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Abstract

Bayesian model-based clustering is a widely applied procedure for discovering groups of related observa-
tions in a dataset. These approaches use Bayesian mixture models, estimated with MCMC, which provide
posterior samples of the model parameters and clustering partition. While inference on model parameters is
well established, inference on the clustering partition is less developed. A new method is developed for esti-
mating the optimal partition from the pairwise posterior similarity matrix generated by a Bayesian cluster
model. This approach uses non-negative matrix factorization (NMF) to provide a low-rank approximation
to the similarity matrix. The factorization permits hard or soft partitions and is shown to perform better
than several popular alternatives under a variety of penalty functions.

Keywords: Bayesian clustering, Non-negative matrix factorization (NMF), soft clustering, cluster analysis,
fuzzy clustering

1. Introduction

The goal of clustering is to discover partitions that assign observations into meaningful groups. A
favorable property of Bayesian model-based clustering is that it provides versatile posterior uncertainty
assessment on both the model parameters and cluster allocation estimates. However, while inference on
model-specific parameters and mixing weights follow standard Bayesian practice, more development on
estimating the clustering partition is needed.

An intuitive, yet naive, way to obtain a point estimate of the best partition is to use a maximum a
posteriori (MAP) approach which selects the partition (up to label switching) from the MCMC sample that
occurs the most frequently. But when the number of observations is large and the generating mixture is
complex, the majority of the MCMC clustering samples are likely to be visited, at most, a few times. In this
case, the MAP approach will not usually find the best clustering solution.

To better clarify the notion of optimal partitioning, introduced a loss function approach.
This considers optimal clustering as a Bayesian action which attempts to minimize the expected loss of
the partition. Under Binder’s linear loss function, the problem reduces to searching for a partition c*
that produces a binary affinity matrix 7* nearest to the pairwise posterior similarity matrix 7 with m;; =
p(ci = ¢;ly). The idea of using loss functions has inspired researchers to develop more advanced approaches
to Bayesian clustering estimation. [Fritsch et al| (2009) showed that minimizing Binder’s linear loss is
equivalent to maximizing the Rand index. One extension, the adjusted Rand index, corrects for the chance
of random agreement in the Rand index (Hubert and Arabiel [1985). More recently, Wade and Ghahramani
use a loss function based upon variation of information (Meild, [2007)) as well as providing a method
of assessing the uncertainty in the estimated partition, and Rastelli and Friel (2018) introduce a greedy
algorithm to efficiently find the partition that optimizes a large family of loss functions. Other influential
works include (Quintana and Iglesias| (2003) who adapt Bayesian clustering into product partition models.
Moreover, [Lau and Green| (2007) argue that binary integer programming is notoriously slow for Bayesian
clustering estimation and provide a heuristic item-swapping algorithm that excels computationally.

We find that there are several places where these current approaches can be improved. The optimization
strategy of directly shuffling the clustering labels to find a binary matrix 7v* closest to the posterior similarity
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7 can be notoriously slow. Furthermore, conventional methods can only provide hard clustering by the nature
of direct label manipulation. They possess no capability of accounting for ambiguous observations. Moreover,
they tend to favor two extremes which either treat all uncertain points as singleton clusters or simply lump
them into a major neighbor cluster (Fritsch et al.l |2009; |Wade and Ghahramanil 2018)).

In this paper, we propose the use of non-negative matrix factorization (NMF) to identify optimal par-
titions from Bayesian model-based clustering models. We find the NMF approaches not only outperform
alternative methods on clustering accuracy but can also provide deeper interpretations of the partitioning
results. Additionally, the clustering solutions produced by NMF are more compelling since they can carefully
balance between the singleton-preferred and dominant-preferred extremes.

Section 2 briefly reviews the critical components of a Bayesian model-based clustering procedure and the
relevant output from MCMC. In section 3, we briefly describe the general theoretic decision framework for
clustering estimation and then present the details for three current methods. Section 4 will introduce NMF in
the context of clustering estimation and further present the connections between NMF and Binder’s criterion.
Simulated experiments in section 5 illustrate the clustering performance of the NMF models and their soft
partitioning capabilities. This is followed with examples from the famous galaxy and crabs datasets showing
that the NMF partitioning solutions provide an attractive balance between the two clustering extremes for
ambiguous data points.

2. Bayesian Model-based Clustering

2.1. Bayesian Mixture Models

Mixture models have been widely applied as a clustering tool to find meaningful patterns in a dataset.
In Bayesian model-based clustering, observations that are determined to share the same model-specific
parameters are considered to be from the same cluster.

To formally describe Bayesian model-based clustering, we introduce the notations as follows. Let y be
the observed data vector generated by a K-component mixture model and ¢’ = (¢1, ¢a, ..., ¢,) be the group
labels corresponding to the n observations. If observation i is from the k** component of the mixture (i.e.,
¢; = k), we say that y;’s model-specific parameter is 05 and the distribution of y; has the form p(y;|6x).
Notice that each element of © = (#y,60s,...,0x) uniquely corresponds to a cluster. In addition, the k"
component of the mixture has a weight or mixing probability ¢; defined as Pr(¢; = k).

There are many approaches to estimating the model parameters, including the partition vector ¢, in
mixture models. In frequentist approaches, such as Expectation Maximization (EM), the membership vector
c is treated as a latent vector and estimated as part of the complete-data likelihood (Fraley and Raftery)
2002). The Bayesian alternatives usually rely on MCMC sampling to conduct estimation and posterior
inference. For example, [Richardson and Green (1997)) use a reversible jumping MCMC algorithm which
simultaneously estimates the allocation vector ¢ as well as the number of clusters K. Nonparametric Bayesian
alternatives, like the Dirichlet process (DP) mixture model (Ferguson, 1973; Neal, 2000), consider the model
parameters coming from an infinite mixture of distributions. Only a finite number of parameters will be
used to model the observed (finite) data and the number of clusters K from such a model is the number of
unique model-specific parameters (Blackwell and MacQueen, 1973} |[Escobar and West}, (1995; |Fritsch et al.,
2009; Rasmussen), (1999).

2.2. MCMC output

A critical relationship describes the sampling process of the allocation vector e:
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where W contains all the mixture model parameters except the allocation ¢. For a DP mixture model,
Quintana and Iglesias| (2003)) write the prior distribution for the allocation vector as

iy oL (ny)

I(ati-1) @

ple) =



where ny is the number of observations in cluster £ and « is the DP concentration parameter. Combined
with a proper setting of the mixture model (Dahl, [2005), a Gibbs sampler can be used to obtain the M
MCMC samples of the partitioning vector, ¢V, e™), ... ¢™). More general distributions based on DP prior
can be found in Ishwaran and James| (2001)); Lijoi et al.| (2007); |Pitman and Yor| (1997). Additionally, Lau
and Green| (2007) provide a detailed review of various prior distributions.

A convenient way to summarize the partition information, which is unaffected by label switching and can
be used when the number of clusters K is not equal for all MCMC samples, is with the pairwise posterior
similarity matrix. Intuitively, two data points are more likely to be members of the same cluster when they
appear together frequently in the partitions ¢, e™), ... ™). To quantify this relationship, a pairwise
posterior similarity matrix @ = {m;;} is defined by

Ti5 = p(ci = c]‘?:/) ) (3)
where ¢; and c¢; are the cluster assignments of observations y; and y;. When the true probabilities are
unknown, the posterior similarity can be estimated from the MCMC samples
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where 1{c; c; '} equals 1if ¢; c;” and 0 otherwise.

3. Point Estimate of Clustering

3.1. Ezxpected Loss
Suppose a loss function L(e¢, c*) that quantifies the cost of estimating a partition ¢ with ¢*. The posterior
expected loss of using partition ¢* is

E.[L(e,c")|y] = ZLcc (cly), (5)

where p(c|y) is the posterior PMF of partition ¢. The clustering goal is to find the Bayes optimal partition
e., the partition which minimizes (5). However, because it is often infeasible to obtain a closed-form
expression of p(cly), the posterior expected loss is often approximated by its sample version:

E.[L(c,c")|y] = Z L(c™ ¢ (6)

where ¢(™) is the partition from the m! MCMC sample.
While the approximation above is intuitive, computation can be expensive when M is large. An alterna-
tive approximation is to move the expectation inside the loss function

E.[L(e,c")lyl = L(Ec[cly], c7) (7)
where E. [c|y] is the posterior expected partition. Note that under linear loss functions, the approximation
sign in Eq. [7|is a strict equality (Binder, [1978). Moreover, [Fritsch et al.|(2009) and [Wade and Ghahramani
(2018) argue that this approximation gives similar solutions under many useful non-linear loss functions.
To practically evaluate the approximation, one only needs to replace the posterior expectation of a label
agreement Ec[]l{cz(»m) = c(m)}] in the loss function by the estimated posterior similarity 7;;, or that of

disagreement E. []l{c ) c(m } by 1 —7;;. We will present several loss functions and illustrate how they
estimate the expected loss from Eq. @ and Eq. .

3.2. Current Estimation Approaches
In general, a procedure gives the point estimate of the clustering as
¢é = argmin J(c"), (8)
creC
where C is the search space and J is a penalty function. This optimization problem requires three settings: the
choice of penalty function J, which will correspond to an estimated expected loss function, the specification
of the search space C, and the optimization algorithm to find the ¢ that minimizes J.



3.2.1. Binder’s Criterion and Variations
An early work on Bayesian cluster analysis is (1978)), which proposes the Binder loss function

LB(C, C*) = Z I ]l{cj;éc;}]l{ci:cj} + ZQH{C::C;}H{Ci;éC]'} s (9)

i<j
where [; and Iy are the loss weights for two different types of mis-assignment. The first term represents a
false negative where ¢ and j actually belong to the same cluster (i.e., ¢; = ¢;) but ¢* disagrees and the second

term represents a false positive when 7 and j are from different clusters in reality but the estimate c* assigns
them to the same cluster. When the loss weights are equal [; = I3, the expected Binder loss becomes

Ee[LP(c, )yl = D Imis = Ler=ery (10)
1<j
where 7;j = E.[1{c,—c,}|y]. This leads to the penalty function under Binder’s loss

JB(C*) = Z |7?er - ]]-{c;‘=c;f}

1<J

: (11)

which replaces 7;; with the approximation 7;; from Eq. As discussed in Sec. the linearity of Binder’s
loss allows the use of Eq. with equality.

Another popular criterion for measuring the quality of a clustering solution is the expected Rand index
(Rand|, [1971). However, [Fritsch et al|(2009) argue that maximizing Rand index is equivalent to minimizing
the Binder’s loss since they have the following relationship

LB(c,c*)
(3)

Additionally, Dahl’s criterion (Dahl, [2006]) uses another form of quadratic loss function
Y Ter=esy = mi5)° (13)

i<j

Rand(c,c*) =1 (12)

which also can be proved equivalent to Binder’s loss (Fritsch et all 2009). Thus, in this paper, we only use
the original Binder’s criterion to represent all the equivalent variations.

3.2.2. PEAR Criterion

The adjusted Rand index adjusts for the expected number of arbitrary chance agreements allowing a more
consistent comparison between clusterings with different group sizes (Hubert and Arabie, 1985; Milligan and)|
[Cooper], [1985; Morey and Agrestil [1984). By maximizing the posterior expectation of adjusted Rand index
(PEAR), |[Fritsch et al. (2009) developed MaxPEAR, a partitioning method that estimates the optimal
clustering from the posterior similarity matrix.

The adjusted Rand index between the candidate partitioning c¢* and the true clustering c is given by

Yicj Yier=e} Leime;) = iy Lier =t} 2icj Leime;3/ (5)
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Using the MCMC approximation from Eq. @, adjusted Rand can be written as
| M
i m; AR(c'"™  ¢*) ~ E.JAR(c, ¢*)|y] . (15)

When M is large, however, excessive evaluations of Eq. in Eq. become computationally expensive.
Therefore, we use the alternative approximation implemented in (Fritsch et al) [2009). This uses Eq. to
provide a solution based on the estimated posterior similarity matrix 7,

Zi<j ]l{c;-*=c;f}7%ij - Zi<j ]l{c;-*=c;f} Zi<j WZJ/(S)
T - - .
i[zz‘q‘ l{cr=c;f} + Zi<j Triz) — Zi<j IL{cr=03f} Zi<j 7rij/(g)

JPEAR(C*) - 1—

(16)



3.2.3. Variation of Information

Another loss function, based on variation of information (Meild, |2007)), was recently used by [Wade and
Ghahramani| (2018)) and [Rastelli and Friel (2018) . The VI loss function is formally defined by the following
equation

K K*
L™ (¢, c*) = Z Dt log (m) + Z s log <n+s
— n n —n n

K K~
)23 e ). "
r=1s=1

where n,.s counts the number of observations in cluster r under the true clustering ¢ while assigned to cluster
s by the candidate partition ¢*. In addition, n,4+ = > o nys and nys = > nys. K and K* are the
number of clusters in partitions ¢ and ¢* respectively.

We consider the penalty function introduced in [Wade and Ghahramani| (2018]) which approximates the
expected VI loss using using Eq.

JVI(C*) — Zlog Z]]_{(.;«:(.;} —2210g Zl{p::c;«}’fr” . (]_8)
=1 j=1 =1 j=1

This is the lower bound on the expected VI loss, it avoids the computational expense of using all the MCMC
sample partitions when M is large and also provides accurate solutions |Wade and Ghahramani| (2018]).

3.2.4. Partition Search Space

The solution to Eq. is obtained by scanning through all possible candidate partitions ¢* in the search
space C. Ideally, the search space contains all B,, possible partitions, where B,, is the Bell number for n
observations. However, this will be impractical when n is large. Even the search space for a fixed K number
of clusters contains the Sterling number of the second kind (Weisstein, 2002)

K
[y - ;lgo(—l)“ () (19)

possible partitions. When an exhaustive search of C is not feasible, the search space can be reduced or a
non-exhaustive search can be performed.

The most straightforward reduction method uses the MCMC clustering samples as the reduced search
space. This will provide at most M unique candidate partitions (Dahl, [2006). Another popular choice
uses the dendrogram from applying hierarchical clustering to the pairwise dissimilarity matrix, 1 — . This
method provides n candidate partitions; one for every unique solution from the dendrogram.

Instead of refining the search space, other researchers attempt to resolve the optimization problem with
more efficient algorithms. For example, [Lau and Green| (2007)) propose a heuristic item-swapping algorithm
aiming at outperforming the naive and slow binary integer programming algorithm. However, |Fritsch et al.
(2009) claim that the algorithm is still computationally costly for a large number of observations. Another
greedy search algorithm proposed by|Wade and Ghahramani (2018]) aims to find a partitioning that minimizes
the posterior expect loss within a neighborhood around the partition at the current iteration. We found this
algorithm to also be time-consuming in our experiments with a moderately sized dataset. [Rastelli and Friel
(2018) propose a greedy algorithm that, starting from an initial random partition, changes the membership
of one observation at a time to the cluster that minimizes the overall loss. Multiple starts are suggested to
enlarge the search space.

4. Optimal Partitioning using NMF

Recall from that the objective of clustering is to find the partition that minimizes a specific penalty
function. The existing penalty functions are based on the estimated pairwise similarity matrix 7
and the binary partition matrix 7* = {]1{8::0;} 21,7 €{1,2,...,n}} created from a candidate partition c*.
In essence, these methods are attempting to estimate the non-binary & with the binary 7*. This observation
motivated us to consider non-binary estimators that could provide better estimates, are less computationally
demanding, and provide a way to access the uncertainty in observations with ambiguous cluster assignments.



Therefore, this paper suggests a partitioning approach that uses non-negative matrix factorization (NMF)
to approximate the similarity matrix 7. Before a formal introduction of the NMF, we list some of its advan-
tages. First, NMF approximates the real-valued matrix 7 using a lower-rank decomposition which is also
real-valued. Without being restricted to a binary matrix, the optimal solution from a broader space could
be much closer to 7. Second, research on NMF optimization is mature with many well-studied algorithms
possessing useful properties for clustering. NMF partitioning methods also facilitate soft clustering. Demon-
strated by |Li and Ding] (2006)), output from NMF optimization has a natural soft assignment interpretation
and in fact, special NMF models are directly designed for probabilistic clustering problems (Ding et al.,
2005; [Paisley et al., 2014; [Shashanka et al., |2008]).

4.1. Formulation

Nonnegative matrix factorization (NMF) decomposes a data matrix into lower-rank matrices which can
help reveal underlying patterns of the data. |[Li and Ding| (2006) have studied how various NMF constraints
can help uncover different types of clustering patterns. The connections between NMF and clustering have
been well established and successfully applied to many research fields (Ding et al., 2005} |Hosseini-Asl and
Zuradal [2013; |Kuang et al.| |2012; |Wang and Zhang) 2013} Xu et al., [2003).

Let the posterior similarity matrix 7 be the data matrix to be approximated. In practice this would be
the approximation 7 from . The basic NFM problem (Lee and Seung, |2001)) is finding two lower-rank
matrices that solve the optimization

(W, H) = argmin || — W HI|[}, (20)

where F' indicates the Frobenius norm, = € R}*", W € RiXK and H € Rf *". The non-negativity in NMF
indicates that matrix elements must be non-negative.

This least-squares type of NMF problem has a natural clustering mterpretatlon for nonnegative data
because the columns of W can be considered centroids and the columns of H are the cluster weights of
the observations (Kuang et al.l 2012)). This provides a close connection with the K-means algorithm Ding
et al.| (2005); Kim and Park| (2008b). While K-means restricts H tobe a binary matrix which implies hard

assignment of cluster allocation, the NMF method results in a real-valued positive matrix H which contains
both hard and soft clustering information. Specifically, the hard cluster allocation of observation ¢ can be
estimated using the following equation

¢; = argmax PAI;W , (21)

k=1:K

which is similar to MAP method. In other words, the row index of the maximum value of a column
represents the cluster membership of the corresponding observation. In addition, the soft label assignment
of i*? observation can be obtained by standardizing the columns of H

H
R (22)
Zk:l Hii

where fI\ is the " column of matrix H. To interpret the soft clustering, the vector ¢5°** describes the
confidence levels of assigning observation ¢ into the clusters. The higher the value of ¢5*, for example, the
more confidence there is in assigning observation i into cluster k. To further understand the soft, clustering
nature of NMF, one can follow the claim by |Ding et al.| (2005) that a strictly orthogonal H matrix leads to
hardened partitions and a near-orthogonal H provides soft clustering which can be interpreted as posterior
cluster probabilities.

4.2. Connection to Binder’s Criterion

Although non-negative matrix factorization and Binder’s criterion for clustering originated in different
fields, they share several similarities. Table [I| presents some connections between Binder’s criterion and
NMEF.

The first line of Table [I] compares the penalty function of these two approaches. NMF is attempting to
minimize the square distance between two similarity matrices 7 and 7*, while Binder’s criterion seeks to



Table 1: Connections between clustering estimation using Binder’s criterion and the standard
least-squares NMF

Binder’s Criterion NMF Partition
optimization argming. >, . |mi; — 7| argming g > |mij — 7 2
approximation binary 7* real #* = WH
partition hard hard or soft

minimize the absolute distance. But as shown in [Fritsch et al.| (2009), under Binder’s criterion with binary
7", the absolute distance provides the same solution as the squared distance. Regarding the approximation
matrix, Binder’s criterion seeks a binary matrix 7* that specifies a hard partition ¢*, while NMF approxi-
mates 7t with a real-valued matrix 7* that can be decomposed into two non-negative matrices W and H.
These matrices can be used to obtain a hard partition or soft partition .

4.8. NMF Variations and Algorithms

Using our previous notation of penalty function, the NMF model in Eq. can be written in a general
format as

(W, H) = argmin J™F (W, H) (23)
W,H>0
where JVF is a generic notation for the distance or loss between two matrices. While the baseline NMF model

in Eq. uses the squared-error loss (NMF-ls), another popular choice of J™F is the generalized Kullback-
Leibler divergence (NMF-kl), which can capture different features (Brunet et all [2004)). In addition, two
other variations of NMF models are considered. NMF-ns by [Pascual-Montano et al.| (2006)) introduces a
smoothing matrix S between W and H to avoid deteriorating their sparseness. It not only provides quality
reconstruction to the original data but also produces more interpretable basis features in matrix W. NMF-
offset by [Badea) (2008) adds an intercept term to absorb the common features of the clusters. In this paper,
we will include the four NMF models presented above.

Another important choice in NMF is the optimization algorithm. While NMF has a variety of exten-
sions, there are two primary types of optimization algorithms. [Lee and Seung| (1999) propose multiplicative
algorithms for squared-error loss (NFM-1s) and the generalized Kullback-Leibler divergence (NFM-kI) which
guarantee convergence. Another major algorithm family is based upon projected gradient descent proposed
by [Linl (2007) and extended by Kim and Parkl (2007, |2008al). For the squared-error NMF-Is model, the
following two equations present the element-wise updating rules for both basis matrix W and weight matrix
H

(WT'm)a;
Hyj < Hg, (WTWH)aj (24)
(ﬂHT)ia
ia ia . 2
Wia = Wia g - (25)

Algorithms for the other NMF models can be found in the original papers (Badea), 2008} |Brunet et al., 2004}
Pascual-Montano et al., [20006).

As pointed out by [Vavasis| (2010), while solving the exact NMF problem in Eq. is NP-hard, local
heuristic search methods can be developed. The basic NMF algorithms are computationally intensive; each
iteration of and will cost at most O(K N?) operations, where N is the sample size and K is the
number of components, but will often be much less due to the sparsity in #. And while these calculations
are performed for multiple initializations and for a range of K values, parallel (Li and Ding, 2013|) and GPU
(Mejia-Roa et al., |2015) based implementations are available. There have been many other developments
in improving the computation of NMF, especially for large-scale problems (Gemulla et al., 2011} |Kim and
Park), 2011; \Wang et al., 2016} [2011)).



The rank of the matrix factorization, K, also needs to be determined. Popular methods to select the
rank K include looking for an inflection point in the internal NMF loss function J™F (Hutchins et al., 2008)
and cophenetic correlation (Brunet et al., [2004). However, this paper uses the optimization functions (11|
to estimate K. Specifically, NMF is run for a range of K values and for each K a hard partition is
made using Eq. and then scored from one of the optimization functions. In this way, we are using NMF
as a way to create and explore the search space C.

5. Examples

5.1. Synthetic Example

5.1.1. Clustering Performance on Gaussian Mixtures

To study the clustering performance of different partitioning models, [Fritsch et al.| (2009)) and |[Wade and
Ghahramani| (2018) used Gaussian mixture data under various settings of separateness and balancedness.
However, there are many other setting parameters worthy of attention in Gaussian mixture (Melnykov et al.
2010). Without extending the focus into all the possible aspects of a Gaussian mixture models, we include
one additional factor, sphericity, which measures the roundness of a covariance matrix of the Gaussian
components.

In our experiments, we simulate data from 4 components (clusters) and choose two levels, T/F, for
each dimension of the triplet (separateness, balancedness, sphericity) resulting in eight different types of
datasets. For example, TTT represents an easy-to-cluster dataset that is well separated, perfectly balanced,
and completely spherical (i.e., identity covariance matrix). The configuration FFF represents a more mixed,
imbalanced, and non-spherical Gaussian mixture dataset.

Table [2| displays the values of each configuration. Specifically, the separateness is controlled by the
distance from the components means p; (i = 1,2,3,4) to the origin. The second column shows the cluster
sizes under the two balancedness settings and the last column explains the structure of the variance-covariance
matrices 3;. Data is simulated 100 times for each configuration of Table 2} Fig. [I] visualizes one realization
for each configuration.

For each realization, we fit a Dirichlet process Gaussian mixture model as described in |Liverani et al.
(2015). This models the data as arising from an infinite mixture of Gaussian components. The prior
model for the component means are p. ~ N(ug,Xg) and covariance matrix %, ~ InvWishart(Ro, k9). The
hyperparameters o = (§1,%2), Yo = diag(s1, s2) with s; the range of the j'* covariate, Ry is set to 1/2 of
the inverse of the empirical covariance matrix, and kg = 2. These are the default and recommended values
for the hyperparameters for bivariate data in the corresponding R package PReMiuM.

After a burn-in of 5,000, we retained 10,000 MCMC samples and created the posterior similarity matrix
7 using Eq. . From the posterior similarity matrix the method specific partitions are obtained. The
search set, C, for the three conventional methods is obtained from the union of the partitions generated from
each unique cut of the dendrogram from agglomerative hierarchical clustering using average linkage with the
dissimilarity 1 — 7. The MinBinder method chooses the partition that minimizes Eq. , MaxPear chooses

Table 2: Experimental settings for the configuration triplet (separateness, balancedness, spheric-
ity) € {TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF}

Separateness Balancedness Sphericity
M1 = (3,3) ny = 100
= —_— = 1
r H2= (3.3 n = 100 S =S =Sy =%, =1,
w3 = (—3,-3) n3 = 100
pa = (3,-3) n4 = 100
pa = (1.5,1.5) ny =150 5 _ [ 2 —0.8 } 5 { 1 08 }
g M2=(-1515) ny = 50 1= -08 1 27108 2
ps = (—1.5,—1.5)  ng =100 [ 1 04 720
_( ) _ E3—[0.4 1} 24—{0 2}
wg = (1.5,—1.5) ng = 30
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Figure 1: Example realizations under the eight different configurations: (separateness, bal-
ancedness, sphericity). Separateness: the top four panels (a) — (d) are data with well separated
Gaussian components and the bottom four (e) — (h) are more mixed. Balancedness: the left
four panels (a)(b)(e)(f) are data with equally sized Gaussian components and the right four
panels (¢)(d)(g)(h) have two smaller components (i.e., the red boxes and the purple crosses).
Sphericity: within each pair of panels (e.g., the two upper-left plots (a)(b)), the left sub-panel
(a) is generated by a spherical Gaussian mixture and the right sub-panel (b) has non-spherical
variance-covariance matrices.

the partition that minimizes Eq. , and MinVI chooses the partition that minimizes Eq. (18). We also
considered choosing the partition that minimized the full loss functions (Eq. and Eq. (17)), but did
not find a substantial difference in performance and thus did not include the results. We also compared the
related method of Medvedovic (Medv) (Medvedovic and Sivaganesan), [2002; [Medvedovic et al., 2004) which
uses complete linkage and the partition that results from cutting the dendrogram at a value close to one (we
used 0.99).

We considered four NMF models: NMF-kl, NMF-Is, NMF-ns, NMF-offset. For each value of K =
2,3,...,12, the four models were fit ten times using different random initializations (all methods shared the
same initializations) using the algorithms of |Gaujoux and Seoighe| (2010). We retained the final solution
that minimized the internal NMF loss (e.g., squared error). The optimal K was then chosen by making hard
partitions according to Eq. and using the partition that minimized one of the expected loss functions.

To examine how well the methods can identify the true groups, we evaluated the partitions against the
three metrics: Rand index (12)), adjusted Rand (AR) index (14)), and the variation of information (VI) (17).
The results are summarized in Table [] which is arranged similarly to the layout of Fig. [I] Corresponding
to each data panel, there is a 7-by-3 table presenting the model performances under that particular setting.
In each column under the same setting, we underline the model with the best performance. Notice that the
VI criterion is to be minimized while the Rand and AR are to be maximized.

The first noteworthy result is that NMF estimation methods are consistently better than the three
conventional approaches when the data are more ambiguous (i.e., e=f-g-h). In other words, when the data
are more mixed, the NMF-based methods can better identify the actual clustering structure. Even with the
exceptions under setting e-FTF, NMF-ns and NMF-offset still provide solutions of comparable performance.
This phenomenon pertains to the fact that traditional methods tend to group uncertain points into individual
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clusters, which notoriously over-identifies the number of clusters.

Not surprisingly, all the estimation methods perform well on the separated, perfectly balanced, and nicely
rounded data setting a-TTT. However, NMF-offset method actually outperforms other candidates under the
VI criterion, which is observed in setting b-TTF as well. Another observation seen by comparing a-b as well
as g-h is that changing sphericity only will result in the same optimal estimation approaches. When the
simulated data are well separated and unbalanced (c-d), NMF-kl is the best procedure among the NFM
methods and is competitive with MinVI.

Fig. [2| provides a summary of the selected number of clusters K for all the 100 runs. Recall that the data
were simulated with K = 4 clusters. To keep perspective in the plot, K is truncated at 8. As the cluster
structure becomes more ambiguous (e-f-g-h), MinBinder and MaxPEAR tend to inflate the estimated
cluster size. The MinVI and Medv approaches move in the opposite direction and tend to under-estimate
the number of clusters, especially for settings e-FTT and g-FFT. The NMF-Is and NMF-ks provide more
overall consistent estimates of the number of clusters. The NMF-ns does a good job of selecting the number
of clusters when the clusters are well separated but suggests too many clusters when the clusters are more
overlapping. The NMF-offset method does not, in general, provide a consistent estimate of the number of
clusters.

5.1.2. Soft Clustering

By providing a real-valued matrix H, NMF can induce both hard partitioning labels and the soft (prob-
abilistic) cluster assignments. To illustrate soft clustering, we simulated a dataset comprising four Gaussian
components with two smaller clusters. The original data clusters are showed in the left panel of Fig.
On the right side, we also present the hard partitioning result provided by the conventional methods (i.e.,
MinBinder, MaxPEAR, and MinVT). Since they reach the same solution, only one picture is needed here.

All the conventional methods choose K = 2 which underestimates the truth (K = 4) by assigning
observations 31-36, that form the minor clusters, to one of the larger groups. They assign observations 31-33
to the right cluster and 34-36 to the left cluster indicating they prefer creating two elongated (non-spherical)
clusters. While these observations do not correspond closely to the other observations in their assigned

a-TTT b-TTF c-TFT d-TFF
NMF-Is - « . [ ) ° () . ° e . . ° . [
NMF-kKi - « e o e o - o [ ]
NMF-ns = » « @ e o . o Y
NMF-offset- e () . . . [ . . ° [} . . . . 'Y . . . .
MinBinder - « . [ ) . [ ] [ ()
MaxPear - * . ) o [ ) . [ ) o
MinVI- o . ) . () . o ()
Medv - = . [ ° Y . o ) prop
e 025
e-FTT —FTF g-FFT h-FFF ® 050
NMF-Is- @ [ ] . [ () . [ [ . . . [ ) . . @® 075
NMF—kI - ® ) . . ° ° Y 3 ° ° 4 ! A Py °
NMF-ns- e [ 3 . ] . . . ® Y 3 . . . . ° ° . . . . . Y ° . . °
NMF-offset- ® [ ) . . . ° ) . . . . Y ° . . . . . Y Y . .
MinBinder - o . . . ° . . . Y [ . . . . . . . . Y . . o ) .
MaxPear - o ° [ ] [ [ ) ° . . ) ) . . o [} .
MinVi- @ [ ] [ ) [ ) [ ] (] o [ ] L]
Medv - @ ® [ ° (] (] [ J O/
2 3 4 5 6 1 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 1 8

Figure 2: Distribution of the estimated number of clusters, K, from the 100 simulations. Values
above 8 are truncated to 8.
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cluster, there is no way to determine this from the conventional methods.

To illustrate the effectiveness of approximating m using NMF, we present the reconstructed posterior
similarity matrix in Fig. [4] using the most generic NMF model (NMF-Is). As clearly depicted in (4p) and
@i) the NMF solution provides a better approximation to 7t than that of the binary constrained conventional
approaches showed by ) The NMF solution accurately detects and restores the ambiguity around the
observations from 31 to 36. In fact, its similarity heatmap is almost identical to that of 7 in )

In Fig. [5] we further investigate NMF’s capability to identify uncertain clusters. The top panel of Fig.
shows the expected Binder’s loss (Eq. (II))) under a sequence of K. While K = 2 minimizes the Binder
penalty function, the loss is not much greater with K = 3 and K = 4 indicating that good solutions have
between 2 and 4 clusters.

Simiulated Gaussian mixture data Clusters by conventional methods
433 032 033
431 031

Dimension 2
m]
il 0
U*%’ o
Op
o
m]
)
g &b O
o

m}
Dimension 2

L4

o

o

”ﬁ”

4 3%,
Dimension 1 Dimension 1

Figure 3: (Left) original data clusters with two minor groups: green-triangles (31-33) and
purple-crosses (34-36). (Right) clustering solution given by the three conventional methods:
MinBinder, MaxPEAR, and MinVI.

(a) true similarity matrix (b) posterior similarity 1t

30
|

25
|

20

15

10

25

(c) conventional estimate Tt* (d) NMF estimate t* =W H

Figure 4: (a) Binary similarity matrix from the true clustering; (b) MCMC posterior similarity
matrix 7 from a DP mixture model; (c) estimated similarity matrix =* using conventional
models; (d) estimated similarity matrix 7v* using NMF models.

12



Expect Loss Curve

|

Expected Loss
50 100 150 200 250 300

J T31 32 33734 35 36

H Row

00 02 04 06 08 10

H Row

00 02 04 06 08 10

Figure 5: Soft clustering interpretation provided by the NMF-ls model. The upper panel de-
scribes the sample expected Binder’s loss across various values of K using the NMF estimation
model. Middle and lower bottom panels visualize the rows of the H matrix when K = 2 and
K = 4 respectively.

The middle and bottom panels of Fig. show the standardized rows (Eq. ) of the H matrices
corresponding to the K = 2 and K = 4 solutions respectively.

When K = 2 and hard clustering is preferred, the maximum row value corresponding to each observation
will determine the cluster membership obeying Eq. . For example, observations 31-33 who have larger
values on the red-boxed curve will be assigned into the red cluster. Therefore, while the hard partitioning
from NMF model coincides with the ones given by conventional models, the NMF model is able to reveal
the notable ambiguity on membership assignments, especially for observation 31.

In addition when K = 4, NMF uncovers the true clustering structure where observations 31-33 and 34-36
are grouped as minor clusters. It can also be observed that the blue-dotted and purple-crossed curves have
similar profiles indicating that observations 1-15 and 34-36 have strong similarities even though they would
be assigned to different clusters. This type of soft-clustering information that is present in NMF provides a
deeper understanding of the uncertainty that exists in the clustering solutions.

5.2. Galaxy Data
A popular dataset for research in Bayesian model-based clustering is the galaxy data (Roeder] [1990)
which records velocities of 82 galaxies from the Corona Borealis region. While the original work aims at

developing non-parametric density estimation for the one-dimension galaxy speed, latter research finds this
dataset compelling for model-based clustering (Escobar and West], [1995} [Lau and Green, [2007; Wang and)|

Dunson 2011).
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Figure 6: Clustering solutions provided by the four conventional and four NMF approaches.
The K in parentheses is the estimated number of components selected by the model and the
symbols represent the cluster assignments.

In this paper, we use the MCMC samples of clusterings from a DP mixture fitted to the galaxy velocities
(in 1,000 km/sec) provided by the R package mcclust.ext (Wade and Ghahramanil 2018), which also
contains the predicted density using the fitted DP mixture model. The MCMC sampling provides 10,000
draws of the clustering labels with 9,636 unique partitions (up to label switching).

Fig. [6] shows the estimated clustering solutions for each model. Within the traditional methods, Min-
Binder and MaxPEAR produce the same solution which has a relatively large K = 7 by treating observations
with high uncertainty (i.e., observations 8, 9, 78, and 79) as singletons. The Medvedovic and NMF-ns meth-
ods move in the other direction and suggest there are only two clusters. Interestingly, they both indicate
there is a component with large variance to account for the observations in the tails. Specifically, Medve-
dovic indicates observations {1,...,7,78,...,82} are in the outlier component while NMF-ns also includes
observations 8 and 9.

The remaining approaches select K = 3, but differ in their cluster assignments. The MinVI approach
assigns the ambiguous observations to the dominant cluster in the middle. This suggests that each component
could plausibly be modeled with a rather symmetric distribution. The NMF-kl model only differs in that
it assigns observation 79 into the right cluster suggesting the presence of a skewed component with a heavy
tail. The NMF-Is also includes observations 77 and 78 into the right component. NMF-offset is the most
extreme, putting the first and last 9 components into the left and right components, respectively, suggest
two highly skewed components.

To get a better sense of the uncertainly present in the clustering, Fig. [7] displays the soft-clustering
estimates using NMF-kl. For K = 3, this analysis reveals that the cluster assignments for observations
{8,9} and {78, 79} are highly uncertain; something not seen from the hard classifications. It also shows that
observation 77 has an almost 20% chance of being part of cluster 3. The results for K = 4 indicate that
clusters 2 and 3 have substantial overlap but clearly prefers to include observations {78, 79} into cluster 3.
When K = 5, the model is more confident about observations {8,9} but less confident about observations
{78,79}.

5.8. Crabs Data

Leptograpsus crabs dataset (Campbell and Mahon, [1974)) has 200 crabs consisting of two species (i.e.,
orange and blue) each with 50 females and 50 males. This gives 4 evenly sized clusters of 50 crabs of each
combination of sex and species. Five morphological measurements are collected for each crab including front
lobe size (FL), rear width (RW), carapace length (CL), carapace width (CW), and body depth (BD) all
in mm. A common, yet interesting, problem on the crabs dataset is that the number of clusters tends to
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Figure 7: Soft-clustering estimates from NMF-kl for K = {3,4,5}. The x-axis is the observation
number.

be easily overestimated using all the five variables (Raftery and Dean, [2006). To overcome this problem
using Gaussian mixture models, Raftery and Dean| (2006) and Maugis et al|(2009) propose different model
selection strategies to reduce variable redundancy.

Fig. |8 shows the posterior similarity matrix # constructed from the MCMC sampling (using the same
settings described in Section Table [4] shows the performance under the three clustering quality mea-
sures.

While the posterior similarity matrix 7 reveals some uncertainty in which observations should be grouped

MCMC MaxPear/MinVI (K=4) NMF-Is (K=4) NMF-ns (K=4)

200 ~ 200 ~ 200 200 ~

150 + 150 + 150 + 150 +

100 100 ” 100 100
50 - 50 - 50 - 50 -
L % 1| ]
B — : | B — | R _— | W _— |
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
MinBinder (K=5) Med (K=4) NMF-kl (K=4) NMF-offset (K=4)

I T 1 L -_x : T 1 I T 1 T 1
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Figure 8: Similarity and partition matrices constructed from the crabs data. Top-left is the
posterior similarity matrix, 7, constructed from the MCMC samples. The other panels are
the binary partition matrices, 7* constructed from the partitioning solutions from the four
conventional and four NMF methods. Dashed blocks indicate the true classifications.
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Table 4: Clustering performance for Crabs data with known clustering labels.

NMF-Is NMF-kl NMF-ns NMF-offset MinBinder MaxPear MinVI Medv

Rand  0.912 0.915 0.912 0.924 0.917 0.915 0915 0.912
AR 0.765 0.774 0.765 0.799 0.779 0.774 0.774  0.765
VI 0.762 0.744 0.762 0.671 0.711 0.744 0.744  0.762

together, all methods choose a correct number of clusters (K = 4) except MinBinder. The clear winner in
this example is the NMF-offset method, which correctly classifies the most crabs and has the best Rand,
AR, and negative VI scores.

5.4. NMF Scalability

Random N x N pairwise posterior similarity matrices were created for N = 200, 400, 600, 800. The four
NMF models were run using K = 3,6,9,12 and the computing time is provided in Fig. [9] These timings
are for 10 random initializations using only one core with the R package NMF. While this does show the
O(K N?) scaling of NMF in a basic implementation, these times represent a rather worst case scenario as
convergence will be slow (since there is no actual structure in the data) and no parallel implementation was
used. While the NMF R package does facilitate parallel computation for each initialization (details given in
Gaujoux (2018))), it does not include algorithms to exploit the sparseness of the posterior similarity matrices.

NMF-kI NMF-Is
+
20-
+
10+ + +
v K
0- i 3
A6
NMF-ns NMF-offset

-2 9

o
J gt 12
A
+
B / 1
0- 7 ' ' ' 1 ' ' '
200 400 600 800 200 400 600 800
N

Figure 9: Computing times for the NMF methods.

time (in mins)

N
o

6. Conclusions

This paper addresses the problem of estimating the optimal partition from Bayesian cluster models. Par-
ticularly, a non-negative matrix factorization (NMF) framework has been proposed that uses the pairwise
posterior similarity matrix constructed from the MCMC clustering samples to obtain the most appropriate
clustering estimates under various penalty functions. Instead of a direct optimization using label manipula-
tion, the NMF approach implicitly induces the partition from the weight matrix H supplied by the flexible
low-rank approximation @ ~ W H. Another favorable property of the NMF models is a soft/probabilistic
interpretation of the clustering label assignment which can be helpful in understanding the uncertainty in
the partition.

In our experiments, we found several practical advantages of the NMF partitioning models. Their cluster-
ing capability outperformed existing approaches under various Gaussian mixture settings and performance
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measurements. Additionally, NMF was able to recognize ambiguous observations located around the bound-
aries of major clusters. Even under a misspecified number of clusters, NMF could still identify the uncertain
data points, which is something not available with hard-clustering methods. The galaxy data application
demonstrates that NMF can provide balanced solutions between the two extremes, favored by the con-
ventional models, of singleton-preferred (MinBinder and MaxPEAR) and dominant-preferred (MinVI). The
NMF approach can also help reveal the uncertainty in the label assignments from an analysis of soft-clustering
probability estimates. The analysis of the crabs data further illustrates the advantages of the NMF solutions.
By providing a larger search space, the NMF approach has a better chance of identifying the optimal hard
partition. This property is especially appealing when there is much uncertainly in the posterior similarity
matrix.

We have not exhausted the options available with NMF. There are many other divergence metrics (Li
and Ding} 2006)), more rigorous probabilistic soft clustering approaches (Zhao et al.; [2015]), and additional
models utilizing structural constraints. With the symmetric similarity matrix 7 as an input, for example,
He et al.| (2011) propose a symmetric NMF model with the approximation @ ~ HT H to explicitly take
advantage of the symmetry of 7.

The use of NMF for clustering from the posterior pairwise similarity matrix opens up the potential to
use spectral clustering in the mixture model framework. Ding et al.| (2005)), for example, show how spectral
clustering of a graph Laplacian can be written as an NMF problem. Building on this, if we consider the
pairwise similarity matrix in to represent a graph weight matrix then methods from graph clustering,
commonly called community detection, can also be used (Fortunato], 2010). This represents an exciting
future direction.

The NMF approach requires optimizing over the rank K of the basis matrix W. This is done by running
NMEF for a set of K values, each with multiple initializations. While this leads to an increase in computation
it also provides an expanded search space C which gives a better chance of finding the globally optimal
partition. The two recent methods of [Wade and Ghahramani| (2018]) and [Rastelli and Friel (2018)) suggest
greedy algorithms to judiciously explore the search space by considering a potentially different number of
components at each step.

This paper did not substantially deal with the important issue of choosing the appropriate loss function,
but rather focused on demonstrating that NMF can perform well under several common loss functions.
However we did find evidence in the simulation study and examples, similar to (Fritsch et al.| |2009; Rastelli
and Friel, 2018; [Wade and Ghahramanil 2018), that the Rand (MinBinder) and Adjusted Rand (MaxPEAR)
losses tended to create singleton clusters that overestimated the number of components as well as evidence,
like Rastelli and Friel (2018]), that the VI (MinVT) loss can slightly underestimate the number of components
in the most complex settings. Regardless of the loss function used, however, we found that an NMF method
could find the correct number of components more often than the conventional approaches.

This paper develops NMF for the post-processing step of estimating the optimal partition from the
pairwise posterior similarity matrix; we pay little attention to the choice of component model and hyper-
parameters that produce the similarity matrix. A promising future direction is the exploration of how the
choice of component (e.g., symmetric, skewed, or heavy-tailed kernels) and hyperparameters interact with
the aggregation used to estimate the similarity matrix to impact the optimal partitions.

The soft-clustering interpretation of the H matrix (22) provides a measurement of the uncertainty in
the component membership of each observation individually. The joint uncertainty in cluster memberships
could be obtained with the credible ball method of [Wade and Ghahramani (2018) which requires a best hard
partition and the M MCMC sample partitions.
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