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Abstract

The reversible jump Markov chain Monte Carlo (RJMCMC) method offers an across-model sim-

ulation approach for Bayesian estimation and model comparison, by exploring the sampling space

that consists of several models of possibly varying dimensions. A naive implementation of RJM-

CMC to models like Gibbs random fields suffers from computational difficulties: the posterior dis-

tribution for each model is termed doubly-intractable since computation of the likelihood function

is rarely available. Consequently, it is simply impossible to simulate a transition of the Markov

chain in the presence of likelihood intractability. A variant of RJMCMC is presented, called noisy

RJMCMC, where the underlying transition kernel is replaced with an approximation based on

unbiased estimators. Based on previous theoretical developments, convergence guarantees for

the noisy RJMCMC algorithm are provided. The experiments show that the noisy RJMCMC

algorithm can be much more efficient than other exact methods, provided that an estimator with

controlled Monte Carlo variance is used, a fact which is in agreement with the theoretical analysis.

Keywords: Bayes factors, Intractable likelihoods, Markov random fields, Noisy MCMC.

1. Introduction

Model selection is a problem of great importance in statistical science. The aim is to choose

which model among a set of possible ones best describes the data y∈Y . From a Bayesian perspec-

tive, the prior beliefs for each model are reflected by a prior distribution and this information is

then updated subjectively when data are observed. This step is typically carried out by calculating

the marginal likelihood or evidence for each model, which is defined as the integrated likelihood

with respect to the prior measure. In many cases, this quantity cannot be derived analytically and

thus needs to be estimated.

This paper considers the problem of Bayesian model comparison of doubly-intractable dis-

tributions. The motivating application is Gibbs random fields (GRFs), which are discrete-valued

Markov random fields where an intractable normalising constant that depends on the model pa-

rameters, z(θ), is present for the tractable un-normalised likelihood q(y | θ). The likelihood den-

sity, given a vector of parameters θ ∈ Θ ⊆ Rd and a vector of statistics s(y) ∈ S ⊆ Rd
+ that are
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sufficient for the likelihood, is

f (y | θ) = q(y | θ)
z(θ)

=
exp

{

θ⊤s(y)
}

∑y∈Y exp
{

θ⊤s(y)
} . (1)

Posterior parameter estimation for GRFs, which have found applicability in areas like image anal-

ysis and disease mapping (Friel and Rue, 2007), genetic analysis (François et al., 2006) and so-

cial network analysis (Wasserman and Pattison, 1996), is termed a doubly-intractable problem

because the normalisation terms of both the likelihood function and the posterior distribution

π(θ | y) ∝ f (y | θ)p(θ) are intractable. Bayesian model comparison of such models has at-

tracted the attention of researchers and several methods have been considered, relying on like-

lihood simulations (Friel, 2013; Caimo and Friel, 2013; Everitt et al., 2017a), approximations to

the intractable likelihood (Bouranis et al., 2018) and likelihood-free simulation techniques like the

Approximate Bayesian Computation (ABC) algorithm (Grelaud et al., 2009) .

In this paper we explore trans-dimensional Markov chain Monte Carlo (MCMC) for GRFs,

focusing on the direct approach of a single across-model Markov chain using the celebrated

reversible jump MCMC (RJMCMC) technique (Green, 1995). The advantage of across-model

approaches is that they avoid the need for computing the evidence for each competing model by

treating the model indicator as a parameter, where the chain explores simultaneously the model set

and the parameter space. In the context of GRFs, however, RJMCMC techniques simply cannot

be implemented because the likelihood normalising constant z(θ) cannot be computed point-wise.

Below we present a summary of the main contributions of this paper.

A variant of the RJMCMC algorithm is developed, where the intractable ratio of normalising

constants that the acceptance probability depends on is approximated by an unbiased estimator.

The resulting algorithm falls in the noisy MCMC framework (Alquier et al., 2016) as it simulates

a chain that is not invariant for the target distribution.

As pointed out in Alquier et al. (2016), noisy MCMC is connected to pseudo-marginal algo-

rithms (Andrieu and Roberts, 2009), where an unbiased and positive estimate of the target density

is required. In the presence of an intractable normalising constant, the pseudo-marginal approach

requires an unbiased estimate of 1/z(θ). However, the reciprocal 1/ẑ(θ) yields a biased approxi-

mation of 1/z(θ) and so is not directly applicable to inference using pseudo-marginal techniques.

Recently, Lyne et al. (2015) addressed this bias with Russian Roulette sampling, which yields an

asymptotically exact algorithm. The implementation of the algorithm is computationally expen-

sive, however, creating difficulties when inferring the model parameters for GRFs. Non-negative

unbiased estimators have also been studied in Jacob and Thiery (2015), which showed that finding

such an estimate is very challenging.

Consequently, we do not pursue such a computational approach in this paper. Instead, moti-

vated by the inefficiency of a standard RJMCMC algorithm, we develop a noisy RJMCMC sam-

pler that targets an approximated posterior distribution, rather than the desired one. We extend

the theoretical analysis of noisy MCMC algorithms proposed in Alquier et al. (2016) to trans-

dimensional kernels, providing bounds on the total variation between the Markov chain of a noisy

RJMCMC algorithm and a Markov chain with the desired target distribution under certain condi-

tions.

We show that noisy RJMCMC algorithms are only useful when the estimator of the ratio of

normalising constants has a small variance. Motivated by Gelman and Meng (1998), we propose a

smoother transition path between different models and resort to an alternative estimator with lower
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variance. We demonstrate empirically that this idea simultaneously: (i) improves the mixing of the

RJ Markov chain and (ii) decreases the asymptotic bias between the exact RJ Markov chain and

its noisy approximation. Finally, we construct efficient jump proposal distributions for random

walk (RW) noisy RJMCMC, which could be useful in the context of a large number of nested

competing models.

The outline of the article is as follows. Section 2 introduces the reader to basic concepts

regarding Bayesian model comparison and to the reversible jump MCMC formulation. In Section

3 we discuss the extension of the reversible jump methodology to doubly-intractable posterior

distributions and present theoretical properties and practical aspects of the RJMCMC samplers

under such computational difficulties. Section 4 presents some proposal tuning strategies for noisy

RJMCMC. In Section 5 we study the theoretical behavior of the noisy RJMCMC algorithm and

derive convergence bounds. We investigate the performance of noisy RJMCMC with a detailed

numerical study that focuses on social network analysis in Section 6. We conclude the paper in

Section 7 with final remarks.

2. Preliminaries

Suppose a finite set of competing models M = {M1,M2,M3, . . .} are under consideration to

describe the data y. In the Bayesian setting each model Mm, where m ∈ {1,2,3, . . .}, is char-

acterised by a likelihood function f (y | θm,Mm) = fm(y | θm) ∝ qm(y | θm), parameterised by

an unknown parameter vector θm ∈ Θm. Each model is also associated with a prior distribution

p(θm |Mm) = pm(θm), used to express the beliefs about the parameter vector prior to observing

the data y. The focus of interest in Bayesian inference for each competing model is the posterior

distribution

π(θm | y,Mm) =
fm(y | θm)pm(θm)

π(y |Mm)
. (2)

The prior beliefs for each model are expressed through a prior distribution p(Mm), such that

∑m∈M p(Mm) = 1.

2.1. Bayesian model comparison

The marginal likelihood or model evidence for model Mm is

π(y |Mm) =
∫

Θm

fm(y | θm)pm(θm)dθm

and is rarely analytically tractable. However, knowledge of the evidence is required for a quan-

titative discrimination between competing models with the posterior model probabilities. Using

Bayes’ theorem the posterior model probability for model Mm is

π(Mm | y) =
π(y |Mm)p(Mm)

∑
|M |
j=1 π(y |M j)p(M j)

, (3)

where |M | is the cardinality of the model set. The probabilities π(Mm | y) are treated as a measure

of the uncertainty of model Mm. Comparison of two competing models in the Bayesian setting is
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performed through the Bayes factor

BFm,m′ =
π(y |Mm)

π(y |Mm′)
,

which provides evidence in favor of model Mm compared with model Mm′ . Using (3), the Bayes

factor can also be expressed as the ratio of the posterior model odds to the prior odds,

BFm,m′ =
π(Mm | y)
π(Mm′ | y)

/
p(Mm)

p(Mm′)
.

A comprehensive review of Bayes factors is presented by Kass and Raftery (1995). There are at

least two computational approaches to estimate Bayes factors: (i) within-model simulation, where

the evidence is estimated separately for each model, see Friel and Wyse (2012) for a recent review

on related methods; (ii) across-model simulation with trans-dimensional MCMC methods, which

involves estimation of posterior model odds for chosen prior model odds. Reversible jump MCMC

(Green, 1995) is a popular trans-dimensional MCMC method and is the focus of this work.

2.2. Reversible jump MCMC

Reversible jump MCMC (Green, 1995) generalises the Metropolis-Hastings (MH) algorithm

(Metropolis et al., 1953; Hastings, 1970) to allow for sampling from a distribution on a union of

spaces of possibly differing dimensions, permitting state-dependent choices of move types. Let π
be a distribution over the general state space X ,

X =
⋃

m∈M

({m},Θm) , M = {M1,M2,M3, . . .}, Θm ⊆ R
dm .

The dimension of the parameter space Θm of model Mm is denoted by dm. The target π is a joint

posterior distribution on a model and a parameter,

π(Mm,θm | y) =
fm(y | θm)pm(θm)p(Mm)

∑
|M |
k=1 fk(y | θk)pk(θk)p(Mk)dθk

. (4)

which can be factorised as the product of posterior model probabilities and model-specific param-

eter posteriors,

π(Mm,θm | y) = π(Mm | y)π(θm | y,Mm). (5)

To sample the model indicator and the model parameters jointly a Markov chain is constructed

with state space X and stationary distribution π(Mm,θm | y). The state space X is a finite union of

subspaces of possibly varying dimensions. By marginalisation, we obtain the probability of being

in subspace Θm.

The reversible jump MCMC scheme allows for Metropolis-Hastings moves between states

defined by x= (m,θ) and x′= (m′,θ′) that may have different dimensions dm and dm′ , respectively.

Since it is a MH-type algorithm it is π-reversible and thus π-invariant. As a consequence, the

Markov chain simulated by RJMCMC produces samples (m,θm)∼ π(· | y).
Below we formulate the RJMCMC algorithm in a way that generalises non trans-dimensional

MCMC. This will ease the analysis of Section 5. Let h(θ′,m′ | θ,m) = ω(m,m′)Tm,m′(θ,θ
′) be

the proposal distribution for the transition from (m,θm) to (m′,θm′). We denote by ω(m,m′) the

4



probability of proposing a jump to model Mm′ when the chain is currently at model Mm and by

Tm,m′(θ,θ
′) the proposal for the parameter vector. For simplicity, we consider the case of RW

updates when there are common parameters between the current and the proposed states. We

define Cm,m′ as the indicator of the common parameters between models Mm, Mm′ so that θCm,m′

is a sub-vector of model parameters and by C m′,m the set of parameters that are in Mm′ , but not

in Mm. Then the proposed parameter vector is defined as θ′ := [θCm,m′ ,θ
′
C m′,m

] ∈ Rdm′ . and the

proposal distribution for the parameter vector takes the form

Tm,m′(θ,θ
′) =

{

g(θ′
C m′,m

| θCm,m′ ) if m 6= m′,

w(θ′ | θ) if m = m′,
(6)

where g(· | θ) and w(· | θ) are some proposal distributions. The RJMCMC scheme proceeds as in

Algorithm 1. Green (1995, 2003) offers a representation in terms of random numbers and a Jaco-

bian term to eliminate the apparent difficulty of moving between spaces of different dimensions.

The advantage of RJMCMC is that estimates of the posterior model probabilities are readily

available along with parameter estimates for each competing model. Of course, if the Markov

chain never visits a model because it is unlikely a-posteriori then the parameter estimates will

not be available for that model. To assess support for the models under examination with the

RJMCMC scheme, the output from the trans-dimensional chain is processed to calculate the Bayes

factor. Assuming equal prior probabilities on models Mm and Mm′ , this motivates the simple

estimate of Bm,m′ as Fm/Fm′ , where Fm is the frequency of visits (out of a chain of length G) to

model Mm.

Algorithm 1 Reversible jump MCMC

1: Initialise (m0,θ0).
2: for n = 0, . . . ,G−1 do

3: Select a candidate model Mm′ with probability ω(m(n),m
′).

4: Propose θ′ ∼ Tm(n),m
′(θ(n),θ

′).
5: Estimate the acceptance probability Am(n),m

′(θ(n),θ
′) = min{1,ρm(n),m

′(θ(n),θ
′)},

ρm(n),m
′(θ(n),θ

′) =
fm′(y | θ′)

fm(n)
(y | θ(n))

pm′(θ
′)

pm(n)
(θ(n))

p(Mm′)

p(Mm)

ω(m′,m(n))

ω(m(n),m
′)

Tm′,m(n)
(θ′,θ(n))

Tm(n),m
′(θ(n),θ

′)
. (7)

6: Set (m(n+1),θ(n+1)) ← (m′,θ′) with probability A, else (m(n+1),θ(n+1)) ← (m(n),θ(n)).
7: end for

8: return {mn,θn}n=1,...,G

3. Reversible jump MCMC in the presence of likelihood intractability

The reversible jump algorithm presents an asymptotically (as the number of transitions G→∞)

exact MCMC method by targeting the posterior distribution of interest, π. When the posterior

involves an intractable likelihood a naive implementation of RJMCMC for GRFs is challenging

because it is simply not possible to simulate a transition of this exact chain.
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Indeed, given the current state (m,θ), the proposed value of the next state of the chain, (m′,θ′),
is accepted with probability Am,m′(θ,θ

′) = min{1,ρm,m′(θ,θ
′)}, where

ρm,m′(θ,θ
′) =

qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

ω(m′,m)

ω(m,m′)

Tm′,m(θ
′,θ)

Tm,m′(θ,θ′)
× zm(θ)

zm′(θ′)
. (8)

The acceptance probability is dependent on a ratio of intractable normalising constants and, thus,

cannot be directly evaluated. GRF models belong to the exponential family and satisfy the identity

zm(θ)

zm′(θ′)
= ∑

y∈Y

qm(y | θ)
qm′(y | θ′)

qm′(y | θ′)
zm′(θ′)

= Ey∼ fm′ (·|θ′) [w(y)] . (9)

This expectation can be estimated with importance sampling, where w(y) = qm(y | θ)/qm′(y | θ′)
are the importance sampling weights.

Below we present variants of the RJMCMC algorithm that bypass the need to calculate the

intractable ratio zm(θ)/zm′(θ
′) in (8), by replacing it with an unbiased estimator. It is important to

note that using an estimator instead of the true ratio has significant consequences on the conver-

gence of the Markov chain. In particular, the Markov chain is usually no longer asymptotically

exact and in this context, such an algorithm is referred to as noisy MCMC. However, Alquier et al.

(2016) have shown that the distribution of the noisy MCMC Markov chain can be made arbitrarily

close to the desired stationary distribution, provided that an estimator with an arbitrarily small

variance is available. In the following, we refer to as noisy RJMCMC the implementation of the

RJMCMC algorithm where the ratio zm(θ)/zm′(θ
′) is estimated.

The efficiency of the noisy RJMCMC depends on the asymptotic approximation of π, an es-

timator of zm(θ)/zm′(θ
′) with small variance and the mixing property of the chain. The first and

second points are discussed in the remainder of this Section through the presentation of different

estimators of the ratio of normalising constants. The third point is considered at Section 4, where

efficient proposal distributions are designed.

3.1. Reversible jump exchange algorithm

Murray et al. (2006) presented the exchange algorithm that allows inference for doubly-intractable

distributions and circumvents the issue of intractability of (1). The exchange algorithm introduces

an auxiliary variable y′ ∼ fm′(· | θ′) that is used to estimate the intractable ratio of normalising

constants with a one-sample unbiased importance sampling estimator of (9).

Pseudo-marginal algorithms (Andrieu and Roberts, 2009) share the same principles with the

exchange algorithm, replacing the intractable likelihood function with a positive and unbiased

estimate that can be obtained using likelihood simulations or importance sampling. Like the

exchange algorithm, pseudo-marginal MCMC defines an asymptotically exact MCMC algorithm.

Caimo and Friel (2014) devised a trans-dimensional extension of the exchange algorithm which

is π-invariant and generalises the exchange algorithm of Murray et al. (2006) to trans-dimensional

settings in the same way that RJMCMC generalises the Metropolis-Hastings algorithm. We refer

to this instance as the RJ exchange when N = 1 draws from the likelihood are used to estimate (9).

Despite yielding a Markov chain that is π-invariant, the one-sample unbiased importance

sampling estimator usually has a large variance (see discussion below). Empirical results in

Alquier et al. (2016) suggest that such an exchange algorithm is likely to be inefficient because
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of slow mixing properties and propose taking multiple auxiliary draws N > 1. In the trans-

dimensional setting, this motivates a noisy RJMCMC algorithm that uses N > 1 likelihood draws

or another estimator with small variance.

A graphical illustration that attempts to explain the inefficiency of the RJ exchange can be seen

in Figure 1. This example involves transitions with a random walk proposal from ERG model M1

to model M2, which we provide details of in Section 6.2. It is evident that the RJ exchange

acceptance ratio will frequently underestimate the RJ MH acceptance ratio, making it more likely

to reject the proposed move and affecting the convergence speed of the algorithm, particularly as

the L2 norm ‖θ−θ′‖2 increases.

0.00

0.05

0.10

0.15

0.20

0.25

0.0321 0.0686 0.1148 0.1563 0.1636 0.1717 0.257 0.2654 0.2866 0.3073
||θ − θ′||2

A
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ep
ta

nc
e 

ra
tio

RJ MH estimate

Figure 1: In the context of a trans-dimensional move between 2 different exponential random graph (ERG) models

(see Section 6), 10 samples (θ,θ′) are drawn at random. For each of them we plot the MH acceptance rate (yellow

spade) and the distribution of the exchange acceptance rate (violin plot). In practice the MH acceptance rate is not

tractable but we use (10) with N = 5× 105 to estimate it precisely. As the distance between θ and θ′ increases, the

acceptance ratio in the RJ exchange algorithm becomes more variable.

3.2. Noisy reversible jump MCMC

Estimating ratios of intractable normalising constants using (9) has been proposed in Alquier et al.

(2016). A Monte Carlo estimator based on multiple auxiliary draws from the likelihood with re-

spect to the proposed parameter, y′1,y
′
2, . . . ,y

′
N ∼ fm′(· | θ′), approximates (9) by

ẑm(θ)

zm′(θ′)
=

1

N

N

∑
i=1

qm(y
′
i | θ)

qm′(y
′
i | θ′)

. (10)
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For the remainder of the paper, we will refer to (10) as the standard importance sampling estimator

(ISE). The special case where N = 1 yields the RJ exchange algorithm. We now address the issue

of estimator variance.

The work of Stoehr et al. (2017) that considered non trans-dimensional moves demonstrated

that the quality of the ISE strongly decreases when the distance ‖θ−θ′‖2 increases. This is even

more involved when θ and θ′ belong to different parameter spaces. Boland et al. (2017) proved

that the variance of the estimator (10) is controlled when the distance between the parameters

decreases. This result can be extended to jumps between models of different dimensions. For in-

stance, in the case of an independence sampler the full parameter vector is updated. Consequently,

‖θ−θ′‖2 can be large and so may be the variance of the estimator. This is a serious concern that

may affect the performance of the algorithm, as mentioned at the beginning of Section 3.

To study the variance of the ISE in the trans-dimensional setting, we consider for simplicity

the case of a random walk transition between two nested models where dm < dm′ and define

θ̇ := [θCm,m′ ,0dm′−dm
] ∈ Rdm′ . A RW allows us to control the distance

∥

∥θ̇−θ′
∥

∥

2
, as it is simply

equal to

∥

∥

∥

∥

θ′
C m′,m

∥

∥

∥

∥

2

, and to apply Proposition 1 below.

Proposition 1 (Proposition 1 in Boland et al. (2017)). For any GRF model and (θ̇,θ′) ∈ Θm′ ×
Θm′ , the variance (denoted by the variance operator V) of the estimator in (10) decreases when
∥

∥θ̇−θ′
∥

∥

2
↓ 0, such that

Vy′1,y
′
2,...,y

′
N∼ fm′(·|θ′)

[

̂zm′(θ̇)

zm′(θ′)

]

= O(
∥

∥θ̇−θ′
∥

∥

2
), (11)

To further decrease the variance in (11) we consider an alternative estimator that takes ad-

vantage of the auxiliary draws from the likelihood, and one which has also been considered in

previous works (Friel, 2013; Bouranis et al., 2018; Stoehr et al., 2017; Everitt et al., 2017b). Let

us introduce an auxiliary variable t ∈ [0,1] and discretise [0,1] as 0 = t1 < .. . < tL = 1, where

L ∈ Z+. We remain in the case of nested model jumps and define the vector-valued mapping

θ′(t) :=

{

(1− t)θ̇+ tθ′ if dm < dm′,

(1− t)θ+ tθ′ if dm = dm′.

The idea is to replace the ratio of normalising constants by a telescopic product of ratios of nor-

malising constants taken at two consecutive points of the path t ∈ [0,1], so that (θ′(t j),θ
′(t j+1))

are close to each other. More precisely, the ratio of normalising constants can be written as

zm′(θ
′(t1))

zm′(θ′(tL))
=

L−1

∏
j=1

zm′(θ
′(t j))

zm′(θ′(t j+1))
. (12)

Any factor in the RHS of this equation is estimated as follows. The un-normalised likelihood

qm′(y | θ′(t j)) can be considered as an importance distribution for the "target" distribution fm′(y |
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θ′(t j)), noting that

zm′(θ
′(t j))

zm′(θ′(t j+1))
= Ey( j+1)∼ fm′(·|θ′(t j+1))

[

qm′(y
( j+1) | θ′(t j))

qm′(y( j+1) | θ′(t j+1))

]

.

An unbiased importance sampling estimator of this expectation can be obtained by simulating

multiple draws y
( j+1)′

1 , . . . ,y
( j+1)′

S ∼ fm′(· | θ′(t j+1)), yielding

̂zm′(θ′(t j))

zm′(θ′(t j+1))
=

1

S

S

∑
b=1

qm′(y
( j+1)′

b | θ′(t j))

qm′(y
( j+1)′
b | θ′(t j+1))

.

Since the expectation of a product of independent random variables is the product of the expecta-

tions, then

̂zm′(θ′(t1))
zm′(θ′(tL))

:=
L−1

∏
j=1

̂zm′(θ′(t j))

zm′(θ′(t j+1))
=

L−1

∏
j=1





1

S

S

∑
b=1

qm′(y
( j+1)′

b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))



 (13)

gives an unbiased estimator of the intractable ratio of normalising constants.

This telescopic product estimator (TPE) will come at an extra computational cost, similarly to

(10). The larger the number of path steps L and the number of draws S (where N = (L−1)×S),

the more precise the estimate of the ratio of normalising constants at the expense of computational

time. Nevertheless, empirical results in Section 6 show that this estimator can lead to improved

performance results compared to the ISE for the same number of likelihood draws in the estimator.

Algorithm 2 contains pseudo-code for the noisy RJMCMC algorithm.

Algorithm 2 Noisy reversible jump MCMC

1: Initialise (m0,θ0).
2: for n = 0, . . . ,G−1 do

3: Select a candidate model Mm′ with probability ω(m(n),m
′).

4: Propose θ′ ∼ Tm(n),m
′(θ(n),θ

′).
5: Draw y′1, . . . ,y

′
N ∼ fm′(· | θ′) depending on the type of estimator of the ratio

zm(n)
(θ(n))/zm′(θ

′), using (10) or (13).

6: Estimate the acceptance probability Âm(n),m
′(θ(n),θ

′,y′) = min{1, ρ̂m(n),m
′(θ(n),θ

′,y′)},

ρ̂m(n),m
′(θ(n),θ

′,y′) =
qm′(y | θ′)

qm(n)
(y | θ(n))

pm′(θ
′)

pm(n)
(θ(n))

p(Mm′)

p(Mm(n)
)

ω(m′,m(n))

ω(m(n),m′)

Tm′,m(n)
(θ′,θ(n))

Tm(n),m
′(θ(n),θ′)

×
̂zm(n)
(θ(n))

zm′(θ′)
. (14)

7: Set (m(n+1),θ(n+1)) ← (m′,θ′) with probability Â, else (m(n+1),θ(n+1)) ← (m(n),θ(n)).
8: end for

9: return {mn,θn}n=1,...,G
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It is worth noting that Karagiannis and Andrieu (2013) use a similar telescopic product, where

the transition path is used to introduce a trans-dimensional Annealed importance sampling (AIS)

estimator of the ratio π(m′,θ′)/π(m,θ) that appears in (7). Contrary to the noisy RJMCMC al-

gorithm which uses an importance sampling estimator of the ratio of likelihood normalising con-

stants, the proposed RJMCMC algorithm of Karagiannis and Andrieu (2013) does not target a

similar posterior distribution as the noisy RJMCMC algorithm and the trans-dimensional AIS

estimator is constructed in a different way.

4. Choice of reversible jump proposal densities

All algorithms in this paper were run using a proposal distribution ω(m,m′) for the transition

from (m,θm) to (m′,θm′) that was set to a discrete Uniform U(1, |M |). Below we present the

strategies that we followed in order to tune the proposal distribution for the parameter vector.

4.1. Independent proposals

We adopted the auto-reversible jump (Auto-RJ) exchange algorithm that was proposed by

Caimo and Friel (2013) to perform Bayesian model comparison of exponential random graph

models in the area of Bayesian network analysis.

The Auto-RJ takes the form of an independence sampler, making use of a parametric approxi-

mation of the posterior distribution for each model in an attempt to bypass the issue of tuning the

parameters of the jump proposal distributions and increase within-model acceptance rates. The

Auto-RJ consists of pilot MCMC runs that are used to sample from the posterior distribution of

each competing model with the exchange algorithm (Murray et al., 2006) and then to approximate

the estimated posterior by Gaussian distributions determined by the first moments of each sample.

The online step of the Auto-RJ sets Tm,m′(θ,θ
′) to this approximation of the posterior density for

both the within- and between-model jumps.

The TPE in (13) is particularly suitable to the independence sampler, as it allows for "long"

transitions (in terms of a larger L2 norm in this context) while having an estimator of the intractable

ratio of normalising constants with small variance, compared to the ISE. On the other hand, the

requirement of pilot MCMC runs reduces the appeal of this method when the number of models

under investigation is large. Indeed, in such a case a within-model simulation approach may be

as efficient. Additionally, the Auto-RJ is likely to fail when the posterior of at least one model is

multi-modal.

4.2. Random walk proposals

A natural alternative to the independence sampler comes from allowing the proposal (m′,θ′)
to depend on the current state (m,θ). Despite eliminating the need for pilot runs, an open question

remains as to how optimally estimate the proposal variance parameter. An inefficient proposal

mechanism will result in a Markov chain which slowly explores the state space and has high auto-

correlation, increasing the asymptotic variance of Monte Carlo estimators. Such inefficiency can

be caused by not proposing large moves away from the current state of the chain or by proposing

moves with prohibitively small associated acceptance probabilities.

For the within-model Gaussian RW updates (see below), a proposal distribution with a variance-

covariance matrix in the form of Σm′ = λm′(Ωm′+C−1
m′ )
−1 was assumed, to account for possible

correlations between the model parameters (Chib and Jeliazkov, 2001; Martin et al., 2011). The

prior precision is denoted by Ωm′ and λm′ ∈ R+ is a positive Metropolis tuning parameter. The

10



precision matrix C−1
m′ is set as the negative Hessian −∇2

θm′
log fm′(y | θm′)|θ̂MLE

m′
. Estimation of the

MLE for each ERG model in Section 6 was performed with the Monte Carlo Maximum Like-

lihood Estimation (MC-MLE) procedure proposed by Geyer and Thompson (1992). Alternative

procedures exist, see Hunter and Handcock (2006). The gradient of the log-likelihood function

can be written as

∇θm′ log fm′(y | θm′) = sm′(y)−
∇θm′ zm′(θm′)

zm′(θm′)

= sm′(y)−
∑y∈Y sm′(y)exp

{

θ⊤m′sm′(y)
}

∑y∈Y exp
{

θ⊤
m′sm′(y)

}

= sm′(y)−Ey|θm′ [sm′(y)] . (15)

Then the Hessian matrix can be found using the identity

∇2
θm′

log fm′(y | θm′) = ∇θm′

[

−
∇θm′ zm′(θm′)

zm′(θm′)

]

=−
{

Ey|θm′
[

s2
m′(y)

]

−
[

Ey|θm′ [sm′(y)]
]2

}

=−Vy|θm′ [sm′(y)] , (16)

where Vy|θm′ [sm′(y)] denotes the covariance matrix of the vector sm′(y) with respect to fm′(y | θm′).
For GRF models those Hessian matrices are intractable and so we resort to Monte Carlo sampling

from fm′(y | θm′) in order to estimate Vy|θm′ [sm′(y)]. This setting helped us reach a reasonable

mixing rate within each model.

For the between-model moves, a popular choice in the implementation of the RJMCMC al-

gorithm for nested cases is the second order method of Brooks et al. (2003). The second order

method is based on a Taylor series expansion of the acceptance probability around certain canon-

ical jumps, providing a fully automated framework for achieving local adaptation of the proposal

density. It attempts to maximise the marginal acceptance probability Am,m′(θ,θ) and not the ex-

tended acceptance probability Am,m′ (θ,θ,y
′) that uses the auxiliary data y′ and so it is incompatible

with the reversible jump exchange algorithm. While such a strategy would be sensible for noisy

RJMCMC, it involves estimation of (15) and (16), which are unavailable in closed form for mod-

els like GRFs. The gradients can be numerically approximated with Monte Carlo simulation;

this relies on repeated likelihood simulations, increasing considerably the computational cost per

iteration of the noisy RJMCMC algorithm and so we do not pursue this strategy further.

Our implementation of the between-model moves is inspired by Ehlers and Brooks (2008),

who proved that the full-conditional posterior distribution, π(θ′
C m′,m

| y,θm,Mm′), which is based

upon the current state of the chain, is the optimal proposal distribution for the random vector

θ′
C m′,m

. We tackled the intractability of the full-conditional by first considering a multivariate

Gaussian distribution MVN
(

θ̂MLE
m′ ,Σm′

)

, assuming diffuse prior distributions. Standard theory

can be used to derive a mean µ∗ and covariance matrix Σ∗m′ and approximate the full-conditional

distribution with a multivariate Gaussian distribution, MVN

(

θ′
C m′,m

;µ∗,Σ∗m′

)

. To summarise, the
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proposal distribution for our implementation of the noisy Gaussian RW RJMCMC is

Tm,m′(θ,θ
′) =







MVN
(

θ′
C m′,m

;µ∗,Σ∗m′
)

if m 6= m′,

MVN
(

θ′;θ,Σm′
)

if m = m′.
(17)

Finally, Karagiannis and Andrieu (2013) construct efficient RJMCMC transitions, relying on the

assumption that the target distribution π(Mm,θm | y) is known up to a normalising constant. For

the reasons explained at Section 3.2, we do not pursue that methodology further.

5. Theoretical guarantees for noisy reversible jump MCMC

The goal of this section is to extend the results of Alquier et al. (2016) to the trans-dimensional

setting and then to apply these to the context of noisy RJMCMC with the different estimators

developed earlier. To do so, we first present RJMCMC as a simple generalisation of the MH

algorithm. Following Section 2.2, we consider again the general state space X that defines the

target distribution π. Our interest lies in constructing a Markov chain with transition kernel P ,

with π as the invariant distribution.

Let us consider π as a probability measure on the compact set X . Then π is an invariant

distribution if ∫
X

π(dx)P (x,dx′) = π(dx).

A sufficient, but not necessary, condition is that the respective Markov chain is reversible, so that

for all Borel sets B,B ′ ⊂ X

∫
B

π(dx)P (x,B′) =
∫

B ′
π(dx′)P (x′,B). (18)

Let υ(x,dx′) be a proposal measure for the move from the current state x = (m,θ) to the proposed

state x′ = (m′,θ′), where x′ is accepted with probability α(x,x′) = Am,m′(θ,θ
′). The transition

kernel is given by

P (x,B′) =
∫

B ′
υ(x,dx′)α(x,x′)+R (x)1(x ∈ B ′), (19)

where

R (x) =

∫
X

υ(x,dx′)[1−α(x,x′)]

is the probability of rejecting any proposed move, while at state x. By substituting (19) into (18),

it is straightforward to show that

∫
(x,x′)∈B,B ′

π(dx)υ(x,dx′)α(x,x′) =
∫
(x,x′)∈B,B ′

π(dx′)υ(x′,dx)α(x′,x).

The above formulation encompasses standard MCMC.

We denote by P̂ the transition kernel of the Markov chain resulting from the estimators (10)

and (13), where the acceptance ratio ρ(x,x′) in α(x,x′) = min{1,ρ(x,x′)} is replaced by an esti-

mator ρ̂(x,x′,y′), yielding α̂(x,x′,y′) = min{1, ρ̂(x,x′,y′)}.

Theorem 2 (Corollary 3.1 in Mitrophanov (2005)). We assume that
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(H1) The reversible jump MH Markov chain with transition kernel P and acceptance probability

α is uniformly ergodic, for which it holds that

sup
x0∈X

‖δx0
P n−π‖ ≤ Qξn

for some constants Q < ∞ and ξ < 1, where ‖ · ‖ is the total variation distance and δ is the

Dirac delta function.

Then for any transition n ∈ N and for any starting point x0 ∈ X it holds that

‖δx0
P n−δx0

P̂ n‖ ≤
(

φ+
Qξφ

1−ξ

)

‖P − P̂‖,

where ‖P − P̂‖= supx∈X ‖δxP −δxP̂‖ is the total variation measure between the two kernels and

φ =
⌈

log(1/Q)
log(ξ)

⌉

≤ n−1.

An application of Theorem 2 is now provided when an approximation to the true transition

kernel arises from Algorithm 2.

Corollary 3. Let us assume that

(H1) The Markov chain with transition kernel P is uniformly ergodic holds.

(H2) There exists a function γ : X 2→R+, such that for all (x,x′) ∈ X 2,

Ey′∼ f (·|x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣≤ γ(x,x′). (20)

Then for any n ∈ N and for any starting point x0 ∈ X it holds that

‖δx0
P n−δx0

P̂ n‖ ≤
(

φ+
Qξφ

1−ξ

)

sup
x

∫
dx′υ(x,x′)γ(x,x′),

where φ =
⌈

log(1/Q)
log(ξ)

⌉

.

When the upper bound in (20) is uniformly bounded such that for all (x,x′) ∈ X 2 it holds that

γ(x,x′)≤ γ <+∞, then

‖δx0
P n−δx0

P̂ n‖ ≤ γ

(

φ+
Qξφ

1−ξ

)

.

Consequently, letting n→ ∞ yields

limsup
n→∞

‖δx0
P̂n−π‖ ≤ γ

(

φ+
Qξφ

1−ξ

)

.

Below we make a series of assumptions that will help us show that the noisy RJMCMC algorithm

will yield a Markov chain which will converge to the target posterior density as: (i) N → ∞, if

the ratio zm(θ)/zm′(θ
′) is estimated with (10) or (ii) L,S→ ∞, if the TPE in (13) is considered,

instead.
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(A1) For each prior over the model-specific parameters, there is a constant cpm
such that

c−1
pm
≤ pm(θ)≤ cpm

,∀m.

(A2) There is a constant cυ(x,x′) such that c−1
υ(x,x′) ≤ υ(x,x′) = h(θ′,m′ | θ,m)≤ cυ(x,x′) ,∀m,m′.

(A3) A prior probability 0 < p(Mm)≤ c
Mm
≤ 1 ,∀m is assigned to each model.

(A4) For any θ ∈Θm and θ′ ∈Θm′ , Vy′∼ f (·|x′)
[

qm(y
′|θ)

qm′ (y
′|θ′)

]

< ∞ ,∀m,m′.

These assumptions are met when Θm is a bounded set for each and every model in the set, such

that

Rm := sup
θm∈Θm

‖θm‖, Sm := sup
y∈Y

‖sm(y)‖, Km := exp{RmSm}

are finite, which gives 0 < exp{−RmSm} ≤ qm(y | θm) ≤ exp{RmSm} for any θm = θ and y ∈ Y ,

using the Cauchy-Schwartz inequality. Hence, we can set Vy′∼ f (·|x′)
[

qm(y
′|θ)

qm′ (y
′|θ′)

]

≤ KmKm′ .

We acknowledge that Assumptions (A1) to (A4) are, in general, quite strong. If Θm is not a

bounded set then they will be unrealistic. However, for the specific case of exponential random

graph models, these assumptions can be deemed realistic for the following reason. These mod-

els are known to feature degenerate regions, i.e. parts of the parameter space where the model

generates only full or empty graphs. Hence, the model parameters will effectively lie on a com-

pact space and so a Bayesian analysis of those models may be carried out, as a matter of course,

with priors whose support is included in the non-degenerate region. In this sense, we feel that

Assumptions (A1) to (A4) become rather mild so that the theoretical results are then relevant.

Lemma 4. Under assumptions (A1)-(A4), for any x,x′ ∈ X , ρ̂(x,x′,y′) estimated with (10) satisfies

Ey′∼ f (·|x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣≤ γIS(x,x
′)

=
1√
N

qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)

×
√

Vy′∼ f (·|x′)

[

qm(y′ | θ)
qm′(y′ | θ′)

]

,

where the upper bound γIS(x,x
′) refers to the case when the ISE is used.

Theorem 5 places a bound on the total variation between the Markov chain of a noisy RJM-

CMC algorithm and a Markov chain with the desired target distribution, when the intractable ratio

of normalising constants is estimated by the ISE in (10). Theorem 3.1 in Alquier et al. (2016) is

the special case of Theorem 5 when a within-model transition is attempted.

Theorem 5. Under assumptions (A1)-(A3) then (H2) in Corollary 3 is satisfied with

γIS(x,x
′)≤

cpm
cpm′

c
Mm

c
Mm′

cυ(x,x′)cυ(x′,x)K
2
mK2

m′√
N
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and

‖δx0
P n−δx0

P̂ n‖ ≤ DIS√
N
,

where DIS = DIS(cp,cM ,ch,K) is explicitly known, see (A.3) of the Appendix.

Empirical results in this paper have demonstrated that the use of the TPE leads to an improved

RJMCMC algorithm relative to the RJ exchange algorithm. We present the following Lemma that

shows how to control the variance of the TPE with L,S > 1.

Lemma 6 (Lemma 6 in Boland et al. (2017)). The TPE requires L−1 sets of simulated data,

y′ =

y(2)
′

= y
(2)′

1 , . . . , y
(2)′

S ∼ fm′(· | θ′(t2))
...

...
. . .

...

y(L)
′

= y
(L)′

1 , . . . , y
(L)′

S ∼ fm′(· | θ′(tL)),

that are used to estimate the ratio of normalising constants with (13). Let X
1
S, . . . ,X

L−1
S be L−1

i.i.d one-dimensional sample mean estimators, such that

X
j
S =

1

S

S

∑
b=1

qm(y
( j+1)′

b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))

, y
( j+1)′

1 , . . . ,y
( j+1)′

S

i.i.d∼ fm′(· | θ′(t j+1)), j ∈ {1, . . . ,L−1}.

When assumptions (A1)-(A4) are satisfied, then

Vy′

[

L−1

∏
j=1

X
j
S

]

≤ [KmKm′ ]
L−1

{

(

1+
1

S

)L−1

−1

}

.

Lemma 6 provides guidelines regarding the rate of convergence of L,S to infinity. It shows

that S should converge to infinity at a faster rate than L, so that 1/S→ 0. Of course, increasing the

number of steps, L, in the transition path allows for points θ′(t j),θ
′(t j+1), j = 1, . . .L−1 that are

closer together in terms of the L2 norm. This, in turn, means that the distribution fm′(y
′ | θ′(t j+1))

is only slightly different from fm′(y
′ | θ′(t j)) and serves as an excellent importance distribution.

In both ERGM examples we show that even smaller values of L,S can lead to good performance

of the noisy RJMCMC algorithm. These values can increase according to the available computa-

tional resources.

Below we provide a bound on the total variation distance between the Markov chain of a noisy

RJMCMC algorithm with the TPE and a Markov chain with the desired target distribution with

respect to the factors L,S.

Lemma 7. Under assumptions (A1)-(A4), for any x,x′ ∈ X , ρ̂(x,x′,y′) estimated with (13) satisfies

Ey′∼ f (·|x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣≤ γT P(x,x
′)

=
qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)
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×

√

√

√

√

√Vy′





L−1

∏
j=1

1

S

S

∑
b=1

qm(y
( j+1)′
b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))



,

where the upper bound γT P(x,x
′) refers to the case when the TPE is used.

We conclude by an application of Corollary 3 that allows to assess the convergence of the

noisy RJMCMC scheme with the TPE for L,S≫ 1.

Theorem 8. Under assumptions (A1)-(A3) then (H2) in Corollary 3 is satisfied with

γT P(x,x
′)≤ cpm

cpm′
cMm

cMm′
cυ(x,x′)cυ(x′,x)[KmKm′]

L+1
2

{

(

1+
1

S

)L−1

−1

}1/2

and

‖δx0
P n−δx0

P̂ n‖ ≤DT P[KmKm′ ]
L−1

2

{

(

1+
1

S

)L−1

−1

}1/2

,

where DTP = DT P(cp,cM
,ch,K) is explicitly known, see (A.7) of the Appendix.

6. Applications to exponential random graph models

We apply the reversible jump methodology to some challenging models for the analysis of

network data. All computations in this paper were carried out with the statistical environment R

(R Core Team, 2017).

The two ERGM examples below aim at providing insights regarding the efficiency of the noisy

RJMCMC algorithm relative to the RJ exchange algorithm. Any RJMCMC algorithm allows for

Bayesian multi-model inference as well as estimation of posterior model probabilities and so we

are also interested in the performance of the RJMCMC algorithm for each model separately. We

assess this performance in terms of:

• The estimated within-model acceptance rate and effective sample size (ESSW ) of the sam-

pler for the model with the highest estimated posterior model probability. For an MCMC run

of length G with lag ℓ auto-correlation ρℓ the effective sample size is defined as ESSW =

G/(1+ 2

8

∑
ℓ=1

ρℓ) (Liu, 2001). This ESSW (the larger the better) gives an estimate of the

equivalent number of independent iterations that the chain represents. In our implementa-

tion of the RJMCMC algorithms, ESSW is estimated separately for each parameter and so

we report the smallest estimate among these.

• The estimated Bayes factor, between-model acceptance rate and total computation time.

• ESSB, the estimated effective sample size of the Markov chain that targets the discrete sta-

tionary distribution with probabilities (π(M1 | y),π(M2 | y),π(M3 | y), . . .). We implemented

the computational approach proposed in Heck et al. (2018) to estimate ESSB and define the

efficiency (EFF) of each RJMCMC algorithm as ESSB per second.
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Throughout the analysis we chose a Multivariate Gaussian prior distribution for the model-specific

parameters, MVN (0dm
,10Idm

), where 0dm
is the null vector and Idm

is the identity matrix of

size equal to the number of model dimensions dm. In further simulation experiments not shown

here, changing the prior distribution to MVN (0dm
,100Idm

) did not lead to very different results.

The parameter spaces Θm,m ∈ {1,2,3, . . .} were defined on a bounded set for both examples,

so that Assumptions (A1) to (A4) hold. We assumed that the models are equally probable a-

priori. Sampling from the likelihood at each RJMCMC iteration was performed with an auxiliary

Markov chain of length 3,000 as a proxy for an exact sampler. Each main Markov chain was run

for 500,000 iterations discarding the first 50,000 as burn-in. This allowed for adequate exploration

of the posterior distribution of each model.

The Auto-RJ sampler performed a pilot MCMC run for each model using the population

MCMC approach of Caimo and Friel (2011), with 2000×dm main iterations (discarding the first

500×dm iterations as burn-in). The Metropolis tuning parameters involved in the RW RJMCMC

algorithms were appropriately selected to give the desired within-model acceptance rates.

Finally, the TPE was obtained using a linear path (equal spacing) in t ∈ [0,1] that consisted of L

steps, including the starting and finishing point. At each path point the auxiliary step to draw y′ was

followed by an extra number of iterations thinned by a factor of 50, yielding S graphs. In Section

6.2 the TPE was implemented using serial computation on a single core for illustration purposes.

Of course, this adds to the CPU burden per iteration of the noisy RJMCMC algorithm if a more

refined transition path is considered. Assuming that parallel computations occur no additional

cost, the L−1 forward-simulations required in (13) can be performed in parallel, taking advantage

of the inherently parallel nature of the TPE while yielding a useful noisy RJMCMC algorithm.

We implemented a parallel computation of the TPE in Section 6.3 to emphasise the improvements

offered by a parallel implementation of the TPE relative to the RJ exchange algorithm.

6.1. Exponential random graph models

Networks are relational data represented as mathematical graphs of nodes and edges. A n×n

random adjacency matrix Y on n nodes and a set of edges (relationships) describes the connectivity

pattern of a graph, considering the set of all possible graphs on n nodes (actors), Y . A realisation

of Y is denoted with y and the presence or absence of an edge (directed or undirected) between the

pair of nodes (i, j) is coded as

yi j =

{

1, if (i, j) are connected,

0, otherwise.

An edge connecting a node to itself is not permitted so yii = 0.

Exponential random graph models play an important role in network analysis since they can

represent transitivity and other structural features in network data that define complicated depen-

dence patterns not easily modeled by more basic probability models (Wasserman and Pattison,

1996). The reader is also referred to Robins et al. (2007) for a detailed review and the references

therein for more details. ERGMs belong to the exponential family of distributions with natural

parameter θ and sufficient statistics s(y) and are Gibbs random fields that are defined on the edge

space of networks.
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The distribution of Y assuming model Mm is formulated as

fm(y | θm) =
qm(y | θm)

zm(θm)
=

exp
{

θ⊤msm(y)
}

∑y∈Y exp
{

θ⊤sm(y)
} , θ⊤msm(y) =

dm

∑
j=1

θm jsm j(y), (21)

where qm(y | θm) is the un-normalised likelihood, sm(y) ∈ Sm ⊆ R
dm
+ is a known vector of over-

lapping sub-graph configurations/ sufficient statistics (e.g. the number of edges, degree statistics,

triangles, etc.) and θm ∈ Θm ⊆ Rdm is the vector of model parameters. More examples can be

found at Snijders et al. (2006) and Hunter and Handcock (2006). Additionally, ERGMs allow for

inclusion of covariate information X, eg. the number of edges on the graph within the same at-

tribute category as a measure of the homophily effect of that attribute. The respective sufficient

statistics are denoted by sm(y,x).

The evaluation of zm(θm) is feasible for only trivially small graphs as this sum involves 2(
n
2)

terms for undirected edge graphs and 2n(n−1) terms for directed edge graphs. Recent works on

the inference of ERGMs with the Bayesian approach have been proposed by Koskinen (2004),

Caimo and Friel (2011), Wang and Atchadé (2014), Caimo and Mira (2015), Thiemichen et al.

(2016) and Bouranis et al. (2017).

Remark 1. The estimators (10) and (13) require perfect sampling from the likelihood to generate

the auxiliary data. This is feasible for GRFs such as the Ising and Potts models (Propp and Wilson,

1996; Huber, 2004), but this is not the case for ERG models. Caimo and Friel (2011) considered

the pragmatic alternative of replacing exact simulation with Gibbs updates, where a long auxiliary

Markov chain implemented by the tie-no-tie (TNT) sampler is used to return N = 1 draw that is

approximately distributed under the true likelihood, in place of exact simulation (Hunter et al.,

2008). It is possible to carry out inference for graphs of larger size (eg. 1000 nodes), but at the

cost of an increased computational time. For convergence results of the Markov chain that uses

approximate draws from the likelihood, see Everitt (2012) and Wang and Atchadé (2014).

Let aux be the number of auxiliary iterations used in the TNT sampler and let k be the lag

between consecutive draws from the target distribution of the sampler. The computational cost

per iteration of the noisy RJMCMC algorithm for the estimation of the ratio zm(θ)/zm′(θ
′) is

O(aux+ kN) when the ISE is used and O((L− 1)(aux+ kS)) when the TPE is used. For the

special case of the RJ exchange algorithm, the computational cost per iteration is O(aux+1). For

models like GRFs, these estimators depend on the simulated data only through the collection of

sufficient statistics sm′(y) which need to be stored in the computer memory.

6.2. Zachary’s karate club network

Zachary’s Karate Club (Figure 2) is a social network of friendships between 34 members of

a karate club at a US university in 1970. For this network we are interested in the effect of triad

closure, therefore it is natural to consider k-star statistics for k ≥ 2 and triangle counts, which

express the level of transitivity.

For a fixed network density however, k-stars become more prevalent as heterogeneity increases

at the cost of often inducing degeneracy. The degeneracy problem causes the generated graphs to

be either very sparse or very dense and only in rare cases does a generated graph have a density

close to that of the data network. By considering some commonly used network statistics like

the heterogeneity of degree statistics and high-order transitivity statistics (Snijders et al., 2006;
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Hunter, 2007), we try to remedy the degeneracy of k-stars and triangle counts. Two competing

models are assessed:

M1: q1(y | θ1) = exp
{

θ11s1(y)+θ12v(y,φv)
}

M2: q2(y | θ2) = exp
{

θ21s1(y)+θ22v(y,φv)+θ23u(y,φu)
}

,

where s1(y) = ∑i< j yi j is the number of edges. The other model terms are defined below.

Figure 2: Zachary’s Karate Club graph.

Shared Partnership: Let EPk(y), called the edgewise shared partnership statistic, denote the

number of connected pairs with exactly k common neighbors. EPk(y) is a function of the

triangle counts and as such, it is equivalent to modeling the high-order transitivities. The

distribution of edgewise shared partnership can be modeled as a function of a single param-

eter by placing decreasing weights on the higher transitivities, leading to the geometrically

weighted edgewise shared partnership (GWESP) statistic. GWESP is defined by:

v(y,φv) = eφv

n−2

∑
k=1

{

1−
(

1− e−φv

)k
}

EPk(y) .

Geometrically Weighted Degree: Let the degree count, Dk(y), denote the number of pairs that

have exactly k common neighbors. The number of stars is a function of the degrees, there-

fore Dk(y) is equivalent to modeling the k-star statistic. The geometrically weighted degree

(GWD) statistic enables to model all degree distributions as a function of single parameter

by placing decreasing weights on the higher degrees. GWD is defined by:

u(y,φu) = eφu

n−1

∑
k=1

{

1−
(

1− e−φu

)k
}

Dk(y) .

The scale parameters (φv ,φu) specify the decreasing rates of weights placed on the higher order

terms, are treated as constants and are set to (φv ,φu) = (0.2 ,0.8), following Caimo and Friel

(2014). Tables 1 points towards positive evidence in favor of M1 over M2. This shows that
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the effect captured by the geometrically weighted degree network statistic does not enhance the

observed network.

Some general comments can be made about the performance of the two algorithms. In this

example all algorithms suffer from low acceptance rates of the trans-dimensional move, since the

probability mass is concentrated on one model. It would be expected that the proposed jumps

would be accepted more frequently if the probability mass was spread over different models. The

Auto-RJ sampler for this example yields a Markov chain with a better asymptotic efficiency than

the RW RJMCMC algorithm, however this algorithm will become costly when the number of

models is large as it can be computationally expensive to tune the proposal distributions for each

competing model. In terms of asymptotic efficiency the Auto-RJ sampler, in general, may become

way worse than the noisy RW RJMCMC sampler simply because of the fact that the independent

Gaussian proposal may not be a good match to the posterior distribution for some of the competing

models.

Table 1: Zachary karate club - Bayes factor (standard deviation), acceptance rate of the trans-dimensional move and

CPU time in hours based on thirty independent noisy RJMCMC runs. We also report the effective sample size of the

Markov chain on the posterior model probabilities (ESSB) and the efficiency (EFF) for each algorithm.

ISE (N)(N)(N) TPE (L ,S)(L ,S)(L ,S)

Method 1 5 102 (6,1) (11,10)

RW-RJ BF12 12.81 (0.37) 10.67 (0.32) 13.53 (0.33) 13.01 (0.42) 13.07 (0.45)

% accepted 6.3 9.8 6.9 7.2 7.5

ESSB 69,479 78,575 85,389 89,612 93,090

CPU 0.92 0.98 2.04 4.08 8.95

EFF 18.94 22.27 10.69 5.15 2.65

Auto-RJ BF12 13.06 (0.21) 15.19 (0.24) 15.21 (0.26) 13.08 (0.17) 13.09 (0.15)

% accepted 5.6 6.6 8.3 9.6 10.6

ESSB 53,760 75,251 98,852 100,101 113,297

CPU 1.76 1.83 2.22 4.49 9.88

EFF 8.48 18.41 12.37 6.19 1.66

Table 1 shows how all of the noisy RJMCMC algorithms displayed better mixing in terms

of acceptance rate of the trans-dimensional move when compared to the RJ exchange algorithm.

This improvement, though, comes with a cost: an ISE based on N > 1 appears to have an effect

on the frequency of visits to each model, hence biasing the Bayes factor estimate. All samplers

are faced with a biased Bayes factor estimate when N = 5 and this bias appears to decrease with

larger N, when the noisy acceptance ratio mimics the MH acceptance ratio.

The noisy RJMCMC samplers also benefit from improved performance in terms of mixing

when the TPE is used for the estimation of the intractable acceptance ratio. Table 1 suggests that

even a small number of draws from the auxiliary distribution can improve the acceptance rate of

the trans-dimensional move, resulting in a 40% increase on average for the noisy Auto-RJ sampler

(L = 6, S = 1) relative to the Auto-RJ exchange algorithm (N = 1), at the cost of some additional

computational expense. Increasing the overall number of auxiliary draws further improves the

mixing of the noisy RJMCMC algorithms, but then their implementation becomes impractical

even for this small model set. This is an indicator that the TPE will have small variance, making

it particularly useful for RJMCMC.
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Table 2 shows an improvement in the ESS for the most probable model over the RJ exchange

algorithm (N = 1), which translates into a decrease in the auto-correlation of the chain for each

model. Both the ISE and the TPE improved the mixing within each model, which is in line with the

results of Alquier et al. (2016). Taken together with the results of Table 1, we can observe a trade-

off between bias and efficiency, as the noisy RJMCMC algorithm is targeting an approximation

of the true posterior (4).

A natural question that arises is how big should N or L,S be in order to have a trade-off

between the bias of the distribution and the computational time. From this experiment, it appears

that the bias of the Bayes factor estimate is connected to the bias in the target distribution of the

noisy RJMCMC chain. Knowledge of the variance of the estimator of the ratio of intractable ratio

of normalising constants could give a rough idea about choosing appropriate values for the factors

N or L,S.

Finally, the results in Table 1 point towards decreased efficiency of the noisy RJMCMC algo-

rithm when a larger number of likelihood draws (N = 100) is taken. As discussed in Alquier et al.

(2016), the rationale behind the introduction of a noisy (RJ)MCMC algorithm is that the combined

statistical and computational efficiency is sufficiently improved to outweigh the effect of any bias

that is introduced. In the case of an ISE with N = 100, however, the increased CPU cost decreases

the efficiency of the algorithm. A serial implementation of the TPE decreases the efficiency of the

noisy RJMCMC algorithm relative to the RJ exchange sampler, as expected. In Section 6.3 we

show that a parallel implementation of the TPE helps to improve the efficiency.

Table 2: Zachary karate club - Acceptance rate and effective sample size of the Markov chain on the posterior

parameter estimates (ESSW ) for the most probable model, M1, based on thirty independent noisy RJMCMC runs.

ISE (N)(N)(N) TPE (L ,S)(L ,S)(L ,S)

Method 1 5 102 (6,1) (11,10)

RW-RJ AR 22% 21% 22% 21% 22%

ESSW 12,498 16,094 20,297 20,664 24,199

Auto-RJ AR 24% 28% 38% 40% 46%

ESSW 18,855 25,744 43,950 47,153 62,795

6.3. Collaboration between Lazega’s lawyers

The Lazega network dataset (Figure 3) originates from a network study of corporate law part-

nership that was carried out in a Northeastern US corporate law firm in New England (Lazega,

2001). The dataset consists of 36 nodes (partners) and the presence of an edge between two

nodes indicates a collaboration between the two partners. Information about nodal attributes is

also available; here we are interested in the attribute variables of gender (1=male; 2=female) and

practice (1=litigation; 2=corporate).

We compare the following three models as in Caimo and Friel (2014):

M1: q1(y | θ1) = exp
{

θ11s1(y)+θ12v(y,φv)+θ13s1(y,x)+θ14s2(y,x)+θ15s3(y,x)
}

M2: q2(y | θ2) = exp
{

θ21s1(y)+θ22v(y,φv)+θ23s1(y,x)+θ24s2(y,x)
}

M3: q3(y | θ3) = exp
{

θ31s1(y)+θ32v(y,φv)
}

where s1(y) and v(y,φv) are the same terms as in Section 6.2 and φv = log(2). The covariate
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statistics are defined as

s(y,x) = ∑
i 6= j

yi j×
{

xi + x j : "main effect",

1{xi=x j} : "homophily effect".

The covariate statistic s1(y,x) represents the homophily effect of practice, s2(y,x) is the homophily

effect of gender and s3(y,x) is the main effect of practice.

Figure 3: Lazega’s network of corporate law partnership.

All algorithms point towards M3 having the highest estimated posterior model probability. For

illustration purposes, below we report the estimated Bayes factor for the comparison between M3

against M2. The results in Table 3 show that there is positive evidence in favor of M3 against M2.

Table 3: Lazega’s lawyers - Bayes factor, acceptance rate of the trans-dimensional move, effective sample size of the

Markov chain on the posterior model probabilities (ESSpm) and efficiency (EFF) for each algorithm, based on a long

RJMCMC run.

ISE (N)(N)(N) TPE (L ,S)(L ,S)(L ,S)

Method 1 5 102 (6,1) (11,10)

RW-RJ BF32 13.12 23.12 13.01 13.35 13.76

% accepted 1.0 1.2 1.3 2.0 3.0

ESSpm 1,007 4,131 5,382 5,104 6,422

EFF 0.23 0.87 1.25 1.16 1.46

Auto-RJ BF32 13.46 46.31 13.72 14.02 13.89

% accepted 1.0 1.0 2.0 3.0 3.0

ESSpm 11,211 59,200 58,863 41,432 54,146

EFF 1.26 6.55 4.65 4.66 6.05

The higher-dimensionality of the competing models allows us to investigate the performance

of noisy RJMCMC in a situation that is more likely to be faced in practice. Table 3 shows that

a small number of draws on the ISE (N = 5) leads to a bias in the Bayes factor estimate that is

pronounced in this example for both the random walk and the independence samplers. At the
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same time, the mixing of the RJ Markov chain improves, but many more draws (N > 100) will

be needed to obtain a better approximation to the target posterior distribution and consequently

reduce the bias in the estimated posterior model probabilities and the Bayes factor estimate.

On the contrary, the TPE proves itself useful even with a small number in the factors L,S, eg.

(L= 6, S = 1). The increased efficiency of the noisy RJMCMC algorithms with the parallel imple-

mentation of the TPE depicted in Table 3 shows more emphatically that the new approaches offer

large improvements over running the RJ exchange algorithm, while simultaneously improving the

statistical (ESSpm) and computational (EFF) efficiency of the sampler.

The same comments made for Table 2 can be also made for the results in Table 4: the noisy

RJMCMC algorithms had less auto-correlation within each model compared to the RJ exchange

algorithm, similarly to Zachary’s Karate Club network example.

In both ERGM examples, we observed that the noisy independence sampler does better than

the noisy RW RJMCMC algorithm. This is a result of having a posterior distribution for each

model that is close to Gaussian and so the automated design of the independence proposal is

efficient. However, this may not generally be the case and in this instance we expect that the noisy

RW RJMCMC algorithm may give better results.

Table 4: Lazega’s lawyers - Acceptance rate and effective sample size of the Markov chain on the posterior parameter

estimates (ESSW ) for the most probable model, M3, based on a long RJMCMC run.

ISE (N)(N)(N) TPE (L ,S)(L ,S)(L ,S)

Method 1 5 102 (6,1) (11,10)

RW-RJ AR 22% 19% 25% 24% 25%

ESSW 4,441 4,915 5,881 9,117 10,063

Auto-RJ AR 17% 18% 19% 25% 28%

ESSW 8,948 10,763 15,318 20,526 25,032

7. Discussion

The present paper contributes to the growing literature of approximate MCMC methods for

Bayesian analysis of doubly-intractable distributions (Alquier et al., 2016; Everitt et al., 2017a;

Boland et al., 2017; Everitt et al., 2017b) by introducing a variant of RJMCMC for Bayesian

model comparison of Gibbs random fields. The resulting algorithm generalises noisy MCMC

to trans-dimensional settings, where the transition kernel of the exact RJMCMC algorithm is

approximated. Drawing from the study of the stability of Markov chains (Mitrophanov, 2005;

Alquier et al., 2016), we have given bounds on the total variation between the Markov chain of

a noisy RJMCMC algorithm and a Markov chain with the desired target distribution in the case

where the chain is uniformly ergodic. We acknowledge, though, that this is a strong assumption

that may not be met in practice.

We have illustrated that the noisy RJMCMC algorithm can suffer from considerable bias

(reflected by the Bayes factor estimate) when the variance of the estimator of the ratio of in-

tractable likelihood normalising constants is large. In particular, the unbiased estimator proposed

in Alquier et al. (2016) is not useful for RJMCMC. Aiming to overcome these inefficiencies and

to decrease the variance of this estimator, we used a variation based on a telescopic product of

unbiased importance sampling estimators. The telescopic product estimator (TPE) helped reduce

the bias of the noisy RJMCMC algorithm, which is then of the same order of magnitude as that
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of the RJ exchange algorithm, while being more asymptotically efficient than the RJ exchange

algorithm.

Despite the fact that this framework also applies to more general situations apart from Gibbs

random field models, there are limitations to the implementation of the noisy RJMCMC algorithm.

A crucial aspect of the computational performance of the algorithm is its requirement to perform

forward simulations from the likelihood at each iteration. The computational cost is expected

to increase when models on large lattices or networks with thousands of nodes are analysed.

The estimators that we investigated in this paper rely on importance sampling and might not be

practical in high-dimensional parameter spaces, a point which has been raised by Everitt (2012)

and Everitt et al. (2017b). In real-life GRF applications, the parameter spaces do not usually

exceed 10-15 dimensions.
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Appendix A. Proofs

Proof of Proposition 1. By definition of θ̇, it holds that zm(θ) = zm′(θ̇). Then we can write

Vy′1,y
′
2,...,y

′
N∼ fm′(·|θ′)

[

ẑm′(θ̇)

zm′(θ′)

]

= Eθ′
[

exp{2(θ̇−θ′)⊤sm′(y)}
]

−
[

zm′(θ̇)

zm′(θ′)

]2

= Eθ′
[

exp{2ζ⊤sm′(y)}
]

−
[

zm′(θ̇)

zm′(θ′)

]2

,

where ζ = θ̇−θ′. We introduce the notation ψ = O(‖ζ‖2), where ‖ · ‖2 is the L2 norm. A Taylor

expansion of the variance term around θ′ yields

Vy′1,y
′
2,...,y

′
N∼ fm′(·|θ′)

[

ẑm′(θ̇)

zm′(θ′)

]

= 1+2ζ⊤Eθ′ [sm′(y)]+Eθ′ [ψ(ζ,y)]

− 1

z2
m′(θ

′)

[

z2
m′(θ

′)+2zm′(θ
′)ζ⊤∇θ′zm′(θ

′)+O(‖ζ‖2)
]

.

We note that for models that belong to the exponential family it holds that ∇θz(θ)/z(θ)=Eθ [s(y)]
∀θ ∈ Θ. Additionally, Eθ′ [ψ(ζ,y)] = O(‖ζ‖2), which gives

Vy′1,y
′
2,...,y

′
N∼ fm′(·|θ′)

[

̂zm′(θ̇)

zm′(θ′)

]

= O(‖ζ‖2).
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This concludes the proof.

Proof of Corollary 3. Let x = (m,θ) and x′ = (m′,θ′). We assume that there exists a symmetric

measure µ on X ×X that dominates π(dx)υ(x,dx′). Then π(dx)υ(x,dx′) has density ν(x,x′) (the

Radon-Nikodym derivative) with respect to µ. For all Borel sets B,B ′ ⊂ X such that B ′ = dx′ =
{X ∈ X ; ‖X− x′‖< ε}, the following holds for P (x,dx′) and P̂ (x,dx′) in order to apply Theorem

2:

P (x,dx′) = υ(x,dx′)min
(

1,ρ(x,x′)
)

+δx(dx′)
∫

dtυ(x, t) [1−min(1,ρ(x, t))]

and

P̂ (x,dx′) =
∫

dy′ f (y′ | x′)
[

υ(x,x′)min
(

1, ρ̂(x,x′,y′)
)

]

+δx(dx′)
∫∫

dtdy′υ(x, t) f (y′ | t)
[

1−min
(

1, ρ̂(x, t,y′)
)]

.

We write

(P − P̂ )(x,dx′) =
∫

dy′ f (y′ | x′)υ(x,dx′)
[

min
(

1,ρ(x,x′)
)

−min
(

1, ρ̂(x,x′,y′)
)

]

+δx(dx′)
∫∫

dtdy′υ(x, t) f (y′ | t)
[

min
(

1, ρ̂(x, t,y′)
)

−min(1,ρ(x, t))
]

,

which gives

‖P − P̂‖= sup
x∈X
µ=δx

‖µ(P − P̂ )‖

= sup
x∈X

‖δxP −δxP̂‖

=
1

2
sup
x∈X

∫
|P − P̂ |(x,dx′)

=
1

2
sup
x∈X

{
∣

∣

∣

∣

∣

∫∫
dtdy′ f (y′ | t)υ(x, t)

[

min
(

1, ρ̂(x, t,y′)
)

−min(1,ρ(x, t))
]

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫∫
dy′dx′ f (y′ | x′)

[

υ(x,x′)min
(

1,ρ(x,x′)
)

−υ(x,x′)min
(

1, ρ̂(x,x′,y′)
)]

∣

∣

∣

∣

∣

}

= sup
x∈X

{
∣

∣

∣

∣

∣

∫∫
dtdy′ f (y′ | t)υ(x, t)

[

min
(

1, ρ̂(x, t,y′)
)

−min(1,ρ(x, t))
]

∣

∣

∣

∣

∣

}

≤ sup
x∈X

∫∫
dy′dx′ f (y′ | x′)υ(x,x′)

∣

∣

∣
min

(

1,ρ(x,x′)
)

−min
(

1, ρ̂(x,x′,y′)
)

∣

∣

∣

= sup
x∈X

∫
dx′υ(x,x′)

∫
dy′ f (y′ | x′)

∣

∣

∣
min(1,ρ(x,x′))−min(1, ρ̂(x,x′,y′))

∣

∣

∣

≤ sup
x∈X

∫
dx′υ(x,x′)γ(x,x′).
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Proof of Lemma 4. Let x = (m,θ) and x′ = (m′,θ′). We check that

Ey′∼ f (·|x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣≤
∫

f (y′ | x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣dy′

=
qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)

×Ey′1,...,y
′
N∼ f (·|x′)

∣

∣

∣

∣

∣

1

N

N

∑
i=1

qm(y
′
i | θ)

qm′(y
′
i | θ′)

− zm(θ)

zm′(θ′)

∣

∣

∣

∣

∣

≤ 1√
N

qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)

×
√

Vy′1∼ f (·|x′)

[

qm(y′1 | θ)
qm′(y

′
1 | θ′)

]

= γIS(x,x
′).

Then

γIS(x,x
′)≤ 1√

N
cpm

cpm′
cMm

cMm′
cυ(x,x′)cυ(x′,x)

qm′(y | θ′)
qm(y | θ)

√

√

√

√Ey′∼ f (·|x′)

[

(

qm(y′ | θ)
qm′(y′ | θ′)

)2
]

≤ 1√
N

cpm
cpm′

c
Mm

c
Mm′

cυ(x,x′)cυ(x′,x)K
2
mK2

m′, (A.1)

which concludes the proof.

Proof of Theorem 5 (see also Theorem 3.1 of Alquier et al. (2016)). Under the assumptions of

Theorem 5, note that (7) leads to

ρ(x,x′) =
fm′(y | θ′)
fm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

ω(m′,m)

ω(m,m′)
Tm′,m(θ

′,θ)
Tm,m′(θ,θ′)

≥ [cpm
cpm′

cMm
cMm′

cυ(x,x′)cυ(x′,x)K
2
mK2

m′]
−1. (A.2)

Let us consider any measurable subset B ′ of X and x′ ∈ X . We have

P (x,B ′) =
∫

B ′
δx(dx′)

∫
dtυ(x, t) [1−min(1,ρ(x, t)))]+

∫
B ′

dx′υ(x,x′)min
(

1,ρ(x,x′)
)

≥
∫

B ′
dx′υ(x,x′)min

(

1,ρ(x,x′)
)

≥ [cpm
cpm′cMm

cMm′
cυ(x,x′)cυ(x′,x)K

2
mK2

m′]
−1

∫
B ′

dx′υ(x,x′) thanks to (A.2)

≥ [cpm
cpm′cMm

cMm′
c2

υ(x,x′)cυ(x′,x)K
2
mK2

m′]
−1

∫
B ′

dx′.

This proves that B ′ is a small set for the Lebesgue measure (multiplied by a constant) on X .

Following the proof of Theorem 3.1 of Alquier et al. (2016) and the reference therein, this proves
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that:

sup
x0∈X

‖δx0
P n−π(· | y)‖ ≤ Qξn,

where

Q = 2 and ξ = 1− [cpm
cpm′

c
Mm

c
Mm′

c2
υ(x,x′)cυ(x′,x)K

2
mK2

m′]
−1.

By definition, K ,cp,cυ > 1 and so ξ ∈ (0,1). This satisfies condition (H1) in Corollary 3. More-

over, (A.1) satisfies condition (H2) in Corollary 3. We can apply this Corollary to give

sup
x0∈X

‖δx0
P n−δx0

P̂ n‖ ≤ DIS√
N

with

DIS = cpm
cpm′

cMm
cMm′

cυ(x,x′)cυ(x′,x)K
2
mK2

m′

(

φ+
Qξφ

1−ξ

)

, (A.3)

where φ =
⌈

log(1/Q)
log(ξ)

⌉

.

Proof of Lemma 6. The proof is for trans-dimensional moves and follows from Boland et al. (2017).

We will use the fact that for any one-dimensional random variable X ,

∃M ∈ R s.t. X ≤M ⇒ V[X ]≤ E[X2]≤M2. (A.4)

By definition of (13), V
[

∏L−1
j=1 X

j
S

]

is a collection of 2r−1 products of r = L−1 positive factors.

Each factor is either a squared expectation, E2[X
j
S], or a variance, V[X

j
S], so that one of the 2r−1

products that contains k > 0 variances and r− k squared expectations is

pk :=
k

∏
t=1

V

[

X
t
S

]

×
r

∏
q=k+1

E
2
[

X
q
S

]

,

which can be re-expressed as

pk :=
1

Sk

k

∏
t=1

V
[

X t
]

×
r

∏
q=k+1

E
2 [Xq] .

A uniform bound in k can be placed on pk, such that

pk ≤
1

Sk

k

∏
t=1

E
[

(X t)2
]

×
r

∏
q=k+1

E
2 [Xq]≤ (KmKm′)

r

Sk
. (A.5)

There are
(

r
k

)

terms that have k variances and r− k squared expectations. Therefore, their sum pk

can be bounded by the uniform bound in (A.5) so that

pk ≤
(KmKm′)

r

Sk
.

Rearrangement of the 2r− 1 products and aggregation of the products with the same number of
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factors, k, yields

V

[

L−1

∏
j=1

X
j
S

]

=
L−1

∑
k=1

pk ≤ (KmKm′)
r

L−1

∑
k=1

(

L−1

k

)

1

Sk
= (KmKm′)

r

[

(

1+
1

S

)L−1

−1

]

.

Proof of Lemma 7. The linear path t ∈ [0,1] is discretised as 0 = t1 < .. . < tL = 1, yielding the

parameter vectors

θ′(t) :=

{

(1− t)θ̇+ tθ′ if dm < dm′,

(1− t)θ+ tθ′ if dm = dm′,

where θ̇ is defined in Section 3.2. The TPE requires L−1 sets of simulated data,

y′ =

y(2)
′

= y
(2)′

1 , . . . , y
(2)′

S ∼ fm′(· | θ′(t2))
...

...
. . .

...

y(L)
′

= y
(L)′

1 , . . . , y
(L)′

S ∼ fm′(· | θ′(tL)),

that are used to approximate the ratio of normalising constants using (13). The remainder of this

proof proceeds as in Lemma 4. We check that

Ey′
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣≤
∫

f (y′ | x′)
∣

∣ρ̂(x,x′,y′)−ρ(x,x′)
∣

∣dy′

=
qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)

×Ey′

∣

∣

∣

∣

∣

∣

L−1

∏
j=1

1

S

S

∑
b=1

qm(y
( j+1)′

b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))

− zm(θ)

zm′(θ′)

∣

∣

∣

∣

∣

∣

≤ qm′(y | θ′)
qm(y | θ)

pm′(θ
′)

pm(θ)

p(Mm′)

p(Mm)

h(θ,m | θ′,m′)
h(θ′,m′ | θ,m)

×

√

√

√

√

√Vy′





L−1

∏
j=1

1

S

S

∑
b=1

qm(y
( j+1)′
b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))





= Φ(x,x′)

√

√

√

√

√Vy′





L−1

∏
j=1

1

S

S

∑
b=1

qm(y
( j+1)′
b | θ′(t j)))

qm′(y
( j+1)′
b | θ′(t j+1))





= γT P(x,x
′).

Applying Lemma 6 leads to

γT P(x,x
′)≤Φ(x,x′)[KmKm′ ]

L−1
2

{

(

1+
1

S

)L−1

−1

}1/2
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≤ cpm
cpm′

cMm
cMm′

cυ(x,x′)cυ(x′,x)KmKm′ [KmKm′]
L−1

2

{

(

1+
1

S

)L−1

−1

}1/2

= cpm
cpm′

cMm
cMm′

cυ(x,x′)cυ(x′,x)[KmKm′]
L+1

2

{

(

1+
1

S

)L−1

−1

}1/2

. (A.6)

Proof of Theorem 8. Following the proof of Theorem 5, it is straightforward to show that condi-

tion (H1) in Corollary 3 is satisfied, with

Q = 2 and ξ = 1−
[

cpm
cpm′

cMm
cMm′

c2
υ(x,x′)cυ(x′,x)(KmKm′)

L+1
2

]−1

.

Moreover, (A.6) satisfies condition (H2) in Corollary 3. Applying this Corollary gives

sup
x0∈X

‖δx0
P n−δx0

P̂ n‖ ≤DTP

{

(

1+
1

S

)L−1

−1

}1/2

,

with

DTP = cpm
cpm′

c
Mm

c
Mm′

cυ(x,x′)cυ(x′,x)[KmKm′]
L+1

2

(

φ+
Qξφ

1−ξ

)

(A.7)

and φ =
⌈

log(1/Q)
log(ξ)

⌉

.
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