
This is a postprint version of the following published document:

Febrero-Bande, M., Galeano, P., & González-Manteiga, 
W. (2019). Estimation, imputation and prediction for 
the functional linear model with scalar response with 
responses missing at random. Computational Statistics 
& Data Analysis, 131, pp. 91-103.

DOI:10.1016/j.csda.2018.07.006

© Elsevier, 2018

         This work is licensed under a 
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

https://doi.org/10.1016/j.csda.2018.07.006


Functional principal component regression and functional partial

least squares regression: an overview and a comparative study

Manuel Febrero-Bande1, Pedro Galeano2, and Wenceslao González-Manteiga1
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Abstract

Functional data analysis is a field of growing importance in Statistics. In particular, the

functional linear model with scalar response is surely the model that has attracted more atten-

tion in both theoretical and applied research. Two of the most important methodologies used

to estimate the parameters of the functional linear model with scalar response are functional

principal component regression and functional partial least squares regression. We provide an

overview of estimation methods based on these methodologies and discuss their advantages and

disadvantages. We emphasize that the role played by the functional principal components and

by the functional partial least squares components that are used in estimation appears to be

very important to estimate the functional slope of the model. A functional version of the best

subset selection strategy usual in multiple linear regression is also analyzed. Finally, we present

an extensive comparative simulation study to compare the performance of all the considered

methodologies that may help practitioners in the use of the functional linear model with scalar

response.

Keywords: Cross-validation; Eigenfunctions; Eigenvalues; Functional linear model; Func-

tional principal components; Functional partial least squares.
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1 Introduction

The collection of functional data is becoming progressively frequent in fields such as chemometrics,

climatology, economy, image analysis, linguistics, meteorology, and many other areas. As a conse-

quence, there is a recent interest in methods dealing with functional data that include, among many

others, functional principal component analysis, linear models in which the predictors and/or the

response are of a functional nature, functional analysis of variance and functional outlier detection.

Ramsay and Silverman (2002, 2006), Ferraty and Vieu (2006) and Horváth and Kokoszka (2012)

are excellent summaries of methods and case studies for handling functional data from different

approaches.

Particularly, the functional linear model with scalar response in which a functional random

variable is used to predict a real random variable has attracted considerable attention in the liter-

ature. Several procedures have been proposed to estimate the parameters of the model including

functional principal component regression and functional partial least squares regression, which are

the focus of this paper.

Functional principal component regression has been considered by many authors including Car-

dot, Ferraty and Sarda (1999, 2003), Hall and Hosseini-Nasab (2006), Cai and Hall (2006), Hall

and Horowitz (2007), Cardot, Mas and Sarda (2007), and Ferraty, González-Manteiga, Mart́ınez-

Calvo, and Vieu (2012), among others. To obtain an estimate of the functional slope of the model,

the standard functional principal component regression estimation method regresses the response

on the principal component scores linked with the largest eigenvalues of the functional predictor

covariance operator. However, the functional slope estimate obtained in this way may have a large

variability even for large sample sizes. To achieve more stable slope estimates, Hall and Horowitz

(2007) and Ferraty et al. (2012) have proposed, under different perspectives, a regularized func-

tional principal component regression estimation method based on introducing a small perturbation

in the eigenvalues of the functional predictor covariance operator. This regularized estimator can

be seen as a member of the family of estimators proposed by Cardot, Mas and Sarda (2007).

On the other hand, functional partial least squares regression was proposed by Preda and

Saporta (2005) and posteriorly analyzed in Reiss and Ogden (2007), Aguilera, Escabias, Preda

and Saporta (2010) and Delaigle and Hall (2012), among others. The functional partial least
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squares regression method iteratively produces a sequence of orthogonal functions, as the functional

principal components are, but with maximum predictive performance. Then, to obtain a functional

slope estimate, the response is regressed on the projections of the predictor on the sequence of

orthogonal functions previously produced.

The purpose of this paper is twofold. The first aim is to provide with an overview of estimation

methods based on functional principal component regression and functional partial least squares

regression and to discuss their advantages and disadvantages. In particular, we focus on the role

played by the functional principal components and the functional partial least squares components

that are used in the considered estimation methods. We point out that the selection of components

used in these methodologies appears to be a major task in real data analysis if we want to obtain

sensible estimates of the functional slope of the model. Particularly, the undertaken analysis leads

to an estimator based in functional principal components regression that takes into account the

response when choosing the scores used in estimation. This estimator can be seen as a functional

version of the best subset selection strategy frequently used in multiple linear regression. The

advantages and disadvantages of this estimator are also discussed. See Cardot and Sarda (2011)

and Mas and Pumo (2011) for another surveys on functional linear regression, although from a

different perspective.

The second purpose of this paper is to compare the performance of all the considered method-

ologies by means of an extensive simulation study to provide advice to practitioners on the use

of the functional linear model with scalar response for real-world applications. The comparison is

performed in terms of the mean square error of the functional slope estimate as well as the mean

square prediction error of the fitted model. It is important to note that a thorough understanding

of available methods for model estimation and their challenges can be of broad interest because

there is no existing standard approach to estimating the model in practical situations. The methods

and results presented in this paper would permit practitioners to handle real-world functional data

properly.

The rest of this paper is structured as follows. Section 2 briefly presents the functional linear

model with scalar response. Section 3 introduces functional principal component regression that

leads to three different estimation procedures. Section 4 introduces functional partial least squares

regression that leads to another estimation procedure. Section 5 presents a large simulation study to
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evaluate the performance of the four analyzed estimation procedures. Finally, Section 6 concludes.

2 The functional linear model with scalar response

The functional linear model with scalar response establishes a linear relationship between a func-

tional random variable and a real random variable. Firstly, we present the functional framework

under which the functional random variable is defined and, then, we introduce the real random

variable and the model.

Let L2 (T ) be the separable Hilbert space of functions η defined on the closed interval T =

[a, b] ⊂ R satisfying
∫
T η

2 (s) ds < ∞ and let 〈η, κ〉 =
∫
T η (s)κ (s) ds be the usual inner product

of functions η and κ defined on L2 (T ). The inner product induces the L2 (T ) norm given by

‖η‖2 = 〈η, η〉1/2, for all η ∈ L2 (T ). Let χ ∈ L2 (T ) be a square integrable functional random

variable, i.e., E
[
‖χ‖2

]
< ∞ and such that χ (t) is the value of the function at point t ∈ T . Thus,

the functional random variable χ has a mean function, denoted by µχ, such that µχ (t) = E [χ (t)],

for all t ∈ T , and a positive definite covariance function, denoted by cχ, such that:

cχ (s, t) = Cov [χ (s) , χ (t)] = E [(χ (s)− µχ (s)) (χ (t)− µχ (t))] , (1)

for all s, t ∈ T . The covariance function cχ in (1) allows the covariance operator of χ, denoted by

Γχ, to be defined as:

Γχ (η) (t) =

∫
T
cχ (s, t) η (s) ds,

for all t ∈ T . Note that the covariance operator Γχ can be written in terms of the inner product as

Γχ (η) = E [〈χ− µχ, η〉 (χ− µχ)]. In particular, as Γχ is positive definite, there exists a sequence of

positive eigenvalues of Γχ, denoted by a1 > a2 > · · · > 0, and a set of orthonormal eigenfunctions

of Γχ, denoted by ψ1, ψ2, . . . such that Γχ (ψk) = akψk, for k = 1, 2, . . . On the other hand, let y

be a real random variable defined on the same probability space that χ. We assume that y has

a mean, denoted by my, such that my = E [y], and a positive variance, denoted by σ2y , such that

σ2y = E
[
(y −my)

2
]
.

The functional linear model with scalar response establishes that the relationship between the
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functional random variable χ and the real random variable y is given by:

y = my + 〈χ− µχ, β〉+ e = my +

∫
T

(χ (t)− µχ (t))β (t) + e, (2)

where β, the functional slope of the model, is a square integrable function, i.e., ‖β‖2 <∞, and e is

an error real random variable with mean 0, finite variance σ2e , and independent of χ. Consequently,

the model in (2) assumes that the conditional mean and variance of y given χ are given by E [y|χ] =

my + 〈χ− µχ, β〉 and V ar [y|χ] = σ2e , respectively.

In the following, we assume that we observe {(χi, yi) , i = 1, . . . , n}, a sample of independent

and identically distributed random variables drawn from the pair (χ, y). The goal is to estimate

the parameters of the model in (2), specifically the functional slope β, from the observed sample.

Next, Sections 3 and 4 summarize and analyze estimation methods based on functional principal

component and functional partial least squares regression.

3 Estimation through functional principal components

This section presents methods for estimating the parameters of the functional linear model with

scalar response based on functional principal components.

3.1 Functional principal component regression

The eigenfunctions of the predictor covariance operator Γχ, ψ1, ψ2, . . ., form a complete orthonormal

basis in L2 (T ) that allows the Karhunen-Loève expansion of χ to be written in terms of the elements

of the basis as:

χ = µχ +

∞∑
k=1

skψk, (3)

where sk = 〈χ− µχ, ψk〉, for k = 1, 2 . . ., are called the functional principal component scores.

These are uncorrelated random variables with mean 0 and variance ak. Similarly, the functional

slope β in (2) can be written in terms of ψ1, ψ2, . . . as:

β =

∞∑
k=1

bkψk, (4)
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where bk = 〈β, ψk〉, for k = 1, 2 . . . Thus, the functional linear model with scalar response in (2)

can be rewritten using the expansions in (3) and (4) as:

y = my +
∞∑
k=1

bksk + e, (5)

in which the scalar response y is written as an infinite linear combination of s1, s2, . . . From (5) and

taking into account that β is square integrable and thus
∑∞

k=1 b
2
k <∞, it is not difficult to see that

the coefficients bk are given by:

bk =
cy,sk
ak

, (6)

(see, Lemma 8.1 in Horváth and Kokoszka, 2012), where cy,sk = Cov [y, sk], for k = 1, 2 . . ., that

allows β to be written in terms of cy,sk and the pairs (ak, ψk), for k = 1, 2 . . ., as:

β =
∞∑
k=1

cy,sk
ak

ψk. (7)

The quality of the functional predictor χ to explain linearly the real response y can be measured

in terms of the coefficient of determination, denoted by R2, and defined as the proportion of the

scalar response variance explained by the functional predictor, i.e.:

R2 =
V ar [E [y|χ]]

σ2y
. (8)

Now, from (5) and (6), it is possible to show that:

V ar [E [y|χ]] =

∞∑
k=1

akb
2
k =

∞∑
k=1

c2y,sk
ak

,

which leads to,

R2 =
1

σ2y

∞∑
k=1

c2y,sk
ak

=

∞∑
k=1

r2y,sk , (9)

where ry,sk = Cor [y, sk], for k = 1, 2 . . . Consequently, the quality of χ to explain linearly y is

determined by the linear relationships between the real response y and the principal component

scores s1, s2, . . .
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3.2 Standard functional principal component regression estimation

Given {(χi, yi) , i = 1, . . . , n}, a sample of independent and identically distributed random variables

drawn from the pair (χ, y), the standard functional principal component regression estimation

method consists on truncating the infinite sum in (7) after kn terms, where 1 ≤ kn ≤ kmax is a

certain threshold, and on estimating the unknown quantities in the first kn terms in (7) with their

sample counterparts. Thus, µχ is estimated with the sample mean of χ1, . . . , χn, given by:

µ̂χ =
1

n

n∑
i=1

χi,

Γχ is estimated with the sample covariance operator of χ1, . . . , χn, given by:

Γ̂χ (η) =
1

n

n∑
i=1

〈χi − µ̂χ, η〉 (χi − µ̂χ) , (10)

for all η ∈ L2 (T ), ψ1, . . . , ψkn and a1, . . . , akn are estimated with the eigenfunctions and eigenvalues

of Γ̂χ in (10), denoted by ψ̂1, . . . , ψ̂kn and â1, . . . , âkn , respectively, and s1, . . . , skn are replaced with

the sample scores given by ŝk = (ŝ1k, . . . , ŝnk)
′, where ŝik =

〈
χi − µ̂χ, ψ̂k

〉
, for i = 1, . . . , n and

k = 1, 2, . . . , kn. Consequently, the standard functional principal component regression estimate of

β is given by:

β̂S =

kn∑
k=1

b̂k,Sψ̂k =

kn∑
k=1

ĉy,sk
âk

ψ̂k, (11)

where ĉy,sk is the sample covariance between the responses and the k-th sample scores, i.e.:

ĉy,sk =
1

n

n∑
i=1

(yi − m̂y) ŝik,

and m̂y is the sample mean of y1, . . . , yn.

Once β has been estimated through (11), fitted values of the responses and residuals can be

obtained. First, if Y = (y1, . . . , yn)′ is the vector of responses, then, the vector of fitted responses is

ŶS = (ŷS,1, . . . , ŷS,n)′, where ŷS,i = m̂y−
〈
χi − µ̂χ, β̂S

〉
, that, in matrix form, is given by ŶS = HSY ,
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where HS is the n× n hat matrix given by:

HS =
1

n

(
1n1′n +

kn∑
k=1

ŝkŝ
′
k

âk

)
,

and 1n is the n× 1 column vector of ones. Second, the vector of residuals is given by:

êS = Y − ŶS = (In −HS)Y,

where In is the n × n identity matrix, that allows the error variance σ2e to be estimated through

the functional residual variance, given by:

σ̂2e,S =
ê′S êS

n− kn − 1
. (12)

Finally, the coefficient of determination in (8) can be estimated with the sample coefficient of

determination:

R̂2
S =

kn∑
k=1

âk b̂
2
k,S =

kn∑
k=1

ĉ2y,sk
âk

=

kn∑
k=1

r̂2y,sk

where r̂y,sk is the sample correlation between the responses and the k-th sample scores.

The finite sample behavior of the estimator β̂S in (11) can be analyzed through the conditional

mean square error of β̂S as well as the mean square prediction error of the fitted model. First, the

conditional mean square error of β̂S was derived by Hall and Hosseini-Nasab (2006) and Ferraty et

al. (2012), and is given by:

E

[∥∥∥β − β̂S∥∥∥2 |χ1, . . . , χn

]
=
σ2e
n

kn∑
k=1

1

âk
+
∥∥∥R̂kn∥∥∥2 , (13)

where R̂kn =
∑∞

k=kn+1

〈
β, ψ̂k

〉
ψ̂k. Additionally, Theorem 5 in Hall and Hosseini-Nasab (2006)

gives conditions under which the ratio between MSE
(
β̂S

)
and σ2

e
n

∑kn
k=1

1
ak

+‖Rkn‖
2, where Rkn =∑∞

k=kn+1 〈β, ψk〉ψk, converges to 1 when n → ∞. Note that the first term in the right hand side

of (13) is the contribution of the variability of β̂S while the second term is the contribution of the

square bias of β̂S . Thus, there is a trade-off between bias and variability of β̂S in terms of the

threshold kn. On the one hand, β̂S is a biased estimator of β, although the larger kn, the smaller
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the bias. On the other hand, the larger kn, the larger the variability of β̂S . This is because the

eigenvalues âk decrease rapidly towards 0. Consequently, the behavior of β̂S strongly depends on

the threshold kn because if kn is small enough, β̂S may be largely biased, while if kn is large enough,

β̂S may be too rough. Therefore, kn controls the smoothness of β̂S . Second, the conditional mean

square prediction error of the fitted model is given by:

E
[
(y − ŷS,n+1)

2 |χ1, . . . , χn+1

]
= σ2e +

σ2e
n

(
1 +

kn∑
k=1

ŝ2n+1,k

âk

)
+
〈
χn+1 − µ̂χ, R̂kn

〉2
, (14)

where ŷS,n+1 = m̂y −
〈
χn+1 − µ̂χ, β̂S

〉
and ŝn+1,k =

〈
χn+1 − µ̂χ, ψ̂k

〉
is the k-th principal compo-

nent score corresponding to χn+1. The MSPE in (14) is slightly different than the one that appears

in Theorem 1 in Ferraty et al (2012) because (14) includes the variability due to the estimation of

the means of both the response and the predictor variables, that was not considered in Ferraty et

al (2012). The MSPE in (14) also depends on kn because the larger kn, the larger the second term

in the right hand side of (14) although the smaller the third term.

The asymptotic behavior of the estimator β̂S in (11) has been analyzed in several papers. Car-

dot, Ferraty and Sarda (1999) showed that under certain assumptions on the eigenvalues a1, a2, . . .

β̂S converges in probability and almost surely to β. Here, the convergence assumptions holds if kn

is a sequence of integers which converges to ∞ slowly enough as a function of n. Cardot, Ferraty

and Sarda (2003) showed the convergence in probability of β̂S after smoothing it with a B-spline

approximation. Hall and Hosseini-Nasab (2006), besides obtaining the conditional mean square

error of β̂S , pointed out the importance of the spacings of the eigenvalues a1, a2, . . . in the behavior

of (14). Particularly, Hall and Hosseini-Nasab (2006) showed that β̂S may have problems if, along

a1, a2, . . ., there are from time to time very closely spaced eigenvalues. Moreover, these authors

give a simple sufficient condition on kn for β̂S , based on spacings of a1, a2, . . ., to be consistent for

β. Cai and Hall (2006) focus on the prediction of the scalar response rather than in estimating

β and showed that if the threshold kn in β̂S is optimal to estimate β, then β̂S will usually be

oversmoothed for predicting the response y. Therefore, these authors suggest to undersmooth β̂S

to obtain optimal predictions. Finally, Hall and Horowitz (2007) give optimal convergence rates

of β̂S , assuming that kn tends to ∞ at a certain rate and certain conditions on the spacings of

a1, a2, . . . and the coefficients b1, b2, . . .
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3.3 Regularized functional principal component regression estimation

The regularized functional principal component regression estimation method tries primarily to

avoid the effect due to the presence of small eigenvalues in (11) and is given by:

β̂R =

kn∑
k=1

b̂k,Rψ̂k =

kn∑
k=1

ĉy,sk
âk + rn

ψ̂k, (15)

where rn is a certain positive number called regularization parameter.

Once β has been estimated through (15), fitted values of the responses and residuals can be

obtained similarly to the case of (11). First, the vector of fitted responses is ŶR = (ŷR,1, . . . , ŷR,n)′,

where ŷR,i = m̂y −
〈
χi − µ̂χ, β̂R

〉
, that, in matrix form, is given by ŶR = HRY , where HR is the

n× n hat matrix:

HR =
1

n

(
1n1′n +

kn∑
k=1

ŝkŝ
′
k

âk + rn

)
.

Second, the vector of residuals is given by êR = Y −ŶR = (In −HR)Y that allows the error variance

σ2e to be estimated through the functional residual variance as in (12). Finally, the coefficient of

determination in (8) can be estimated with:

R̂2
R =

kn∑
k=1

âk b̂
2
k,R =

kn∑
k=1

âk

(âk + rn)2
ĉ2y,sk .

Regarding finite sample properties, the conditional mean square error of β̂R in (15) was derived

by Ferraty et al. (2012), and is given by:

E

[∥∥∥β − β̂R∥∥∥2 |χ1, . . . , χn

]
=
σ2e
n

kn∑
k=1

âk

(âk + rn)2
+

∥∥∥∥∥
kn∑
k=1

rn
âk + rn

〈
β, ψ̂k

〉
ψ̂k

∥∥∥∥∥
2

+
∥∥∥R̂kn∥∥∥2 , (16)

where the first term in the right hand side of (16) is the contribution of the variability of β̂R while

the second and third terms are the contribution of the square bias of β̂R. Thus, β̂R is a biased

estimator of β, as β̂S is. Moreover, given rn, the larger kn, the smaller the bias and the larger the

variability, as in the case of β̂S , while given kn, the larger rn, the larger the bias and the smaller

the variability. The main point here is that an appropriate selection of kn and rn may lead (16) to
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be smaller than (13). The difference between both MSEs is given by:

E

[∥∥∥β − β̂S∥∥∥2 |χ1, . . . , χn

]
− E

[∥∥∥β − β̂R∥∥∥2 |χ1, . . . , χn

]
=

=
σ2e
n

kn∑
k=1

(
1

âk
− âk

(âk + rn)2

)
−

∥∥∥∥∥
kn∑
k=1

rn
âk + rn

〈
β, ψ̂k

〉
ψ̂k

∥∥∥∥∥
that is positive when σ2e is large and/or n is small enough, see Ferraty et al. (2012) for a deeper

analysis of this difference. On the other hand, the conditional mean square prediction error of the

fitted model is given by:

E
[
(y − ŷR,n+1)

2 |χ1, . . . , χn+1

]
=

= σ2e +
σ2e
n

(
1 +

kn∑
k=1

âk

(âk + rn)2
ŝ2n+1,k

)
+

〈
χn+1 − µ̂χ, R̂kn +

kn∑
k=1

âk
âk + rn

〈
β, ψ̂k

〉
ψ̂k

〉2

,
(17)

that is slightly different than the one that appears in Theorem 3 in Ferraty et al (2012) because (17)

includes the variability due to the estimation of the means of both the response and the predictor

variables. The behavior of (17) is much more complicated than the one of (14). Comparison of

both MSPEs will be done using simulations in Section 5.

The asymptotic behavior of the estimator β̂R in (15) has been analyzed in Hall and Horowitz

(2007) and Ferraty et al. (2012). On the one hand, Hall and Horowitz (2007) proved similar results

of β̂R to those of β̂S in the same paper, under similar conditions on kn, the spacings of a1, a2, . . .

and the coefficients b1, b2, . . . On the other hand, Ferraty et al. (2012) established the consistency of

β̂R under conditions close to the ones given in Cardot, Ferraty and Sarda (1999, 2003) to establish

the consistency of β̂S .

3.4 Best subset functional principal component regression estimation

Both the standard and regularized functional principal component regression estimates of β in (11)

and (15), respectively, are based on regressing the response variable on the functional principal

component scores linked with the largest eigenvalues of the predictor covariance operator. Thus,

both estimates includes the scores without regard to how well they predict the response. However, as

shown in (9), the contribution to the fit of each score is measured in terms of the squared correlation

between the corresponding score and the response. Particularly, the proportion of total variance
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of the scalar response y explained by the score sk is given by r2y,sk . Therefore, the scores ordered

accordingly with the magnitudes of their associated eigenvalues do not contribute monotonically

to explain the total variance of the scalar response. This result suggests that selecting the scores

with larger squared correlations with the scalar response may be more appropriate than selecting

the scores linked with the largest eigenvalues, an idea hinted by Aguilera, Ocaña and Valderrama

(1997) in the problem of predicting continuous-time stochastic processes. Hence, we also consider

an estimate of β that takes into account the response when choosing the scores to include in the

regression. The resulting estimator can be seen as a functional version of the best subset selection

strategy usual in multiple linear regression and it is given by:

β̂BS =
∑
k∈Kn

b̂k,Sψ̂k =
∑
k∈Kn

ĉy,sk
âk

ψ̂k, (18)

where Kn is a subset of {1, 2, . . . , kmax} that includes those components with largest sample square

correlations with the responses sorted in descending order in terms of square correlations r2y,sk .

The best subset estimate of β in (18) is constructed using the responses. This makes the

computation of the conditional mean square error of β̂BS and the mean square prediction error of

the fitted model are intractable. Nevertheless, one might expect that taking a principal component

score correlated with the response but with a small associated eigenvalue may increase the variability

of (18). To see why, note that as
∞∑
k=1

b2k <∞, from (6), this quantity can be rewritten as:

σ2y

∞∑
k=1

r2y,sk
ak

<∞.

Therefore, the square correlations r2y,sk should converge to 0 at a faster rate than the eigenvalues

ak, which indeed converges very rapidly to 0. Therefore, the functional linear model with scalar

response in (2) consider cases in which the large square correlations are mostly associated with large

eigenvalues. Consequently, a score linked with a small eigenvalue should not enter in estimation

unless it is highly correlated with the scalar response.

Finally, as for β̂S and β̂R, once that β has been estimated through (18), one can obtain fitted

values of the responses and residuals. Expressions of fitted values, hat matrix, residuals, functional

residual variance and estimated coefficient of determination for (18) are similar to those for (11)

12



but replacing the quantities associated with the first eigenvalues with the quantities associated with

the eigenvalues belonging to the set Kn.

4 Estimation through functional partial least squares

As shown in (5), the functional linear model with scalar response can be written in terms of an

infinite linear combination of functional principal component scores. Alternatively, Preda and

Saporta (2005) developed functional partial least squares as a method to write the functional

linear model in (2) in terms of an infinite linear combination of uncorrelated random variables

relevant to predict the real response. The idea is to decompose the functional predictor χ and the

real response y in terms of zero mean uncorrelated random variables, denoted by p1, p2, . . ., with

maximum predictive performance. These are obtained in an iterative fashion as follows:

1. Define y0 = y −my and χ0 = χ− µχ and let l = 0.

2. Let pl+1 = 〈χl, ϕl+1〉, where ϕl+1 is a function in L2 (T ), such that c2yl,pl+1
is maximal, with

cyl,pl+1
= Cov [yl, pl+1], which is given by:

ϕl+1 =
∆yl,χl

‖∆yl,χl
‖
,

where ∆yl,χl
= Cov [yl, χl].

3. Define yl+1 = yl − vl+1pl+1, where vl+1 is a constant given by:

vl+1 =
cyl,pl+1

σ2pl+1

,

where σ2pl+1
= V ar (pl+1), and define χl+1 = χl − %l+1pl+1, where %l+1 is a function in L2 (T )

given by:

%l+1 =
∆χl,pl+1

σ2pl+1

,

where ∆χl,pl+1
= Cov [χl, pl+1].

4. Let l = l + 1 and back to step 2.
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Preda and Saporta (2005) showed that p1, p2, . . . obtained in this way form an orthogonal basis

such that:

χ = µχ +

∞∑
l=1

pl%l,

and,

y = my +
∞∑
l=1

vlpl + e, (19)

respectively. The functional slope β can be written in terms of p1, p2, . . . as well. For that, note

that pl = 〈χl−1, ϕl〉 = 〈χ− µχ, φl〉, where φ1 = ϕ1 and φl = ϕl − 〈%1, ϕl〉φ1 − · · · − 〈%l−1, ϕl〉φl−1,

for l ≥ 2. Therefore, (19) leads to:

y = my +

∞∑
l=1

vl 〈χl−1, ϕl〉+ e = my +

〈
χ− µχ,

∞∑
l=1

vlφl

〉
+ e,

which, for uniqueness of β, shows that β can be written as:

β =
∞∑
l=1

vlφl.

Also, from (19), and using Proposition 3 in Preda and Saporta (2005), it is not difficult to see that:

R2 =

∞∑
l=1

r2y,pl ,

where ry,pl = Cor [y, pl], for l = 1, 2, . . . Therefore, the proportion of the total variance of the scalar

response y explained by the functional predictor χ, is measured in terms of the squared correlations

between the scalar response and the functional partial least squares components pl, for l = 1, 2, . . .

In particular, the proportion of the total variance of y explained by the random variable pl is given

by r2y,pl . Moreover, the square correlations r2y,pl are naturally sorted in descending order. Therefore,

the variables pl contribute monotonically to explain the total variance of the scalar response.

Assume now that we have {(χi, yi) , i = 1, . . . , n} a sample of independent and identically dis-

tributed random variables drawn from the pair (χ, y). In order to estimate the model parameters

through functional partial least squares, one has to apply the algorithm given before but replacing

the unknown quantities with their sample counterparts, as done in the methods based on func-
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tional principal components. Particularly, the estimate of the functional slope β provided by the

functional partial least squares components is given by:

β̂PLS =

kn∑
l=1

v̂lφ̂l, (20)

where kn is a threshold, similar to the threshold used in the standard and regularized functional

principal component regression estimation methods, and v̂l and ϕ̂l are the estimates of vl and ϕl,

respectively, given by the procedure.

As mentioned previously, the estimate β̂PLS , as the best subset functional principal component

regression estimate β̂BS , is constructed using the responses. Thus, computation of the conditional

mean square error of β̂PLS and the mean square prediction error of the fitted model are intractable.

Regarding the asymptotic behavior of the estimator β̂PLS in (20), Preda and Saporta (2005) stated

the consistency of β̂PLS to estimate β, although, as noted by Delaigle and Hall (2012), without a

proof and without regularity conditions or convergence rates. Delaigle and Hall (2012) presented

an alternative formulation of the functional partial least squares problem that allows these authors

to show the consistency of β̂PLS , as well as rates of convergence, under minor regularity conditions.

Finally, as for β̂S , β̂R and β̂BS , one may obtain fitted values and residuals and, afterwards,

estimate σ2e and R2 using the sample correlations, r̂y,pl , similarly to the case of (11), so we do not

show the details.

5 A performance evaluation of the estimation methods

This section is devoted to compare the finite sample performance of the estimation methods de-

scribed in Sections 3 and 4 by means of an extensive simulation study. For that, we estimate the

mean square error of the functional slope estimates as well as the mean square prediction error

of the fitted models. Several configurations of models and sample sizes are considered to provide

researchers and practitioners with a summary of the performance of the methods. The Monte

Carlo experiments in this section have been carried out by means of various routines written by

the authors in R (http://www.r-project.org/).

As described in Section 3, the key point in estimating the parameters of the model in (2) is, for
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β̂S in (11) and β̂BS in (18), the selection of the functional principal components, for β̂R in (15),

the selection of the functional principal components as well as the selection of the regularization

parameter, and for β̂PLS in (20), the selection of the functional partial least squares components.

In asymptotic theory, the threshold kn and the regularization parameter rn have been considered

as parameters that depend on the sample size n and which allows the convergence of the estimates

of β to the true slope β to be shown. However, in real-world applications, the previous quantities

have to be fixed based on the information provided by the data and rules based on asymptotic

theory are of limited help. Here, selection of functional principal components, functional partial

least squares and regularization parameter is done using predictive cross-validation (PCV). The

idea behind PCV is to fit the model parameters with all but one observation, which is posteriorly

predicted. Therefore, PCV chooses the model that better predict the discarded observations. In

terms of the standard functional principal component regression estimation, PCV chooses the model

that minimizes:

PCV (k) =
1

n

n∑
i=1

(
yi − m̂y,−i −

〈
χi − µ̂χ,−i, β̂kS,−i

〉)2
,

for k = 1, . . . , kmax, where m̂y,−i and µ̂χ,−i, respectively, are the sample estimates of my and µχ

excluding the i-th pair (χi, yi), and β̂kS,−i is the estimate (11) with k functional principal components

and excluding (χi, yi). The PCV for the other three estimators can be obtained straightforwardly.

Note that we do not consider other alternatives, such as generalized cross-validation (GCV), the

Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) or the

Bayesian Information Criterion (BIC) that have been used in some papers dealing with the standard

functional principal component regression estimator, see Cardot, Ferraty and Sarda (2003), Hall

and Hosseini-Nasab (2006), Chiou and Müller (2007) and Febrero-Bande, Galeano and González-

Manteiga (2010), among others. This is because, these selection methods depend on the degrees

of freedom parameter that is only properly defined for the standard and the regularized functional

principal component regression estimation methods. The usual definition of the degrees of freedom

parameter in regression (see, Krämer and Sugiyama, 2011) can not be applied for the best subset

functional principal component regression and functional partial least squares regression estimation

methods because the corresponding hat matrices depends on the responses. The proper definition

of the degrees of freedom parameter in these two cases is an open question outside the scope of this
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paper.

For the simulation study, we analyze 5 different scenarios for the model y = 〈χ, β〉+e, i.e., both

the response and the functional predictor are centered random variables. In all the scenarios, the

functional predictor is defined in the interval T = [0, 1] and is given by:

χ =
∞∑
k=1

gkzkψk

where z1, z2, . . . are i.i.d. random variables with mean 0 and variance 1, ψ1, ψ2, . . . are the eigenfunc-

tions of the predictor covariance operator Γχ and g1, g2, . . . are such that g2k = ak, for k = 1, 2, . . .,

where a1, a2, . . . are the eigenvalues associated to ψ1, ψ2, . . . These quantities, as well as the func-

tional slope β, depend on the scenario considered. Particularly, the random variables z1, z2, . . . are

either standard Gaussian or standardized exponential with rate 1. On the other hand, the errors

are either Gaussian or centered exponential with variances given by σ2e which is chosen such that

R2 = 0.75.

The considered scenarios are the following:

1. We take ψk =
√

2 sin ((k − 0.5)πt) and gk = 1/ ((k − 0.5)π), for k = 1, 2, . . . and β (t) =

2 sin (0.5πt) + 4 sin (1.5πt) + 5 sin (2.5πt). This model has been used in Cardot, Ferraty and

Sarda (2003) and represents a case in which β can be written exactly in terms of the first

three eigenfunctions.

2. We take ψk and gk, for k = 1, 2, . . . as in scenario 1, and β (t) = log
(
1.5t2 + 10

)
+ cos (4πt).

This model has been also used in Cardot, Ferraty and Sarda (2003) and represents a case in

which β is an infinite linear combination of the eigenfunctions.

3. We take ψk =
√

2 cos (kπt) and gk = k−1, for k = 1, 2, . . . and β (t) = π2
(
t2 − 1/3

)
. This

model has been used in Hall and Housseini-Nasab (2006) and represents a case in which β is

an infinite linear combination of the eigenfunctions with decreasing weights.

4. We take ψ1 = 1, ψk =
√

2 cos ((k − 1)πt), for k = 2, 3, . . ., and gk = (−1)k+1 k−1, for

k = 1, 2, . . ., and β =
∑∞

k=1 bkψk, where b1 = 0.3 and bk = 4 (−1)k+1 k−2, for k = 2, 3, . . .

This model has been used in Hall and Horowitz (2007) and represents a case in which β is an
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infinite linear combination of the eigenfunctions with decreasing weights and the eigenvalues

a1, a2, . . . are well spaced.

5. We take ψ as in scenario 4, g1 = 1, gk = 0.2 (−1)k+1 (1− 0.0001k), for k = 2, 3, 4, g5k+j =

0.2 (−1)5k+j+1 {(5k)−1− 0.0001j}, for k = 1, 2, . . . and j = 0, 1, . . . , 4, and β as in scenario 4.

This model has been used in Hall and Horowitz (2007) and represents a case in which β is an

infinite linear combination of the eigenfunctions with decreasing weights and the eigenvalues

a1, a2, . . . are closely spaced. Hall and Horowitz (2007) pointed out that this is a complex

scenario for estimators based on functional principal components.

Figure 1 shows the slope functions used in the 5 scenarios. Particularly, the last row shows the

slope used in scenarios 4 and 5. Additionally, Figure 1 also shows the approximations of the slope

function using the first five eigenfunctions of the predictor covariance operator. Note that in the

first scenario, β can be written exactly as a function of the first three eigenfunctions. In the other

scenarios, the number of functions needed to provide with a good approximation of β is larger than

in the first scenario. Particularly, in the second scenario, more than 5 eigenfunctions are needed to

obtain a good approximation of the corresponding β.

For numerical calculations the infinite series are truncated at k = 50. The sample functions

are discretized by 100 equidistant points in the interval T = [0, 1]. Gaussian errors with mean 0

and variance 0.01 are added to each generated point. Then, the discrete functions are converted

to functional observations using a B-spline basis of order 6 with 20 basis functions which seem

enough to fit the data well. We considered different orders and number of basis functions but the

results were very similar to those that are going to be presented next. The considered sample

sizes are n = 50, 100 and 200. For each scenario and sample size, we generate 500 sets of 2n

pairs, (χ1, y1) , . . . , (χ2n, y2n). Then, for each set of 2n pairs, we estimate the model parameters by

means of the four estimation methods described in Section 3 using the first n pairs of observations.

Cross-validation is used to select the adequate model with kmax = 8. Additionally, to apply the

regularized estimator, we consider a grid of possible values for the regularization parameter rn

ranging from 10−4 to 10−2 in steps of size 10−4. Then, a number of 100 possible values of the

regularization parameter is accounted. To compare the behavior of the different methods, we use
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the mean square error of the estimates of β, given by:

∫
T

(
β (t)− β̂ (t)

)2
dt,

where β̂ can be any of the considered estimators, and the mean square prediction error of the fitted

model given by:

1

n

2n∑
i=n+1

(yi − ŷi)2

where ŷn+1, . . . , ŷ2n are the predictions of the last n observation of the response variable from the

generated data set using the parameter estimates obtained with the first n observations.

Tables 1–5 show the mean, median, standard deviation and mean absolute deviation of the

estimated mean square errors of the estimates of β and mean square prediction errors of the fitted

models from the 500 pairs, obtained with the four estimation methods described in Sections 3 and

4. Additionally, Tables 6–10 contain the mean, median, standard deviation and mean absolute

deviation of the number of components used in estimation. Several comments regarding these

tables are in order.

Regarding the mean square error of estimation of β, note that the means are much larger than

the medians in almost all the situations. This is because very bad estimates are made for some of

the generated data sets. Nevertheless, large errors are reduced when the sample size increases, but

even with n = 200, means are sometimes still much larger than medians. This is in agreement with

the number of components shown in Tables 6–10. Note that the largest mean square errors are

associated with the largest number of components selected. These extreme errors make comparison

between methods more difficult. Indeed, different results are found in different scenarios. For

instance, it is reasonable to conclude that in scenarios 1 and 3, the behavior of the standard and

regularized functional principal component regression estimation method is the best one, although,

as expected, the regularized estimator es less affected by bad estimates than the standard estimator.

Scenario 2 is more complex because the number of components selected by all the methods is, in

general, smaller than needed. In this case, if we focus on the mean values, the regularized estimator

has the best performance. However, if we focus on the median values, the functional partial least

squares estimation method appears to be the best method. Thus, this last method can be largely

19



affected by extreme errors maybe because the inclusion of additional components. In scenario 4, the

best method is clearly the regularized estimator. Finally, the behavior of the estimation methods

in scenario 5 is close to the corresponding for scenario 2. Particularly, the functional partial least

squares has better performance than the other methods in terms of median values, but not in terms

of mean values.

Regarding the mean square prediction error, the differences between estimators are very small.

This suggest that, even with a bad selection of the number of components to include in estimation,

the predictions are not very affected, except in the small sample size. In this situation, a good

choice of the number of components appears to slightly improve prediction. This is in accordance

with the results derived in Hall and Horowitz (2007).

Finally, regarding the number of components included in estimation, the results appear to

confirm our initial expectations taken from first part of Tables 1–5. In general, the number of

components considered by the functional partial least squares estimator is smaller than the number

considered by the methods based of functional principal components. In other words, for a fixed

number of components, FPLS fits closer than FPCR, a result proved by de Jong (1993) and Phatak

and de Hoog (2001) in the multivariate framework and already outlined in the functional framework

in Preda and Saporta (2005) and Delaigle and Hall (2012). However, note that this is not always an

advantage if we want to obtain good estimates of the functional slope, as can be seen in scenarios

4 and 5.

In summary, there is not a dominant method in all the scenarios. Nevertheless, the regularized

functional principal component estimator and the functional partial least squares methods appear

to have the best performances. Comparing these two estimators, the regularized estimator appears

to be more stable than the functional partial least squares estimator but requires to fix the regular-

ization parameter with the cost of adding computational burden. Finally, the best subset estimator

does not appear to have an outstanding performance in none of the considered scenarios. This is

somehow in agreement with the comments made in Section 3.
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6 Conclusions

This paper have provided an overview of estimation methods based on the functional principal

component and functional partial least squares techniques to estimate the parameters of the func-

tional linear model with scalar response. In particular, we have illustrated that the role played by

the functional principal components and the functional partial least squares components that are

used in estimation appears to be very important in estimating the functional slope of the model.

However the importance of this selection appears to be less relevant in terms of out of sample pre-

diction. A functional version of the best subset selection strategy usual in multiple linear regression

is also analyzed. Nevertheless, the behavior of this estimator in the simulations is not as good as

the other alternatives.

Other aspects of the functional linear model with scalar response have been extensively analyzed.

For instance, Cardot, Ferraty, Mas and Sarda (2003) and Cardot, Goia and Sarda (2004) developed

and analyzed tests for the nullity of the functional slope while Garćıa-Portugués, González-Manteiga

and Febrero-Bande (2014) proposed a goodness-of-fit test for the null hypothesis of a functional

linear model with scalar response. Chiou and Müller (2007) proposed diagnostics for the model via

residual processes. Febrero-Bande, Galeano and González-Manteiga (2010) proposed measures of

influence for pairs of observations generated from the model. Horváth and Reeder (2012) proposed

a method to test if an integral operator that connect two sequences of curves generated by a

functional linear model changes during the observation period. Fremdt et al. (2014) analyzed the

role played by the number of functional principal components in the Karhunen-Loève expansion of χ

and applied their results to derive two inferential procedures for the mean function: a change-point

test and a two-sample test. See also Horváth and Rice (2015) for a recent survey on functional

data analysis and the two-sample problem using functional principal component analysis.

There are a number of alternative estimation methods of the parameters of the functional

linear model with scalar response that are of interest. For instance, methods based on the use of

basis functions can be found in Hastie and Mallows (1993), Marx and Eilers (1996), Ramsay and

Silverman (2006), Li and Hsing (2007), and Crambes, Kneip and Sarda (2009), among others. Also,

Cardot and Johannes (2010) proposed projection estimators which combine dimension reduction

and thresholding. Finally, James, Wang and Zhu (2009) introduces a method called FLiRTI which
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uses variable selection ideas to produce accurate estimates of the functional slope β.

Finally, other interesting models not covered in this paper are linear models in which the

response is functional as in James (2002) and Yao, Müller and Wang (2005), generalized functional

linear models as in Müller and Stadtmüller (2005), additive functional linear models as in Müller

and Yao (2008) and Fan, James and Radchenko (2015) and generalized additive functional models

as in Febrero-Bande and González-Manteiga (2013). Also, Yao and Müller (2010) and Horváth and

Reeder (2013) considered a functional regression model in which the scalar response depends on

the functional predictor in a quadratic way.
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Febrero-Bande, M., Galeano, P. and González-Manteiga, W. (2010) Measures of influence for

the functional linear model with scalar response. Journal of Multivariate Analysis, 101, 327-339.
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28, 505-548.

James, G. M. (2002) Generalized linear models with functional predictors. Journal of the Royal

Statistical Society, Series B 64, 411–432.

James, G., Wang, J. and Zhu, J. (2009) Functional linear regression that’s interpretable. Annals

of Statistics, 37, 2083-2108.
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Figure 1: Approximations of the slope function for the five scenarios using the corresponding
eigenfunctions. Last row corresponds to scenarios 4 and 5.
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Table 1: Mean, median, standard deviation and mean absolute deviation of the estimated mean
square errors of the estimates of β and mean square prediction errors of the fitted models for
scenario 1.

β̂S β̂R β̂BS β̂PLS

n Distrib. Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

MSE 50 (G,G) 10.9350
(17.4411)

3.7792
(3.8559)

8.0407
(10.9323)

4.0410
(3.9542)

16.0573
(21.3070)

6.4107
(7.6911)

15.1115
(54.0051)

6.2377
(3.2917)

(G,E) 8.5239
(13.8583)

2.9505
(2.5813)

6.7921
(8.7475)

3.5490
(3.1807)

11.3576
(15.2924)

4.0717
(4.2632)

15.0989
(66.5026)

5.3112
(3.5430)

(E,G) 11.1059
(16.3963)

4.1351
(4.1058)

7.9138
(10.1527)

4.3901
(4.1877)

15.1885
(19.2481)

6.4650
(7.7188)

31.4991
(136.4391)

6.8399
(4.9921)

(E,E) 9.3384
(16.4213)

3.6072
(3.5574)

6.9065
(8.9136)

4.1937
(3.9711)

14.9923
(21.8997)

5.6575
(7.1170)

43.5654
(196.8475)

5.6691
(4.5662)

100 (G,G) 4.4080
(7.5004)

1.5291
(1.3652)

3.5100
(4.3662)

1.6075
(1.4497)

6.9786
(8.7883)

2.5420
(2.9450)

17.3113
(91.4501)

2.4769
(1.3499)

(G,E) 4.5033
(7.1838)

1.4202
(1.3520)

3.7265
(4.4449)

1.6582
(1.6504)

7.3498
(8.8390)

3.3134
(4.0724)

4.0193
(12.2754)

2.3734
(1.2533)

(E,G) 3.4980
(6.7913)

1.3060
(1.0807)

2.9178
(4.2349)

1.4658
(1.3067)

6.0536
(8.2881)

1.7825
(1.8976)

10.3521
(64.7839)

2.3146
(1.2955)

(E,E) 4.2333
(7.7906)

1.5190
(1.2681)

3.2584
(4.0781)

1.6729
(1.4648)

5.4734
(8.6664)

1.6175
(1.5909)

6.4269
(30.8827)

2.4319
(1.3419)

200 (G,G) 2.2981
(4.0647)

0.7264
(0.6739)

1.7671
(2.3276)

0.7609
(0.7301)

3.7188
(4.4173)

1.6584
(2.1458)

7.7156
(43.6583)

1.2045
(0.5208)

(G,E) 2.0382
(3.5984)

0.7395
(0.6657)

1.6282
(2.0545)

0.8022
(0.7407)

3.0408
(3.9297)

1.1135
(1.2534)

7.5144
(36.2329)

1.0664
(0.5163)

(E,G) 1.9365
(3.0896)

0.7660
(0.6924)

1.6339
(2.0763)

0.7421
(0.6677)

3.1216
(3.9363)

1.3810
(1.4977)

6.1538
(42.1460)

1.1838
(0.5983)

(E,E) 1.6470
(2.9465)

0.6945
(0.6097)

1.4721
(1.9918)

0.7120
(0.6299)

2.9920
(3.9108)

0.9838
(1.0945)

7.1104
(35.4659)

1.0288
(0.5829)

MSPE 50 (G,G) 0.8017
(0.1753)

0.7941
(0.1573)

0.7909
(0.1638)

0.7843
(0.1515)

0.8164
(0.1746)

0.8058
(0.1699)

0.8037
(0.1795)

0.7835
(0.1585)

(G,E) 0.8343
(0.3323)

0.7778
(0.2964)

0.8287
(0.3331)

0.7693
(0.3022)

0.8480
(0.3393)

0.7903
(0.3365)

0.8403
(0.3232)

0.7901
(0.2936)

(E,G) 0.8134
(0.1911)

0.8013
(0.1749)

0.8022
(0.1825)

0.7802
(0.1811)

0.8292
(0.2006)

0.8092
(0.1864)

0.8368
(0.2326)

0.8088
(0.1935)

(E,E) 0.7996
(0.2866)

0.7684
(0.2760)

0.7889
(0.2796)

0.7555
(0.2771)

0.8201
(0.3017)

0.7744
(0.2785)

0.8246
(0.2977)

0.7885
(0.2782)

100 (G,G) 0.7294
(0.1048)

0.7315
(0.1101)

0.7272
(0.1022)

0.7274
(0.0996)

0.7367
(0.1037)

0.7416
(0.0999)

0.7298
(0.1116)

0.7267
(0.1027)

(G,E) 0.7205
(0.1813)

0.6905
(0.1899)

0.7163
(0.1805)

0.6840
(0.1912)

0.7269
(0.18014)

0.6965
(0.1824)

0.7140
(0.1839)

0.6867
(0.1935)

(E,G) 0.7274
(0.1030)

0.7262
(0.1062)

0.7257
(0.1007)

0.7240
(0.1032)

0.7342
(0.1028)

0.7327
(0.1083)

0.7266
(0.1031)

0.7311
(0.1027)

(E,E) 0.7305
(0.1978)

0.7013
(0.1609)

0.7294
(0.1962)

0.7009
(0.1565)

0.7341
(0.1986)

0.7037
(0.1664)

0.7283
(0.1973)

0.7004
(0.1731)

200 (G,G) 0.7084
(0.0756)

0.6987
(0.0758)

0.7069
(0.0747)

0.6977
(0.0728)

0.7119
(0.0765)

0.6999
(0.0711)

0.7091
(0.0812)

0.6966
(0.0745)

(G,E) 0.7198
(0.1315)

0.7124
(0.1346)

0.7185
(0.1319)

0.7111
(0.1339)

0.7211
(0.1327)

0.7131
(0.1378)

0.7193
(0.1332)

0.7077
(0.1316)

(E,G) 0.7151
(0.0700)

0.7156
(0.0653)

0.7143
(0.0705)

0.7134
(0.0671)

0.7174
(0.0708)

0.7153
(0.0678)

0.7144
(0.0766)

0.7103
(0.0641)

(E,E) 0.7162
(0.1447)

0.7045
(0.1520)

0.7161
(0.1448)

0.7043
(0.1515)

0.7192
(0.1449)

0.7032
(0.1457)

0.7170
(0.1479)

0.7011
(0.1483)
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Table 2: Mean, median, standard deviation and mean absolute deviation of the estimated mean
square errors of the estimates of β and mean square prediction errors of the fitted models for
scenario 2.

β̂S β̂R β̂BS β̂PLS

n Distrib. Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

MSE 50 (G,G) 12.5631
(31.0663)

1.7957
(0.6140)

7.4753
(17.1116)

1.8202
(0.6489)

21.2754
(36.2221)

1.9089
(0.8604)

16.3419
(85.6385)

1.6065
(0.3879)

(G,E) 10.2913
(27.9715)

1.6519
(0.3709)

6.1865
(15.4516)

1.6307
(0.3711)

17.1814
(35.1586)

1.6649
(0.3940)

28.2881
(200.4855)

1.5755
(0.2668)

(E,G) 7.2109
(16.9109)

1.6492
(0.3539)

5.9528
(14.1241)

1.7040
(0.5161)

10.8468
(20.6223)

1.6631
(0.3709)

20.4145
(106.3146)

1.5415
(0.2574)

(E,E) 8.7419
(22.3767)

1.6641
(0.3122)

6.7485
(15.4095)

1.7252
(0.5258)

14.4438
(27.4198)

1.6968
(0.3412)

23.3655
(116.6716)

1.5776
(0.2414)

100 (G,G) 6.0747
(13.2985)

1.5947
(0.2403)

3.7737
(6.0522)

1.5820
(0.2704)

11.9158
(16.0118)

2.7762
(2.1132)

21.1219
(158.0015)

1.5152
(0.2086)

(G,E) 4.8944
(11.6491)

1.5486
(0.2004)

3.3874
(6.4207)

1.5697
(0.2929)

9.3568
(15.2482)

1.6116
(0.3277)

9.7837
(41.4416)

1.5030
(0.2000)

(E,G) 5.6262
(11.5907)

1.5687
(0.2582)

3.9346
(7.0257)

1.5823
(0.3203)

11.2172
(15.8704)

1.7025
(0.5157)

9.4729
(51.0925)

1.5175
(0.2275)

(E,E) 7.1533
(13.5811)

1.6074
(0.2777)

4.6411
(7.5212)

1.6114
(0.3212)

8.7055
(13.8030)

1.6428
(0.2803)

21.5798
(117.5768)

1.5514
(0.2244)

200 (G,G) 3.9023
(6.7801)

1.4868
(0.2340)

2.6628
(3.4654)

1.4925
(0.3376)

7.3297
(8.1286)

3.8498
(3.6396)

16.1000
(98.0895)

1.4793
(0.1754)

(G,E) 3.0686
(3.9270)

1.5188
(0.2836)

2.1591
(1.5141)

1.5052
(0.3184)

5.4543
(6.0808)

2.2056
(1.2992)

7.0585
(37.7174)

1.4605
(0.1721)

(E,G) 3.6129
(6.2210)

1.5076
(0.2215)

2.4552
(3.3607)

1.4978
(0.2209)

6.4997
(8.0530)

1.7170
(0.6742)

8.0990
(31.4560)

1.4578
(0.1634)

(E,E) 4.2164
(7.5395)

1.5067
(0.2803)

2.7439
(3.4840)

1.5029
(0.4108)

6.6854
(8.2867)

2.5907
(1.7762)

3.6122
(9.4751)

1.4636
(0.1738)

MSPE 50 (G,G) 1.4004
(0.3122)

1.3537
(0.2790)

1.3689
(0.2824)

1.3318
(0.2695)

1.4157
(0.3100)

1.3697
(0.2941)

1.3805
(0.3127)

1.3287
(0.2831)

(G,E) 1.3791
(0.5818)

1.2219
(0.4337)

1.3551
(0.5769)

1.2081
(0.4279)

1.3955
(0.5733)

1.2711
(0.4160)

1.3674
(0.5847)

1.2067
(0.4477)

(E,G) 1.3902
(0.3164)

1.3610
(0.3176)

1.3750
(0.3055)

1.3420
(0.3074)

1.3898
(0.3111)

1.3547
(0.2906)

1.3861
(0.3241)

1.3534
(0.3001)

(E,E) 1.4446
(0.5251)

1.3506
(0.4721)

1.4292
(0.5166)

1.3223
(0.4426)

1.4539
(0.5331)

1.3582
(0.4529)

1.4488
(0.5337)

1.3363
(0.4573)

100 (G,G) 1.3589
(0.2076)

1.3341
(0.1773)

1.3492
(0.2015)

1.3282
(0.1900)

1.3782
(0.2170)

1.3522
(0.1884)

1.3637
(0.2253)

1.3224
(0.1948)

(G,E) 1.3582
(0.3818)

1.2844
(0.3297)

1.3511
(0.3812)

1.2769
(0.3227)

1.3722
(0.3815)

1.2948
(0.3169)

1.3596
(0.3772)

1.2939
(0.3238)

(E,G) 1.3624
(0.2014)

1.3568
(0.2029)

1.3527
(0.1976)

1.3464
(0.1899)

1.3807
(0.2116)

1.3636
(0.2151)

1.3607
(0.2109)

1.3425
(0.2032)

(E,E) 1.3978
(0.3988)

1.3265
(0.3916)

1.3811
(0.3910)

1.3253
(0.3716)

1.3918
(0.3903)

1.3265
(0.3916)

1.4016
(0.4095)

1.3241
(0.4020)

200 (G,G) 1.3240
(0.1370)

1.3276
(0.1241)

1.3182
(0.1332)

1.3171
(0.1260)

1.3344
(0.1364)

1.3368
(0.1299)

1.3276
(0.1456)

1.3277
(0.1408)

(G,E) 1.3184
(0.2508)

1.3099
(0.2247)

1.3107
(0.2490)

1.3009
(0.2239)

1.3247
(0.2493)

1.3182
(0.2290)

1.3215
(0.2506)

1.3059
(0.2319)

(E,G) 1.3252
(0.1303)

1.3182
(0.1257)

1.3195
(0.1272)

1.3127
(0.1207)

1.3346
(0.1322)

1.3254
(0.1254)

1.3303
(0.1381)

1.3207
(0.1268)

(E,E) 1.2961
(0.2477)

1.2737
(0.2400)

1.2865
(0.2452)

1.2687
(0.2383)

1.3049
(0.2478)

1.2837
(0.2476)

1.2911
(0.2451)

1.2669
(0.2216)
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Table 3: Mean, median, standard deviation and mean absolute deviation of the estimated mean
square errors of the estimates of β and mean square prediction errors of the fitted models for
scenario 3.

β̂S β̂R β̂BS β̂PLS

n Distrib. Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

MSE 50 (G,G) 5.5032
(12.8841)

0.9282
(0.7782)

4.2855
(8.2634)

0.9464
(0.8502)

9.4978
(15.7871)

1.1604
(1.0935)

8.2390
(43.1345)

0.8266
(0.5809)

(G,E) 3.5702
(9.6489)

0.9194
(0.6622)

2.8430
(5.3877)

0.9379
(0.7580)

7.7462
(14.3459)

1.1499
(0.9081)

12.5546
(75.0546)

0.8484
(0.4713)

(E,G) 4.7239
(13.0502)

0.9359
(0.7151)

3.7919
(9.4054)

0.9794
(0.7998)

7.9973
(16.2793)

1.0397
(0.9131)

21.6167
(86.1103)

0.8518
(0.6277)

(E,E) 4.1740
(10.3708)

1.0587
(0.8261)

3.5392
(8.2450)

1.0031
(0.8255)

7.3195
(13.2568)

1.1142
(1.0328)

10.1602
(45.7856)

0.8098
(0.5372)

100 (G,G) 2.2436
(5.0962)

0.6159
(0.4985)

1.7057
(2.8897)

0.6150
(0.5027)

4.2934
(5.9488)

1.2631
(1.4519)

7.9987
(45.9459)

0.7509
(0.3823)

(G,E) 1.4831
(3.3170)

0.6240
(0.4324)

1.4048
(2.4984)

0.6397
(0.4580)

3.6652
(5.6828)

0.9006
(0.8071)

6.3790
(39.9878)

0.6366
(0.3283)

(E,G) 1.7267
(3.5561)

0.5619
(0.4125)

1.5514
(2.3973)

0.5593
(0.4268)

3.5538
(5.2723)

0.8759
(0.7956)

12.7350
(62.8530)

0.6526
(0.3661)

(E,E) 2.5981
(6.2464)

0.6186
(0.5579)

2.0386
(4.1165)

0.6609
(0.6124)

4.4372
(7.2369)

0.9690
(1.0003)

3.7705
(18.3182)

0.6205
(0.3353)

200 (G,G) 1.2659
(2.5272)

0.3779
(0.2963)

0.9329
(1.3134)

0.3603
(0.2910)

2.3085
(2.9253)

0.9197
(1.0860)

4.1722
(23.4223)

0.4629
(0.1913)

(G,E) 1.0495
(2.0835)

0.3578
(0.2423)

0.8828
(1.2099)

0.4063
(0.2929)

2.1452
(2.8148)

0.7120
(0.7651)

2.8988
(23.6653)

0.4424
(0.2262)

(E,G) 1.2517
(2.5531)

0.4266
(0.3317)

1.0930
(1.6394)

0.4244
(0.3476)

2.4753
(3.2175)

0.7574
(0.8431)

3.6152
(16.7311)

0.4799
(0.2602)

(E,E) 0.9228
(1.6918)

0.3452
(0.2391)

0.7681
(1.0163)

0.3441
(0.2394)

2.1328
(2.8027)

0.7192
(0.7802)

4.3834
(36.9197)

0.4282
(0.2280)

MSPE 50 (G,G) 4.5595
(1.0698)

4.4977
(0.9717)

4.5166
(1.0302)

4.4444
(0.9924)

4.6366
(1.0782)

4.4926
(0.9811)

4.4875
(1.0701)

4.2749
(1.0185)

(G,E) 4.6008
(1.6102)

4.2411
(1.4468)

4.5659
(1.5881)

4.2185
(1.4212)

4.7361
(1.6754)

4.3000
(1.5234)

4.6331
(1.7109)

4.2299
(1.5678)

(E,G) 4.5952
(1.1064)

4.5706
(1.0596)

4.5532
(1.0657)

4.5513
(1.0775)

4.6600
(1.1449)

4.5735
(1.1015)

4.6566
(1.2902)

4.5418
(1.0683)

(E,E) 4.5526
(1.9603)

4.2033
(1.5716)

4.5149
(1.9411)

4.1588
(1.5880)

4.6301
(1.9882)

4.3026
(1.6002)

4.6011
(2.0854)

4.1996
(1.5712)

100 (G,G) 4.3444
(0.6799)

4.2975
(0.7327)

4.3150
(0.6698)

4.2544
(0.6765)

4.4041
(0.6999)

4.3585
(0.7533)

4.3686
(0.7371)

4.3098
(0.7403)

(G,E) 4.2336
(1.1937)

4.0773
(1.0401)

4.2184
(1.1868)

4.0628
(1.0322)

4.2946
(1.1960)

4.1292
(0.9992)

4.2367
(1.2163)

4.1332
(0.9442)

(E,G) 4.3375
(0.5996)

4.3365
(0.5754)

4.3181
(0.5912)

4.2999
(0.5919)

4.3971
(0.6071)

4.3572
(0.6099)

4.3913
(0.7021)

4.3491
(0.6308)

(E,E) 4.3322
(1.1965)

4.1338
(1.1444)

4.3030
(1.1856)

4.1224
(1.1354)

4.3829
(1.2125)

4.2029
(1.1886)

4.3226
(1.1893)

4.1437
(1.1857)

200 (G,G) 4.1711
(0.4364)

4.2060
(0.3950)

4.1555
(0.4314)

4.1916
(0.4028)

4.1973
(0.4480)

4.2381
(0.4074)

4.1810
(0.4643)

4.2138
(0.4143)

(G,E) 4.1407
(0.7775)

4.0725
(0.7313)

4.1304
(0.7795)

4.0808
(0.7171)

4.1849
(0.7833)

4.1470
(0.6926)

4.1367
(0.7814)

4.0805
(0.7114)

(E,G) 4.1898
(0.4271)

4.1350
(0.4288)

4.1764
(0.4268)

4.1151
(0.3906)

4.2239
(0.4390)

4.1637
(0.4182)

4.2084
(0.4630)

4.1467
(0.4306)

(E,E) 4.1481
(0.8100)

4.0232
(0.7277)

4.1400
(0.8112)

4.0279
(0.7105)

4.1808
(0.8091)

4.0622
(0.7385)

4.1586
(0.8147)

4.0452
(0.7189)
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Table 4: Mean, median, standard deviation and mean absolute deviation of the estimated mean
square errors of the estimates of β and mean square prediction errors of the fitted models for
scenario 4.

β̂S β̂R β̂BS β̂PLS

n Distrib. Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

MSE 50 (G,G) 0.3497
(0.3707)

0.2156
(0.1390)

0.2683
(0.2086)

0.2152
(0.1259)

0.4341
(0.4116)

0.2612
(0.1901)

0.6045
(2.6028)

0.2258
(0.1238)

(G,E) 0.3507
(0.3647)

0.2290
(0.1369)

0.2697
(0.2337)

0.1982
(0.1185)

0.4092
(0.3760)

0.2695
(0.1875)

0.5958
(1.8827)

0.2057
(0.1197)

(E,G) 0.3833
(0.4548)

0.2467
(0.1559)

0.3121
(0.3215)

0.2350
(0.1338)

0.4966
(0.5138)

0.2928
(0.2181)

0.4023
(0.7827)

0.2426
(0.1171)

(E,E) 0.3790
(0.4226)

0.2313
(0.1532)

0.3050
(0.2754)

0.2318
(0.1325)

0.4950
(0.4894)

0.3151
(0.2250)

1.1835
(4.7920)

0.2495
(0.1213)

100 (G,G) 0.2107
(0.1752)

0.1511
(0.0834)

0.1632
(0.1168)

0.1292
(0.0662)

0.2675
(0.1994)

0.1923
(0.1360)

0.4393
(1.6481)

0.1537
(0.0709)

(G,E) 0.1867
(0.1462)

0.1494
(0.0809)

0.1494
(0.0842)

0.1308
(0.0584)

0.2284
(0.1667)

0.1733
(0.1048)

0.4166
(2.0087)

0.1484
(0.0605)

(E,G) 0.1955
(0.1440)

0.1534
(0.0761)

0.1589
(0.0972)

0.1385
(0.0661)

0.2512
(0.1738)

0.1916
(0.1299)

0.5505
(2.1265)

0.1479
(0.0690)

(E,E) 0.2050
(0.1947)

0.1375
(0.0773)

0.1614
(0.1220)

0.1305
(0.0700)

0.2439
(0.2141)

0.1641
(0.1084)

0.4210
(1.6700)

0.1484
(0.0659)

200 (G,G) 0.1292
(0.0930)

0.1000
(0.0446)

0.0980
(0.0536)

0.0843
(0.0370)

0.1586
(0.1043)

0.1190
(0.0678)

0.2850
(1.2996)

0.0826
(0.0315)

(G,E) 0.1211
(0.0842)

0.0996
(0.0440)

0.0903
(0.0429)

0.0784
(0.0402)

0.1388
(0.0914)

0.1128
(0.0574)

0.1581
(0.5443)

0.0834
(0.0294)

(E,G) 0.1359
(0.1086)

0.0976
(0.0498)

0.1005
(0.0687)

0.0817
(0.0351)

0.1537
(0.1133)

0.1197
(0.0708)

0.1827
(0.5812)

0.0889
(0.0391)

(E,E) 0.1249
(0.0954)

0.0946
(0.0435)

0.0939
(0.0468)

0.0784
(0.0339)

0.1445
(0.1038)

0.1115
(0.0648)

0.1693
(0.7341)

0.0847
(0.0320)

MSPE 50 (G,G) 0.1635
(0.0342)

0.1606
(0.0317)

0.1597
(0.0326)

0.1552
(0.0305)

0.1663
(0.0353)

0.1627
(0.0332)

0.1626
(0.0349)

0.1584
(0.0300)

(G,E) 0.1653
(0.0627)

0.1545
(0.0540)

0.1620
(0.0625)

0.1510
(0.0546)

0.1661
(0.0622)

0.1574
(0.0571)

0.1639
(0.0620)

0.1510
(0.0553)

(E,G) 0.1576
(0.0326)

0.1568
(0.0320)

0.1550
(0.0319)

0.1544
(0.0330)

0.1600
(0.0343)

0.1561
(0.0325)

0.1565
(0.0317)

0.1533
(0.0306)

(E,E) 0.1637
(0.0660)

0.1491
(0.0588)

0.1605
(0.0631)

0.1464
(0.0545)

0.1690
(0.0669)

0.1573
(0.0594)

0.1658
(0.0679)

0.1511
(0.0529)

100 (G,G) 0.1512
(0.0222)

0.1501
(0.0232)

0.1489
(0.0210)

0.1473
(0.0225)

0.1527
(0.0220)

0.1512
(0.0236)

0.1512
(0.0231)

0.1487
(0.0225)

(G,E) 0.1518
(0.0403)

0.1447
(0.0399)

0.1501
(0.0404)

0.1433
(0.0397)

0.1531
(0.0403)

0.1466
(0.0401)

0.1518
(0.0413)

0.1452
(0.0429)

(E,G) 0.1523
(0.0224)

0.1514
(0.0237)

0.1506
(0.0221)

0.1515
(0.0221)

0.1535
(0.0229)

0.1534
(0.0229)

0.1528
(0.0245)

0.1529
(0.0236)

(E,E) 0.1543
(0.0392)

0.1477
(0.0367)

0.1523
(0.0390)

0.1461
(0.0366)

0.1556
(0.0391)

0.1497
(0.0370)

0.1538
(0.0393)

0.1491
(0.0374)

200 (G,G) 0.1424
(0.0144)

0.1419
(0.0141)

0.1415
(0.0142)

0.1410
(0.0147)

0.1433
(0.0148)

0.1432
(0.0141)

0.1424
(0.0150)

0.1420
(0.0149)

(G,E) 0.1447
(0.0268)

0.1425
(0.0250)

0.1436
(0.0267)

0.1416
(0.0235)

0.1451
(0.0268)

0.1433
(0.0249)

0.1440
(0.0269)

0.1425
(0.0251)

(E,G) 0.1461
(0.0155)

0.1475
(0.0159)

0.1447
(0.0152)

0.1456
(0.0152)

0.1467
(0.0157)

0.1479
(0.0161)

0.1455
(0.0161)

0.1451
(0.0157)

(E,E) 0.1412
(0.0310)

0.1350
(0.0285)

0.1400
(0.0306)

0.1329
(0.0291)

0.1418
(0.0312)

0.1349
(0.0295)

0.1404
(0.0306)

0.1333
(0.0283)
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Table 5: Mean, median, standard deviation and mean absolute deviation of the estimated mean
square errors of the estimates of β and mean square prediction errors of the fitted models for
scenario 5.

β̂S β̂R β̂BS β̂PLS

n Distrib. Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

MSE 50 (G,G) 0.5727
(1.0130)

0.1269
(0.0620)

0.3365
(0.5083)

0.1464
(0.0876)

0.7629
(1.0728)

0.1574
(0.1089)

1.5850
(6.4757)

0.1288
(0.0577)

(G,E) 0.5972
(1.0176)

0.1424
(0.0854)

0.3397
(0.5191)

0.1500
(0.0937)

0.7201
(1.1048)

0.1528
(0.0979)

0.5534
(1.7322)

0.1218
(0.0541)

(E,G) 0.4596
(0.7159)

0.1459
(0.0785)

0.3248
(0.4174)

0.1767
(0.1187)

0.6832
(0.9168)

0.1818
(0.1245)

0.7056
(2.3657)

0.1459
(0.0746)

(E,E) 0.5864
(1.0092)

0.1423
(0.0880)

0.3912
(0.6076)

0.1493
(0.0976)

0.8356
(1.4358)

0.1582
(0.1156)

1.6909
(8.1471)

0.1372
(0.0706)

100 (G,G) 0.3046
(0.4629)

0.0960
(0.0370)

0.1917
(0.2038)

0.1073
(0.0507)

0.4015
(0.4962)

0.1202
(0.0770)

0.9971
(4.4376)

0.0909
(0.0285)

(G,E) 0.2581
(0.3677)

0.0921
(0.0262)

0.1644
(0.1459)

0.1010
(0.0432)

0.3255
(0.4195)

0.1017
(0.0423)

1.2093
(7.5413)

0.0846
(0.0261)

(E,G) 0.3105
(0.5348)

0.0973
(0.0361)

0.1954
(0.2433)

0.1031
(0.0456)

0.4146
(0.5741)

0.1145
(0.0624)

0.9877
(4.4533)

0.0920
(0.0304)

(E,E) 0.3997
(0.7414)

0.0974
(0.0400)

0.2331
(0.3922)

0.0982
(0.0396)

0.4566
(0.7202)

0.1038
(0.0558)

0.5010
(2.4823)

0.0908
(0.0270)

200 (G,G) 0.1481
(0.1901)

0.0779
(0.0161)

0.1112
(0.0868)

0.0791
(0.0237)

0.2074
(0.2410)

0.0824
(0.0271)

0.4806
(2.3055)

0.0707
(0.0132)

(G,E) 0.1799
(0.1958)

0.0810
(0.0209)

0.1213
(0.0927)

0.0825
(0.0258)

0.2237
(0.2417)

0.0879
(0.0325)

0.3850
(2.6277)

0.0739
(0.0186)

(E,G) 0.1805
(0.2174)

0.0833
(0.0246)

0.1256
(0.1005)

0.0855
(0.0292)

0.2416
(0.2647)

0.0876
(0.0369)

0.5209
(3.5476)

0.0736
(0.0191)

(E,E) 0.1734
(0.1928)

0.0802
(0.0222)

0.1208
(0.0989)

0.0828
(0.0309)

0.2027
(0.2089)

0.0860
(0.0311)

0.4177
(2.7155)

0.0701
(0.0142)

MSPE 50 (G,G) 0.0296
(0.0058)

0.0292
(0.0063)

0.0291
(0.0054)

0.0286
(0.0054)

0.0304
(0.0060)

0.0302
(0.0063)

0.0295
(0.0069)

0.0286
(0.0061)

(G,E) 0.0290
(0.0099)

0.0277
(0.0095)

0.0281
(0.0096)

0.0267
(0.0087)

0.0295
(0.0101)

0.0281
(0.0093)

0.0283
(0.0097)

0.0270
(0.0085)

(E,G) 0.0297
(0.0065)

0.0291
(0.0064)

0.0293
(0.0061)

0.0287
(0.0063)

0.0302
(0.0065)

0.0291
(0.0063)

0.0295
(0.0066)

0.0287
(0.0065)

(E,E) 0.0289
(0.0106)

0.0269
(0.0088)

0.0284
(0.0105)

0.0264
(0.0090)

0.0298
(0.0112)

0.0273
(0.0093)

0.0288
(0.0109)

0.0268
(0.0093)

100 (G,G) 0.0273
(0.0040)

0.0272
(0.0043)

0.0270
(0.0040)

0.0269
(0.0041)

0.0276
(0.0040)

0.0275
(0.0043)

0.0274
(0.0041)

0.0275
(0.0042)

(G,E) 0.0274
(0.0072)

0.0268
(0.0070)

0.0271
(0.0072)

0.0259
(0.0066)

0.0277
(0.0074)

0.0268
(0.0068)

0.0273
(0.0073)

0.0264
(0.0067)

(E,G) 0.0270
(0.0042)

0.0270
(0.0042)

0.0267
(0.0041)

0.0265
(0.0042)

0.0272
(0.0042)

0.0271
(0.0042)

0.0269
(0.0043)

0.0267
(0.0042)

(E,E) 0.0278
(0.0079)

0.0271
(0.0074)

0.0274
(0.0077)

0.0262
(0.0074)

0.0279
(0.0080)

0.0271
(0.0073)

0.0276
(0.0078)

0.0268
(0.0070)

200 (G,G) 0.0259
(0.0027)

0.0258
(0.0027)

0.0258
(0.0027)

0.0258
(0.0028)

0.0260
(0.0027)

0.0259
(0.0029)

0.0259
(0.0028)

0.0256
(0.0029)

(G,E) 0.0266
(0.0057)

0.0258
(0.0051)

0.0264
(0.0056)

0.0256
(0.0052)

0.0267
(0.0057)

0.0258
(0.0053)

0.0265
(0.0058)

0.0256
(0.0050)

(E,G) 0.0266
(0.0026)

0.0266
(0.0026)

0.0264
(0.0025)

0.0264
(0.0027)

0.0267
(0.0026)

0.0267
(0.0026)

0.0265
(0.0026)

0.0266
(0.0028)

(E,E) 0.0259
(0.0046)

0.0258
(0.0046)

0.0258
(0.0046)

0.0257
(0.0046)

0.0260
(0.0046)

0.0259
(0.0046)

0.0258
(0.0047)

0.0257
(0.0046)
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Table 6: Mean, median, standard deviation and mean absolute deviation of the number of compo-
nents of the estimates of β for scenario 1.

β̂S β̂R β̂BS β̂PLS
n Distrib. Mean

(sd)
Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

50 (G,G) 3.97
(1.46)

3
(0)

4.26
(1.65)

3.5
(0.74)

3.91
(1.33)

3
(1.48)

2.86
(0.57)

3
(0)

(G,E) 3.74
(1.28)

3
(0)

4.28
(1.71)

3
(1.48)

3.55
(1.15)

3
(0)

2.88
(0.60)

3
(0)

(E,G) 4.17
(1.54)

4
(1.48)

4.47
(1.72)

4
(1.48)

3.8
(1.37)

3
(1.48)

2.89
(0.81)

3
(0)

(E,E) 3.97
(1.39)

3
(1.48)

4.36
(1.64)

4
(1.48)

3.77
(1.41)

3
(1.48)

2.99
(0.93)

3
(0)

100 (G,G) 3.78
(1.31)

3
(0)

4.06
(1.56)

3
(0)

3.84
(1.13)

3
(0.74)

3.10
(0.67)

3
(0)

(G,E) 3.88
(1.26)

3
(0)

4.24
(1.61)

4
(1.48)

3.91
(1.10)

4
(1.48)

3
(0.24)

3
(0)

(E,G) 3.68
(1.09)

3
(0)

3.92
(1.30)

3
(0)

3.67
(0.95)

3
(0)

2.98
(0.57)

3
(0)

(E,E) 3.84
(1.31)

3
(0)

4.16
(1.58)

3
(0)

3.65
(1.04)

3
(0)

3.02
(0.38)

3
(0)

200 (G,G) 3.80
(1.36)

3
(0)

3.97
(1.55)

3
(0)

3.86
(1.08)

4
(1.48)

3.08
(0.50)

3
(0)

(G,E) 3.79
(1.26)

3
(0)

3.94
(1.38)

3
(0)

3.79
(1.00)

4
(1.48)

3.11
(0.57)

3
(0)

(E,G) 3.77
(1.16)

3
(0)

3.90
(1.33)

3
(0)

3.79
(0.94)

4
(1.48)

3.06
(0.49)

3
(0)

(E,E) 3.66
(1.16)

3
(0)

3.85
(1.39)

3
(0)

3.75
(0.98)

3
(0)

3.1
(0.49)

3
(0)

Table 7: Mean, median, standard deviation and mean absolute deviation of the number of compo-
nents of the estimates of β for scenario 2.

β̂S β̂R β̂BS β̂PLS
n Distrib. Mean

(sd)
Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

50 (G,G) 2.25
(1.79)

1
(0)

2.67
(2.13)

2
(1.48)

1.96
(1.35)

1
(0)

1.44
(0.83)

1
(0)

(G,E) 2.03
(1.66)

1
(0)

2.43
(2.03)

2
(1.48)

1.78
(1.42)

1
(0)

1.42
(0.96)

1
(0)

(E,G) 1.88
(1.40)

1
(0)

2.44
(1.99)

1
(0)

1.56
(1.00)

1
(0)

1.38
(0.91)

1
(0)

(E,E) 1.84
(1.53)

1
(0)

2.49
(2.04)

1
(0)

1.67
(1.23)

1
(0)

1.43
(0.95)

1
(0)

100 (G,G) 2.09
(1.77)

1
(0)

2.64
(2.22)

2
(1.48)

2.13
(1.31)

2
(1.48)

1.43
(0.93)

1
(0)

(G,E) 1.95
(1.55)

1
(0)

2.60
(2.10)

2
(1.48)

1.89
(1.35)

1
(0)

1.48
(0.85)

1
(0)

(E,G) 2.05
(1.64)

1
(0)

2.45
(2.03)

2
(1.48)

2.02
(1.47)

1
(0)

1.42
(0.76)

1
(0)

(E,E) 2.33
(1.82)

1
(0)

2.80
(2.18)

2
(1.48)

1.82
(1.19)

1
(0)

1.58
(1.02)

1
(0)

200 (G,G) 2.36
(1.76)

2
(1.48)

3.00
(2.18)

2
(1.48)

2.36
(1.25)

2
(1.48)

1.65
(1.05)

1
(0)

(G,E) 2.36
(1.61)

2
(1.48)

2.99
(2.13)

2
(1.48)

2.26
(1.27)

2
(1.48)

1.65
(0.84)

1
(0)

(E,G) 2.34
(1.74)

2
(1.48)

2.82
(2.18)

2
(1.48)

2.37
(1.44)

2
(1.48)

1.64
(0.84)

1
(0)

(E,E) 2.50
(1.84)

2
(1.48)

3.33
(2.33)

2
(1.48)

2.44
(1.51)

2
(1.48)

1.60
(0.72)

1
(0)
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Table 8: Mean, median, standard deviation and mean absolute deviation of the number of compo-
nents of the estimates of β for scenario 3.

β̂S β̂R β̂BS β̂PLS
n Distrib. Mean

(sd)
Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

50 (G,G) 2.35
(1.79)

2
(1.48)

2.58
(2.01)

2
(1.48)

2.09
(1.58)

1
(0)

1.37
(0.82)

1
(0)

(G,E) 2.13
(1.57)

2
(1.48)

2.35
(1.81)

2
(1.48)

1.97
(1.38)

1
(0)

1.47
(1.03)

1
(0)

(E,G) 2.26
(1.66)

2
(1.48)

2.46
(1.83)

2
(1.48)

2.01
(1.47)

1
(0)

1.62
(1.17)

1
(0)

(E,E) 2.48
(1.73)

2
(1.48)

2.73
(2.06)

2
(1.48)

2.10
(1.48)

2
(1.48)

1.50
(0.99)

1
(0)

100 (G,G) 2.42
(1.56)

2
(1.48)

2.63
(1.76)

2
(1.48)

2.46
(1.32)

2
(1.48)

1.62
(0.89)

2
(1.48)

(G,E) 2.15
(1.30)

2
(1.48)

2.40
(1.62)

2
(1.48)

2.20
(1.37)

2
(1.48)

1.52
(0.92)

1
(0)

(E,G) 2.37
(1.35)

2
(1.48)

2.66
(1.68)

2
(1.48)

2.25
(1.22)

2
(1.48)

1.74
(1.07)

2
(1.48)

(E,E) 2.59
(1.61)

2
(1.48)

2.88
(1.81)

2
(1.48)

2.43
(1.58)

2
(1.48)

1.56
(0.77)

1
(0)

200 (G,G) 2.87
(1.51)

2
(1.48)

3.10
(1.70)

2
(1.48)

2.88
(1.16)

3
(1.48)

1.82
(0.79)

2
(0)

(G,E) 2.63
(1.36)

2
(0)

2.93
(1.64)

2
(1.48)

2.72
(1.33)

2
(1.48)

1.75
(0.63)

2
(0)

(E,G) 2.63
(1.49)

2
(1.48)

3.07
(1.89)

2
(1.48)

2.71
(1.34)

2
(1.48)

1.81
(0.80)

2
(0)

(E,E) 2.74
(1.33)

2
(0)

2.96
(1.54)

2
(1.48)

2.84
(1.30)

3
(1.48)

1.88
(0.76)

2
(0)

Table 9: Mean, median, standard deviation and mean absolute deviation of the number of compo-
nents of the estimates of β for scenario 4.

β̂S β̂R β̂BS β̂PLS
n Distrib. Mean

(sd)
Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

50 (G,G) 3.96
(1.52)

4
(1.48)

4.27
(1.73)

4
(1.48)

3.60
(1.47)

3
(1.48)

2.56
(0.82)

2
(1.48)

(G,E) 4.24
(1.51)

4
(1.48)

4.55
(1.71)

4
(1.48)

3.80
(1.52)

3
(1.48)

2.66
(0.81)

3
(1.48)

(E,G) 4.26
(1.53)

4
(1.48)

4.59
(1.70)

4
(1.48)

3.92
(1.51)

4
(1.48)

2.53
(0.63)

2
(0)

(E,E) 4.33
(1.58)

4
(1.48)

4.70
(1.79)

4
(1.48)

4.00
(1.81)

4
(1.48)

2.78
(1.04)

3
(1.48)

100 (G,G) 4.46
(1.35)

4
(1.48)

4.77
(1.50)

4
(1.48)

4.27
(1.24)

4
(1.48)

2.90
(0.74)

3
(1.48)

(G,E) 4.30
(1.42)

4
(1.48)

4.77
(1.62)

5
(1.48)

4.32
(1.39)

4
(1.48)

2.87
(0.73)

3
(0)

(E,G) 4.52
(1.46)

4
(1.48)

4.91
(1.68)

5
(1.48)

4.42
(1.46)

4
(1.48)

2.81
(0.90)

3
(0)

(E,E) 4.58
(1.43)

4
(1.48)

5.00
(1.64)

5
(1.48)

4.19
(1.36)

4
(1.48)

2.91
(0.79)

3
(0)

200 (G,G) 4.87
(1.34)

5
(1.48)

5.27
(1.51)

5
(1.48)

4.81
(1.11)

5
(1.48)

3.15
(0.61)

3
(0)

(G,E) 4.88
(1.30)

5
(1.48)

5.19
(1.48)

5
(1.48)

4.75
(1.12)

5
(1.48)

3.08
(0.43)

3
(0)

(E,G) 4.91
(1.40)

5
(1.48)

5.36
(1.53)

5
(1.48)

4.75
(1.16)

5
(1.48)

3.13
(0.52)

3
(0)

(E,E) 4.89
(1.33)

4
(1.48)

5.39
(1.50)

5
(1.48)

4.70
(1.20)

4
(1.48)

3.05
(0.49)

3
(0)
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Table 10: Mean, median, standard deviation and mean absolute deviation of the number of com-
ponents of the estimates of β for scenario 5.

β̂S β̂R β̂BS β̂PLS
n Distrib. Mean

(sd)
Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

Mean
(sd)

Median
(mad)

50 (G,G) 4.54
(1.31)

4
(0)

5.12
(1.63)

4
(0)

4.27
(1.34)

4
(1.48)

3.23
(0.89)

3
(0)

(G,E) 4.52
(1.18)

4
(0)

5.10
(1.51)

5
(1.48)

4.11
(1.28)

4
(1.48)

3.08
(0.70)

3
(0)

(E,G) 4.40
(1.12)

4
(0)

5.04
(1.53)

4
(1.48)

4.12
(1.25)

4
(1.48)

3.27
(0.77)

3
(0)

(E,E) 4.58
(1.28)

4
(0)

5.15
(1.62)

4
(1.48)

4.22
(1.46)

4
(1.48)

3.34
(0.94)

3
(0)

100 (G,G) 4.45
(1.13)

4
(0)

5.08
(1.55)

4
(1.48)

4.24
(1.10)

4
(1.48)

3.14
(0.88)

3
(0)

(G,E) 4.40
(0.99)

4
(0)

5.15
(1.49)

5
(1.48)

4.19
(1.08)

4
(1.48)

3.08
(0.88)

3
(0)

(E,G) 4.49
(1.11)

4
(0)

5.18
(1.58)

4
(0)

4.32
(1.05)

4
(0)

3.33
(0.87)

3
(0)

(E,E) 4.66
(1.17)

4
(0)

5.10
(1.49)

4
(0)

4.39
(1.12)

4
(0)

3.24
(0.72)

3
(0)

200 (G,G) 4.33
(0.95)

4
(0)

5.08
(1.53)

4
(0)

4.26
(1.00)

4
(0)

3.07
(0.77)

3
(0)

(G,E) 4.46
(1.02)

4
(0)

5.17
(1.52)

4
(1.48)

4.42
(1.11)

4
(0)

3.07
(0.69)

3
(0)

(E,G) 4.55
(1.06)

4
(0)

5.24
(1.50)

5
(1.48)

4.57
(1.06)

4
(0)

3.24
(0.73)

3
(0)

(E,E) 4.48
(1.04)

4
(0)

5.07
(1.47)

4
(1.48)

4.32
(1.02)

4
(0)

3.10
(070)

3
(0)
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