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Abstract

Statistical regression models whose mean functions are represented by ordinary differen-

tial equations (ODEs) can be used to describe phenomenons dynamical in nature, which are

abundant in areas such as biology, climatology and genetics. The estimation of parameters of

ODE based models is essential for understanding its dynamics, but the lack of an analytical

solution of the ODE makes the parameter estimation challenging. The aim of this paper is to

propose a general and fast framework of statistical inference for ODE based models by relax-

ation of the underlying ODE system. Relaxation is achieved by a properly chosen numerical

procedure, such as the Runge-Kutta, and by introducing additive Gaussian noises with small

variances. Consequently, filtering methods can be applied to obtain the posterior distribution

of the parameters in the Bayesian framework. The main advantage of the proposed method is

computation speed. In a simulation study, the proposed method was at least 14 times faster

than the other methods. Theoretical results which guarantee the convergence of the posterior

of the approximated dynamical system to the posterior of true model are presented. Explicit

expressions are given that relate the order and the mesh size of the Runge-Kutta procedure

to the rate of convergence of the approximated posterior as a function of sample size.

Key words: Ordinary differential equation, Dynamic model, Runge-Kutta Method, Extended

Liu and West filter
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1 Introduction

Many dynamical phenomenons in the real world can be represented mathematically by ordi-

nary differential equations (ODEs). Common examples include Newton’s law of cooling, Lotka-

Volterra equations for predator-prey populations (Alligood et al., 1997) and Lorenz equation

for atmospheric convection (Lorenz, 1963). There are many other popular examples describing

physical, chemical and biological phenomenons using ODEs. Although observing the data sets

from an ODE systems is common, estimating the parameters of ODE models (ODEMs) can be

challenging because of lack of an analytical solution to ODE. Here, we give a brief review of

previous works on the ODEMs.

There are several frequentist methods in the literature for parameter estimation of ODEMs.

Bard (1974) used numerical integration to approximate the solution of ODEs and minimized

the objective function based on a gradient method. Varah (1982) suggested a two step estima-

tion method using the cubic spline approximation. The two steps consist of estimation of the

regression function and estimation of the parameters in the ODEM. Ramsay and Silverman

(2005) modified the first step of Varah by adding the roughness penalty function which mea-

sures the difference between the ODE and the mean function. The parameter cascading method

was proposed by Ramsay et al. (2007). They grouped the parameters into the regression coeffi-

cients, structural parameters, and regularization parameters. The parameters in each group are

estimated in turn in a cascading fashion.

Bayesian inference of ODEMs is more challenging because naive application of Markov Chain

Monte Carlo (MCMC) methods would require calculation of the numerical solution of ODE

whenever parameters are sampled from the proposal distribution. Gelman et al. (1996) and

Huang et al. (2006) proposed a Bayesian computation method for parameter inference of phar-

macokinetic models and the longitudinal HIV dynamic system, respectively. Campbell (2007)

combined the parallel tempering (Geyer, 1991) and collocation method (Ramsay et al., 2007)

to get over the rough surface of the posterior, but this slows down the speed of computations

significantly. Arnold et al. (2013) used particle filter framework for the inference of ODEMs

with linear multistep methods for the numerical integration. Dass et al. (2017) suggested a

Bayesian inference with Laplace approximation for a fast computation when the dimension of θ

is moderate.
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In this paper, we propose a Bayesian inference method for the ODEMs using a relaxation

technique via dynamical systems and associated dynamic models. Relaxation is achieved by a

properly chosen numerical procedure, such as the Runge-Kutta, and by introducing additive

Gaussian noise variables with variance tending to zero. The variance of the additive noise vari-

ables works as a measure of fidelity to the original ODEM and by letting it tend to zero, we

recover the original model. The relaxation introduces inefficiency of the inference, but we gain

the speed of the computation in return.

For a fast computation, a filtering method is applied for inferring posterior distributions of

parameters in a Bayesian framework. The relaxation technique provides a dynamical system

and model to which a fast inference tool based on sequential Monte Carlo can be applied to.

With these sequential methods, we do not need to calculate the whole path of the numerical

solution for each realization of the new parameter. It reduces the computation time significantly

compared to other standard Bayesian procedures and enables us to deal with the ODEM in

reasonable computing time. In subsection 5.2, to emphasize its fast computation the proposed

method is compared with the other methods: the parameter cascading, the delayed rejection

adaptive Metropolis algorithm and the Bayesian inference with the Laplace approximation.

In the simulation study, the proposed method is from 14 times to 78 times faster than other

methods.

We also derive convergence results for the approximated posteriors under suitable regularity

conditions. We present a guideline for the choice of the model parameters which give a reasonable

relative error rate, and provide its theoretical basis. Theoretical results which guarantee the

convergence of the posterior of the approximated dynamical system to the posterior of true

model are presented. Explicit expressions are given that relate the order and the mesh size of

the Runge-Kutta procedure and guarantee the rate of convergence of the approximated posterior

to the true posterior.

The rest of the paper is organized as follows. In section 2, we describe a differential equation

model and its corresponding relaxed dynamic model counterpart as well as prior choices. The

method of posterior inference is described in section 3. Some theoretical support for the proposed

method are given in section 4. In section 5, we give two simulated data examples to demonstrate

the speed and performance of the proposed method. A real data set, the Lynx-Hare data set, is

analyzed in section 6. The discussion is given in section 7. The proofs of theorems are given in
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the appendix.

2 Ordinary Differential Equation Models and Nonlinear Dy-

namic Models

2.1 Ordinary Differential Equation Models (ODEMs)

The ODEM is the regression model with regression function x(t) described by an ODE. The

regression function x(t) is the solution of the differential equation

ẋ(t) = f(x, u, t; θ), (1)

where f is a p-dimensional smooth function, u(t) is a deterministic input function, θ ∈ Θ ⊂ Rq

is the unknown parameter, and ẋ(t) denotes the first derivative of x(t) with respect to time t.

Since the input function u(t) does not affect the general ideas of inference in this paper, it is not

considered subsequently. The data are observed at n points in the time interval t ∈ [0, T ] ⊂ R,

given by 0 ≤ t1, t2, . . . , tn ≤ T . Thus,

yi = x(ti) + εi, i = 1, . . . , n,

where yi is a p-dimensional observation vector at time ti, the error εi is drawn independently

from the multivariate normal distribution Np(0, σ
2Ip) with unknown σ2 > 0, and x(ti) ≡ xi is

the underlying regression function measured at time ti.

The regression model is given by

yi = xi + εi, i = 1, . . . , n,

ẋ(t) = f(x, u, t; θ)
(2)

where xi = x(ti). The covariate xi is determined by the initial value of x, x0 = x(0), and the

parameter θ. In the rest of the paper, we call the model (2) as the regression model or the true

model.

In most cases, ODE (1) does not have a closed form solution, so there is a need to approximate

x(t) numerically. We will use the Runge-Kutta method which is a standard numerical method

for ODE. While there are many types of Runge-Kutta methods, we will only consider the

4th order method in this paper. However, our proposed method can be extended to the other
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approximation methods for ODE as well as other Runge-Kutta methods with different orders

easily. Letting hi+1 = ti+1 − ti, the form of 4th order Runge-Kutta approximation for (2) is as

follows:

xi+1 ≡ g(xi, ti; θ) = xi +
1

6
(ki1 + 2ki2 + 2ki3 + ki4), i = 0, . . . , n− 1, (3)

where

ki1 = hi+1f(xi, ti; θ),

ki2 = hi+1f(xi +
1

2
ki1, ti +

1

2
hi+1; θ),

ki3 = hi+1f(xi +
1

2
ki2, ti +

1

2
hi+1; θ),

ki4 = hi+1f(xi + ki3, ti + hi+1; θ).

In the above equation, all xi’s indicate the approximated values. For more details, see Spijker

(1996).

With this approximation, we have the following model

yi = xi + εi, i = 1, . . . , n,

xi+1 = g(xi, ti; θ), i = 0, . . . , n− 1.
(4)

In the remainder of this paper, we call the model (4) as a differential equation model (DEM).

Sometimes to obtain better approximation of xi+1, we divide the interval [ti−1, ti] into m small

subintervals and apply the Runge-Kutta method for the subintervals. In this case, we will call

the corresponding ODE model the m step ODE model and m the step size.

2.2 Nonlinear Dynamic Models

In practice, estimating the parameter from DEM can pose a significant computational challenge

if the ODE does not have an analytical solution. Dass et al. (2017) marginalized out x0 using

Laplace approximation and conducted grid sampling to get posterior samples of θ. Their method

is fast and accurate when the dimension of θ is small; however, the methodology suffers from

heavy computations when the dimension of θ is large. The computation time increases exponen-

tially as the dimension of θ increases due to the grid sampling. The griddy Gibbs sampler can

be used on θ, but practical problems such as dependencies and slow convergence may arise.
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In this paper, in order to make posterior inference on θ, we adopt a nonlinear dynamic model

relaxation of the DEM in (4) given in terms of the model below with unknown initial condition

x0:

yi = x̃i + εi, i = 1, . . . , n,

x̃i+1 = g(x̃i, ti; θ) + ηi, i = 0, . . . , n− 1
(5)

where εi
iid∼ N(0, σ2Ip) and ηi

iid∼ N(0, u2Ip) with σ, u > 0. The error term ηi reflects the fact that

the approximation g(xi, ti; θ) of xi+1 is made with uncertainty. In the remainder of the paper,

we call model (5) as the approximate dynamic model obtained as a relaxation of the DEM in

(4) via the relaxation parameter u. The quantities x̃i in (5) are not the same as xi given in (4)

since the former are quantities that are observed with error whereas the latter are not. However,

note that the two models (4) and (5) become equivalent as the relaxation parameter u→ 0.

In the above model (5), there are four unknown quantities, namely, x0, θ, λ = 1/σ2 and u.

The Bayesian approach proceeds by considering priors for these quantities. We do not consider

a prior for the relaxation parameter u since it is artificially introduced to control the quality

of the approximation. We fix u to be a small positive quantity in the subsequent numerical

computations. The priors on x0 and λ are taken as

x0|λ ∼ Np(µx0 , cλ
−1Ip) and

λ ∼ Gamma(aλ, bλ),
(6)

where c > 0 and Gamma(a, b) represents the Gamma distribution with mean a/b and variance

a/b2. The prior for θ, π(θ), is taken independently of the rest of the unknown quantities above.

2.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a simulation-based method for estimating the states and the

parameters of the nonlinear dynamic model. The basic idea of SMC is using the importance

samples to approximate posterior at each state and updating the samples sequentially through a

proper kernel. There exists an extensive literature on SMC which includes sequential importance

sampling (Handschin and Mayne, 1969), bootstrap filter (Gordon et al., 1993), auxiliary particle

filter (Pitt and Shephard, 1999), Rao-Blackwellised particle filter (Doucet et al., 2000), sequential

Monte Carlo sampler (Del Moral et al., 2006), Liu and West filter (Liu and West, 2001), particle
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learning (Carvalho et al., 2010), multilevel sequential Monte Carlo sampler (Beskos et al., 2016),

to name just a few. For an extensive review of SMC, see Doucet et al. (2001), Kantas et al.

(2009), Lopes and Tsay (2011) or Särkkä (2013).

The SMC has advantages over other alternative posterior computation methods such as

Kalman filter, extended Kalman filter and Markov chain Monte Carlo (MCMC). The Kalman

filter and the extended Kalman filter are applicable to the linear dynamic model, while the SMC

can be applied to the nonlinear dynamic model as well. The SMC has advantages over MCMC.

First, SMC methods are much faster than MCMC methods. Whenever the new parameter is

propagated in each stage of SMC, we only calculate the next step of the numerical solution. Fast

computation is the biggest advantage of our method. Second, they are able to be implemented

in an on-line learning scenario. When a new data point is observed, SMC just need to update

one step of the algorithm, while MCMC must implement the whole algorithm again to get the

new posterior samples. Due to these advantages, we choose SMC for the posterior computation

of the nonlinear dynamic model, which approximates the ODE model.

3 Posterior Computations for the Approximate Dynamic Model

via Sequential Monte Carlo

To obtain inference for θ based on the approximated dynamic model of (5), we will use the

extended Liu and West (ELW) filter to estimate parameters and states (Rios and Lopes, 2013).

We call the proposed method of computation relaxed DEM with ELW filter (RDEM-ELW) or

simply RDEM. The ELW filter uses the idea of auxiliary particle filter to sample the states, and it

divides the parameters into two sets, θ and γ, representing parameters with and without sufficient

statistic, respectively. The parameters denoted by θ (i.e., without the sufficient statistic) is the

same set of parameters denoted by θ in (5). For the θ-set, the ELW filter introduces artificial

random errors onto the static parameter θ, thus converting and combining it with the other

evolving parameters which are the states xi (see Liu and West, 2001). Furthermore, in the ELW

filter, the marginal posterior of θ at each time point is approximated by a finite mixture of

normal distributions. The mean and variance of the evolution distribution are determined so

that the mixture of normals does not increase the posterior variance. For the posterior update

of the γ-set of parameters, the idea of Storvik (2002) and Fearnhead (2002) is used. For the
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idea of ELW to be successfully applied, the posterior of γ, p(γ | y1:i, x0:i, θ), i = 1, . . . , n, needs

to be tractable, that is from which samples can be drawn directly. In particular, we assume

p(γ | y1:i, x0:i, θ) depends on a sufficient statistic si = si(y1:i, x0:i, θ).

Incorporating the evolution of θ into (5) according to the ELW methodology creates a further

relaxation of the former model. The ELW model for the approximate dynamical model in (5) is

given by

yi ∼ N(xi, σ
2Ip), (7)

xi ∼ N(g(xi−1, ti; θi), u
2Ip), and (8)

θi ∼ N(aθi−1 + (1− a)θ̄i−1, h̃
2Vi), (9)

for i = 1, 2, · · · , n with θ0 ∼ πθ and x0 distributed according to its prior specification in (6).

In (8), g is as defined in (3), and u is a small fixed positive real number representing the

relaxation parameter. In (9), θ̄i−1 represents the posterior mean of θ given y1:i−1 at time i− 1,

a = (1− h̃2)1/2 where h̃2 = 1− ((3δ − 1)/(2δ))2, δ is a discounting factor usually taken to be a

high value such as 0.95 or 0.99, and Vi is the covariance matrix corresponding to the evolution

equation of θi. Equation (9) is the further relaxation and evolution model for θ prescribed by the

ELW methodology (see Liu and West, 2001). The selection of the parameters a and h̃ guarantees

that the posterior variance of θi remains stable (i.e., does not increase) with the progression of

the time index i.

Several posterior distributions will be needed for the subsequent discussion and we derive

their forms here. Consider γ = λ = σ−2, the inverse of the variance of observation error. ELW

methodology requires the distribution p(γ | y1:i, x0:i, θ) be tractable and easily sampled from. In

our case, the posterior distribution for γ, conditional on observations y1:i, states x0:i and θ, is

given by

π(γ | y1:i, x0:i, θ) = Gamma

(
aλ +

(i+ 1)p

2
, bλ +

1

2

(
‖x0 − µx0‖2

c
+

i∑
k=1

‖yk − xk‖2
))

(10)

which is a tractable distribution. Note also from the above equation that the distribution of

γ depends on y1:i and x0:i through the sufficient statistic si = si(y1:i, x0:i, θ) = (aλ + (i +

1)p/2, bλ+(‖x0−µx0‖2/c+
∑i

k=1 ‖yk−xk‖2)/2), where aλ, bλ, c and µx0 are all fixed and known

hyperparameters (see (6)). Next, the two distributions, that is (i) the conditional distribution

of xi given xi−1, yi, θi and γ, and (ii) the marginal distribution of yi given xi−1, θi and γ, can
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be obtained by considering the joint density of xi and yi, conditional on xi−1, θi and γ, from

(7) and (8). From these two equations, it follows that (xi, yi) is jointly normal, and thus, the

conditional density of xi given yi is

p(xi |xi−1, yi, θi, γ) = N

(
yi/σ

2 + g(xi−1, ti, θi)/u
2

1/σ2 + 1/u2
,

1

1/σ2 + 1/u2
Ip

)
, (11)

whereas the marginal distribution of yi given xi−1, θi and γ, obtained by integrating out xi, is

given by

p(yi |xi−1, θi, γ) = N
(
g(xi−1, ti, θi), (σ2 + u2) Ip

)
. (12)

We now give the ELW algorithm for obtaining inference for θ based on the approximate dy-

namic model (5) and the posteriors defined above. Let the notation [A,B, · · · |C,D, · · · ] denote

the conditional density of random entities (either scalars or vectors) A,B, · · · conditional on

either random or fixed constant entities C,D, · · · . The ELW model of (7)-(9) can be written

based on this notation as

yi+1 ∼ [ yi+1 |xi+1, γ ], (13)

xi+1 ∼ [xi+1 |xi, θi+1 ], and (14)

θi+1 ∼ [ θi+1 | θi, y1:i ]. (15)

Equation (13)-(15) gives the joint distribution of (yi+1, xi+1, θi+1) conditional on the obser-

vations, states and θ-values at previous time points, that is,

[ yi+1, xi+1, θi+1 |xi, θi, y1:i, γ ] = [ yi+1 |xi+1, γ ] · [xi+1 |xi, θi+1 ] · [ θi+1 | θi, y1:i ]

based on (13)-(15). The auxiliary particle filter (APF) technique rewrites this joint density as

[ yi+1, xi+1, θi+1 |xi, θi, y1:i, γ ] = [xi+1 |xi, θi+1, yi+1, γ ] · [ yi+1 |xi, θi+1, γ ] · [ θi+1 | θi, y1:i ].

(16)

The first term on the right hand side of (16) is given by (11), thus available in closed form for

sampling in our examples. The second term on the right hand side of (16) is given by (12),

which is again available in closed form for evaluation in our examples. The third term in (16)

is the Liu and West filter for θ given by (15), which can be easily sampled from. We give our

sampling methodology to sample from the posteriors using sequential Monte Carlo. Suppose

{x(j)i , θ
(j)
i , γ

(j)
i , s

(j)
i } for j = 1, 2, · · · , N are N samples from the posterior [xi, θi, γi, si | y1:i ].
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The subscript i on γi does not imply any evolution equation for γ. It just denotes the ran-

dom variable γ for marginal realizations of γ from the posterior [γ | si]. Similarly, si denotes

realizations of the sufficient statistic at time point i based on its functional equation, namely,

S(y1:i, x0:i, θi) when x0:i and θi are samples from the posterior [x0:i, θi | y1:i].

The steps of our sampling algorithm is as follows:

• First, sample θ
(j)
i+1 ∼ [θi+1 | θ(j)i , y1:i] according to (9) for j = 1, 2, · · · , N .

• Compute weights w
(j)
i ∝ [ yi+1 |x(j)i , θ

(j)
i+1, γ

(j)
i ] for j = 1, 2, · · · , N .

• ObtainN resamples { x̃(j)i , θ̃
(j)
i+1, γ̃

(j)
i , s̃

(j)
i }Nj=1 by sampling from the collection {x(j)i , θ

(j)
i+1, γ

(j)
i , s

(j)
i }Nj=1

according to the weights {w(j)
i }Nj=1.

• Sample x̃
(j)
i+1 ∼ [xi+1 | x̃(j)i , θ̃

(j)
i+1, yi+1, γ̃

(j)
i ] for j = 1, 2, · · · , N .

• Compute s̃
(j)
i+1 = S(s̃

(j)
i , yi+1, x̃

(j)
i+1, θ̃

(j)
i+1) for j = 1, 2, · · · , N .

• Sample γ̃
(j)
i+1 ∼ [ γ | s̃(j)i+1] for j = 1, 2, · · · , N .

Then, it follows that the N samples {x̃(j)i+1, θ̃
(j)
i+1, γ̃

(j)
i+1, s̃

(j)
i+1} for j = 1, 2, · · · , N are realizations

from the posterior [xi+1, θi+1, γi+1, si+1 | y1:i+1 ]. As the tuning parameter h̃→ 0, the posterior

of θ at every time point i from the approximate dynamic model becomes closer to the true

posterior from the DEM.

As mentioned earlier, in the above algorithm, the subscripts i on γi and si do not imply

any kind of evolution over time. They just represent the update of the parameter and statistic,

respectively, as new data become available. The tuning parameter a determines the extent of

shrinkage of the normal mixture through its mean. It also controls the smoothness through the

variance term h̃2Vi. It is usually prescribed to be chosen around the value 0.95. The tuning

parameter a was fixed at 0.95 throughout the rest of examples. This corresponds to taking

h̃2 = 1 − a2 = 0.0975 and δ = 1/(3 − 2a) = 0.909. For the covariance matrix Vi, we chose

Vi = (N − 1)−1
∑N

j=1(θ
(j)
i−1 − θ̄i−1)(θ

(j)
i−1 − θ̄i−1)T .

The initial proposal density q(x0, θ, γ) affects the performance of the algorithm. The proposal

density which is concentrated around the true parameter has a better performance than the other

proposal densities even with relatively small number of particles. In practice, we suggest that one
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run the ELW filter with initial particles θ(j) and γ(j) from π(θ, γ) and rerun with the particles

θ̂(j) and γ̂(j) from the first inference. It is equivalent to consider the proposal density

q(x0, θ, γ) ≡ π(x0)× π(θ, γ | yn).

We call the resulting particles the refined particles. It was used throughout the rest of examples.

4 Convergence of the Posterior

4.1 Convergence of the Posterior as the relaxiation parameter decreases

In this subsection, we show that as the relaxation parameter u converges to 0, the posterior

density of (x0, θ, λ) from the approximate dynamic model converges to the posterior from the

DEM, i.e.

π(x0, θ, λ|yn, u2) =

∫
L(Λ)π(dx1, . . . , dxn|x0, θ, u2)π(x0, θ, λ)∫ ∫
L(Λ)π(dx1, . . . , dxn|x0, θ, u2)π(dx0, dθ, dλ)

(17)

converges to

π(x0, θ, λ|yn) =
L∗(x0, θ, λ)π(x0, θ, λ)∫
L∗(x0, θ, λ)π(dx0, dθ, dλ)

(18)

as u2 → 0, where Λ = (x0, . . . , xn, θ, λ),

L(Λ) = (λ)np/2 exp

(
−λ

2
·
n∑
i=1

‖yi − xi‖2
)

and

L∗(x0, θ, λ) = (λ)np/2 exp

(
−λ

2
·
n∑
i=1

‖yi − gi(x0, ti−1; θ)‖2
)

with gi(x0, ti−1; θ) = g(gi−1(x0, ti−2; θ), ti−1; θ). Note that π(x0, θ, λ|yn) is the posterior of DEM.

Theorem 4.1 Consider model (5) and prior (6). Suppose f(x, t; θ) is continuous in x. Then,

the posterior density of the dynamic model (5) converges to that of the differential equation

model (4), i.e.

π(x0, θ, λ|yn, u2)→ π(x0, θ, λ|yn)

for all x0, θ, λ as u2 → 0.
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4.2 Convergence of the Posterior as the step size increases

We have shown that the posterior of the dynamic model (5) converges to that of the differential

equation model (4) as u2 → 0. In this subsection, we will prove that the posterior of the

differential equation model converges to that of the true model.

If the step size is m, each time interval [ti−1, ti] is divided into m segments of length (ti −

ti−1)/m, and the Runge-Kutta method is applied to each subinterval to obtain x′is. To clarify the

difference, let xm be the approximated solution of the differential equation by the fourth-order

Runge-Kutta method with m segments. Similarly, let πm and πtrue be the posterior distributions

corresponding to xm and the true x, respectively. Note xm(t1) = x(t1) for all m.

Theorem 4.2 Consider model (4) and prior (6). Suppose f(x, t; θ) satisfies Lipschitz condition

in x, i.e. there exists the constant K > 0 such that

‖f(x, t; θ)− f(x′, t; θ)‖ < K‖x− x′‖ (19)

for any x, x′ ∈ Rp, t ∈ [T0, T1] and θ ∈ Θ. Then, the posterior density of the differential equation

model (4) converges that of the true model, i.e.

πm(x0, θ, λ|yn)→ πtrue(x0, θ, λ|yn)

for all x0, θ, λ as m→∞.

This result guarantees that the differential equation model works well with a reasonable

segments parameter m under the Lipschitz condition.

4.3 Choice of the relaxation parameter and the step size

In practice, the choice of u2 and m can affect the performance of the approximation. The

approximate posterior distribution may vary by different choice of these values. Theoretically,

the smaller the relaxation parameter u2 is, the closer the approximate posterior is to the true

posterior. But in practice we may need moderately large value of u2 to get stable posterior

approximation. We suggest following strategy for choosing the variance of state u2. Consider

various u2 values from large to small values in turn. For each u2 value, check the stability of

posteriors by running two or three ELW filters simultaneously. Here, the stability means that all
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posterior densities based on ELW runs are closed enough to each other. Finally, use the smallest

u2 value for the inference which gives the stable result.

For convenience, let h ≡ ti+1 − ti for all i = 1, 2, . . . , n − 1. For the choice of m, we as-

sume h/m = O(n−α). Theoretically, the larger value of m gives more accurate inference, but

it would require heavier computation. In the following theorem, we relate the step size h/m to

the approximation error rate of the posterior, and based on the theorem we suggest values of

m for computation according to the acceptable error rate. The theorem requires the following

assumptions.

A1. {x(t) : t ∈ [0, T ]} is a compact subset of Rp;

A2. {y(t) : t ∈ [0, T ]} is a bounded subset of Rp; and

A3. the Kth order derivative of f(x, t; θ) with respect to t exists and is continuous in x and t,

where K is the order of the numerical method g.

Theorem 4.3 Consider model (4) and prior (6). Suppose f(x, t; θ) satisfies Lipschitz condition

(19) in x, and suppose A1−A3 hold. Let K be the order of the numerical method g and h/m =

O(n−α). If α ≥ (1+R)/K, the error rate of the posterior approximation is O(n−R) for sufficiently

large n, i.e.,

πm(x0, θ, λ|yn) = π(x0, θ, λ|yn)× (1 +O(n−R))

for all x0, θ, λ, then α ≥ (1 +R)/K is sufficient.

Note that the order of Runge-Kutta method is 4, and the rate of h is n−1 because we consider

a bounded time interval [0, T ] ⊂ R with T < ∞. By the above theorem, if we want to get the

error rate O(n−3) or larger, we know that it can be achieved by m = 1 for large n. However, in

practice, one should notice that the additional error from the SMC sampling may arise. In such

case, we may need to use m bigger than 1.
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5 Simulated Data Examples

5.1 Newton’s law of Cooling

5.1.1 Description of model and data generation step

Newton’s law of cooling, made by English physicist Isaac Newton, is a model describing the

temperature change of an object. According to the model, the temperature of an object changes

proportional to the temperature difference between the object and its surroundings. This notion

is given by the following ODE form

ẋ(t) = θ1(x(t)− θ2), (20)

where x(t) is the temperature of the object at time t, θ1 is a negative constant and θ2 is the

temperature of the surroundings. All of the temperature are in Celcius. For more details, see

Incropera (2006).

We chose this model as a testbed for our method. Since the solution of (20) is known as

x(t) = θ2 − (θ2 − x0)eθ1t (21)

where x0 = x(0), we can calculate the true posterior directly. The data yi = y(ti) was generated

with the true mean function (21) and we set the model parameters as x0 = 20, θ = (−0.5, 80)T ,

σ2 = 25 and time points ti = ih for i = 1, . . . , n where the sample size n = 100 and the step size

h = 0.15. The simulated data and the true mean function are shown in Figure 1.

The priors were set by

x0 | λ ∼ N(µx0 , c/λ)

λ ∼ Gamma(aλ, bλ)

θ = (θ1, θ2) ∼ Uniform ((−100, 0)× (50, 150))

where µx0 = y1, aλ = 1, bλ = 1 and c = 1. The values of yi are in the interval [65, 90] after 50th

observation, and the temperature of the surroundings, θ2, must be the around the interval. The

prior of θ2 is set by Uniform(50, 150) whose support includes [65, 90]. With a similar reasoning,

we set θ1 ∼ Uniform(−100, 0).
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Figure 1: The solid line is the true temperature as a function of time from the Newton’s law of cooling model

with x0 = 20, θ = (−0.5, 80)T . The star-shaped points are the generated data of temperatures with σ2 = 25.

The true posterior of θ and λ can be obtained as follows:

λ | θ, y1:n ∼ Gamma(
np

2
+ aλ,

1

2
ũ(θ) + bλ)

θ | y1:n ∼
1

(12 ũ(θ) + bλ)
np
2
+aλ

I(−100 < θ1 < 0)I(50 < θ2 < 150),
(22)

where

ũ(θ) = µ2x0/c+

n∑
i=1

z2i − (1/c+

n∑
i=1

e2θ1ih)−1(µx0/c+
n∑
i=1

zie
θ1ih)2,

zi = zi(θ) = yi − θ2 + θ2e
θ1ih.

5.1.2 Assessment of the convergence of the posteriors

We assessed the convergence of posteriors which is described at Theorem 4.1. To show that

the posterior of dynamic model converges to that of DEM, we got the simulation results for
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Figure 2: The histograms of the marginal posterior distributions of the dynamic models with u2 = 1, 0.1, 0.12, 0.15

and m = 1 from the Newton’s law of cooling. The red lines are the true values of parameters, (θ1, θ2, σ
2) =

(−0.5, 80, 25).

RDEM with u2 = 1, 0.11, 0.12 and 0.15. The DEM was treated as a dynamic model with small

value of u2. We ran the ELW filter based on 20,000 particles and fixed the number of segments

m at 1. For all of the settings, the ELW filter takes less than 3 seconds for 20,000 particles.

The histogram of the marginal posterior distributions are drawn at Figure 2. It seems that

the posterior of dynamic model approaches that of the DEM as u2 decreases to zero. Thus, it

supports the theoretical result, Theorem 4.1.

To show that the posterior of DEM converges to that of true model, we got the simulation

results for the DEM with the number of segments m = 1, 2, 4 and the true model. We approxi-

mated DEM by the dynamic model with u2 = 0.15. For the true model, we used a grid sampling

algorithm for the true posterior (22). For each setting, the ELW filter takes less than 3 seconds

for 20,000 particles. The grid set was chosen by [−2, 0] × [70, 90], and each axis was divided

into 50 equal length intervals resulting 51 points. 20,000 posterior samples were drawn. The his-

tograms of the marginal posterior distributions are drawn at Figure 3. The posterior densities of

DEM are quite similar to each other, but they have the larger variation than the true posterior

densities.
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Figure 3: The histograms of the marginal posterior distributions of the dynamic models with u2 = 0.15 and

m = 1, 2, 4, and those of the true model from the Newton’s law of cooling. The red lines are the true values of

parameters, (θ1, θ2, σ
2) = (−0.5, 80, 25).

5.2 FitzHugh-Nagumo model

5.2.1 Description of model and data generation step

FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al. 1962) describes the action of spike

potential in the giant axon of squid neurons by an ODE with two state variables and three

parameters:

ẋ1(t) = θ3

(
x1(t)−

1

3
x31(t) + x2(t)

)
,

ẋ2(t) = − 1

θ3
(x1(t)− θ1 + θ2x2(t)) ,

where −0.8 < θ1, θ2 < 0.8 and 0 < θ3 < 8. The two state variables, x1(t) and x2(t), are the

voltage across an membrane and outward currents at time t, respectively.

Using the FitzHugh-Nagumo model, we compare the proposed method with the parameter

cascading method (Ramsay et al., 2007), the delayed rejection adaptive Metropolis (DRAM)

algorithm (Soetaert and Petzoldt, 2010) and the Laplace approximated posterior (LAP) method

(Dass et al., 2017). The data yi = y(ti) was generated from DEM (4) with the model parameters

x0 = (−1, 1)T , θ = (0.2, 0.2, 3)T , σ2 = 25 and time points ti = ih for i = 1, . . . , n, where the

sample size n = 100 and the step size h = 0.2, m = 400. The simulated data and the true mean
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Figure 4: The solid lines are x1 (black line) and x2 (red line) as a function of time from the FitzHugh-Nagumo

model with x(t0) = (−1, 1)T , θ = (0.2, 0.2, 3)T . The star-shaped points are the generated data of the populations

with σ2 = 0.25.

function are shown in Figure 4. The priors were set by

x0 | λ ∼ N(µx0 , cλ
−1I2)

λ ∼ Gamma(aλ, bλ)

θ ∼ Uniform(A)

where µx0 = y1, aλ = 1, bλ = 1, c = 1 and A = {(θ1, θ2, θ3) : −0.8 < θ1, θ2 < 0.8, 0 < θ3 < 8}.

5.2.2 Comparison with other methods

To compare the proposed method (RDEM-ELW) with other methods, the parameter cascading

(PC) method, DRAM algorithm and LAP method were applied to the same data set. We used

the R packages CollocInfer and FME for the parameter cascading and DRAM, respectively.

The PC method is one of the popular frequentist methods for estimating the parameters in
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ODE. It uses the collocation method which represents the state vector x(t) as a series of basis

expansion. The penalized likelihood criterion has three components: the matrix of coefficients

of basis expansions C, the unknown parameter θ and the smoothing parameter λ. PC optimizes

the penalized likelihood by two steps. In the inner optimization, the criterion is optimized with

respect to the coefficient C while θ and λ are fixed. After that, in the outer optimization, the

penalized likelihood is optimized with respect to θ while λ is kept fixed. The smoothing param-

eter λ is chosen based on the appropriate criteria such as the numerical stability of parameter

estimates or the forward prediction error (Hooker et al., 2000). For more details about PC

method, see Ramsay et al. (2007). For the PC method, we used the third-order B-spline basis

and 2n− 1 equally spaced knots on [t0, tn]. The smoothing parameter was set by λ = 105. The

initial parameter were drawn from N(θ0, (0.01)2Iq) where θ0 is the true parameter value.

The DRAM algorithm, a variant of the standard Metropolis-Hastings algorithm (Metropolis

et al., 1953; Hastings, 1970), is chosen as a benchmark in the Bayesian side. With the R pack-

age FME (Soetaert and Petzoldt, 2010), one can infer the DEM with DRAM algorithm for the

parameters and numerical integration for the state variables. We applied the DRAM algorithm

with the initial parameter as the maximum likelihood estimate using modFit() function and the

maximal number of tries 1. The parameter covariance was updated in every 100 iteration. We

got 20,000 posterior samples for the inference.

LAP method is another benchmark in the Bayesian side. It is fast when the dimension of

parameter is small and empirically has comparable or better performance than PC method and

DRAM algorithm (Dass et al., 2017). Since the dimension of parameter is small, the grid sampling

method for θ was chosen. For each parameter θi, the grid range was chosen by [θ̂Ri ± 4ŝd(θ̂Ri )]

where θ̂Ri is the parameter estimate for θi from the PC method. Each axis was divided into 31

intervals of equal length, and the step size for numerical integration was set at m = 2. The priors

for parameters were set as in subsection 5.2.1, and 20,000 posterior samples were obtained.

For the RDEM-ELW, the step size for numerical integration and the variance for the state

were chosen by m = 2 and u2 = 0.15, respectively. The priors for parameters were set as

described in subsection 5.2.1, the number of particles was chosen by N = 20, 000. We generated

100 simulated data set using the 4th order Runge-Kutta. The model parameters were set as

described in subsection 5.2.1.

For RDEM, PC and DRAM methods, R and C/C++ were used for implementation. R and
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Figure 5: The boxplots of the computation times for θ̂ based on 100 simulated date sets. The results for the

relaxed DEM with ELW filter (RDEM), the parameter cascading (PC)method, Laplace approximated procedure

(LAP) and delayed rejection adaptive Metropolis (DRAM) algorithm are shown.

Fortran90 were used for LAP method. On average based on 100 simulations, it took only 3.523

seconds for estimation, while the PC method, DRAM algorithm and LAP method took 49.152,

276.700 and 215.591 seconds, respectively. The boxplot of computation times for each method is

given at Figure 5. The proposed RDEM method significantly reduced the computation time. It

was even faster than the frequentist method, the PC method. Thus, the RDEM method has an

enormous advantage in computation speed over other methods. Table 1 represents the absolute

biases, standard deviations for θ̂ and root mean squared errors (rmse) for θ̂ in the FitzHugh-

Nagumo model. It seems RDEM method provides reasonable estimates in terms of bias, but

larger standard deviation than others.

6 Lynx-hare data: Lotka-Volterra equation

There are large number of models to express predator-prey relationships because predation is

often direct, conspicuous and easy to study. Lotka-Volterra model is one of the simplest model

of predator-pray interactions. Lotka (1925) and Volterra (1926) independently developed the
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Table 1: The table of mean of the absolute biases, standard deviations and root mean squared errors (rmse) for

θ̂ in the FitzHugh-Nagumo model. The results for the relaxed DEM with ELW filter (RDEM), parameter cas-

cading (PC)method, Laplace approximated procedure (LAP) and delayed rejection adaptive Metropolis (DRAM)

algorithm are shown.

RDEM PC LAP DRAM

Absolute bias

θ1 0.051 0.024 0.024 0.024

θ2 0.135 0.106 0.099 0.100

θ3 0.108 0.039 0.044 0.047

Standard deviation

θ1 0.063 0.027 0.027 0.028

θ2 0.130 0.123 0.117 0.119

θ3 0.194 0.060 0.056 0.059

rmse

θ1 0.084 0.038 0.038 0.040

θ2 0.198 0.171 0.161 0.164

θ3 0.233 0.076 0.075 0.079

model of the form:

ẋ1(t) = x1(t)(θ1 − θ2x2(t)),

ẋ2(t) = −x2(t)(θ3 − θ4x1(t)),
(23)

where x1 denotes the number of preys, and x2 denotes the number of their predators. The model

parameters θ1, θ2, θ3 and θ4 are the intrinsic rate of prey population increase, the predation rate,

the predator mortality rate and the offspring rate of the predator, respectively.

Lynx-hare data is a popular data set representing the number of captured lynx and snowshoe

hares in North Canada which was collected by Hudson Bay company. It contains the number

of furs of lynx and hares, so it implies the actual populations of them. We obtained the annual

data between 1900 and 1920 recorded in thousands from Li (2012) which is given at Figure 6.

The Lotka-Volterra equation, the equation (23), is fitted to the data set and used to predict the

future values of trapped lynxes and hares.

The same model and prior in subsection 5.2 were used. As we mentioned in subsection 4.3,

we ran the ELW filter 10 times based on N = 500, 000 particles with u2 = 20, 10, 5, 1 and 0.15,

in turn. In this case, u2 values smaller than 5 lead somewhat unstable approximation even with

3,000,000 particles. Finally, the state variance was chosen by u2 = 5 based on the criterion in

subsection 4.3, because it gives stable posterior densities for each ELW run. The other model

parameters were chosen as the subsection 5.2. On average, it took approximately 17 seconds for

each run.
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Figure 6: The numbers of trapped lynx and snowshoe hares between 1900 and 1920 is drawn. The solid line is the

number of hares, and the dotted line is the number of lynx.

Table 2: Posterior summary statistics for the parameter of the Lotka-Volterra equation for the lynx-hare data

with m = 2 and u2 = 10.

Mean Median 90% credible interval

θ1 0.526 0.525 (0.491, 0.562)

θ2 0.026 0.026 (0.024, 0.027)

θ3 0.986 0.985 (0.906, 1.067)

θ4 0.028 0.028 (0.026, 0.030)

σ2 4.087 3.818 (2.018, 7.065)

The marginal posterior densities of parameters are given at Figure 7. Posterior summary

statistics for the first run are represented at Table 2. Figure 8 contains the scatter plots of the

observations and 90% posterior credible lines for prediction values at 10 future time points when

m = 2 and u2 = 5. The predicted values of trapped lynxes and hares follow oscillation patterns.

The size of prediction interval gets wider as the prediction time gets further ahead and also the

predicted value become larger.
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Figure 7: The posterior densities of the Lotka-Volterra equation for the lynx-hare data based on 10 ELW filter

runs with m = 2 and u2 = 5.

7 Discussion

A lot of biological or physical systems are given by a set of differential equations. To understand

these processes, estimation of their parameters is essential. However, especially in Bayesian

literature, there is no standard framework to analyze differential equation model. In many cases,

the posterior of parameter does not belong a well-known family, so grid sampling or MCMC

methods are used to get posterior samples. They usually suffer from heavy computation. We

propose a general framework to analyze DEM using relaxation via dynamical systems. The

dynamic model enables a fast inference for DEM and provides convenient sampling methods.

Among the sampling algorithms for dynamic models, we adopted the ELW filter suggested by

Rios and Lopes (2013). We argue that our method can be an alternative to the existing inference

methods when one needs a fast and reasonable result. This argument is supported by the example

in subsection 5.2. Section 4 guarantees the convergence of the approximated posterior to the true

posterior. However, the theoretical results in this paper does not consider the additional error

from the SMC sampling. The proposed method may be improved if a better SMC algorithm is
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Figure 8: Scatter plot of the lynx-hare data and plots of 90% credible set lines for predictions of 10 time points

ahead are drawn when m = 2 and u2 = 5. The upper, lower and middle dotted lines are the 95% and 5% quantiles

and median of the posterior, respectively. The star-shaped points are the lynx-hare data.

developed.

Appendix

The following lemma shows that each xi given xi−1, θ, u
2 converges to g(xi−1, tt−1; θ) in proba-

bility as u2 → 0.

Lemma 7.1 Consider model (5). Then, for i = 1, . . . , n, xi given xi−1, θ and u2 converges to

g(xi−1, ti−1; θ) in probability as u2 → 0.

Proof of Lemma 7.1 Note that rTxi|xi−1, θ, u2 ∼ N(rT g(xi−1, ti−1; θ), u
2‖r‖2) for all r ∈

Rp, i = 1, . . . , n. If we denote φ[Z] as a moment generating function (mgf) of random variable Z,

24



then for any r ∈ Rp,

φ[rT xi|xi−1,θ,u2](z) = exp(rT g(xi−1, ti−1; θ)z +
1

2
u2‖r‖2z2)

→ exp(rT g(xi−1, ti−1; θ)z) (24)

as u2 → 0, for i = 1, . . . , n. Note that (24) is mgf of [rT g(xi−1, ti−1; θ)|xi−1, θ]. Since the conver-

gence of mgf implies the convergence of distribution, it implies

[rTxi|xi−1, θ, u2]→ [rT g(xi−1, ti−1; θ)|xi−1, θ]

for any r ∈ Rp. Hence, by the Cramer-Wold theorem (Billingsley, 1995), it implies that [xi|xi−1, θ]

converges to g(xi−1, ti−1; θ) in distribution, as u2 → 0. Note that given xi−1 and θ, g(xi−1, ti−1; θ)

is a constant. Thus, by Portmanteau theorem (Dudley, 2002), it implies the convergence in

probability. �

With the continuity condition of f(x, t; θ) in x, Lemma 7.1 can be extended to the joint

convergence in probability using the mathematical induction. Lemma 7.2 describes the result.

Lemma 7.2 Consider model (5). Suppose f(x, t; θ) is continuous in x. Then, [x1, . . . , xn |

x0, θ, u
2] converges to (g(x0, t0; θ), . . . , g

n(x0, tn−1; θ)) in probability as u2 → 0.

Proof of Lemma 7.2 Let X = (x1, . . . , xn) and X̄ = (g(x0, t0; θ), . . . , g
n(x0, tn−1; θ)) where

xmi = gi(x0, ti−1; θ), i = 1, . . . , n (25)

by the relation (3) where gi(x0, ti; θ) = g(gi−1(x0, ti−1; θ), ti; θ) is defined recursively. We want

to show

lim
u2→0

P
(
‖X − X̄‖ ≥ ε|x0, θ, u2

)
= 0

for given ε > 0. It suffices to prove

lim
u2→0

P
(
‖xi − gi(x0, ti−1; θ)‖ ≥

ε

n
|x0, θ, u2

)
= 0 (26)

for given ε > 0 and i = 1, . . . , n. We use the mathematical induction.

When i = 1, we can check

lim
u2→0

P
(
‖x1 − g(x0, t0; θ)‖ ≥

ε

n
|x0, θ, u2

)
= 0
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by Lemma 7.1. Suppose (26) holds for i = k. Note

P (‖xk+1 − gk+1(x0, tk; θ)‖ ≥
ε

n
|x0, θ, u2)

≤ P (‖xk+1 − g(xk, tk; θ)‖ ≥
ε

2n
|x0, θ, u2) (27)

+ P (‖g(xk, tk; θ)− g(gk(x0, tk−1; θ), tk; θ)‖ ≥
ε

2n
|x0, θ, u2). (28)

By assumption, g(x, t|θ) is continuous in x. Thus, (28) converges to 0 as u2 → 0 because (26)

holds for i = k. Also note that (27) is

Ex2|x0,θ,u2 . . . Exk|xk−1,θ,u2

[
P (‖xk+1 − g(xk, tk; θ)‖ ≥

ε

2n
|xk, θ, u2)

]
.

Since P (‖xk+1 − g(xk, tk; θ)‖ ≥ ε/(2n)|xk, θ, u2) ≤ 1 and Lemma 7.1, (27) converges to 0 as

u2 → 0 by the bounded convergence theorem. �

Proof of Theorem 4.1 Note that we need to prove∫
L(Λ)π(dx1, . . . , dxn|x0, θ, u2)π(x0, θ, λ) → L∗(x0, θ, λ)π(x0, θ, λ), (29)∫ ∫

L(Λ)π(dx1, . . . , dxn|x0, θ, u2)π(dx0, dθ, dλ) →
∫
L∗(x0, θ, λ)π(dx0, dθ, dλ) (30)

as u2 → 0 where Λ = (x1, . . . , xn, θ, λ).

To show (29), we only need to prove∫
L(Λ)π(dx1, . . . , dxn|x0, θ, u2)→ L∗(x0, θ, λ)

as u2 → 0. Since L(Λ) = λnp/2 exp(−λ
2

∑n
i=1 ‖yi − xi‖2), it suffices to prove∫

e−
λ
2

∑n
i=1 ‖yi−xi‖2π(dx1, . . . , dxn|x0, θ, u2)→ e−

λ
2

∑n
i=1 ‖yi−gi−1(x0,ti−1;θ)‖2 . (31)

By Lemma 7.2, we have

[x1, . . . , xn|x0, θ, u2]→ [g(x0, t1; θ), . . . , g
n−1(x0, tn−1; θ)|x0, θ]

as u2 → 0. Note that the right hand side of (31) is the expectation of exp(−λ/2 ·
∑n

i=1 ‖yi − xi‖2)

with respect to [g(x0, t1; θ), . . . , g
n−1(x0, tn−1; θ)|x0, θ]. Also note that exp(−λ/2 ·

∑n
i=1 ‖yi − xi‖2)

is bounded by 1 and is continuous in x1, . . . , xn. Thus, the Portmanteau theorem implies (29).

Since we have proved (29), it suffices for (30) to show that
∫
L(Λ)π(dx2, . . . , dxn|x0, θ, u2) is

dominated by an integrable random variable. It is easy to check because∫
L(Λ)π(dx2, . . . , dxn|x0, θ, u2) ≤ (λ)

np
2
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and (λ)np/2 is integrable with respect to π(x0, θ, λ). The dominated convergence theorem gives

the desired result. �

Proof of Theorem 4.2 Denote the likelihood of approximated x with the number of segments

m as Lm(x0, θ, λ), and let Ltrue(x0, θ, λ) be the likelihood of true x. We should prove that

πm(x0, θ, λ|yn) =
Lm(x0, θ, λ)π(x0, θ, λ)∫
Lm(x0, θ, λ)π(dx0, dθ, dλ)

converges to

πtrue(x0, θ, λ|yn) =
Ltrue(x0, θ, λ)π(x0, θ, λ)∫
Ltrue(x0, θ, λ)π(dx0, dθ, dλ)

for any x0, θ and λ. It is well known that if f(x, t; θ) satisfies Lipschitz condition in x, then

Runge-Kutta method converges to the true solution, i.e.

xmi (x0, θ)→ xi(x0, θ) for all x0 and θ as m→∞. (32)

See Cartwright and Piro (1992) for the proof. The convergence (32) implies that Lm(x0, θ, λ)

converges to Ltrue(x0, θ, λ) for all x0, θ and λ because an exponential function is continuous. It

implies the convergence of numerator part.

For the denominator part, recall that

Lm(x0, θ, λ) ≤ (λ)
np
2

and (λ)np/2 is integrable with respect to π(x0, θ, λ). Again, the dominated convergence theorem

gives the desired result. �

Proof of Theorem 4.3 At first, we want to show that under A1−A3, |ngn(x0)− ngmn (x0)| =

O(n(h/m)K) for sufficiently large n. Since we assume the Lipschitz continuity of f , the ODE

has a unique solution with initial condition x(t1) = x0. Assumptions A1 and A3 implies

sup
x,t
‖ d

K

dtK
f(x, t; θ)‖ =: B <∞

for some constants B > 0. The local errors of the Kth order numerical method are given by

‖x(ti)− x(ti−1)− hφ(xi−1, ti−1; θ)‖ ≤ B′hK+1, i = 1, . . . , n
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for some B′ > 0, which depends only on supt ‖dKf(x, t; θ)/(dtK)‖ ≤ B (Palais and Palais, 2009).

Thus, the local errors are uniformly bounded. It implies the global errors uniformly bounded by

‖xi − xhi ‖ ≤ ChK

for some constant C > 0. Thus,

|ngn(x0)− ngmn (x0)| =
∣∣ n∑
i=1

‖yi − xi‖2 −
n∑
i=1

‖yi − xmi ‖2
∣∣

=

n∑
i=1

(
‖yi − xi‖+ ‖yi − xmi ‖

)∣∣‖yi − xi‖ − ‖yi − xmi ‖∣∣
≤

n∑
i=1

(
2‖yi − xi‖+ ‖xi − xmi ‖

)
‖xi − xmi ‖

≤
n∑
i=1

(
2Cy + 2Cx + ‖xi − xmi ‖

)
‖xi − xmi ‖

≤
n∑
i=1

(
2Cy + 2Cx + C

( h
m

)K)
C
( h
m

)K
� n

( h
m

)K
,

where supt∈[T0,T1] ‖y(t)‖ < Cy <∞, supt∈[T0,T1] ‖x(t)‖ < Cx <∞ for sufficiently large n.

By the above inequality, for fixed x0 ∈ Rp, λ > 0,

e−
λ
2
ngmn (x0) = e−

λ
2
[ngn(x0)+ngmn (x0)−ngn(x0)]

= e−
λ
2
ngn(x0) × e−

λ
2
[ngmn (x0)−ngn(x0)]

= e−
λ
2
ngn(x0) × e−

λ
2
O(n( h

m
)K)

= e−
λ
2
ngn(x0) ×

(
1 +O

(
n
( h
m

)K))
because ex = 1 +O(x) for sufficiently small x. It implies

πm(x0, θ, λ | yn) ∝ Lm(θ, λ, x0)π(θ, λ, x0)

= L∗(θ, λ, x0)π(θ, λ, x0)×
(

1 +O
(
n
( h
m

)K))
∝ π(x0, θ, λ | yn)×

(
1 +O

(
n
( h
m

)K))
for sufficiently large n. If α > (1 +R)/K, then we have n(h/m)K ≤ n−R. �
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