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Abstract

A multivariate functional joint model framework is proposed which enables the repeatedly 

measured functional outcomes, scalar outcomes, and survival process to be modeled 

simultaneously while accounting for association among the multiple (functional and scalar) 

longitudinal and survival processes. This data structure is increasingly common across medical 

studies of neurodegenerative diseases and is exemplified by the motivating Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) study, in which serial brain imaging, clinical and 

neuropsychological assessments are collected to measure the progression of Alzheimer’s disease 

(AD). The proposed functional joint model consists of a longitudinal function-on-scalar submodel, 

a regular longitudinal submodel, and a survival submodel which allows time-dependent functional 

and scalar covariates. A Bayesian approach is adopted for parameter estimation and a dynamic 

prediction framework is introduced for predicting the subjects’ future health outcomes and risk of 

AD conversion. The proposed model is evaluated by a simulation study and is applied to the 

motivating ADNI study.
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1. Introduction

The growing public health threat posed by Alzheimer’s disease (AD) has raised the urgency 

to discover and assess markers for the early detection of the disease. In this regard, a great 

deal of e ort has been dedicated to building models for predicting AD based on a single 

marker, or a combination of multiple markers, which captures the heterogeneity among 

subjects and detects the disease progression of subjects at risk [1]. Since mild cognitive 

impairment (MCI) is often considered as a transitional stage to AD, MCI patients are usually 
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enrolled as the target population for early prognosis and evaluating interventions [2]. 

Existing research has identified a number of biomarkers in predicting an individual’s 

likelihood of converting to AD, as well as differences in biomarker values among MCI and 

AD individuals [3, 4]. It is widely acknowledged that magnetic resonance imaging (MRI) 

based measures of atrophy in key brain regions, such as the hippocampus, are predictive of 

progression from MCI to AD[5, 6]. Although most of the current studies measure regional 

atrophy using a single volume-based value, some researchers [7, 8] demonstrated that the 

surface-based morphology analysis offers more advantages because this method studies 

patterns of subregion atrophy and produces detailed pointwise correlation between atrophy 

and cognitive decline. Li and Luo [9] proposed a functional joint model (FJM) that 

incorporates surface-based hippocampus measure as a functional predictor in the joint model 

of longitudinal and survival framework. They developed a dynamic prediction method and 

demonstrated that using such a functional predictor, in addition to other scalar markers, 

improves predictive performance of the progression of MCI to AD [10]. However, the 

proposed FJM only accommodates baseline imaging marker as a time-invariant function 

predictor. Since the imaging markers (e.g., hippocampus) from MRI, along with other 

neurocognitive markers, are often collected repeatedly in the studies of AD, it is of scientific 

interest to investigate the combined predictive performance of these repeatedly measured 

functional and scalar outcomes.

Several methods for the analysis of repeatedly measured functional outcome exist in the 

literature. One category of the methods is based on functional principal component analysis 

(FPCA), as well as its extension for multilevel FPCA by Di et al. [11], longitudinal FPCA by 

Greven et al. [12] and by Park et al. [13]. These methods modeled subject-specific deviations 

from a population mean by using low dimensional basis functions estimated from the 

empirical covariance matrix. However, they were inflexible to estimate the effect of 

covariates (e.g., age) on the functional outcome. Brumback and Rick [14] and Guo [15] 

proposed a function-on-scalar mixed effect model in which population level effects and 

individual level deviations were modeled by using penalized splines. Wavelet-based 

Bayesian functional mixed models were presented in Morris and Carroll [16], which used a 

discrete wavelet transform of the observed functional data and modeled coefficients in the 

wavelet domain. Goldsmith and Kitage [17] developed a Bayesian framework for penalized 

spline function-on-scalar regression, allowing the joint modeling of population level fixed 

effects, individual level random effects, and residual functions. However, these works 

focused on the statistical inference on longitudinal functional data without considering the 

survival process and not for prediction purpose.

Joint model is an appropriate framework to modeling longitudinal data and time-to-event 

data since it has potential to reduce parameter estimate bias, account for dropout in 

longitudinal studies, and enable the inclusion of longitudinal covariates (both scalar and 

functional) measured with error in time-to-event models [18, 19]. Multivariate joint models 

have been well studied by considering multivariate continuous, binary, ordinal, or a mixture 

of different outcome types. Hickey et al. [20] gave an excellent review of multivariate joint 

modeling research. However, no previous study investigates how to incorporate the 

longitudinal functional (high-dimensional) outcome in a multivariate joint model framework. 

To this end, we propose a novel joint model that incorporates the growing volume of 
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repeatedly measured functional outcomes in the longitudinal-survival setting. Specifically, 

we develop a multivariate functional joint model (MFJM) that could simultaneously analyze 

a longitudinal functional outcome, a longitudinal scalar outcome, and a survival outcome. 

The principle of the MFJM is to define three type of submodels: (1) a functional mixed 

effect submodel for the longitudinal functional outcome, (2) a regular mixed effects 

submodel, or multiple regular mixed effects submodels, to describe the evolution of the 

longitudinal scalar outcome(s), and (3) a Cox submodel for the survival outcome which is 

linked with (1) and (2) using a common latent structure. The MFJM is flexible to account for 

the correlation between repeated measures and correlation among multiple outcomes. We 

estimate the coefficient functions in the functional regression using penalized spline 

approach and parameters are jointly estimated in a Bayesian framework.

Compared with the existing literature, we make two major contributions to both multivariate 

joint modeling and functional data analysis: 1) We propose a multivariate joint model 

considering both longitudinal functional and scalar outcomes. To the best of our knowledge, 

this paper is the first to model the repeatedly measured functional outcomes, scalar 

outcomes, survival process simultaneously while accounting for the associations among the 

processes. 2) We propose a dynamic prediction framework that provides accurate 

personalized predictions of disease risk and progression. We investigate the potential 

capability of the longitudinal functional outcome in improving the prediction of AD 

progression. Previous studies involving functional data mainly focused on model inference 

rather than prediction of risk and longitudinal outcome trajectories. These important 

predictive tools can provide valuable information to monitor each patient’s disease 

progression and to make early decisions about targeted prevention and treatment selection.

The rest of the article is organized as follows. In Section 2, we describe the motivating 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study and the data structure. In 

Section 3, we discuss the multivariate functional joint model, Bayesian inference procedure, 

and dynamic prediction framework. In Section 4, we apply the proposed method to the 

motivating ADNI study. In Section 5, we conduct a simulation study to assess the 

performance of the method. Concluding remarks and discussion are presented in Section 6.

2. A Motivating Clinical Study

The methodology development is motivated by the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study. The primary goal of the study is to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), cerebrospinal fluid (CSF) 

markers, and neuropsychological assessments can be combined to measure the progression 

of AD. The phase one of the ADNI study (ADNI-1) recruited more than 800 adults, of 

which about 200 cognitively normal individuals, 400 mild cognitive impairment (MCI) 

patients, and 200 early AD patients. Participants were reassessed at 6, 12, 18, 24 and 36 

months, and additional follow-ups were conducted annually as part of ADNI-2. At each 

visit, various neuropsychological assessments, brain image, and clinical measures were 

collected. Detailed information about the ADNI study procedures, including participant 

inclusion and exclusion criteria and complete study protocol can be found at http://

www.adni-info.org.
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MCI is commonly considered as a transitional stage between normal cognition and 

Alzheimer’s disease and used as the target population for evaluating prognosis and early 

treatment. To this end, our analysis focuses on 355 MCI patients in the ADNI-1 study 

without missing data in covariates of interests, and we consider time from baseline to AD 

diagnosis among MCI patients to be the survival event of interest. In the ADNI-1 study, the 

355 MCI patients were followed up for a mean of 3.2 years (SD 2.6; range 0.4-9.3) before 

AD diagnosis or censoring. Among them, 180 patients were diagnosed with AD (survival 

event) and 175 had stable MCI over a mean follow-up period of 2.3 years and 4.2 years, 

respectively.

Longitudinal AD Assessment Scale-Cognitive (ADAS-Cog) score and Hippocampal volume 

(HV) were reported to be the strongest predictor of AD progression in the cognitive and 

imaging domains, respectively [21]. However, when the high-dimensional MRI data are 

aggregated to single volume data such as HV, enormous information is lost [8], as the more 

recent surface-based morphology analysis (based on the longitudinal changes of cortical 

thickness in thousand of vertices) provides crucial disease progression information for early 

detection of AD [22]. In this study, we adopt the surface-based analysis of imaging data 

which retains more information about Hippocampus morphology. In the surface-based 

analysis, the hippocampus is modeled as a surface model which is a mesh of triangles. Each 

triangle is known as a face and the place where the corners of the triangles meet is called a 

vertex. The coordinate of each vertex is determined during image processing and allows one 

to compute many morphometric measures, e.g., hippocampal radial distance (HRD). Figure 

1 illustrates the longitudinal profile of the surface-based hippocampus images (mapped on a 

three-dimensional hippocampus template) of one MCI patient at different visits. The colors 

represent the hippocampal radial distance (HRD) which measures the distance from the 

medial core to each point on the surface (referred to as vertex) and reflects the hippocampal 

cortical thickness. As AD progresses and the hippocampus atrophies, the radial distance of 

some subfields shrinks. It has been shown that the baseline vertex-based HRD is predictive 

of time of MCI-to-AD as a functional predictor [10]. In this paper, we propose a Bayesian 

personalized prediction model based on a multivariate functional joint model (MFJM) of 

longitudinal ADAS-Cog 11 score as a scalar predictor, longitudinal vertex-based HRD as a 

functional predictor, and the time to AD diagnosis.

The image processing procedure is detailed in the Web Supplement. We first extract the 

hippocampal surfaces (left and right) from original MRI scans (Step 1 in Web Figure 1) 

using FIRST [23], an integrated surface analysis tool developed as part of the FSL library 

[24]. The surfaces are then conformally mapped to a two-dimensional (2D) rectangle plane, 

in the form of matrix, to form two feature images (Step 2). We then register each feature 

image (patient and visit) to a common template and calculate the hippocampal radial 

distance (HRD) of each vertex to the predefined medical core, which represents the 

hippocampal cortical thickness (Step 3). These steps account for the spatial information and 

image smoothing. Then the HRD values on the 2D image matrices are aggregated over the 

y-axis of the image into a one-dimensional (1D) image vector such that the corresponding 

HRDs of the vertices are represented as a 1D functional data (denoted by yi(s, tij) for subject 

i visit j) defined on domain 𝒮 (Step 4). Each point in the image vector domain (i.e., 𝒮) 
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corresponds to a coordinate on x-axis of the 2D hippocampal image matrix. It was revealed 

that left hippocampus atrophy was associated with delayed verbal memory [25], where the 

delayed verbal memory was one of the important predictors for determine whether a subject 

was a MCI converter or not [26]. Thus, our analysis focus on the surface morphology and 

HRD of the left hippocampus.

3. Methods

3.1. Multivariate functional joint model (MFJM) framework

In the context of clinical trials and observational studies, for each subject i (i = 1, ⋯ , I) at 

visit j ( j = 1, ⋯ ,Ji) and on a 1D domain s ∈ [0, Smax] = S, we observe data {yij
∗, yij(s), xij}, 

where yij
∗ = yi

∗(tij) is a scalar response observed at time tij from the study onset, yij(s) = yi(s, 

tij) is a functional response curve observed at time tij on domain S, and xij = [xij1, ⋯ , xijP] is 

a P-dimensional scalar covariates vector. The domain of the functional response S is not the 

same as the time domain t, over which the survival event is followed. We propose a 

longitudinal submodel to describe the evolution of the scalar outcome over time. The model 

is represented as

yi
∗(ti j) = mi

∗(ti j) + ∈i j
∗ , mi

∗(ti j) = β0 + ti jβt + ∑
p

P
xi jpβp + VR(ti j)ζ + bi

∗, (1)

where mi
∗(tij) is the unobserved true value of the scalar longitudinal outcome at time tij, β0 is 

the intercept, βt is the change of scalar outcome overtime, βp’s are the regression 

coefficients. To allow additional flexibility and smoothness in modeling the effects of some 

covariates, we adopt a smooth time function VR(t)ζ = ∑r = 1
R ζr(t − kr)+ using the truncated 

power series spline basis expansion VR(t) = {(t − κ1)+, ⋯ , (t − κR)+}, where ζ = [ζ1, ⋯ , 

ζR]T are the spline coefficients, κ = {κ1, ⋯ , κR} are the knots, and (t − κr)+ = t − κr if t > κr 

and 0 otherwise. We consider a sufficient large number of knots that can ensure the desired 

flexibility and we select the knot location to have sufficient subjects between adjacent knots. 

The choice of knots is important to obtain a well fitted model and penalizing the spline 

coefficients to constrain their influence could help to avoid overfitting [27]. The random 

intercepts bi
∗ are independent and identically distributed (iid), and the measurement errors 

ϵij
∗~N(0, σ

ϵ∗
2 ) are independent from bi

∗. The inclusion of covariate-specific random effects as a 

random slope is a direct extension of model (1).

We assume the functional response yi(s, tij) is linear in time, which is a direct extension of 

the linear assumption in the scalar model. The longitudinal functional submodel is defined as

yi(s, ti j) = mi(s, ti j) + ∈i j (s), mi(s, ti j) = B0(s) + ti jBt(s) + ∑
p

P
xi jpBp(s) + bi(s), (2)
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in which mi(s, tij) is the unobserved true value of the longitudinal functional outcome at time 

tij over domain S, B0(s) is the overall mean function, Bt(s) and Bp(s)’s are fixed effect 

coefficient functions corresponding to time t and the scalar covariates xij. The random 

intercept function bi(s) for subject i represents the subject-specific effect, and ϵij(s) is a white 

noise error process with covariance Cov{ϵij(s), ϵij(s′)} = σϵ
2 if s = s′ and 0 otherwise. We 

assume that the random function bi(s) are iid, the error process ϵij(s) are iid and are 

independent from bi(s). For identifiability we require that bi(s) comprises solely the random 

deviation that is specific to the subject; any repeated visit-specific deviation is viewed as part 

of ϵij(s). As in traditional mixed models, the inclusion of “random slope functions” would 

allow subject-specific impacts of changing covariate levels and should be considered in 

future applications.

The event history is recorded for each subject i with observed event time T i = min(T i
∗, Ci) and 

the event indicator δi = I(T i
∗ ≤ Ci), where T i

∗ and Ci are the true event time and censoring 

time, respectively. The survival submodel is

hi(t) = h0(t)exp{wi
⊺γ + α∗mi

∗(t) + ∫
S

α(s)mi(s, t)ds}, (3)

where h0(t) is the baseline hazard function, and wi is a vector of time-independent covariates 

with regression coefficient vector γ. The association parameter α* quantifies the strength of 

correlation between the unobserved true longitudinal function mi
∗(t) and the event hazard at 

the same time point t, and the association function α(s) quantifies the correlation between 

the unobserved true longitudinal function mi(s, t) and the event hazard at the time point. In 

this paper, we assume a constant functional parameter α(s) ≡ α for identifiability and 

discuss the case that α(s) varies over the domain of S. We implicitly assume that the risk for 

an event at time t depends on the unobserved true value of the longitudinal outcomes at the 

same time point in Model (3). However, other functional forms for the association structure 

such as time-dependent slopes or cumulative effects of mi
∗(t) and mi(s, t) can also be 

included in the survival submodel. Models (1), (2), and (3) consist of the multivariate 

functional joint model (MFJM) framework.

To modeling the longitudinal functional data, we adopt the functional mixed effect model 

and expand the random intercept function bi(s) using a functional principal component 

analysis (FPCA) approach. FPCA is a dimensionality reduction tool for functional data 

which leads to low dimensional projection basis (eigenfunction) and makes analyzing data 

easier. Specifically, we first express the random intercept function bi(s) in model (2) using 

the Karhunen-Loève decomposition. The spectral decomposition of the covariance function 

of bi(s)’s is given by Σ(b)(s, s′) = ∑k = 1
∞ λkϕk(s)ϕk(s′), where λ1 ≥ λ2 ≥ ⋯ ≥ 0 are non-

increasing eigenvalues and ϕk(s)’s are the corresponding eigenfunctions. The Karhunen-

Loève expansion of bi(s) is bi(s) = ∑k = 1
∞ ξikϕk(s), where the functional principal component 

(FPC) scores ξik are uncorrelated random variables with mean zero and variance λk. In 

Li and Luo Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



practice, we adopt a truncated approximation for bi(s) given by bi(s) ≈ ∑k = 1
Kϕ ξikϕk(s). Thus 

yi(s, tij) is written as

yi(s, ti j) ≈ B0(s) + ti jBt(s) + ∑
p

P
xi jpBp(s) + ∑

k = 1

Kϕ
ξikϕk(s) + ∈i j (s) .

The number of eigenfunctions for random intercept function Kϕ is pre-specified fixed 

constants. A sufficiently large value should be chosen for Kϕ to capture the variation in the 

random functions, and sensitivity to the choices should be assessed. However, selecting the 

number of eigenfunctions larger than necessary leads to increased computing burden [17]. 

For computing efficiency, we assume the correlation between yi
∗(tij) and yi(s, tij) is 

manifested by the correlation between bi
∗ and the first elements in ξi = [ξi1, ⋯, ξiKϕ

], and 

bi = [bi
∗, ξi]~MVN(0, Σ), where

Σ =

σ
b∗
2 , ρσ

b∗ λ1, ⋯, 0

ρσ
b∗ λ1, λ1, ⋯, 0

⋮ ⋮ ⋱ ⋮
0, 0, ⋯ λKϕ

.

We may also estimate the correlation between the scalar random effects and all FPC 

components via an covariance matrix whose off-diagonal elements are nonzero. Such a 

covariance matrix may provide a full representation of the correlation between the mixed 

outcomes. However, as the computational burden increases dramatically as the covariance 

matrix gets more complex, we have to consider the trade-off among modeling flexibility, 

estimation accuracy, and computation.

In practice, functional outcomes are not truly functions but are observed on a finite grid of 

length M that cover the domain S, i.e., {s1, ⋯ , sM}. Let B(s) be the M × (P + 2) matrix with 

columns containing B0(s), Bt(s), and Bp(s)’s evaluated on the finite grid and let ϕ(s) be a M 
× Kϕ matrix with columns containing eigenfunctions ϕk(s). We express the coefficient 

function and the eigenfunction in each column of B(s) and ϕ(s) in terms of a known cubic B-

spline with equally spaced knots, which leads to a M × Kψ matrix ψ(s) = [ψ1
⊺(s), ⋯, ψKψ

⊺ (s)]

with basis functions as columns. For example, the coefficient function 

B0(s) = ∑l = 1
Kψ B0lψ l(s) = [B0ψ⊺(s)]⊺ and the eigenfunction 

ϕk(s) = ∑l = 1
Kψ Bϕkl

ψ l(s) = [Bϕk
ψ⊺(s)]⊺, where B0 and Bϕk are row vectors of spline 

coefficients B0l and Bϕkl, respectively. Other spline bases could be used, but the parameters 

of the B-spline have good mixing properties in the context of Bayesian posterior simulation 
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[28] and B-spline is widely used in functional data analysis literature for its flexibility [29]. 

Let Bt and Bk’s have the same meaning as B0, then B = [B0
⊺, Bt

⊺, B1
⊺, ⋯, BP

⊺ ]⊺ and 

Bϕ = [Bϕ1
⊺ , ⋯, BϕKϕ

⊺ ]⊺ denote (P + 2) × Kψ and Kϕ × Kψ matrices respectively, whose rows 

are spline coefficients for B(s) and ϕ(s). Therefore, the coefficient functions are written as 

B(s) = [Bψ⊺(s)]⊺, the eigenfunctions are ϕ(s) = [Bϕψ⊺(s)]⊺, and the random intercept function 

is bi(s) = ξi(ϕ(s))⊺ = ξiBϕψ⊺(s), with ξi being the row vector of FPC scores for the random 

intercept function. For the choice of number of basis functions Kψ for B-spline, we refer to 

Ruppert [30] and choose them large (e.g., 10) to capture the complexity in coefficient 

functions. We adopt penalization technique to prevent overfitting and induce smoothness in 

the resulting coefficient functions. Thus the functional longitudinal submodel is rewritten as

yi(s, ti j) ≈ mi(s, ti j) + ∈i j (s), where

mi(s, ti j) ≈ B0ψ⊺(s) + ti jBtψ
⊺(s) + ∑

p

P
xi jpBpψ⊺(s) + ξiBϕψ⊺(s) .

(4)

We assume a constant associate function α(s) ≡ α, and thus the survival submodel is

hi(t) = h0(t)exp{wi
⊺γ + α∗mi

∗(t) + α∫
S

mi(s, t)ds} . (5)

The integral in the survival submodel is computed by numeric integration.

Let θ = [β⊺, ζ⊺, B⊺, (ξi: i = 1, ⋯, I), (λk:k = 1, ⋯, Kϕ), ρ, Bϕ
⊺ , γ, α∗, α, σb ∗

2 , σϵ ∗
2 , σϵ

2, θ
h0
∗

⊺ ]⊺ be the 

unknown parameter vector to be estimated, where β = [β0, βt, β1, ⋯ , βp]T , and vector θ
h0
∗

denotes the parameters in the baseline hazard function h0
∗( ⋅ ). The observed data yi

∗(ti j), yi(s, 

tij), xij, tij, wi for i = 1, ⋯ , I and j = 1, ⋯ , Ji are known; as well as the cubic B-spline basis 

functions ψ(s), which can be generated using the bs function in the R package spline.

The conditional likelihood from the longitudinal scalar data yi
∗ = [yi1

∗ , ⋯, yiJi
∗ ]⊺ is

p(yi
∗ ∣ θ, bi) = (2πσ

ϵ∗
2 )

−Ji 2
exp − 1

2σ
ϵ∗
2 ∑

j = 1

Ji
yi j − (β0 + ti jβt + ∑

p

P
xi jpβp + ∑

r = 1

R
ζr(t − kr) + bi

∗)
2

.

The conditional likelihood for the functional longitudinal data yi(s) = [yi1
⊺ (s), ⋯, yiJi

⊺ (s)]⊺ is
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p(yi(s) ∣ θ, bi) = ∣ 2πσϵ
2Is × s ∣

−Ji 2
exp − 1

2tr([yi(s) − mi(s)]⊺[yi(s) − mi(s)](σϵ
2Is × s)−1) ,

where mi(s) = [mi
⊺(s, ti1), ⋯, mi

⊺(s, tiJi
)]⊺, |·| is the determinant of a matrix and tr is the trace of a 

matrix. The density function of the random effects bi is 

p(bi ∣ θ) = (2π)
−(Kϕ + 1) 2

∣ Σ ∣−1 2 exp( − 1
2 bi

⊺Σ−1bi), where (Kϕ + 1) is the dimension of the 

covariance matrix Σ. The conditional likelihood from the survival data is

p(Ti, δi, ∣ θ, bi) = hi(Ti ∣ θ, bi)
δiSi(Ti ∣ θ, bi) = hi(Ti ∣ θ, bi)

δiexp[ − ∫0

Ti
hi(t ∣ θ, bi)dt],

where hi(T i ∣ θ, bi) = h0
∗(T i)exp{wi

⊺γ + α∗mi
∗(T i) + α∫ Smi(s, T i)ds}, and function h0

∗( ⋅ ) can be 

approximated by a piecewise-constant function or a B-spline function.

Under the local independence assumption (i.e., conditional on the random effects vector bi, 

all components in yi
∗, yi(s), and Ti are independent), the joint likelihood function is

L(θ) = ∏
i = 1

I
p(yi

∗, yi(s), T i, δi ∣ θ) = ∏
i = 1

I ∫ p(yi
∗ ∣ θ, bi)p(yi(s) ∣ θ, bi)p(T i, δi, ∣ θ, bi)p(bi ∣ θ

)dbi .

(6)

3.2. Bayesian inference

For model estimation, we propose a Bayesian modeling approach based on Markov Chain 

Monte Carlo (MCMC) posterior simulations, which provides a flexible way for statistical 

inference. The Bayesian approach has a number of advantages and has been previously 

exploited in the univariate joint modeling framework [31] and functional regression [32]. Liu 

and Li [33] compared the performance of Bayesian approaches to classical frequentist 

(maximum likelihood) approaches under multivariate joint model framework, demonstrating 

superiority of the Bayesian methods with respect to bias, root-mean square error, and 

coverage.

We use vague priors on all elements in parameter vector θ. Specifically, the prior 

distributions of parameters β, γ, α*, α are N(0, 100), and Inverse-Gamma(0.01, 0.01) for 

variance paramete σ
ϵ∗
2  and σ

ϵ⋅
2  We impose smoothness on coefficient function estimates 

through the prior specification on spline coefficients B and Bϕ, and assume the following 

priors for the columns of the matrices:
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Bk ~N(0, σk
2Q−1), for1 ≤ k ≤ (P + 2),

Bϕk
~N(0, σϕk

2 Q−1), for1 ≤ k ≤ Kϕ,

where Q is a pre-specified Kψ × Kψ penalty matrix enforces smoothness through the 

connection between Bayesian priors and quadratic penalization [27]. As suggested in 

Goldsmith et al. [17], we use Q = μQ0 + (1 − μ)Q2 where Q0 and Q2 are zeroth- and second-

order derivative penalty matrices, with the upper left parts as

Q0 = Ψ (s)

1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

Ψ⊺(s)andQ2 = Ψ (s)

1 −2 1 0 0 0 ⋯
−2 5 −4 1 0 0 ⋯
1 −4 6 −4 1 0 ⋯
0 1 −4 6 −4 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Ψ ⊺ (s),

where ψ(s) is the cubic B-spline evaluation matrix defined previously. Selecting 0 < μ ≤ 1 

balance the universal shrinkage encoded in Q0 and the smoothness constraint of Q2, while 

ensuring Q is positive definite and priors are proper. In the simulation and real data analysis 

we set μ = 0.1 and sensitivity analyses have indicated robustness to the choice of μ in the 

analysis. We use random walk prior of Lang & Brezger [34] on the spline coefficients ζr, for 

r = 1, ⋯ , R, for smoothing and penalization. Specifically, we use a first order random prior 

distribution for ζr + 1~N(ζr, σζ
2), for r = 1, ⋯ , R−1, where ζ1 is treated as a fixed unknown 

parameter. The variance component σk
2, σϕk

2 , and σζ
2 are assigned Inverse-Gamma(0.01, 0.01) 

as prior distribution. The parameters σ
b∗
2  and λk in the covariance matrix Σ are assigned 

Inverse-Gamma(0.01, 0.01) prior distribution, and correlation coefficient ρ is assigned 

Uniform(−1, 1).

The model fitting is performed in Stan by specifying the full likelihood function and the 

prior distributions of all unknown parameters. Stan adopts a No-U-Turn sampler (NUTS), 

which is an extension to Hamiltonian Monte Carlo (HMC) that avoids random walk 

behavior by using the gradient of the log-posterior and eliminates the need to set a number 

of steps that required in HMC [35]. NUTS uses a recursive algorithm to build a set of likely 

candidate points that spans a wide swath of the target distribution, stopping automatically 

when it starts to double back and retrace its steps [36]. Empirically, NUTS offers faster 

convergence and parameter space exploration compared with other MCMC algorithms such 

as Gibbs sampler. We use the history plots and view the absence of apparent trend in the plot 

as evidence of convergence. In addition, we use the Gelman-Rubin diagnostic to ensure the 

scale reduction R of all parameters are smaller than 1.1 [37]. After fitting the model to the 

training dataset (the dataset used to build the model) using Bayesian approaches, we obtain 

D (e.g., D=5,000 after burn-in) samples for the parameter vector denoted by {θ(d), d = 1, ⋯ , 

D}. All estimations can then be obtained by calculating simple summaries (e.g., mean, 

variance, quantiles) of the posterior distributions of D samples {θ(d), d = 1, ⋯ , D}. Based on 

the estimated coefficient vector B (posterior mean), the estimated coefficient function is 
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calculated by B(s) = [Bψ⊺(s)]⊺. The Bayesian approach allows for the easy construction of 

posterior credible intervals for the coefficient function B(s) as [qB,0.025(s),qB,0.975(s)], where 

qB,u(s) is the u-quartile of the MCMC samples B(s)(d) = [B(d)ψT(s)]T, d = 1, ⋯ , D. To 

facilitate easy reading and implementation of the proposed multivariate functional joint 

model, we provide a sample Stan code in the Web Supplement.

3.3. Dynamic prediction framework

We next illustrate the dynamic prediction framework based on the proposed model. Given a 

new subject N’s outcome histories yN
{t} = {yN

∗ (tNj), yN(s, tNj); 0 ≤ tNj ≤ t} and covariates 

XN
{t} = {xN(tNj), wN; 0 ≤ tNj ≤ t} up to time t, and δN = 0 (no event), we want to predict the 

personalized scalar outcome yN
∗ (t′) and functional outcome yN(s, t′) at a future time point t′ 

> t (e.g., t′ = t + Δt), as well as the conditional probability of event-free or survival at time t

′, denoted by πN(t′ ∣ t) = P(TN
∗ ≥ t′ ∣ TN

∗ > t, yN
{t}, XN

{t}). The key step for prediction is to obtain 

the subject N’s subject-specific random intercept bN
∗  and random function bN(s). This could 

be achieved by sampling bN
∗  and FPC scores vector ξN jointly from their posterior 

distribution p(bN ∣ TN
∗ > t, yN

{t}, θ), where bN = [bN
∗ , ξN], and reconstructing random function 

bN(s) = ξNBϕψ(s)T. Conditional on the dth posterior sample θ(d), d = 1, ⋯ , D, we draw the 

dth sample of the bN from the posterior distribution

p(bN ∣ TN
∗ > t, yN

{t}, θ(d)) =
p(yN

{t}, TN
∗ > t, bN ∣ θ(d))

p(yN
{t}, TN

∗ > t ∣ θ(d))
∝ p(yN

{t}, TN
∗ > t, bN ∣ θ(d))

= p(yN
{t} ∣ θ(d), bN)p(TN

∗ > t ∣ θ(d), bN)p(bN ∣ θ(d)) .

where p(yN
{t} ∣ θ(d), bN) is the joint conditional probability of longitudinal scalar and 

functional outcomes, p(TN
∗ > t ∣ θ(d), bN) is the survival probability, and p(bN|θ(d)) is the 

probability of random effect. For each of θ(d), d = 1, ⋯ , D, we use adaptive rejection 

Metropolis sampling (ARMS) [38] to draw one sample of random effect vector bN. This 

process is repeated for the D saved values of θ so that D samples of random effect vector bN 

are obtained. The predictions can be calculated by plugging in the samples of the parameter 

vector and random effect vector {θ(d), bN
(d), d = 1, ⋯, D} into the proposed models. For 

example, based on model (1), the expected values of the longitudinal scalar outcome for 

subject N at time t′ is calculated with respect to the posterior distribution of the parameters 

{θ ∣ 𝒟I} as

E{yN
∗ (t′) ∣ TN

∗ > t, yN
{t}, XN

{t}, 𝒟1}

= ∫ E{yN
∗ (t′) ∣ TN

∗ > t, yN
{t}, XN

{t}, θ}p(θ ∣ 𝒟1)dθ,
(7)
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where 𝒟I denotes the sample on which the model is fitted. The first part of the integrand is 

given as

E{yN
∗ (t′) ∣ TN

∗ > t, yN
{t}, XN

{t}, θ}

= ∫ E{yN
∗ (t′) ∣ TN

∗ > t, yN
{t}, XN

{t}, bN
∗ , θ}p(bN

∗ ∣ TN
∗ > t, yN

{t}, XN
{t}, θ)dbN

∗

= ∫ {β0 + t′βtΣp

P
xN p

βp + VR(t′)ζ + bN
∗ }p(bN

∗ ∣ TN
∗ > t, yN

{t}, XN
{t}, θ)dbN

∗

= β0 + t′βt + Σ
p

P
xN p

βp + VR(t′)ζ + ∫ bN
∗ p(bN

∗ ∣ TN
∗ > t, yN

{t}, XN
{t}, θ)dbN

∗ .

(8)

The integration with respect to θ in Equation (7) and the integration with respect to bN
∗  in 

Equation (8) can be approximated using a Monte Carlo simulation scheme [39], where the 

dth Monte Carlo sample is

E(d){yN
∗ (t′) ∣ TN

∗ > t, yN
{t}, XN

{t}, 𝒟1} = β0
(d) + t′βt

(d) + Σ
p

P
xN pβp

(d) + VR(t′)ζ(d) + (bN
∗ )(d), d = 1, ⋯, D .

Similarly, based on model (4), the expected values of the longitudinal functional outcome for 

subject N at time t′ is

E{yN(s, t′) ∣ TN
∗ > t, yN

{t}, XN
{t}, 𝒟I}

= ∫ E{yN(s, t′) ∣ TN
∗ > t, yN

{t}, XN
{t}, θ}p(θ, ∣ 𝒟I)dθ,

where the first part of the integrand is given as

E{yN(s, t′) ∣ TN
∗ > t, yN

{t}, XN
{t}, θ}

= ∫ E{yN(s, t′) ∣ TN
∗ > t, yN

{t}, XN
{t}, ξN, θ}p(ξN ∣ TN

∗ > t, yN
{t}, XN

{t}, θ)dξN

= B0ψ⊺(s) + t′Btψ
⊺(s) + Σ

p

P
xN p

Bpψ⊺(s) + ∫ ξNBϕψ⊺(s)p(ξN ∣ TN
∗ > t, yN

{t}, XN
{t}, θ)dξN .

In addition, based on model (5), the conditional probability of event-free at time t′ is

πN(t′ ∣ t) = ∫ P(TN
∗ ≥ t′ ∣ TN

∗ > t, yN
{t}, XN

{t}, θ)p(θ, ∣ 𝒟I)dθ, and

P(TN
∗ ≥ t′ ∣ TN

∗ > t, yN
{t}XN

{t}, θ) = ∫ P(TN
∗ ≥ t′ ∣ TN

∗ > t, yN
{t}, XN

{t}, bN)p(bN ∣ TN
∗ > t, yN

{t}, XN
{t}, θ)dbN

= ∫ P(TN
∗ ≥ t′ ∣ TN

∗ > t, yN
{t}, XN

{t}, bN)

P(TN
∗ ≥ t ∣ TN

∗ > t, yN
{t}, XN

{t}, bN)
p(bN ∣ TN

∗ > t, yN
(t), XN

{t}, θ)dbN .
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The Monte Carlo samples of E{yN(s, t′) ∣ TN
∗ > t, yN

{t}, XN
{t}, 𝒟I} and πN(t′|t) can be obtained 

by simply replacing {θ, bN} in the model with {θ(d), bN
(d):d = 1, ⋯, D}. All prediction results 

can then be obtained by calculating simple summaries (e.g., mean, variance, quantiles) of the 

D samples.

Suppose that subject N has not experienced the event of interest by time t′, then the outcome 

histories are updated to yN
{t′}. We can dynamically update the posterior distribution to 

p(bN ∣ TN
∗ > t′, yN

{t′}, θ), draw new samples, and obtain the updated predictions. We assess the 

performance of the proposed predictive measures in discriminate between patients who had 

the event from patients who did not. Such discrimination performance is measured by the 

integrated area under the time-dependent receiver operating characteristic curve that 

accommodates censoring time [40].

4. Application to the ADNI Study

We apply the proposed Bayesian MFJM to the motivating ADNI-1 study. Besides the 

longitudinal ADAS-Cog 11 and imaging marker, we include the following variables as 

scalar covariates: baseline age (bAge, mean: 74.4, SD: 7.3, range 55.1-89.3), gender (gender, 
36.1% female), years of education (Edu, mean: 15.6, SD: 3.0, range 4-20), and presence of 

at least one apolipoprotein E-ε 4 allele (APOE-ε4, 56%), given their potential effects on AD 

progression [41, 42, 43]. To investigate the different forms of imaging information, we 

include the baseline hippocampal volume (bHV), baseline hippocampal surface based on 

hippocampal radial distance (bHRD), and longitudinal hippocampal radial distance (lHRD).

We proposed three joint models with the same longitudinal submodel of the scalar outcome, 

ADAS-Cog 11, which is defined by

ADAS − Cogi(ti j) = mi(ti j) + εi j

mi
∗(ti j) = β0 + β1APOE − ε4i + β2bAgei + βtti j + Σ

r = 1

3
ζr(ti j − kr)+ + bi1

∗ .

The three joint models are varied in the survival part that incorporate different levels of 

imaging information in prediction of AD progression. In the first joint model (refer to as 

model JM), we incorporate the baseline hippocampal volume (bHV) as a scalar predictor, 

along with other covariates and underline process mi
∗(t) of the ADAS-Cog 11, in the survival 

part. This gives the survival submodel in JM as

hi(t) = h0(t)exp{γ1genderi + γ2bAgei + γ3Edui + γ4APOE − ε4 + γ5bHVi + α∗mi
∗(t)} .

The second model is a function joint model (refer to as model FJM) which includes baseline 

hippocampal radial distance bHRD(s), instead of hippocampal volume, as a time-

independent functional predictor in the survival submodel. The model was proposed and 
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applied to ADNI study in the previous work [10], in which the survival submodel is defined 

as

hi(t) = h0(t)exp{γ1genderi + γ2bAgei + γ3Edui + γ4APOE − ε4

+∫s
bHRDi(s)BbHRD(s)ds + α∗mi

∗(t)} .

The third model is a multivariate functional joint model (refer to as model MFJM) that 

accounts for the longitudinal hippocampal radial distance lHRD(s, t) in the survival 

submodel, where lHRD(s, t) is modeled as

lHRDi(s, tij) = mi(s, tij) + εij(s)

mi(s, tij) = B0(s) + B1(s)APOE − ε4i + B2(s)bAgei + Bt(s)tij + bi1(s),

and the survival submodel is

hi(t) = h0(t)exp{γ1genderi + γ2Edui + + γ3bAgei + γ4APOE − ε4i

+α∗mi
∗(t) + α∫s

mi(s, t)ds} .

In the MFJM, we expand the random functions bi1(s) = ∑k = 1
kϕ = 4

ξikϕk(s), and consider the 

correlation between bi1
∗  and ξi1. We express coefficient functions Bp(s) and eigenfunctions 

ϕk(s) in term of a known cubic B-spline basis functions ψ(s) with 10 knots. We allow a 

flexible and smooth disease progression along time by using truncated power series splines 

with 3 knots at the location k = (1, 2, 3) in years, which ensures sufficient patients within 

each interval. Baseline hazard function h0(t) is approximated by a piecewise constant 

function. Specifically, the observed survival time is divided into H = 7 intervals by every 

1/Hth quantiles. We have also explored other selections of Kϕ and H and obtained very 

similar results.

The three candidate models are compared via assessing their predictive performance, 

manifested by the time-dependent AUCs, at different time points over the follow-up period. 

To avoid overestimation of the prediction, we conduct a 10-fold cross validation. Parameters 

of the joint model are estimated from the training dataset and applied to the validation 

dataset. The conditional event-free probability corresponding to the time frame (t, t + Δt] are 

predicted for each patient in the validation datasets as describe in Section 3.3. Because the 

ADNI patients were reassessed approximately every half year, we select t at 1, 1.5, and 2 

years, and Δt as 0.5 and 1 years for analysis. Then the time-dependent AUCs are calculated 

based on the predicted probabilities of all patients.

Table 1 displays the time-dependent AUCs from the three candidate models. Model FJM and 

MFJM have notably larger AUCs than model JM for most combinations of t and Δt. This 

suggests that including functional predictor HRD in the survival submodel improves the 

capability of the joint model in predicting risk of AD diagnosis. However, the predictive 
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capability of longitudinal HRD does not shown much advantage than the baseline HRD 
information, except the early phase of the follow-up. This may explained by the fact that 

different markers may be more or less discriminative at different stages of disease, and MRI 

abnormalities usually occurring earlier before any symptom of cognitive impairment appears 

[44, 45]. We have also assessed the MFJM accounting for the correlations between bi1
∗  and 

the first two FPC components [ξi1, ξi2]. The model has no notable improvement in term of 

prediction.

We select MFJM as the final model because it has a competitive good discrimination 

capability in both early and late phases. Parameter estimates from model MFJM using whole 

dataset are presented in Table 2. In the longitudinal submodel of scalar outcome, people with 

APOE-ε4 allele(s), on average, have higher (worse) ADAS-Cog 11 score (2.207 unit) than 

people without this genetic variation. Also, the ADAS-Cog 11 score increases (deteriorates) 

as time progresses, i.e., an average increase of 1.121 unit (95% CI: [0.648-01.584]) per year 

for MCI patients. In the survival submodel, the presence of APOE-ε4 allele(s) increases the 

hazard of AD diagnosis by 51% (exp(0.409) − 1, 95% CI: [8%-109%]), which is consistent 

with the literature [46]. Furthermore, larger ADAS-Cog 11 score increases the risk of AD 

diagnosis, i.e., one unit increase in ADAS-Cog 11 score increases the hazard of AD 

diagnosis by 19% (exp(0.173) − 1, 95% CI: [14%-24%]). The association parameter α is 

negative, indicating that the decrease of HRD (i.e., hippocampal atrophy) is associated with 

the increasing risk of AD diagnosis. The estimated coefficient functions in the longitudinal 

model for functional outcome HRD is presented in Figure 2. APOE-ε4 allele(s) is not 

associated with the thickness of hippocampus because the estimated coefficient function 

B1(s) (upper right panel) fluctuates around zero across the domain S. The estimated 

coefficient function Bt(s) (lower left panel) quantifies the change of HRD over time, and 

notable atrophy can be viewed on both ends and middle part of hippocampus. The baseline 

age of the patients have a similar effect on hippocampus. As shown in the estimated 

coefficient function B2(s) (lower right panel), the older patients, on average, have thinner 

hippocampus on both ends and middle parts.

To illustrate the personalized dynamic predictions, we select two target patients as validation 

data, and predict their future health outcomes and event-free probabilities based on MFJM 
estimated using the remaining data as training set. Patient A had a baseline age of 73, no 

APOE-ε4, as compared with a more severe Patient B, 78 years old at baseline, and with 

APOE-ε4. Figure 3 demonstrates how the predicted ADAS-Cog 11 scores are updated over 

time for the two patients. From the left to the right on Figure 3, by using more follow-up 

data, predictions are closer to the true observed values and the 95% uncertainty band is 

narrower. Figure 4 shows the predicted HRD at third and fourth visits based on the previous 

observations. The predicted expected HRD (red line) is close to the true observation (black 

line), however we do not observe significant difference between HRD at the third and the 

fourth visits and we suggest to use the predicted HRD with caution. Figure 5 displays the 

predicted probability of being free of AD diagnosis. For Patient A, the event-free probability 

curve does not show large change because Patient A’s predicted ADAS-Cog 11 scores are 

relatively low. In comparison, Patient B has higher predicted ADAS-Cog 11 scores and 
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worse cognitive function, and thus has considerably drop in the event-free probability. This 

suggests that Patient B has a higher risk of AD diagnosis and should be monitored 

frequently.

5. Simulation Study

In this section, we conduct a simulation study to evaluate the proposed models. We generate 

100 datasets with sample size I = 150 subjects and each subject has Ji=4 measurements at 

time 0, 5, 10, and 15. The simulated data structure is similar to the motivating ADNI study. 

We generate longitudinal functional response yi(s, tij) on an equally spaced grid of length 25 

and longitudinal scalar response yi
∗(tij) according to the longitudinal submodels

yi
∗(ti j) = mi

∗(ti j) + ϵi j
∗ ,

yi(s, ti j) = mi(s, ti j) + ϵi j(s), where

mi
∗(ti j) = β0 + ti jβt + xi1β1 + bi

∗, and

mi(s, ti j) = B0(s) + ti jBt(s) + xi1B1(s) + Σ
k = 1

Kϕ = 2
ξikϕk(s), s ∈ [0, 1] = S .

We set β0 = 4, βt = 1, and β1 = 0.5. The intercept function is B0(s) = −1.5 − sin(2πs) − 

cos(2πs). The time effect is Bt(s) = 1
10Φ( s − 0.5

0.22 ), where Φ(.) is the standard Normal density 

function. The fixed effect is B1(s) = sin(2πs)−cos(4πs), and we generate scalar predictors 

using xi1 ~ N(0, 2). Similar to previous simulation study [17], the orthogonal eigenfunctions 

for random intercept functions are chosen to be ϕ1(s) ∝ 1.5 − sin(2πs) − cos(2πs) and ϕ2(s) 

∝ sin(4πs) and scaled such that ∫ S[ϕ1(s)]2ds = 1 and ∫ S[ϕ2(s)]2ds = 1. The subject-specific 

random effect and FPC scores [bi
∗, ξi1, ξi2] are generated from multivariate normal 

distribution with zero-mean and covariance matrix Σ with σ
b∗
2 = 0.62, λ1 = 1, λ2 = 0.5 and ρ 

= 0.5, respectively. The measurement error for scalar response ϵij is simulated from N(0, 

0.2). The white noise component ϵij(s) is simulated from N(0, 0.1) across s.

We choose a constant baseline hazard function h0(t) = 0.01 and the survival submodel is

hi(t) = h0(t)exp{wiγ1 + α∗mi
∗(t) + α∫S

mi(s, t)ds},

where wi is simulated from N(0, 1), γ1 = 0.76, α* = 0.5, and α = 0.3. We generated random 

survival times based on the closed-form of T* derived from survival function:

Si(t) = exp{
λexp(wiγ1 + α∗(β0 + β1xi1 + bi

∗) + α∫ S[B0(s) + xi1B1(s) + Σk = 1
2 ξikϕk(s)]ds)

α∗βt + α∫ SBt(s)ds
×

[exp(t × (α∗βt + α∫S
Bt(s)ds)) − 1]},
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and thus,

Ti
∗ = log{

−log(Si(t)) × (α∗βt + α∫ SBt(s)ds)

h0(t)exp(wiγ1 + α∗(β0 + β1xi1 + bi
∗) + α∫ S[B0(s) + xi1B1(s)Σk = 1

2 ξikϕk(s)]ds) + 1
}

(α∗βt + α∫S
Bt(s)ds),

where Si(t) is simulated from a uniform distribution between 0 and 1. Censoring time is 

independently simulated from another uniform distribution to achieve a censoring rate about 

30%. Due to censoring, each subject has an average of 3 repeated measurements.

For estimation, the coefficient functions B0(s), Bt(s) , B1(s), and FPC eigenfunctions ϕk(s), k 
= 1, ⋯ , Kϕ are expanded by cubic B-spline basis with Kψ = 10. We set the number of 

estimated principal components Kϕ ∈ {2, 3}. Note that when Kϕ = 3 the number of estimated 

FPC components is larger than the number of true FPC components, which is held at Kϕ = 2. 

Model parameters are estimated for the C = 100 data sets using the methodology described 

in Section 3.2. Estimation and inference is based on posterior means and quartiles of 5000 

iteration from the sampler after discarding the first 1000 as burn-in. We perform diagnostics 

for one simulated dataset indicate that these levels are sufficient for convergence and 

exploration of the full posterior distribution. On average, the computing process takes 1.1 

hours for each simulated dataset on a personal computer (RAM 8G, CPU 3.30GHz). The 

ability to estimate the true coefficient is assessed by the average mean squared error 

(AMSE), e.g., AMSE(β1) = 1
100 ∑c = 1

100 (β1 − β1)2. Table 3 presents the AMSE, in addition to 

bias (the average of the posterior means minus the true values), standard error (SE, the 

square root of the average of the variance), standard deviation (SD, the standard deviation of 

the posterior mean), and coverage probabilities (CP) of 95% credible intervals when Kϕ = 2. 

Table 3 suggests that the proposed model performs reasonable well with relatively small bias 

and AMSE values.

Figure 6 displays the coefficient functions estimated under Kϕ = 2. The true coefficient 

functions (black solid lines), their mean estimated curves (red solid lines), along with 100 

estimated curves based on each individual dataset (grey solid lines). The figures suggest that 

the estimated coefficient functions from the model are reasonably close to the true 

coefficient functions. The simulation results for scenario Kϕ = 3 are presented in Web Table 

1 and Web Figure 2. It suggests that increasing Kϕ has limited effects on parameter 

estimation in either longitudinal sub-models and survival sub-models. The bias and AMSE 

values have slight increase but are still relatively small. The estimated coefficient functions 

are reasonably close to the true coefficient functions.

For each testing dataset, we predict subject-specific conditional survival probability at 

different time points t and Δt using the MCMC samples from the fitted model and available 

measurements up to time t. Table 4 presents the time-dependent AUCs by averaging the 

separate analyses of 100 datasets. The true AUCs are computed using the prerespecified 
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parameter values and random effects when generate the data. The predict AUCs are relative 

closed to the true AUCs, suggesting a good prediction performance of the MFJM in terms of 

validation.

6. Discussion

The proposed multivariate functional joint model (MFJM) is an important complement to 

both functional data analysis and joint modeling for longitudinal and survival data. Our 

model allows the longitudinal functional outcome, longitudinal scalar outcome, and survival 

outcome to be modeled simultaneously and can be applied to many areas of research when 

MRI data and clinical variables are collected longitudinally. We use the functional mixed 

effect model and functional principal component (FPC) analysis techniques to approximate 

the longitudinal functional data, and expand the coefficient functions and eigenfunctions in 

the model using a penalized spline approach. We then develop the process of making 

personalized dynamic prediction of future outcomes and risks of event of interest using both 

repeated functional and scalar outcomes.

The model inference is conducted using a Bayesian approach. One advantage of Bayesian 

approach is the availability of Markov chain Monte Carlo (MCMC) sampling algorithms, 

which allow estimation from posterior probability density functions that are not analytically 

tractable, and which require complex multi-dimensional integration over the random effects. 

The surge in MCMC sampling can be partly explained by the wide use of the Bayesian 

computing languages, such as Stan, which eliminate the need of complex analytical 

derivation of the posterior distributions. Moreover, Bayesian method is well-suited for 

dynamic prediction using joint models. With the MCMC samples from the posterior 

distributions of the parameters for the original data, we can devise a simple simulation 

scheme to obtain a Monte Carlo estimate of risk prediction and longitudinal trajectories [39, 

47]. In addition, uncertainty about posterior parameter estimates is readily calculated from 

the MCMC output without the need for further complex derivation and calculations. This 

facilitates the calculation of the uncertainty intervals of functional coefficients and 

functional predictions.

Simulation indicates that the proposed Bayesian MFJM yields accurate inference and 

prediction. The application of our developed methodology to the motivating data yields 

novel insight into the effect of regional atrophy on the AD progression. More importantly, 

the proposed dynamic prediction approach can utilize the functional and scalar predictors to 

make correct predictions for new subjects. The inclusion of longitudinal functional predictor 

hippocampal radial distance (HRD) into the survival submodel improves the predictive 

performance in the early phase of disease among MCI patients. When new measurements 

are available, the predictions can be updated with improved accuracy and efficiency. The 

practical impact of such dynamic prediction tools can be dramatic for the neurodegenerative 

diseases (e.g., Alzheimer’s disease) because the longitudinal functional data are increasingly 

collected in the studies of these diseases. They provide unique insight and valuable guidance 

for clinical decision making on patient prognosis, targeted treatment, and for targeted 

recruitment for clinical trials.
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There are some limitations we will address in the future. First, our method requires to select 

the number of the FPC components prior to analysis. Although we suggest a large number of 

FPC components, determining whether a selection is sufficient to describe the major 

variation in the functional data require additional analyses with even larger values, which 

can incur considerable computational expense. Second, we jointly model all parameters of 

interest in a Bayesian context, the computation time of the proposed Bayesian procedure 

could be a serious concern particularly as sample sizes, dimension of functional data, and 

the number of estimated principal components grow. Future work focusing on variation 

Bayes or other approximation may address the computational concern. Another option is to 

use a two-step method which models longitudinal functional outcome using functional 

principal components approaches and then plugs in the estimates of FPC scores into the 

survival model. These approaches are more computationally attractive and scalable than 

joint modeling approach but may be accompanied by poorer inferential performance [32, 

48]. It is worthwhile to investigate when using these methods is a reasonable alternative to 

the joint analysis. For example, the two-setp method may provide tools for choosing the 

dimension of the FPC components via rapid comparisons of different selections. Third, we 

assume a constant associate function α(s) ≡ α to quantify the association between the 

functional outcome and the hazard. If the primary interest is prediction, we can allow α(s) 

varies over the domain of S and expand it by the cubic B-spline basis functions and estimate 

the spline coefficients. Another direct extension of the model is the inclusion of covariate-

specific random effects, such as random time-slope function, in the functional mixed effect 

model (2). In this paper, we introduce the correlation between the scalar and functional 

outcomes using the correlation between the scalar random effects and the first FPC 

component derived from the random function. Accounting for the correlations between the 

random effects and the first few FPC components may represent the correlation between the 

scalar and functional outcomes more accurate, but may also lead to increased computing 

burden. It is worthwhile to further explore other correlation structures, e.g., adopting an idea 

of latent trial model [49, 50], especially when additional covariate-specific random effects 

are in the model. Moreover, the inverse-gamma prior distribution, which we used for 

variance parameters in the model inference, can be sensitive to the choice of the 

hyperparameters (shape and scale) in case where variance estimates are close to zero [51]. 

We tested the model inference on one training dataset from our application study using 

uniform and half-Cauchy prior distribution instead, and achieved reasonably similar results. 

We suggest further tests are needed in other applications and datasets on a case-by-case 

basis. We would like to investigate the effect of these extensions and address the limitations 

to improve predict performance in our future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The longitudinal profile of surface-based hippocampal images of one MCI patient: 

hippocampal radial distances are denoted by colors.
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Figure 2. 
Estimated coefficient functions (solid lines) in the functional longitudinal submodel with 

95% pointwise uncertainty band (dashed lines) and reference lines (dotted lines) at zero.
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Figure 3. 
Predicted ADAS-Cog 11 for Patient A (upper panels) and Patient B (lower panels). Solid 

line is predicted longitudinal trajectories. Dashed lines construct a 95% pointwise 

uncertainty band. The dotted vertical lines represent the time of prediction t.
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Figure 4. 
Predicted HRD (red) with 95% pointwise uncertainty band (dashed lines) for Patient A 

(upper panels) and Patient B (lower panels) at third and forth visit. The solid black curve 

represents the true observation at the time point.
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Figure 5. 
Predicted event-free probability with 95% pointwise uncertainty band (dashed lines) for 

Patient A (upper panels) and Patient B (lower panels). The dotted vertical lines represent the 

time of prediction t.
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Figure 6. 
The estimates of the coefficient functions in the simulation study based on 100 runs and 

Kϕ = 2. The red solid lines are mean estimated curves and the grey solid lines are 100 

estimated curves based on each individual dataset.
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Table 1:

Areas under the ROC curve (AUC) by three candidate models in the ADNI study.

Δ t t JM 1 FJM MFJM

0.5 1 0.715 0.754 0.821

1.5 0.691 0.738 0.734

2 0.781 0.809 0.812

1 1 0.696 0.747 0.792

1.5 0.735 0.776 0.777

2 0.749 0.769 0.766
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Table 2:

ADNI data analysis results from model MFJM.

Parameters Mean SE 2.5% 97.5%

For scalar longitudinal outcome

ADAS-Cog 11 APOE-ε4 2.207 0.397 1.464 3.006

bAge 0.172 0.258 −0.346 0.668

Time (Years) 1.121 0.240 0.648 1.584

For survival process

MCI to AD Female 0.094 0.172 −0.241 0.442

bAge −0.113 0.086 −0.278 0.059

Edu (years) 0.029 0.026 −0.022 0.080

APOE-ε4 0.409 0.164 0.081 0.736

α* 0.173 0.021 0.135 0.215

α −1.105 0.437 −1.969 −0.259
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Table 3:

Parameter estimation in the simulation study based on 100 datasets when Kϕ = 2.

Bias AMSE SE SD CP

β0 = 4 <0.001 0.003 0.053 0.055 0.930

βt = 1 −0.003 <0.001 0.019 0.019 0.960

β1 = 0.5 <0.001 <0.001 0.004 0.003 0.980

γ1 = 0.76 −0.017 0.017 0.116 0.122 0.920

α* = 0.5 0.031 0.005 0.059 0.062 0.910

α = 0.3 −0.023 0.053 0.232 0.231 0.930
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Table 4:

Areas under the ROC curve (AUC) for the simulation study.

Δ t t True AUCt
Δt

5 0 0.831 0.830

5 0.811 0.810

10 0.829 0.827

10 0 0.847 0.846

5 0.875 0.875

10 0.824 0.823
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