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Abstract

In the framework of model-based clustering, a model allowing several latent class variables

is proposed. This model assumes that the distribution of the observed data can be factor-

ized into several independent blocks of variables. Each block is assumed to follow a latent

class model (i.e., mixture with conditional independence assumption). The proposed model

includes variable selection, as a special case, and is able to cope with the mixed-data setting.

The simplicity of the model allows to estimate the repartition of the variables into blocks

and the mixture parameters simultaneously, thus avoiding to run EM algorithms for each

possible repartition of variables into blocks. For the proposed method, a model is defined

by the number of blocks, the number of clusters inside each block and the repartition of

variables into block. Model selection can be done with two information criteria, the BIC and

the MICL, for which an efficient optimization is proposed. The performances of the model

are investigated on simulated and real data. It is shown that the proposed method gives a

rich interpretation of the dataset at hand (i.e., analysis of the repartition of the variables

into blocks and analysis of the clusters produced by each block of variables).

Keywords: Mixture model, Model-based clustering, Model choice, Mixed-data, Variables

selection

1. Introduction

We consider the problem of multivariate data clustering. In this framework, an impor-

tant issue is the choice of the variables used in the analysis. This choice can be performed

according to some focuses with respect to the desired clustering. Alternatively, without any
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prior knowledge on data, the statistician may perform the clustering based on all the avail-

able variables. Classical clustering methods assume that the considered variables explain

a single partition among the observations. However, the available data could convey more

that one partition of the data. For instance, one can imagine that different blocks of vari-

ables describing a customer (variables about work, variables about leisures, variables about

family, . . . ) can give different clustering/partitioning of the dataset at hand. In absence of

prior knowledge on how to group the variables into blocks, a challenging question for the

statistician is to find these blocks of variables based on the data.

The problem of finding several partitions in the data, based on different groups of con-

tinuous variables, has been addressed by Galimberti and Soffritti (2007) in a model-based

clustering framework McLachlan and Peel (2000). In this framework, the authors assume

that the vector of variables can be partitioned in independent sub-vectors, each one follow-

ing a particular mixture model. Then, they proposed a forward/backward search to perform

model selection based on the maximization of the BIC. More recently, Galimberti et al.

(2018) have proposed an extension of their previous works which relaxes the independence

assumption between sub-vectors. This extension considers three types of variables, the clas-

sifying variables, the redundant variables with respect to the classifying variables, and the

variables which are not classifying at all. This can be seen as extension of the models pro-

posed by Raftery and Dean (2006) and Maugis et al. (2009), in the framework of variable

selection in clustering. Again, model selection is achieved with a forward/backward algo-

rithm. Model selection is a difficult challenge because complex distributions are often used

to model the data. Therefore, they have to used forward/backward algorithms to maximize

the BIC. However, these algorithms are suboptimal since they only converge to a local opti-

mum of the BIC. Moreover, they are based on comparison of the BIC between two models.

Thus, they perform many calls of EM algorithm. Hence, these approach only can deal with

a limited number of variables (typically less than 100).

In order to deal with large numbers of variables, we propose an extension of the ap-

proaches proposed by Marbac and Sedki (2017b) and Marbac and Sedki (2017a), in the
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framework of variable selection in clustering. The main idea is to use a more constrained

model to be able to easily perform model selection. We assume that the distribution of

the observed data can be factorized into several independent blocks of variables, each one

following its own mixture distribution. The considered mixture distribution in a block is

a latent class model (i.e., each variable of a block is supposed to be independent of the

others given the cluster variable associated to this block). The simplicity of the model al-

lows to estimate the repartition of the variables into blocks and the mixture parameters

simultaneously (Marbac and Sedki, 2017b,a). We present a procedure for performing model

selection (choice of the number of blocks, the number of clusters inside each block and the

repartition of variables into block) with the BIC (Schwarz, 1978) or the MICL (Marbac and

Sedki, 2017b). The BIC enjoys consistency properties and does not require to define prior

distributions. However, in the clustering framework, it tends to over-estimate the number of

clusters, and for small sample sizes the asymptotic approximation on which it relies can be

questionable. Thus, in the framework of variable selection, Marbac and Sedki (2017b) have

proposed the MICL criterion derived from the ICL criterion (Biernacki et al., 2000). This

criterion takes into account the classification purpose by computing the maximum integrated

completed likelihood. Moreover, it is expected to well behave for small sample sizes, because

it avoids the asymptotic approximations of the integrated completed likelihood by perform-

ing an exact integration over the parameter space thanks to conjugated priors. Depending

on the context, either BIC or MICL can be preferred. In the context of multiple partitions

clustering, it is possible to simultaneously perform parameter estimation (resp. partition

estimation) and model selection with the BIC (resp. MICL) criterion like in Marbac and

Sedki (2017b,a), thus avoiding to run EM algorithms for each repartition of variables into

blocks. Note that the proposed model allows to deal with mixed-data as in Marbac and

Sedki (2017a), and it also includes the variable selection as a special case. Moreover, the

proposed model can give an answer to problem of clustering mixed data in which continuous

variables are often expected to dominate the clustering process. Allowing several partitions

the categorical are now able, is necessary, to form their own clustering structure.
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The outline of the paper is the following. In Section 2, we present the multiple partitions

mixture model. In Section 3, we present the EM algorithm used for the estimation of the

parameters by maximum likelihood when the blocks are known. In Section 4, we present

how the model search can be performed using the BIC criterion. In Section 5, we present

how the model search can be performed using the BIC criterion. In Section 6, we show the

interest of the proposed model on simulated and real data.

2. Multiple partitions mixture model

2.1. The model

The considered data x = (x1, . . . ,xn) are composed of n observations xi = (xi1, . . . , xid)

where xi is a vector of mixed variables, i.e., each variable can be continuous, binary, count

or categorical. Moreover, we denote by xj = (x1j, . . . , xnj) the observed data for variable

j. The observations are assumed to be identically and independently drawn from a multiple

partitions model (MPM) which is now described.

The MPM assumes that the variables are grouped into B independent blocks, this repar-

tition being encoded by ω = (ωj; j = 1, . . . , d), where ωj = b indicates that variable j

belongs to block b. The set Ωb = {j : ωj = b} denotes the indexes of variables of block b, and

xi{b} = (xij; j ∈ Ωb) is the vector of observed variables of block b. Let zib be the class asso-

ciated to group b of observation i, zib = (zib1, . . . , zibGb
) with zibg = 1 if observation i belongs

to group g for block b and zibg = 0 otherwise. Let ZG be the set of the partitions of n ele-

ments in G clusters, the partition related to block b denoted by zb = (zib, . . . ,zib) belongs to

ZGb
. Thus the multiple partition z = (z1, . . . , zB) related to model m = (B,G1, . . . , GB,ω)

belongs to Zm where Zm = ZG1 × . . .×ZGB
. Moreover, MPM assumes that xi{b} follows a

Gb-component mixture distribution assuming the independence between variables of block b

given the latent class variable zib. Thus, the probability distribution function (pdf) of xi is

p(xi|m,θ) =
B∏
b=1

p(xi{b}|m,θ) with p(xi{b}|m,θ) =

Gb∑
g=1

πbg
∏
j∈Ωb

p(xij|αjg), (1)

where θ = (π,α) groups the model parameters, π = (πbg; b = 1, . . . , B; g = 1, . . . , Gb) groups

the proportions with πbg > 0 and
∑Gb

g=1 πbg = 1, α = (αjg; j = 1, . . . , d; g = 1, . . . , Gωj
)
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groups the parameters of the univariate distributions. The univariate margin of a component

for a continuous (respectively binary, count and categorical), denoted by p(xij|αjg), is a

Gaussian (Bernoulli, Poisson and multinomial) distribution with parameters αjg (Moustaki

and Papageorgiou, 2005).

Example 1. To illustrate this distribution, we consider d = 4 continuous variables generated

by MPM with B = 2 blocks of two variables. The first two variables belong to block 1 and

the last two variables belong to block 2, hence ω1 = ω2 = 1 and ω3 = ω4 = 2. Moreover, each

block follows a bi-component Gaussian mixture ( i.e., Gb = 2) with equal proportions ( i.e.,

πbg = 1/2), mean µ1j = 4, µ2j = −4 and variance σ2
gj = 1. Figure 1 gives the bivariate

scatter-plots of the observations. Colors indicate the component memberships of block 1, and

symbols indicate the component memberships of block 2.
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Figure 1: Sample generated from MPM: colors indicate the partition of block 1 and symbol indicate the

partition of block 2.

5



2.2. Comments

Link with approaches of model-based clustering. Clustering approaches generally assume that

there exists a single unobserved partition which is explained by the observed variables. How-

ever, this assumption can be wrong and MPM can be an answer to this problem. Indeed, this

model considers different partitions which are explained by subsets of variables. Moreover,

MPM generalizes approaches used for variable selection in model-based clustering. Indeed,

if B = 2 and G1 = 1 then variables belonging to block 1 are not relevant for the clustering,

while variables belonging to block 2 are relevant. Thus, MPM permits variable selection and

multiple partitions explained by subsets of variables.

Model identifiability. In this paper, we consider that the vector of observations can be com-

posed of variables with different natures. We consider the univariate distribution of the

components for continuous (respectively integer, categorical) variables are Gaussian (respec-

tively Poisson, multinomial). Model identifiability is directly obtained from the identifiability

of Gaussian mixture with local independence (Teicher, 1963, 1967). Model identifiability re-

quires that a block cannot be composed of two categorical variables. Indeed, if a block is

composed by only categorical/binary variables, then the identifiability conditions of mixtures

of multinomial distributions (Allman et al., 2009) must be validated.

About the assumption of independence within components. Finally, MPM assumes that vari-

ables are independent within components. This assumption permits to limit the number of

parameters because model m of MPM requires νm =
∑B

b=1(Gb − 1) +
∑d

j=1 card(Θj)Gωj

parameters to be estimated, where Θj is the space of the parameters of the univariate margin

of one component of variable j. Moreover, it permits efficient approaches for model selec-

tion (see Sections 4 and 5). However, the relaxation of this assumption is discussed in the

conclusion.
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3. Maximum likelihood inference

For sample x and model m, the observed-data log-likelihood is defined by

`(θ|m,x) =
B∑
b=1

n∑
i=1

ln p(xi{b}|m,θ). (2)

The model considers B independent mixtures. The complete-data log-likelihood is

`(θ|m,x, z) =
B∑
b=1

ln p(zb|πb) +
d∑

j=1

ln p(xj|zωj
,αj), (3)

where ln p(zb|πb) =
∑n

i=1

∑Gb

g=1 zibg lnπbg and ln p(xj|zb,αj) =
∑n

i=1

∑Gb

g=1 zibg ln p(xij|αjg).

The maximum likelihood estimates (MLE) can be obtained by an EM algorithm (Dempster

et al., 1977; McLachlan and Krishnan, 1997). Starting from the initial value θ[0], its iteration

[r] is composed of two steps:

E-step Computation of the fuzzy partitions t
[r]
ibg := E[Zibg|xi{b},m,θ[r−1]], hence for b =

1, . . . , B, for g = 1, . . . , Gb, for i = 1, . . . , n

t
[r]
ibg =

π
[r−1]
bg

∏
j∈Ωb

p(xij|α[r−1]
jg )∑Gb

k=1 π
[r−1]
bk

∏
j∈Ωb

p(xij|α[r−1]
jg )

,

M-step Maximization of the expected value of the complete-data log-likelihood on θ,

π
[r]
bg =

n
[r]
bg

n
and α

[r]
jg = arg max

αjg∈Θj

Q(αjg|xj, t
[r]
ωjg

),

where Q(αjg|xj, tb) =
∑n

i=1 tibg ln p(xij|αjg). Note that, independence between the B blocks

of variables permits to maximize the observed-data log-likelihood on each block indepen-

dently. Thus, EM algorithms could be run on each block independently. This approach

should be less sensitive to local optima. However, we choose to present the EM algorithm

performing the maximization of the full observed-data likelihood, because this algorithm can

be modified to perform the block estimation and the parameter inference simultaneously (see

Section 4).
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4. Model selection with the BIC

4.1. Model selection

Model have to be assessed from the data among a set of competing models M defined

by

M = {m : ωj ≤ Bmax and Gb ≤ Gmax; j = 1, . . . , d; b = 1, . . . , Bmax}, (4)

where Bmax is the maximum number of blocks and Gmax is the maximum number of compo-

nents within block. Model selection can be done by using the BIC (Schwarz, 1978) defined

by

BIC(m) = max
θm

`pen(θm|m,x) (5)

where

`pen(θm|m,x) = `(θm|m,x)− νm
2

lnn, (6)

Model selection with the BIC consists in maximizing this criterion with respect to m. Ob-

viously, this is equivalent to maximizing the penalized likelihood on the couple (m,θm).

Thus, model and parameter inference lead to search

(m?, θ̂m?) = arg max
(m,θm)

`pen(θm|m,x). (7)

4.2. Maximizing the penalized observed-data likelihood

If B and (G1, . . . , GB) are fixed, model selection with BIC and maximum likelihood

inference imply to maximize the penalized likelihood on (ω,θ). In this section, we introduce

a modified version of the EM algorithm (Green, 1990) used for maximizing the penalized

likelihood on (ω,θ), for any (B,G1, . . . , GB). Thus, the combinatorial problem of model

selection can be circumvented. Indeed, (m?, θ̂m?) can be found by running this algorithm

for each values of B and (G1, . . . , GB) allowed by M. To implement this modified EM

algorithm, we introduce the penalized complete-data likelihood

`pen(θm|m,x, z) = `(θm|m,x, z)− νm
2

log n (8)

=
B∑
b=1

ln p(zb|πb)−
Gb − 1

2
lnn+

d∑
j=1

ln p(xj|zωj
,αj)−

νjGωj

2
lnn, (9)
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where νj = dim(Θj) (e.g., νj = 2 if the margin is a Gaussian distribution). Starting from

the initial value (ω[0],θ[0]), its iteration [r] is composed of two steps:

E-step Computation of the fuzzy partitions t
[r]
ibg := E[Zibg|xi,m,θ[r−1]], hence for b =

1, . . . , B, for g = 1, . . . , Gb, for i = 1, . . . , n

t
[r]
ibg =

π
[r−1]
bg

∏
j∈Ω

[r−1]
b

p(xij|α[r−1]
jg )∑Gb

k=1 π
[r−1]
bk

∏
j∈Ω

[r−1]
b

p(xij|α[r−1]
jg )

,

M-step1 Updating the affectation of the variables to blocks

ω
[r]
j = arg max

ωj∈{1,...,B}

Gωj∑
g=1

max
αjg∈Θj

Q(αjg|xj, t
[r]
ωjg

)−
νjGωj

2
lnn

 ,

M-step2 Updating the model parameters

π
[r]
bg =

n
[r]
bg

n
and α

[r]
jg = arg max

αjg∈Θj

Q(αjg|xj, t
[r]

ω
[r]
j g

).

Like for the classical EM algorithm, this modified EM algorithm converges into a local

optimum of the objective function. Moreover, the objective function increases at each it-

eration because `pen(θ[r]
m |m[r],x) ≥ `pen(θ[r−1]

m |m[r−1],x), with m[r] is the model defined by

(B,G1, . . . , Gb) and ω[r]. Thus, many random initializations should be done.

5. Integrated complete-data likelihood

5.1. Model selection

Criteria based on the integrated complete-data likelihood are popular for model-based

clustering. Indeed, they take account into the clustering purpose (modeling the data dis-

tribution and providing well-separated components). Moreover, integrated complete-data

likelihood has closed-form when components belong to exponential family and conjugate

priors are used. The integrated complete-data likelihood is defined by

p(x, z|m) =

∫
p(x, z|m,θ)p(θ|m)dθ. (10)

9



We assume independence between the prior distributions, so

p(θ|m) =
B∏
b=1

p(πb)
∏
j∈Ωb

Gb∏
g=1

p(αjg).

Thus, the integrated complete-data likelihood has the form defined by

ln p(x, z|m) =
B∑
b=1

ln p(zb|Gb) +
d∑

j=1

ln p(xj|zωj
, Gωj

, ωj) (11)

=
B∑
b=1

(
ln p(zb|Gb) + ln p(x{b}|zb, Gb)

)
, (12)

where p(zb|Gb) =
∫
S(Gb)

p(zb,πb|Gb)dπb, S(Gb) denotes the simplex of dimension Gb and

p(xj|zωj
, Gωj

, ωj) =
∫

Θ
Gωj
j

p(xj|zωj
,αj, Gωj

, ωj)p(αj)dαj. We use conjugate prior distribu-

tions. Thus, the integrals p(zb|Gb) and p(xj|Gωj
, ωj, zωj

) have closed forms (see Appendix Ap-

pendix A for details).

The MICL (maximum integrated complete-data likelihood) criterion corresponds to the

largest value of the integrated complete-data likelihood among all the possible partitions.

Thus, the MICL is defined by

MICL(m) = ln p(x, z?m|m) with z?m = arg max
z∈Zm

ln p(x, z|m). (13)

Model selection with MICL consists in finding the couple (m?, z?m?) defined by

(m?, z?m?) = arg max
(m,z)∈M×Zm

p(x, z?|m). (14)

5.2. Maximizing the integrated complete-data likelihood

For fixed number of block B and numbers of components G1, . . . , GB, maximizing MICL

corresponds to maximizing the integrated complete-data likelihood on the affectation of the

variables into block ω and on the partition z. Starting at the initial value ω[0] where each ωj

is uniformly sampled among {1, . . . , B}, the algorithm alternates between two steps defined

at iteration [r] by

Partition step: find z
[r]
b such that for all b = 1, . . . , B

p(x
[r−1]
{b} , z

[r]
b ) ≥ p(x

[r−1]
{b} , z

[r−1]
b ),

10



where x
[r−1]
{b} = (xj;ω

[r−1] = b).

Model step: find ω[r] such that for j = 1, . . . , d

ω
[r]
j = arg max

b∈{1,...,B}
p(xj|z[r]

b ).

Optimization at the Partition step is not obvious, despite that it can be done on each block

independently. So, the partition z
[r]
b is defined as a partition which increases the value of

the integrated complete-data likelihood for the current model for block b. It is obtained by

an iterative method initialized with the partition z
[r−1]
b . Each iteration consists in sampling

uniformly an individual which is affiliated to the class maximizing the integrated complete-

data likelihood, while the other class memberships are unchanged. Optimization at the

Model Step can be performed independently for each variable because of the intra-component

independence assumption. The optimization algorithm converges to a local optimum of the

integrated complete-data likelihood. Thus, many different initializations should be done.

6. Numerical experiments

Numerical experiments are presented in this section. First, the performances of the

method are investigated on simulated data. A robustness of the approach is illustrated

by considering the within component dependencies. Second, the analysis of a mixed-data is

conducted. Finally, we present the analysis of a challenging genomic data, where the number

of variables is more than the number of observations.

6.1. Model performances on simulated data

Simulation maps. In this section, we investigate the performances of the approach when

the model is well-specified, then when the model is miss-specified (i.e., when variables are

dependent within components). Thus, samples of size n are generated from a model with

three blocks (i.e., B = 3) composed of one continuous variable and one integer variable

each. The first two blocks follow bi-component mixture of Gaussian copulas (i.e., G1 =

G2 = 1) with the correlation coefficient ρ. For these two blocks, the univariate margin of

the continuous variable for component g follows a Gaussian distribution with mean µjg = gδ
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and variance 1. For these two blocks, the univariate margin of the integer for component g

follows a Poisson distributions with parameter gδ. The last block is composed of irrelevant

variables (i.e., G3 = 1) following a Gaussian copula with correlation coefficient ρ. In this

block, the univariate margin of the continuous variable is a centered standard Gaussian

distribution, and the univariate margin of the integer variable is a Poisson distribution with

parameter δ. For different values of n (25, 50, 100, 200) and two values of ρ (0 and 0.5), 25

replicates are sampled. Note that when ρ = 0, the model is well-specified because variables

are independent within components. Moreover, when ρ = 0.5, the model is miss-specified

because there are some dependencies within components. Finally, parameter δ is used for

defining different overlaps between components. Thus the “easy” (resp. “interm.” and

“hard”) case corresponds to δ = 4.5 (resp. δ = 3 and δ = 1.5).

Results obtained when model is well-specified. Table 1 presents the results when the model is

well-specified. We note that, when the overlap between components is small, BIC and MICL

behave identically. Even for small samples, they permit to detect the model (repartition of

the variables and numbers of components). When the overlap between components increases

(see interm. case), BIC obtains better results. Indeed, MICL needs more observations than

BIC to obtain the same results. Finally, when the overlap between components is high, MICL

fails to detect the structure of the data. Indeed, because the entropy between components

is too large, MICL selects only one component. This results was expected, because criteria

based on the complete-data likelihood can find the true model only when the component

overlap is not too high.

Results obtained when model is miss-specified. Table 2 presents the results when the model

is miss-specified. This simulation illustrates the robustness of MICL to the misspecification

of the model because this criterion uses the component entropy. When the overlap between

components is not too high, MICL detects the true repartition of the variables into blocks and

the true numbers of components, while BIC fails to detect the true number of components.

Indeed, BIC overestimates the number of components within blocks.
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case n BIC MICL

ω̂ Ĝ ẑ ω̂ Ĝ ẑ

easy 25 0.80 0.64 0.90 0.64 0.68 0.83

50 0.98 0.92 0.95 1.00 1.00 0.95

100 0.93 1.00 0.98 0.98 1.00 0.98

200 0.98 1.00 0.97 0.98 1.00 0.97

interm. 25 0.57 0.88 0.62 0.30 0.16 0.33

50 0.71 0.72 0.66 0.53 0.32 0.45

100 0.98 1.00 0.81 0.96 0.92 0.78

200 0.98 1.00 0.82 0.98 1.00 0.82

hard 25 0.23 0.76 0.16 -0.00 0.00 0.00

50 0.18 0.96 0.14 -0.00 0.00 0.00

100 0.29 0.92 0.17 0.04 0.00 0.02

200 0.55 0.84 0.24 0.00 0.00 0.00

Table 1: Results obtained by the BIC and the MICL when model is well-specified: ARI between the repar-

tition of the variables into blocks and its estimate (ω̂), frequency where the true vector of the number of

components is found (Ĝ) and ARI between the partitions and their estimates (ẑ).

6.2. Contraceptive Method Choice data

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey

(Lim et al., 2000). It describes 1473 Indian women with one continuous variable (AGE: age),

one integer variable (Chi: number of children) and seven categorical variables (EL: education

level, ELH: education level of the husband, Rel: religion, Oc: occupation, OcH: occupation

of the husband, SLI: standard-of-living index and ME: media exposure). Data are analyzed

by considering at the maximum three blocks (i.e., Bmax = 3) and six components (i.e.,

Gmax = 6).

The best three models according to the BIC are presented in Table 3. All of them consider

two blocks. Moreover, the repartition of the variables into blocks is almost equal for these

models. If we focus on the model selected by the BIC, we observe that the assumption of

13



case n BIC MICL

ω̂ Ĝ ẑ ω̂ Ĝ ẑ

easy 25 0.87 0.48 0.81 0.71 0.76 0.80

50 0.98 0.64 0.85 1.00 0.96 0.87

100 0.96 0.32 0.87 1.00 0.92 0.88

200 1.00 0.04 0.85 0.98 1.00 0.92

interm. 25 0.79 0.64 0.53 0.40 0.20 0.32

50 0.91 0.64 0.62 0.74 0.64 0.53

100 1.00 0.32 0.68 0.98 1.00 0.68

200 1.00 0.04 0.64 0.98 1.00 0.70

hard 25 0.57 0.76 0.19 0.25 0.08 0.10

50 0.93 0.60 0.24 0.23 0.00 0.07

100 1.00 0.44 0.25 0.33 0.20 0.12

200 1.00 0.04 0.28 0.51 0.28 0.18

Table 2: Results obtained by the BIC and the MICL when model is miss-specified: ARI between the

repartition of the variables into blocks and its estimate (ω̂), frequency where the true vector of the number

of components is found (Ĝ) and ARI between the partitions and their estimates (ẑ).

independence between blocks is relevant. Indeed, the Adjusted Rand Index computed on

the partitions obtained by blocks 1 and 2 is equal to 0.01.

If we analyse the results produced by the best model, we see on Figure 7, that the

two produced partitions seem rather uncorrelated, which is in accordance with the model

assumptions.

On Figure 3, we clearly see that the distributions of variables of block 1 (Wife’s age,

number of children and wife’s now working) depend on the partition 1 while they seem

rather independent of partition2.

On Figures 4 and 5, we see that the distributions of variables of block 2 (Wife’s education,

husband’s education, wife’s religion, husband’s occupation, standard-of-living index and me-

dia exposure) depend on the partition 2 while they seem rather independent of partition

14



case n BIC results MICL results

ω̂ Ĝ ẑ1 ẑ2 ω̂ Ĝ ẑ1 ẑ2

easy 25 0.26 0.12 0.79 0.96 0.23 0.76 0.84 0.99

50 0.52 0.04 0.90 0.97 0.40 0.44 0.87 0.96

100 0.82 0.00 0.82 0.91 0.71 0.28 0.88 0.97

200 0.93 0.00 0.72 0.78 0.87 0.04 0.83 0.92

interm. 25 0.26 0.16 0.51 0.81 0.24 0.68 0.38 0.82

50 0.30 0.08 0.57 0.72 0.23 0.64 0.56 0.74

100 0.50 0.00 0.56 0.72 0.36 0.36 0.57 0.72

200 0.67 0.00 0.49 0.60 0.56 0.04 0.60 0.72

hard 25 0.16 0.48 0.04 0.18 0.07 0.20 0.00 0.07

50 0.30 0.24 0.05 0.15 0.15 0.32 0.01 0.07

100 0.47 0.08 0.08 0.19 0.28 0.60 0.01 0.09

200 0.65 0.00 0.11 0.18 0.50 0.72 0.02 0.08

Age Chi EL ELH Rel Oc OcH SLI ME G1 G2 BIC

1 1 2 2 2 1 2 2 2 6 3 -16078

1 1 2 2 2 1 2 2 2 5 3 -16081

1 1 2 2 2 2 2 2 2 4 3 -16088

Table 3: Best three models according to the BIC: block repartition, number of components per block and

BIC values.

1.

Finally, on Figure 6, we study the distribution of the contraceptive methods used, which

has not been used in the clustering and would be the target in the supervised classification

setting. Here, the partition 1 seems the most correlated to the variable contraception, which

could be expected because variables of block 1 are by definition linked with the contraceptive

choice (Wife’s age, number of children and wife’s now working). Variables of block 2 rather

produces a partition around the the wife’s education and the standard of living issue.
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Partition 2 according to partition 1
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Figure 2: Distribution of the partition produced by the second block of variables given the partition

produced by first block of variables.
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Figure 3: Distribution of the variables clustered in block 1 given the partition (partition 1 or partition 2).

We now consider the results obtained by the MICL. The best three models according to

the MICL are presented in Table 4. The best two models select two blocks, while the third

model selects only one block. For the best two models, the second block contains only one
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Figure 4: Distribution of the three first variables clustered in block 2 given the partition (partition 1 or

partition 2).
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Figure 5: Distribution of the three last variables clustered in block 2 given the partition (partition 1 or

partition 2).

variable (Occupation). Because this block contains only a single component, this variable is

detected as non relevant for the clustering. This show that the proposed approach permits
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Figure 6: Distribution of the contraceptive method used given the partition (partition 1 or partition 2).

to perform variable selection in clustering.

Age Chi EL ELH Rel Oc OcH SLI ME G1 G2 BIC

1 1 1 1 1 2 1 1 1 4 1 -16293

1 1 1 1 1 2 1 1 1 5 1 -16301

1 1 1 1 1 1 1 1 1 4 . -16307

Table 4: Best three models according to the MICL: block repartition, number of components per block and

MICL values.

On Figure 7 we compare the partition produced by MICL with the other partitions

previously studied.

6.3. Golub data

We consider the dataset published in 1999 by Golub et al. (1999). It showed how new

cases of cancer could be classified by gene expression monitoring (via DNA micro-array) and

thereby provided a general approach for identifying new cancer classes and assigning tumors

to known classes. These data were used to classify patients with acute myeloid leukemia

(AML) and acute lymphoblastic leukemia (ALL). This data describes n = 38 patients with

d = 3051 continuous variables. Cluster analysis of such data are complex because the number

of variables is more than the number of observations. In such cases, variable selection is
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Figure 7: Distribution of the clustering produced by MICL given the two clustering produced by BIC and

the contraceptive choice.

especially important. We used the proposed approach to cluster this dataset. Note that the

information about the type of cancer is hidden during the cluster analysis. This information

is used to evaluated the performances of the clustering.

First, data are analyzed using a classical Gaussian mixture model (i.e., B = 1 and G1 ∈

{1, . . . , 6}). Then, data are analyzed using a Gaussian mixture model performing variable

selection (i.e., B = 2, G1 ∈ {1, . . . , 6} and G2 = 1). Finally, data are analyzed with the

bi-partition clustering approach performing variable selection (i.e., B = 3, G1 ∈ {1, . . . , 6},

G2 ∈ {1, . . . , 6} and G3 = 1).

Table 5 presents the results obtained by the three approaches when model selection is done

with the BIC. The Gaussian mixture model performing variables selection permits to obtain a

better value of the BIC than the classical Gaussian mixture. However, the resulting partition

is less similar to the partition of reference. Thus, the 32% relevant variables can explain

an other structure between observations. The use of the bi-partition clustering approach

performing variable selection is also relevant. First, note that this latter approach obtains

the best value of the BIC. Moreover, the partition of block 1 and the partition of reference

are similar. Finally, block 2 permits to detect an other structure among observations.

For the Golub data clustering, well-separated clusters could be wanted. Moreover, the

use of the BIC when n < d can suffer from criticisms. Thus, analysis is also done with the
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B G ARI % of variables

1 G1 = 2 0.70 100

2 G1 = 4 0.19 32

G2 = 1 0.00 68

3 G1 = 3 0.51 28

G2 = 4 0.17 18

G3 = 1 0.00 54

Table 5: Results obtained with the BIC on Golub data: number of blocks (B), number of components per

blocks (G), adjusted Rand index between the estimated partitions and the partition of reference (ARI),

percentile of variables within blocks (% of variables).

MICL. Table 6 presents the results obtained by the three approaches when model selection

is done with the MICL.

B G ARI % of variables

1 G1 = 1 0.00 100

2 G1 = 2 0.79 18

G2 = 1 0.00 82

3 G1 = 2 0.70 16

G2 = 4 0.51 6

G3 = 1 0.00 78

Table 6: Results obtained with the MICL on Golub data: number of blocks (B), number of components

per blocks (G), adjusted Rand index between the estimated partitions and the partition of reference (ARI),

percentile of variables within blocks (% of variables).

The best model according to MICL is defined by B = 3 and G = (2, 4, 1). The first

block of variables is composed with 16% of the observed variables and its partition is equal

to the partition provided by the bi-component Gaussian mixture. Thus, it permits an easier

interpretation of the partition, because this interpretation focuses only on a small subset of
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the variables. Moreover, the second block detects a specific structure defined by only 6% of

the observed variables. Finally, note that the Gaussian mixture performing variable selection

provides the closest partition to the partition of reference. To visualize the clustering results,

a factorial discriminative analysis is performed on blocks 1 and 2. Figure 8 represents

the observations on the map defined by the most discriminative axis of blocks 1 and 2.

Colors (resp. symbols) indicate the memberships of components of block 1 (resp. block 2).

Therefore, the abscissa axis permits to separate the colors while the ordinate axis permits

to separate the symbol. Note that the ordinate cannot discriminate the colors. This is in

coherence with the assumption of independence between blocks.
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Figure 8: Visualization of the multi-partitions clustering results: abscissa axis corresponds to the most

discriminative axis for block 1 and ordinate axis corresponds to the most discriminative axis for block 2.

Colors (resp. symbols) indicate the memberships of components of block 1 (resp. block 2).

This application illustrates that the multi-partition clustering with variable selection

permits to detect different description on the variables. Moreover, interpretation is facilitated
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by variable selection. Indeed, the discriminative blocks (i.e., blocks b with Gb > 1) can be

composed with a few number of variables. It makes no doubt that this relevant information

can be hidden by a large number of non discriminative variables.

7. Conclusion

We have proposed a new method for performing clustering with multiple partitions. The

proposed model is easily interpretable, and permits also to associate each produced partition

with a subset of variables generating it. Thus, allowing to perform a clustering of variables

of eventually different kinds as a by-product. Such kind of model allows in some sense

to limit the subjectivity of the choice of variable in clustering, and allows to find several

potentially interesting structures in the data without imposing that all the variables define

the same clustering. The strength of the proposed approach is to use a simpler model, i.e.

conditional independence assumption, than the state of the state of the art methods. Thus,

the challenging problem of model selection can be circumvented, even for a large number of

variables. Indeed, model selection can be done efficiently by maximizing classical information

criteria (BIC or MICL).

The proposed method offers many possible extensions. On the first hand, since it performs

the clustering of the individuals and of the variables simultaneously, it can be in some

sense interpreted as a co-clustering method. However to fit with the standard formulation

of co-clustering with only one partition for the individuals, an additional modeling layer

should be added to summarize the multi-partition by only a single partition. On the order

hand, it would also be interesting in the quantitative setting to derive some k-means type

approximation of the proposed method in order to deal with the very high dimensional

setting as Witten and Tibshirani (2010) in the variable selection framework.
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Appendix A. Closed-form of the integrated complete-data likelihood

Appendix A.1. Details about the prior distributions

We use conjugate prior distributions, thus we assume that
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• πb|m follows a Dirichlet distribution DGb
(u1, . . . , uGb

).

• If variable j is continuous, αjg = (µjg, σjg) where µjg is the mean of variable j for com-

ponent g and σjg is its standard deviation. We assume that p(αjg) = p(σ2
jg)p(µjg|σ2

jg)

where σ2
jg follows an Inverse-Gamma distribution IG(aj/2, b

2
j/2) and µjg|m, σ2

jg follows

a Gaussian distribution N (cj, σ
2
jg/dj).

• If variable j is integer, αjg follows a Gamma distribution Ga(aj, bj).

• If variable j is categorical, αjg follows a Dirichlet distributionDmj
(aj, . . . , aj) if variable

j is categorical with mj levels.

If there is no information a priori on the parameters, we use the Jeffreys non-informative

prior distributions for the proportions (i.e., ug = 1/2) and for the hyper-parameters of a

categorical variable (i.e., agj = 1/2).

Appendix A.2. Details about the closed-form of the integrated complete-data likelihood

To compute the integrated complete-data log-likelihood, we give the values p(zb|Gb) and

p(xj|Gωj
, ωj, zωj

) for the different types of data (continuous, integer and categorical).

• p(zb|Gb) =
Γ
(

Gb
2

)
Γ( 1

2)
Gb

∏Gb

g=1 Γ
(
ng + 1

2

)
Γ
(
n+ Gb

2

) .

• If variable j is continuous, then

p(xj|zωj
, Gωj

, ωj) = π−n/2

(
b
aj/2
j d

1/2
j

Γ(aj/2)

)Gωj Gωj∏
g=1

Γ(Agj/2)

B
Agj

gj D
1/2
gj

,

where Agj = ngωj
+ aj, B

2
gj = b2

j +
∑n

i=1 ziωjg(xij − x̄jk)2 +
(cj − x̄jg)

2

d−1
j + n−1

gωj

, Dgj = ngωj
+ dj,

x̄jg =
1

ngωj

∑n
i=1 ziωjgxij and ngωj

=
∑n

i=1 ziωjg.

• If variable j is integer, then

p(xj|zωj
, Gωj

, ωj) =
1∏n

i=1 Γ(xij + 1)

(
b
aj
j

Γ(aj)

)Gωj
Gωj∏
g=1

Γ(Agj)B
−Agj

gj ,

where Agj =
∑n

i=1 ziωjgxij + aj and Bj = b2
j +

∑n
i=1 ziωjg.
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• If variable j is categorical with mj levels, then

p(xj|zωj
, Gωj

, ωj) =

(
Γ
(
mja

)
Γ(a)mj

)Gωj
Gωj∏
g=1

∏mj

h=1 Γ
(∑n

i=1 ziωjg1{xij=h} + aj
)

Γ
(∑n

i=1 ziωjg +mjaj
) .
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