assuming that μlj ~ N (0, τstratum). Within each strata, the mean of each 

cluster (k) deviates from the strata specific mean by μlk, with μlk ~ N (0, τcluster). Thus the 

distribution of the lth variable, in the jth stratum, among the units of the kth cluster is Cljk ~ N 
(μlj + μlk, 1). We set τstratum = 0.35 and τcluster = 0.25. The values for τstratum and τcluster are 

extracted from Austin et al. (2016)
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The treatment assignment (Ti) model is defined as a Bernoulli random variable Ti ~ Be (pi) 

with

logit (pi) = α0 + ∑
l = 1

2
αlCli + δdα3C1iC2i,

where α0 = log(0.20), α1 = log(2.00), α2 = log(2.50), and α3 = log(3.00). In this model, the 

multiplier δd with d = 1, .., 11 allows us to control the degree of misspecification of the 

working model (see Section 4.3) used to estimate the propensity score. The values of δd are 

selected such that the degree of misspecification (DoM) varies from 0.00 to 0.50.

The potential outcomes model under control is defined as Y i(0) N(μi
0, σ2), with

μi
0 = β0 + ∑

l = 1

2
βlC1i + Δm(δd)β3C1iC2i + ∑

j = 2

10
θ jSTR ji,

where β0 = log(0.20), β1 = log(2.50), β1 = −log(2.00), β3 = log(4.50), θj = log(0.50) for j = 

2, .., 5, and θj = log(2.00) for j = 6, …, 10. The term ∑ j = 2
10 θ jSTR j, i ensures that the PATT 

and the SATT will be different. The variable STRj,i is a categorical variable that takes the 

value 1 if the sample unit i belongs to the jth stratum. The parameter Δ(δd)m with m = 1, …, 

11 is indexed by δd to ensure that for every degree of misspecification in the propensity 

score model, the degree of misspecification of the outcome model also ranges from 0.00 to 

0.50 by 0.05 increments. The potential outcome under treatment is defined by 

Y i(1) N(μi
1, σ2), with μi

1 = μi
0 + γ, with γ = log(3.00). Recall that the observed outcome (Yi) is 

defined as:

Yi = Ti × Yi(1) + (1 − Ti) × Yi(0) .

We model the outcome of interest as a continuous variable for two reasons. First, since the 

treatment effect is homogeneous, the PATT is equal to γ. Second, having a continuous 

outcome will allow us fit a model for the outcome of interest in the matched sample that will 

yield a consistent estimator of the PATT. This is due to the fact, as stated in Austin (2013), 

“that propensity score methods result in marginal estimates of effect, rather than conditional 

estimates of effect. When outcomes are continuous, a linear treatment effect is collapsible: 

the conditional and marginal estimates coincide. When the outcome is binary, regression 

adjustment in the propensity score matched sample will typically result in an estimate of the 

odds ratio. The odds ratio (like the hazard ratio) is not collapsible; thus the marginal and 

conditional estimates will not coincide.”
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4.2. Survey Designs

In our simulation study we consider two sampling schemes. First, we consider a simple 

random sampling scheme where 5, 000 units were randomly selected from the population 

without replacement. Second, we also implement a two stage stratified sample. As 

mentioned in Section 4.1, the target population consists of 10 strata, each with 20 clusters. 

Within each stratum, 5 clusters are selected randomly without replacement. Within each 

selected cluster, we draw a random sample without replacement of the final sampling units. 

Within each stratum, the same number of observations are selected among the sampled 

clusters. We allocate sample sizes to the 10 strata as follows: 750, 700, 650, 600, 550, 450, 

400, 350, 300, and 250. Therefore, the final sample consists of 5, 000 units, which represents 

0.5% of the target population. Survey weights are constructed to be equal to the inverse of 

the selection probability. Strata divide the population in mutually exclusive and exhaustive 

groups, and clusters within each stratum are randomly selected. Thus every strata is 

represented in the final sample, but not every cluster. For example, strata could be defined by 

states, while counties or street blocks define the clusters. In this example, every state will be 

represented in the final sample but not every county.

For simplicity, we assume a 0% non-response rate (work by Lenis et al. (2017) explored the 

consequences of the non-response in the estimation of population causal effects in the 

context of complex survey data).

We implement 1, 000 iterations in our simulation study. That is, under both sampling 

schemes 1, 000 samples are drawn from the population.

4.3. Analysis models

After the sample is obtained, the following propensity score model is estimated:

logit (pi) = a0 + ∑
j = 1

2
a jCi j . (8)

Notice that by setting δ1 = 0 (see Section 4.1) the working model defined by equation 8 will 

be correctly specified, thus making the degree of misspecification equal to 0 (ηT = 0). The 

analysis outcome model is defined by the following equation:

mi = b0 + ∑
j = 1

2
b jC j1 + ∑

j = 2

10
b j + 2STR ji + b13T i . (9)

Here mi represents the model for the mean of the observed outcome, given the confounders, 

the strata identifier and the treatment assignment (i.e., E [Yi|C1i, C2i, STR2i, …, STR10i, 

Ti]). Again, by setting Δ1(δd) = 0 for all δd (see Section 4.1), the working model defined by 

equation 9 will be correctly specified, making the associated degree of misspecification 

equal to 0 (ηY = 0). Notice that the working models defined by equation 8 and equation 9 

include all confounders, thus the assumption of no unmeasured confounders holds. 
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Therefore, the source of the misspecification in both models is the omission of the 

interaction term (i.e., C1C2).

5. Results

In this section we evaluate the performance of the estimator of γ as a function of the degree 

of misspecification using the following three metrics: (1) percentage bias (in absolute value), 

(2) empirical coverage of the 95% confidence interval and (3) root mean squared error.

Our main results are summarized in figures 1, 2 and 3. In these figures, the vertical axis 

displays the DoM in the outcome model (ηY) while the horizontal axis shows the DoM in 

the propensity score model (ηT). The top three panels show the results associated with a 

SRS while the bottom three panels display the results associated with a two-stage stratified 

sample. The columns show results for full matching, 1:1 matching, and weighting, in that 

order (plots with value labels are available in the appendix).

Figure 1 shows how the absolute value of bias (in percentage) is affected by the DoM in both 

models. Lighter shades indicate less bias, while darker shades indicate higher levels of bias. 

From Figure 1 we can observe that results are similar for the simple random sample (top 

three panels) and a complex survey design (bottom three panels), and are remarkably similar 

across propensity score methods as well. As expected, the bias of the estimator increases as 

the DoM increases in both models. In fact, when the DoM is 0.50 in both models, the bias 

(in absolute value) can be as high as 200%. When the outcome model is correctly specified 

(ηY = 0), both methods yield unbiased estimators of the PATT, regardless of the DoM 

associated with the propensity score model (ηT ≥ 0). When the propensity score is correctly 

specified (ηT = 0) we observe that full matching and the weighting method (left and right 

panels) return an estimator that is unbiased regardless of the level of DoM associated with 

the outcome model (ηY ≥ 0). In the case of weighting this is due to the fact that the 

procedure used in the computation of the weighting estimator yields the doubly robust 

estimator attributed to Joffe (Robins et al., 2007). Doubly robust estimators (Scharfstein et 

al., 1999; Kang and Schafer, 2007) yield consistent estimators of the PATT when either the 

propensity score or the outcome model (but not necessarily both) are correctly specified (i.e., 

ηT = 0 or ηY = 0). In the case of full matching, since the optimal stratification is determined 

using network optimization (see Rosenbaum (1991)), this procedure can create matched 

samples where the difference in the probability of receiving treatment (between treated and 

controls) are smaller compared to other matching algorithms (see Hansen (2004)). Thus, this 

method can be more successful in reducing model dependency than other matching 

algorithms. This feature translates into less bias even when the DoM in the outcome model 

is high. This same result does not hold for the 1:1 nearest neighbor matching estimator (top 

center panel), which has small bias when the DoM in the outcome model is high (even if the 

propensity score model is correctly specified). This can be seen when comparing the first 

column (in light gray) of the 1:1 matching figure, to the white columns for full matching and 

weighting. Across all three methods misspecifying the propensity score model, results in 

smaller biases than misspecifying the outcome model by the same degree. This result is 

consistent with the one obtained by Drake (1993).
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Figure 2 displays the results associated with the empirical coverage of the 95% confidence 

interval. Lighter shades indicate higher coverage, while darker shades depict lower empirical 

coverage. Observe that there is a sharp fall in the coverage when the DoM exceeds 0.15 in 

both models. This is due to the fact that values of DoM higher than 0.15 are associated with 

bias larger than 10% (see Figure 1). Therefore, this pattern is expected, since the confidence 

intervals are centered at a value far from the true value of γ. Interestingly, full matching 

retains the highest coverage rates when models are misspecified, as compared to 1:1 

matching or weighting.

Figure 3 summarizes the results for RMSE. Lighter shades indicate lower values of the 

RMSE, while darker shades show higher levels of RMSE. Notice that Figure 1 and Figure 3 

display a similar pattern, indicating that there are no significant differences in the efficiency 

of the estimation procedures.

6. Discussion

In this paper, we explore how model misspecification affects the performance of three of the 

most commonly used methods to estimate the PATT: (1) propensity score full matching, (2) 

1:1 nearest neighbor propensity score matching, and (2) treatment on the treated weighting. 

As noted in Section 4.3, an outcome model that adjusts for the confounders was used to 

estimate the PATT (i.e., γ).

One contribution of this paper is the careful quantitification of model misspecification. In 

Section 3.3 (see equation 6 and equation 7) we presented η, a metric of the degree of 

misspecification for a given model. Given that η is unitless, it can be used to compare the 

DoM of different models and different types of dependent variables. The fact that η is not 

affected by the sample size and survey design allowed us to evaluate the performance of the 

estimators in the context of complex survey data and simple random sampling. Futhermore, 

η can be easily used to evaluate the impact of model misspecification in other parametric 

models.

To our knowledge, this is the first attempt to systematically quantify the degree of model 

misspecification in the analysis models in order to evaluate its impact in the estimation of 

causal effects. Still, there are some limitations to our approach. The metric used to quantify 

the degree of misspecification (i.e., η) is computed at the population level and requires 

knowing the true model. Future work will focus on providing measures of the DoM that can 

be computed at a sample level. Additionally, we only explored the consequences of omitting 

the interaction term. In our simulation study, link functions are correctly specified and all 

relevant confounders are observed and measured without error. Future work will focus on 

assessing the impact of other types of model misspecification. This could include examining 

the implications of different confounding structures, such as when variables may or may not 

be true confounders and part of the misspecification may involve selecting incorrect 

variables to include for bias reduction.

Based on the metric of model misspecification, we evaluated the performance of methods for 

estimating the PATT in the presence of propensity score and/or outcome model 
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misspecification. Perhaps not surprisingly, but importantly, we found similar results across 

simple random samples and complex survey sample designs. This is useful guidance for 

researchers and implies that findings may be similar for a variety of study designs

All estimation procedures yield similar performance in terms of bias, coverage and RMSE 

when the outcome model is correctly specified (ηY = 0), but the propensity score model is 

not (ηT ≥ 0). When the propensity score model is correctly specified (ηT = 0), the weighting 

and full matching estimators are robust to different degrees of misspecification associated 

with the outcome model. Nevertheless, it is important to keep in mind that true models are 

rarely known. Thus in practice, it is very likely that both models (i.e., the propensity score 

and the outcome) will be misspecified (i.e., ηT > 0 and ηY > 0). When this is the case, the 

performance of the estimation procedures are practically identical, which confirms results 

obtained by Kang and Schafer (2007).

In conclusion, as the degree of model specification increases, the performance of the 

estimators considered worsens. Under the more realistic scenario that both models (i.e., 

propensity score and outcome) present some degree of misspecification, the performance of 

the three estimators considered are practically identical. Thus, there is no methodological 

substitute for well informed and carefully planned model specification. While this is not a 

surprising result, having a metric of misspecification that can be used across models (e.g., 

treatment and outcome) can allow researchers to assess which models it is most important to 

specify correctly when using approaches that rely on multiple models together.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. % Bias
% Bias in absolute value associated with the estimation of γ as a function of the Degree of 

Misspecification of: (1) the Propensity Score Model (ηδ), and (2) the Outcome Model 

(ηΔ(δ)) (simulation study).
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Figure 2. Coverage
Empirical coverage of the 95 interval in the estimation of γ as a function of the Degree of 

Misspecification of: (1) the Propensity Score Model (ηδ), and (2) the Outcome Model 

(ηΔ(δ)) (simulation study).
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Figure 3. RMSE
RMSE associated with the estimation of γ as a function of the Degree of Misspecification 

of: (1) the Propensity Score Model (ηδ), and (2) the Outcome Model (ηΔ(δ)) (simulation 

study).
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