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Abstract

In this manuscript, we study quantile regression in partial functional linear model where
response is scalar and predictors include both scalars and multiple functions. Wavelet basis
are adopted to better approximate functional slopes while effectively detect local features.
The sparse group lasso penalty is imposed to select important functional predictors while
capture shared information among them. The estimation problem can be reformulated into a
standard second-order cone program and then solved by an interior point method. We also
give a novel algorithm by using alternating direction method of multipliers (ADMM) which
was recently employed by many researchers in solving penalized quantile regression prob-
lems. The asymptotic properties such as the convergence rate and prediction error bound
have been established. Simulations and a real data from ADHD-200 fMRI data are investi-
gated to show the superiority of our proposed method.
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1 Introduction

Functional data analysis (FDA) is about the analysis of information on curves, images, functions,

or more general objects. It has become a major branch of nonparametric statistics and is a fast

evolving area as more data has arisen where the primary object of observation can be viewed as

a function (Ramsay, 2006; Wang et al., 2015; Morris, 2015). A standard functional linear model

with scalar response and functional covariate is

y = α +

∫ 1

0
x(t)β(t)dt + ε, (1)

where the coefficient β(t) is a function, and ε is a random error. To estimate the functional

coefficient β(t), we can use functional basis to approximate it. There are three major choices

of functional basis: general basis such as B-spline basis and wavelet basis (Cardot et al., 2003;

Zhao et al., 2012), functional principal component basis (Cardot et al., 1999; Cai and Hall, 2006;

Müller and Yao, 2008; Kong et al., 2016), and partial least square basis (Delaigle and Hall, 2012).

Recently in imaging analysis, Zhao et al. (2012), Wang et al. (2014) and Zhao et al. (2015)

successfully adopted wavelet basis with regularizations to estimate the functional slope where

the functional covariates are image features located in 1D, 2D and 3D domains respectively.

The functional linear model (1) can be extended to a partial functional linear model with

multiple functional covariates

y = α +

∫ 1

0
xT (t)β(t)dt + uTγ + ε, (2)

where covariates u are scalars and γ are the coefficients. The functional coefficients β(t) can be

estimated by using regularization techniques. In particular, penalized principal component basis

has been an especially popular choice (Gertheiss et al., 2013; Lian, 2013). Recently, Kong et al.

(2016) successfully applied such technique to model (2) in the setting of ultrahigh-dimensional

scalar predictors.

In recent years, quantile regression, which was introduced by the seminal work of Koenker

and Bassett (1978), has been well developed and recognized in functional linear regression, with

many mainly focusing on the functional linear quantile regression model:

Qτ(y|x(t)) = ατ +

∫ 1

0
x(t)βτ(t)dt, (3)
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where Qτ(y|x(t)) is the τ-th conditional quantile of response y given a functional covariate x(t)

for a fixed quantile level τ ∈ (0, 1). As an alternative to least squares regression, the quantile

regression method is more efficient and robust when the responses are non-normal, errors are

heavy tailed or outliers are present. It is also capable of dealing with the heteroscedasticity

issues and providing a more complete picture of the response (Koenker, 2005). To estimate the

functional coefficient βτ(t), functional basis can as well be used to approximate it; for instance,

general basis like B-spline basis (Cardot et al., 2005; Sun, 2005), functional principle component

basis (Kato, 2012; Lu et al., 2014; Tang and Cheng, 2014) and partial quantile basis (Yu et al.,

2016).

In this article, we extend model (3) to a partial functional linear quantile regression model

with multiple functional covariates

Qτ(y| u, x(t)) = ατ +

∫ 1

0
xT (t)βτ(t)dt + uTγτ, (4)

where Qτ(y| u, x(t)) is the τ-th conditional quantile of y given scalar covariates u and multiple

functions x(t). To our best knowledge, only a few works have studied this model; for example, Yu

et al. (2016) used partial quantile basis while Yao et al. (2017) used penalized principal compo-

nent basis. Inspired by the success of wavelet basis with regularization in functional linear model

(Zhao et al., 2012; Wang et al., 2014; Zhao et al., 2015), we use it to approximate the functional

coefficients βτ(t) in model (4). Wavelet basis can provide a good representation of functional

coefficients by using only a small number of basis and are particularly useful for capturing local-

ized functional features. Moreover, the wavelet transform is computationally efficient and hence

suitable for dealing with multiple functional predictors.

The penalization we impose is sparse group lasso (Zhao et al., 2014, Simon et al., 2013),

which is motivated by the attention deficit hyperactivity disorder (ADHD) study from the ADHD-

200 Sample Initiative Project. Our goal is to predict ADHD index at various quantile levels by

using both demographic information and functional magnetic resonance imaging (fMRI) data,

where the fMRI data consists of 116 functional features, each of which represents a single region

of interests (ROI) of human brain. The sparse group lasso technique, by imposing a convex

combination of lasso and group lasso penalties, can select important ROIs while capture shared

information among them. More specifically, the group lasso penalty makes a sparse selection

out of 116 functional features of ROIs, while the lasso penalty induces a sparse representation
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of each feature. Common wavelet basis is used to represent different features so that the shared

information among them can be captured.

There are five major contributions of this paper. First, our conditional quantile framework

provides a more suitable modelling of reality especially when the response is heavy tailed (Yao

et al., 2017). It is also a compelling choice of dealing with heteroscedasticity issues and can

provide a more complete picture of the response (Koenker, 2005). Second, the wavelet basis

we adopt provides a good approximation of functional coefficients while effectively detects the

local features. The wavelet transform we use is computationally efficient and hence can be easily

extended to deal with multiple functional predictors. Third, the proposed sparse group lasso

method selects important functional predictors and retains shared information among them as

well. It is extremely useful in ADHD-200 fMRI study so that both individual and common

information can be captured among the different ROIs. Fourth, the estimation problem is in

fact a penalized quantile regression problem, which can be reformulated into a second-order

cone program and then easily solved by an interior point method implemented by a powerful R

package: Rmosek. We also propose a novel algorithm to solve it by using alternating direction

method of multipliers (ADMM). Fifth, we successfully derive the asymptotic properties including

the convergence rate and prediction error bound which theoretically warrants good performance

of our estimates.

The rest of paper is organized as follows. In Section 2, we review some necessary background

on wavelets and provide the penalized quantile objective function with sparse group lasso penalty.

The asymptotic properties such as the convergence rate and predictor error bound are established

in Section 3. In Section 4, the quantile penalization problem is reformulated into a second-order

cone program (SOCP) and solved by an interior point method by using a powerful R package:

Rmosek. We also propose a novel algorithm using alternating direction method of multipliers

(ADMM). Finite sample simulations and a real data from ADHD-200 fMRI data are investigated

in Section 5 to illustrate the superiority of our proposed method.

2 Wavelet-based Sparse Group Lasso

In this section, we first review some necessary background on wavelets. We then provide the

penalized quantile objective function with sparse group lasso penalty where the functional co-
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efficients are approximated by wavelet basis. This leads to the sparsities of both the selection

and representation of functional features. More specifically, the group lasso selects a sparse set

from available functional features, while the lasso induces a sparse representation of the selected

functional features.

2.1 Some Background on Wavelets

Wavelets are basis function that can provide a good approximation of functional coefficients

while effectively capture the local features (Zhao et al., 2012). Moreover, the wavelet transform

is computationally efficient and hence can be easily extended to deal with multiple functional

predictors (Daubechies, 1990). For a given τ ∈ (0, 1), let βlτ(t) be one component of βτ(t) in (4),

where βτ(t) = (β1τ(t), . . . , βmτ(t))T . Suppose that βlτ(t) is in L2[0, 1]. We can approximate it using

wavelet basis. For any wavelet basis in L2[0, 1], they can be derived by dilating and translating

two orthonormal basic functions: a scaling function and a wavelet function, namely φ(t) and ψ(t)

respectively:

ϕ jk(t) =
√

2 jϕ(2 jt − k), ψ jk(t) =
√

2 jψ(2 jt − k),

where j and k are integers,
∫ 1

0
ϕ(t) = 1 and

∫ 1

0
ψ(t) = 0. In particular, given a primary resolution

level j0, the wavelet basis are

{ϕ j0,k}0≤k≤2 j0−1 and {ψj,k}j0≤j, 0≤k≤2j−1. (5)

Therefore, βlτ(t) can be approximated by

βlτ(t) =

2 j0−1∑
k=0

al
j0kϕ j0k(t) +

∞∑
j= j0

2 j−1∑
k=0

dl
jkψ jk(t), for l = 1, . . . ,m, (6)

where al
j0k =

∫ 1

0
βlτ(t)ϕ j0,k(t)dt is the approximation coefficients at the coarsest resolution j0, and

dl
jk =

∫ 1

0
βlτ(t)ψ jk(t)dt is the detail coefficients characterizing the fine structures.

In practice, the functional covariates x(t) = (x1(t), . . . , xm(t))T are discretely observed, for

instance without loss of generality, at N = 2J equally spaced points of [0, 1] with 0 = t1 < t2 <

· · · < tN = 1. Let X = (x1, . . . , xm) and βτ = (β1τ, . . . ,βmτ), where xl = (x1(t1), . . . , xm(tN))T ,

βlτ = (βlτ(t1), . . . , βlτ(tN))T and l = 1, . . . ,m. We represent X and βτ by the wavelet coefficients

through discrete wavelet transform (DWT). In particular, let W be an N×N matrix associated with
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orthonormal wavelet basis derived from DWT. Suppose C and B are the corresponding wavelet

coefficients of X and βτ. Then we have X = WT C, βτ = WT Bτ, and the integration in model (4):∫ 1

0
xT (t)βτ(t)dt ≈ vec(X)Tvec(βτ)/N = vec(WTC)Tvec(WTB)/N = vec(C)Tvec(B)/N.

The last equality holds due to the orthonormality of W. From now on, we denote v = vec(C)T/N

and θτ = vec(B) where C = (c1, . . . , cm) and B = (b1τ, . . . , bmτ).

2.2 Model Estimation

Using wavelet basis by DWT, model (4) becomes

Qτ(y|u, x(t)) ≈ ατ + vTθτ + uTγτ. (7)

Given n identical copies of data triplets (Xi,ui, yi), where Xi and ui are the observed functional

and scalar covariates respectively, and yi is the corresponding response, the parameters in (7)

can be estimated by minimizing a regular quantile loss function. However, to find the important

functional covariates in predicting responses while preserve a desired sparse representation of the

coefficients, an appropriate penalty has to be imposed. In this paper, we propose to use the sparse

group lasso penalty

Pλ1,λ2(θ) = λ1

m∑
l=1

||bl||1 + λ2

m∑
l=1

||bl||2, (8)

where || · ||1 and || · ||2 represent the L1 and L2 norms respectively, and λ1 and λ2 are two nonnegative

tuning parameters. The sparse group lasso penalty includes two components, namely a lasso

and a group lasso penalties, where the lasso penalty || · ||1 induces sparsity in each functional

coefficient and the group lasso penalty || · ||2 selects functional coefficients. Common information

among functional covariates can be retained by using the same wavelet basis to approximate

the functional coefficients. Moreover, the sparse group lasso warrants the selection of important

functional coefficients while captures distinct traits carried by individual functional covariates.

Specifically, the parameters ατ, γτ, and θτ can be estimated by

(α̂τ, γ̂τ, θ̂τ) = arg min
α,γ,θ

n∑
i=1

ρτ
(
yi − α − uT

i γ − vT
i θ

)
+ Pλ1,λ2(θ), (9)

where ρτ(x) = x(τ − 1(x < 0)) is the quantile check function (Koenker, 2005).

6



To combine information from different quantiles, Zou and Yuan (2008) proposed composite

quantile regression, which simultaneously considers multiple regression quantiles at different

levels. With homoscedasticity assumption, where all conditional regression quantiles have the

same slope, the composite quantile estimate is more efficient than the one from a single level and

has in recent years begun to gain its popularity in many fields (Kai et al., 2010; Fan and Lv, 2010;

Bradic et al., 2011, Kai et al., 2011; Yu et al., 2016). In this paper, we propose to use composite

quantile regression with sparse group lasso penalty in our functional data analysis framework.

Let 0 < τ1 < · · · < τk < 1 denote the selected quantile levels and then the parameters α,γ and θ

can be estimated by

(α̂, γ̂, θ̂) = arg min
α,γ,θ

K∑
k=1

n∑
i=1

ρτk(yi − αk − uT
i γ − vT

i θ) + Pλ1,λ2(θ), (10)

where α = (α1. . . . , αK) is a vector of intercepts. Typically, we can choose K = 9 and use equally

spaced quantiles (Kai et al., 2010; Zou and Yuan, 2008). Note that quantile estimate (9) at a single

level is just a special case of composite quantile estimate (10) with K = 1. In the following, we

will focus on the composite quantile regression case of (10).

3 Asymptotics

In this section, we investigate the asymptotic properties of our proposed estimates when both the

sample size n and the number of discrete points Nn tend to infinity. Let λ1,n and λ2,n denote the

tuning parameters when the sample size is n. To derive the asymptotic properties, we impose the

following conditions:

A1. The model errors ε1, . . . , εn are independently following a distribution F, with density

f to be bounded away from zero and infinity, and its derivative f ′ to be continuous and

uniformly bounded.

A2. There exist two constants c1 and c2 such that

0 < c1 < %min(
1
n

AT
n An) ≤ %max(

1
n

AT
n An) < c2 < ∞,

where An = (a1, . . . , an)T is the design matrix with ai = (1, vT
i ,u

T
i )T , and %min(·) and %max(·)

are the smallest and largest eigenvalues of 1
n AT

n An respectively.
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A3. There exists a constant M such that ||ai||2 < M for all i.

A4. The functional slope βl(t)s are d times differentiable in the Sobolev sense, and the

wavelet basis has w vanishing moments, where w > d.

A5. λ1,n = O(
√

n) and λ2,n = O(
√

n).

A6. Nn/n→ 0.

These regularity conditions might not be the weakest ones but are commonly assumed among

literatures of quantile regression and functional linear model. Condition (A1) is standard for

quantile regression (Koenker, 2005; Zhao et al., 2014), which regulates the behavior of the con-

ditional density of the response in a neighborhood of the conditional quantile and is crucial to

the asymptotic properties of quantile estimators (Koenker and Bassett, 1978). Condition (A2)

is a classical condition in functional linear regression literature (Delaigle and Hall, 2012). It

ensures the eigenvalues of the covariance matrix go to neither zero nor infinity too quickly. Sim-

ilar conditions as (A3) - (A6) can be found in Zhao et al. (2012) and Zhao et al. (2015), among

others. Condition (A4) guarantees that the space spanned by the wavelet basis can well approxi-

mate the functional slopes with small approximation errors. Condition (A6) implies that to allow

for estimation of β with appropriate asymptotic properties, n should grow faster than Nn. Note

the wavelet basis has w vanishing moments if and only if its scaling function ϕ can generate

polynomials of degree at most w.

Theorem 3.1. Let β̂l,n be the estimator resulting from (10) and βl is the true coefficient function.

If Conditions (A1)-(A6) hold, then

||β̂l,n − βl||
2
2 = Op

(Nn

n

)
+ op

(
1

N2d
n

)
.

A detailed proof of this theorem is provided in the Appendix. The accuracy of β̂ relies on

both n and Nn. The approximation error rate of β̂ towards β are controlled by two terms. The first

term is of the same order of Nn/n which is a typical result of estimating, while the second term

is of the lower order of 1/N2d
n which is mainly due to approximation by wavelets. In particular,

the approximation error rate is dominated by the second term if N2d+1
n is of the lower order of

n. Otherwise, it is dominated by the first term. Under some further conditions, we can have the

following theorem for the prediction error bound:
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Theorem 3.2. Suppose xl(t) is square integrable on [0, 1] and F−1(τ) = 0. If Conditions (A1)-

(A6) hold and F−1(τk) = 0, then

||ŷ − y||22 = Op(
Nn

n
) + op(

1
N2d

n
),

where y is the true response and ŷ is estimated τk’s conditional quantile.

The proof follows that from Theorem 3.1 and the Cauchy-Schwarz inequality, the details of

which are omitted in this paper. Similarly as in Theorem 3.1, L2 prediction error rate depends

on the same two terms from estimating and approximation by wavelets respectively, while the

estimation errors caused by α̂k and γ̂ is absorbed by the first term.

4 Implementations

Due to the non-smoothness of loss function, quantile estimator does not enjoy the nice asymptotic

properties, as well as computational easiness, as what ordinary least square estimator does. After

illustrating asymptotic theory of the proposed quantile estimator, it becomes of great importance

to have an efficient algorithm to obtain it. In this section, we reformulate the optimization prob-

lem (10) into a second-order cone program (SOCP) and implement it by interior point method

using a powerful R package: Rmosek (Aps, 2015). Alternatively we propose a novel algorithm

to solve problem (10) by using alternating direction method of multipliers (ADMM) which was a

technique recently employed by many researchers in solving penalized quantile regression prob-

lems. In the end, we discuss some practical rules to choose tuning parameters.

4.1 A Second-Order Cone Program

Let the superscripts + and − denote the positive and negative parts of a vector. For unknown

parameter θ in (10), we write: θ = θ+ − θ− and ||θ||1 = ||θ+||1 + ||θ−||1. Similarly, we have

b = b+ − b− and ||b||1 = ||b+||1 + ||b−||1. Then problem (10) can be reformulated as the following
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standard second-order cone program:

min
K∑

k=1

n∑
i=1

(τkr+
ki + (1 − τk)r−ki) + λ1

m∑
l=1

(||b+
l ||1 + ||b−l ||1) + λ2

m∑
l=1

zl

subject to −r−ki ≤ yi − αk − uT
i γ − vT

i (θ+ − θ−) ≤ r+
ki√

||b+
l ||

2
2 + ||b−l ||

2
2 ≤ zl (11)

θ+ � 0, θ− � 0, zl ≥ 0, r+
ki ≥ 0, r−ki ≥ 0.

where r+
ki, r−ki and zl are three nonnegative slack variables, and the contraint

√
||b+

l ||
2
2 + ||b−l ||

2
2 ≤ zl

implies a second order cone of dimension 2N + 1 (Lobo et al., 1998) denoted as

Q2N+1
l =

{
(zl, b+

l , b
−
l ) ∈ R2N+1

∣∣∣ zl ≥

√
||b+

l ||
2
2 + ||b−l ||

2
2

}
.

The reformulation is guaranteed by the fact that for each component of optimal bl, either b+
l, j = 0

or b−l, j = 0 would be held. Otherwise, for optimal bl, if there exist l and j0 such that b+
l, j0

> 0 and

b−l, j0 > 0, we can replace b+
l, j0

and b−l, j0 by b(new)+
l, j0

and b(new)−
l, j0

respectively with

b(new)+
l, j0

=

 0 i f b+
l, j0

< b−l, j0 ,

b+
l, j0
− b−l, j0 otherwise,

b(new)−
l, j0

=

 0 i f b+
l, j0

> b−l, j0 ,

b−l, j0 − b+
l, j0
, otherwise.

As a result, the objective function in (11) decreases, which contradicts with the fact that bl being

optimal.

Various optimization strategies can be applied to solve SOCP (11) such as interior point

method (Koenker and Park, 1996) and the simplex method (Koenker, 2005). In this paper, we

choose to use interior point method. The R package we use is Rmosek (Aps, 2015). The tech-

nique proposed to reformulate our problem into a SOCP can be easily adapted to other penalized

quantile regression problems; for example, quantile ridge regression (Wu and Liu, 2009).

4.2 ADMM Algorithm

Although problem (10) is convex, solving it can be very slow partially due to large scale data in

the application and the non-smooth terms in the objective that prevent fast gradient method being

applied. However, with non-smooth terms in the objective and very large scale data, these meth-

ods can be very slow. In this section, we explore the additive structure of the objective function,
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namely, decompose it into two sub convex problems, and then propose a novel and efficient algo-

rithm by using alternating direction method of multipliers (ADMM) (Gabay and Mercier, 1976).

This powerful tool was originated in 1950s and developed during 1970s (Hestenes, 1969; Gabay

and Mercier, 1976). It has been popularized in recent years among quantile regression literature

(Boyd et al., 2011; Gao and Kong, 2015; Kong et al., 2015).

Denote Ln(α, θ,γ) =
∑K

k=1
∑n

i=1 ρτk(yi − αk − uT
i γ − vT

i θ). The minimization problem (10) can

be rewritten as

min Ln(α, θ,γ) + Pλ1,λ2(θ
∗)

subject to θ = θ∗,

where Ln(·) and Pλ1,λ2(·) are two convex functions. Applying augmented lagrangian (Hestenes,

1969), we have

Ln,η(α, θ,γ, θ∗,µ) =Ln(α, θ,γ) + Pλ1,λ2(θ
∗) + µT (θ − θ∗) +

η

2
‖θ − θ∗‖22. (12)

Let w = µ/η. The ADMM algorithm to obtain the minimizer of (12) follows a three-step iterative

scheme:

(α(l+1), θ(l+1),γ(l+1)) = argmin
α,θ,γ

Ln(α, θ,γ) +
η

2
‖θ − θ∗(l) + w(l)‖22

θ∗(l+1) = argmin
θ∗

Pλ1,λ2(θ
∗) +

η

2
‖θ(l+1) − θ∗ + w(l)‖22

w(l+1) = w(l) + η(θ(l+1) − θ∗(l+1)). (13)

For the first step of (13), it can be reformulated as a SOCP:

min
K∑

k=1

n∑
i=1

ρτk(rik) +
η

2
‖θ − θ∗(l) + w(l)‖22

subject to yi − αk − uT
i γ − vT

i θ = rik, for i = 1, . . . , n; k = 1, . . . , K,

which can be easily solved by following an ADMM scheme:

r( j+1)
ik = argmin

rik

ρτk(rik) +
η1

2
(yi − α

( j)
k − uT

i γ
( j) − vT

i θ
( j) − rik + z( j)

ik )2

(α( j+1), θ( j+1),γ( j+1)) = argmin
α,θ,γ

η

2
‖θ − θ∗(l) + w(l)‖22 +

η1

2

K∑
k=1

n∑
i=1

(yi − αk − uT
i γ − vT

i θ − r( j+1)
ik + z( j)

ik )2

z( j+1)
ik = z( j)

ik + η1(yi − α
( j+1)
k − uT

i γ
( j+1) − vT

i θ
( j+1) − z( j+1)

ik ). (14)
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The first step of (14) can be explicitly solved by the soft thresholding operator. The second step

can be easily approximated by a standard ridge regression therefore has a closed form.

The second step of (13) can be simplified by the soft thresholding operator. That is,

υ∗ = sgn(θ(l+1) + w(l)) ·max(|θ(l+1) + w(l)| −
λ1

η
, 0)

θ∗(l+1) =
υ∗

||υ∗||2
max(||υ∗||2 −

λ2

η
, 0),

where sgn(·) is the sign function.

A typical stopping criterion with primal and dual residuals denoted respectively by rprimal and

rdual (Boyd et al., 2011) can be chosen as :

||θ(l) − θ∗(l)||2 ≤ rprimal and ‖η(θ∗(l) − θ∗(l−1))‖2 ≤ rdual,

with

rprimal =
√

mNεabs + εrel ·max {‖θ(l)‖2, ‖θ
∗(l)‖2},

rdual =
√

mN + q + Kεabs + εrel · ‖w(l)‖2,

where q is the dimension of γ, and parameters εabs and εrel are two predefined absolute and relative

tolerances which can be set as 10−4 and 10−2 respectively.

Instead of tackling the original problem directly, ADMM decompose it into several sub con-

vex problems then deal with them separately by iteration. In each iteration, the sub problem

can be easily and efficiently solved by the soft thresholding operator or approximated to have

a closed form. Therefore, the ADMM algorithm derived is much faster and more efficient than

other general techniques.

4.3 Selection of Tuning Parameters

The proposed method involves selection of two nonnegative tuning parameters, namely λ1 and

λ2, which control the severity of penalization towards model complexity. Specifically, λ1 con-

trols sparsity in each functional coefficient while λ2 controls the number of selected functional

coefficients. Although many options exist for selecting tuning parameters, such as AIC, BIC

and cross validation, there is no agreed-upon selection criterion in general. After showing that

AIC and cross validation may fail to consistently identify the true model, Zhang et al. (2010)
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proposed to use the generalized information criterion (GIC), encompassing the commonly used

AIC and BIC, and illustrated the corresponding asymptotic consistency. More recently, Zheng

et al. (2015) used the GIC to make consistent model selection for quantile regression in ultra-high

dimensional settings. In this paper, we propose to use the GIC:

(λ̂1, λ̂2) = arg min
λ1,λ2

1
K

K∑
k=1

ln

1
n

n∑
i=1

ρτk (yi − ŷki)

 + φn||θ̂λ1,λ2 ||0, (15)

where θ̂λ1,λ2 is a solution of problem (10), || · ||0 denotes L0 norm (total number of non-zero

elements in a vector), φn is a sequence converging to zero with n goes to infinity, and ŷki is

calculated from (7) with τ = τk.

In addition, we can also use the validation set (Li et al., 2007, Wu and Liu, 2009) to select

gold standard λ1 and λ2 that minimize the prediction error. Simulations in Section 5 demonstrate

a satisfactory behavior of the proposed criterion compared with the validation set method.

5 Numerical Studies

In this section, we compare performances of the proposed sparse group lasso method with group

lasso and lasso methods using simulations and a real data from ADHD-200 fMRI sample (Mennes

et al., 2013). We also compare the tuning parameters selected by the GIC approach we proposed

and the validation set approach. In our numerical studies, we employ least-asymmetric wavelets

of Daubechies with 6 vanishing moments and fix the tuning parameter ratio λ1/λ2 = 0.5 (Simon

et al., 2013). To simplify notations, we use qSGL, qL and qGL to represent the quantile sparse

group lasso, lasso and group lasso methods respectively.

5.1 Simulations

Our data are randomly generated using 12 functional covariates and 2 scalar covariates in a setting

similar to Collazos et al. (2016). In particular, the model is of the form:

yi = α + uT
i γ +

∫ 1

0
xi(t)Tβ(t)dt + σεi for i = 1 . . . , n,

where ui = (ui1, ui2)T with ui1 ∼ N(0, 1) and ui2 ∼ Bernoulli (0.5), and the coefficients γ =

(0.32/256, 0.32/256)T . The functional covariates xi(t) = (xi1(t), . . . , xi12(t))T are observed on an
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equally spaced grid of N = 256 points on [0, 1] with

xi1(t) =
√
.84ωi1(t) + .4ωi6(t), xi2(t) =

√
.98ωi2(t) + .1ωi1(t) + .1ωi5(t),

xi3(t) =
√
.84ωi3(t) + .4ωi4(t), xi5(t) =

√
.99ωi5(t) + .1ωi2(t),

xil(t) = ωil(t) for l = 4, 6, 7, . . . , 12;

where

ωil(t) = zil(t) + εil, εil ∼ N
(
0,

(
.05rxil

)2
)
, for l = 1 . . . , 12,

with rxil = max
i

(zil(t)) −min
i

(zil(t)) and

zi1(t) = cos(2π(t − a1)) + a2,T1 = [0, 1], a1 ∼ N(−4, 32), a2 ∼ N(7, 1.52),

zi2(t) = b1t3 + b2t2 + b3t,T2 = [−1, 1], b1 ∼ N(−3, 1.22), b2 ∼ N(2, .52), b3 ∼ N(−2 , 1),

zi3(t) = sin(2(t − c1)) + c2t,T3 = [0, π/3], c1 ∼ N(−2, 1), c2 ∼ N(3, 1.52),

zi4(t) = d1 cos(2t) + d2t,T4 = [−2, 1], d1 ∼ U(2, 7), d2 ∼ N(2, .42),

zi5(t) = e1 sin(πt) + e2,T5 = [0, π/3], e1 ∼ U(3, 7), e2 ∼ N(0, 1),

zi6(t) = f1e−t/3 + f2t + f3,T6 = [−1, 1], f1 ∼ N(4, 22), f2 ∼ N(−3, .52), f3 ∼ N(1, 1),

zil(t) = 5
√

2
∑49

j=1
cos( jπt)g j + 5h,Tl = [0, 1], g j ∼ N

(
0, ( j + 1)−2

)
, h ∼ N(0, 1), for l = 7, . . . , 12.

The functional coefficients β(t) are generated based on the following 4 functions:

f1(t) = .03 f (t, 20, 60) − .05 f (t, 50, 20),

f2(t) = 4 sin(4πx) − sign(x − .3) − sign(.72 − x),

f3(t) = −3 cos(2πt) + 3et2/(t3 + 1),

f4(t) = .1 sin(2πt) + .2 cos(2πt) + .3 sin2(2πt) + .4 cos3(2πt) + .5 sin3(2πt),

where f (t, α, β) is the density function for beta distribution: Beta(α, β). Note f1(t) has also been

considered by Zhao et al. (2012); the second function f2, the so-called “Heavi-Sine” function, is

one of test functions from Donoho and Johnstone (1994) which is very popular among wavelet

literature (Antoniadis et al., 2001); and f4 was proposed by Lin et al. (2013).

To generate the functional slopes β1(t), . . . β4(t), we first apply DWT for f1, . . . , f4 and select

the wavelet coefficients with absolute values greater than .1; and based on the inverse DWT of

the selected coefficients, we generate normalized β1(t), . . . β4(t), each of which possesses sparsity
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and is shown in Figure 1. The rest of slopes are set to be zero, i.e., βl(t) = 0 for l = 5, . . . , 12.

The error term εi is drawn from the following distributions: 1) Standard normal : N(0, 1); 2)

Figure 1: Slope functions of β1 to β4.

Mixed-variance: .95N(0, 1) + .05N(0, 10); 3) t distribution with 3 degrees of freedom: t3; 4)

Standard Cauchy: C(0, 1). The signal-to-noise (SNR) ratio, defined as µ/σ in this paper, is

chosen from three different levels: SNR = 1, 5, 10, where µ is the mean of signal and σ is the

standard deviation of the noise.

The sizes of the training, tuning and testing data sets are n, n and 10n respectively. We select

the tuning parameters via a grid search using the GIC and validation set methods through the

tuning data set. In GIC, φns are 5pn, 5pn and pn for the quantile sparse group lasso, lasso and

group lasso methods respectively, while pn = log
(
log(n)

)
log

(
log(p)

)
/ (10n). The validation set

method is used to select the gold standard (GS) tuning parameters that minimize the prediction
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error of tuning data sets (Li et al., 2007, Zou and Yuan, 2008, Wu and Liu, 2009).

In our simulations, we choose n = 200, 400, set τ = 0.5, and use 100 Monte Carlo repititions.

We use the following five criteria of the performance, namely, the group accuracy (GA), variable

accuracy (VA), mean absolute prediction error (MAPE), mean integrated square errors (MISE)

and individual integrated square errors (ISE). The group accuracy (GA) is the proportion of cor-

rectly picked up and dropped off functional components, that is GA = E
((
|M̂ ∩ M0| + |M̂c ∩ Mc

0|
)
/12

)
with M0 = {l : βl(t) , 0} and M̂ = {l : β̂l(t) , 0}. The variable accuracy (VA) is defined simi-

larly as GA by simply replacing the M0 and M̂ as the true and estimated index sets of non-zero

wavelet coefficients. The mean absolute prediction error (MAPE) is MAPE= E(|ŷ − y|). The

mean integrated square errors (MISE) of the 12 estimated functional coefficients:

MISE =
1

12

12∑
l=1

∫ 1

0
(β̂l(t) − βl(t))2dt,

as well as the individual integrated square error (ISE):

ISEl =

∫ 1

0
(β̂l(t) − βl(t))2dt,

is used to measure the estimation accuracy of functional coefficients.

Due to space limit, we only discuss the results of SNR = 5. The results for the other two SNRs

are both in favor of our method and deferred to the Appendix. As shown in Table 1, in general, the

performance of qSGL method is better than the qL and qGL methods in terms of mean integrated

square errors (MISEs) and mean absolute prediction errors (MAPEs). For different error types,

our proposed GIC approach is only slightly outperformed by the gold standards. As the sample

size increases, the MISEs and MAPEs decrease, which is consistent with our theoretical results.

For group accuracy (GA), qGL performs better than the other methods in most cases, while qL

performs quite well in terms of variable accuracy (VA). However, in the case of GIC, the sparse

group lasso method outperforms the two competitors regarding both GA and VA, especially for

larger sample sizes. In Table 2, it shows that the ISEs of sparse group lasso are smaller than the

other two methods. It also shows that the ISE of β̂1(t) is always less than the other three slope

functions in most cases regardless the methods used. It might be due to the fact that β1(t) is

smoother than the other slopes; see Figure 1.
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GS GIC

n Noise Method MISE GA VA MAPE MISE GA VA MAPE

qSGL 1.449 0.930 0.934 2.600 1.522 0.594 0.840 2.851

1 qL 3.230 0.919 0.961 2.871 3.159 0.482 0.904 3.205

qGL 1.835 1.000 0.082 2.862 2.121 0.970 0.343 4.763

qSGL 1.372 0.960 0.934 2.466 1.516 0.623 0.835 2.796

2 qL 3.023 0.932 0.960 2.749 3.086 0.496 0.905 3.142

qGL 1.802 1.000 0.082 2.781 2.068 0.973 0.326 4.476

200 qSGL 0.598 1.000 0.911 1.436 0.932 0.871 0.857 1.953

3 qL 1.420 0.985 0.945 1.671 2.487 0.686 0.909 2.654

qGL 1.630 1.000 0.065 2.386 1.735 0.993 0.140 2.836

qSGL 1.284 0.972 0.934 2.326 1.497 0.617 0.829 2.755

4 qL 2.826 0.927 0.958 2.625 3.135 0.490 0.907 3.145

qGL 1.775 1.000 0.075 2.656 2.043 0.976 0.295 4.225

qSGL 0.925 0.989 0.915 2.095 1.224 0.911 0.920 2.220

1 qL 1.774 0.944 0.946 2.187 2.125 0.617 0.898 2.371

qGL 1.581 1.000 0.054 2.393 2.246 0.958 0.569 5.240

qSGL 0.842 0.995 0.911 1.954 1.105 0.967 0.937 2.058

2 qL 1.640 0.965 0.947 2.040 1.853 0.729 0.912 2.190

qGL 1.549 1.000 0.056 2.306 2.263 0.957 0.582 5.294

400 qSGL 0.157 1.000 0.875 1.001 0.272 1.000 0.930 1.108

3 qL 0.285 1.000 0.908 1.026 0.481 0.991 0.943 1.108

qGL 1.255 1.000 0.050 1.996 1.438 0.992 0.155 2.472

qSGL 0.738 0.996 0.909 1.785 0.995 0.983 0.939 1.910

4 qL 1.469 0.978 0.947 1.860 1.737 0.735 0.906 2.052

qGL 1.505 0.999 0.054 2.194 2.102 0.969 0.499 4.490

Table 1: Simulation summary of SNR=5. The first column n is the size of training data. The

second column is the type of noise. The third column is the method we used, qSGL for the

quantile sparse group lasso, qL for the quantile Lasso, and qGL for the quantile group lasso.

GS means λ was selected by the validation method (gold standard). GIC means λ selected via

the GIC criterion. MISE stands for mean integrated errors. MAPE, GA and VA indicate mean

absolute prediction error, group accuracy and variable accuracy, respectively.
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GS GIC

n Noise Method ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

qSGL 0.116 0.585 0.331 0.385 0.133 0.550 0.322 0.387

1 qL 0.289 0.758 1.386 0.734 0.318 0.618 1.136 0.732

G 0.351 0.675 0.359 0.447 0.372 0.728 0.370 0.648

qSGL 0.116 0.540 0.322 0.368 0.137 0.560 0.318 0.377

2 qL 0.283 0.674 1.302 0.703 0.336 0.631 1.049 0.740

qGL 0.348 0.665 0.349 0.438 0.367 0.714 0.362 0.621

200 qSGL 0.051 0.162 0.163 0.214 0.077 0.311 0.221 0.267

3 qL 0.105 0.204 0.614 0.468 0.238 0.460 0.939 0.610

qGL 0.332 0.605 0.297 0.395 0.342 0.632 0.313 0.446

qSGL 0.104 0.498 0.304 0.354 0.129 0.551 0.328 0.367

4 qL 0.248 0.628 1.211 0.679 0.318 0.613 1.157 0.707

qGL 0.345 0.657 0.343 0.427 0.367 0.709 0.366 0.597

qSGL 0.074 0.321 0.217 0.293 0.091 0.470 0.265 0.353

1 qL 0.141 0.318 0.729 0.532 0.155 0.377 0.719 0.575

qGL 0.325 0.590 0.285 0.381 0.363 0.731 0.399 0.752

qSGL 0.071 0.274 0.207 0.273 0.088 0.421 0.248 0.331

2 qL 0.117 0.279 0.695 0.508 0.139 0.324 0.675 0.519

qGL 0.321 0.577 0.278 0.372 0.364 0.736 0.401 0.761

400 qSGL 0.010 0.018 0.063 0.065 0.016 0.045 0.094 0.115

3 qL 0.012 0.017 0.139 0.110 0.018 0.034 0.234 0.187

G 0.295 0.446 0.205 0.308 0.311 0.504 0.244 0.375

qSGL 0.057 0.220 0.195 0.253 0.071 0.366 0.233 0.312

4 qL 0.096 0.218 0.643 0.478 0.116 0.273 0.631 0.515

qGL 0.319 0.555 0.266 0.363 0.354 0.700 0.383 0.664

Table 2: Individual funtional L2 error of SNR=5. The first column n is the size of training data.

The second column is the noise type. The third column is the method we used. ISE1: ||β̂1 − β1||
2
2;

ISE2: ||β̂2 − β2||
2
2; ISE3: ||β̂3 − β3||

2
2; ISE4: ||β̂4 − β4||

2
2.
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5.2 Real Data

The real data we use is a subset of the ADHD-200 Sample Initiative Project (Mennes et al.,

2013), which studies attention deficit hyperactivity disorder (ADHD), the most commonly diag-

nosed mental disorder of childhood which may persist into adulthood. ADHD is characterized

by problems related to paying attention, hyperactivity, or impulsive behavior. The dataset is a fil-

tered preprocessed resting state fMRI data from New York University Child Study Centre using

the Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). In the dataset,

there are 172 equally spaced time courses in the filtering and AAL contains 116 Regions of Inter-

ests (ROIs) fractionated into functional space using nearest-neighbor interpolation. Each of 172

time courses is then smoothed to 64 equally to apply DWT. After cleaning the raw data that fails

in quality control or has missing data, we have 120 individuals in final analysis. Grouping ROIs

in terms of their anatomical functions and averaging within each group the corresponding time

courses, we have 59 averaged time courses of grouped ROIs serving as functional predictors,

each of which has 64 equally spaced time points. In addition, 8 scalar covariates are considered,

including gender, age, handedness, diagnosis status, medication status, Verbal IQ, Performance

IQ and Full4 IQ. The response of interest is the ADHD index, a measurement of severity of

mental disorder.

We apply partial functional linear quantile regression model (4) with 59 functional covariates

and 8 scalar covariates. In order to select the significant functional covariates from 59 ROIs,

we use the procedure proposed by Meinshausen and Bühlmann (2010) to obtain stable selections

from 100 bootstrap samples. The tuning parameters are chosen by GIC. The boxplots of L2 norms

of the estimated slope functions from bootstrap samples are shown in Figure 2, 3 and 4 in the

Appendix. The selection criterion is that the median of corresponding L2 norm should be greater

than 10−5.

In neurological science literature on ADHD, it has been shown that the 7 regions of cerebel-

lum, temporal, vermis, parietal, occipital, cingulum and frontal are commonly discovered to be

significantly related to ADHD symptoms from various studies ( Max et al., 2005; Konrad and

Eickhoff, 2010; Tomasi and Volkow, 2012). We first evaluate the performances of qSGL, qL and

qGL methods in terms of the selection of these 7 regions, which are essentially 14 ROIs including

the left and right parts. In Table 3 and 4, we list the selected ROIs from three different methods.
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In particular, qSGL, qL and qGL select 15, 20 and 9 ROIs respectively. In terms of those 7/14

commonly discovered regions/ROIs, Both our proposed qSGL and qGL methods have lower false

discovery rates (33%) than the qL method (55%), while our method is superior to the qGL as it

identifies more true positives (10 vs 6). Moreover, “Occipital R”, the right occipital region, can

only be identified by our method. While both Table 3 and 4 confirm that most of the selected

ROIs are coming from the 7/14 mostly discovered regions/ROIs, the three methods also suggest

three other common ROIs: “Olfactory R”, “Supramarginal R”, and “Caudate R”, namely right

olfactory, right supramarginal, and right caudate regions respectively, which have been evidently

important as suggested by some ADHD studies. For instance, Schrimsher et al. (2002) revealed a

relationship between caudate asymmetry and some symptoms related to ADHD. The findings of

Sidlauskaite et al. (2015) imply the supramarginal gyrus is associated with the ADHD symptom

scores.

Method Significant ROIs

“Temporal R” “Cerebelum R” “Frontal R” “Occipital R” “Olfactory R”

qSGL “SupraMarginal R” “Caudate R” “Vermis” “Cuneus L” “Parietal R”

“Frontal L” “Precuneus R” “Temporal L” “Cerebelum L” “Precentral R”

“Frontal R” “Caudate R” “Temporal R” “Cuneus L” “SupraMarginal R”

“Parietal R” “Lingual L” “Frontal L” “Precuneus R” “Vermis”

qL “Fusiform R” “Pallidum L” “Olfactory R” “Precentral R” “Cingulum L”

“Cuneus R” “Parietal L” “Temporal L” “Angular L” “Cerebelum R”

“Caudate R” “Frontal R” “Cerebelum R” “Vermis” “Olfactory R”

qGL “Temporal R” “Precentral R” “SupraMarginal R” “Frontal L”

Table 3: Selected ROIs for the ADHD-200 fMRI Dataset.

6 Discussion

This article studies quantile regression in partial functional linear model where response is scalar

and predictors include both scalars and multiple functions. We adopt wavelet basis to well ap-

proximate functional slopes while effectively detect local features. A sparse group lasso method

is proposed to select important functional predictors while capture shared information among
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Significant regions qSGL qL qGL

Cerebellum R L R R

Temporal R L R L R

Vermis R L R L R L

Parietal R R L

Occipital R

Cingulum L

Frontal R L L R L

Table 4: Selected ROIs for the suggested 7 regions, ‘R’ and ‘L’ indicate the region is selected

from the right brain and left brain, respectively. Blank means the brain region is not chosen.

them. We reformulate the proposed problem into a standard second-order cone program and then

solve it by an interior point method. A novel and efficient algorithm by using alternating direc-

tion method of multipliers (ADMM) is utilized to solve the optimization problem. In addition,

we successfully derive the asymptotic properties including the convergence rate and prediction

error bound which guarantee a good theoretical performance of the proposed method. Simula-

tion studies demonstrate that our proposed method is more effective in estimating coefficients and

making predictions while capable of identifying non-zero functional components and wavelet co-

efficients. We analyze a real data from ADHD-200 fMRI data set and show the superiority of our

method. Moreover, our analysis makes some new discovery about other brain regions that are

evidently important in making diagnosis.

There are several topics that merit further research. Other asymptotic properties, such as

the model selection consistency and asymptotic normality, of our proposed method could be

developed. The technique proposed to reformulate our problem into a second order cone program

(SOCP) could be further adapted to other penalized quantile regression problems; for example,

quantile ridge regression (Wu and Liu, 2009). Moreover, to estimate the functional slopes, the

wavelet-based technique can also be used together with principal component analysis or partial

least squares methods (Reiss et al., 2015).
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7 Appendix

Figure 2: Boxplot of L2 norm for each slope function, by using the quantile spare group lasso

method.
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GS GIC

n Noise Method MISE GA VA MAPE MISE GA VA MAPE

qSGL 2.426 0.860 0.959 9.557 6.361 0.480 0.854 11.720

1 qL 5.885 0.965 0.972 9.553 17.062 0.358 0.891 13.134

qGL 2.601 0.852 0.118 9.637 4.091 0.708 0.406 12.728

qSGL 2.322 0.876 0.958 8.833 6.013 0.509 0.857 10.968

2 qL 5.592 0.968 0.971 8.844 16.564 0.363 0.891 12.760

qGL 2.619 0.870 0.123 8.973 4.473 0.704 0.374 11.844

200 qSGL 1.063 0.994 0.930 4.200 1.594 0.891 0.908 4.774

3 qL 2.462 0.978 0.958 4.491 7.252 0.547 0.911 7.466

qGL 1.741 1.000 0.073 4.776 3.699 0.857 0.330 7.875

qSGL 2.252 0.925 0.958 7.967 5.795 0.510 0.856 10.353

4 qL 5.332 0.983 0.971 8.012 15.874 0.365 0.891 12.401

qGL 2.402 0.920 0.113 8.099 4.152 0.751 0.404 11.165

qSGL 2.186 0.935 0.954 8.699 2.427 0.959 0.974 9.529

1 qL 5.246 0.981 0.971 8.756 5.916 0.966 0.970 8.906

qGL 2.336 0.944 0.106 8.788 3.450 0.877 0.667 11.703

qSGL 2.126 0.954 0.954 8.083 2.414 0.963 0.976 9.030

2 qL 4.962 0.983 0.970 8.153 5.175 1.000 0.974 8.206

qGL 2.234 0.973 0.102 8.182 2.742 0.898 0.718 11.403

400 qSGL 0.492 1.000 0.883 3.630 1.004 0.999 0.951 3.985

3 qL 1.035 0.995 0.934 3.698 1.855 0.994 0.965 4.018

qGL 1.415 1.000 0.052 4.305 2.394 0.932 0.551 7.679

qSGL 2.008 0.962 0.950 7.301 2.338 0.965 0.975 8.258

4 qL 4.602 0.983 0.970 7.394 5.991 0.967 0.968 7.634

qGL 2.133 0.983 0.102 7.376 3.250 0.888 0.692 10.880

Table 5: Simulation summary of SNR=1, as for Table 1.
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GS GIC

n Noise Method ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

qSGL 0.186 0.822 0.673 0.684 0.270 2.415 0.749 0.654

1 qL 0.629 1.004 3.197 0.987 1.073 3.883 3.019 2.129

qGL 0.407 0.901 0.537 0.693 0.529 1.851 0.555 0.868

qSGL 0.181 0.810 0.642 0.635 0.264 2.494 0.712 0.640

2 qL 0.592 0.973 2.974 0.989 1.078 4.370 2.808 1.825

qGL 0.411 0.971 0.521 0.660 0.530 2.198 0.583 0.861

200 qSGL 0.087 0.394 0.252 0.315 0.112 0.646 0.322 0.383

3 qL 0.197 0.520 1.067 0.640 0.575 1.677 1.619 1.045

qGL 0.342 0.645 0.330 0.422 0.438 1.729 0.497 0.737

qSGL 0.165 0.816 0.646 0.589 0.243 2.383 0.764 0.641

4 qL 0.552 0.961 2.781 0.986 0.982 4.010 2.891 1.769

qGL 0.396 0.858 0.511 0.605 0.509 1.989 0.544 0.862

qSGL 0.163 0.830 0.593 0.565 0.189 0.801 0.616 0.817

1 qL 0.565 0.973 2.692 0.966 0.549 1.176 2.773 1.060

qGL 0.387 0.837 0.492 0.598 0.453 1.339 0.422 1.041

qSGL 0.165 0.814 0.579 0.540 0.194 0.795 0.619 0.803

2 qL 0.513 0.966 2.501 0.938 0.523 0.970 2.679 0.982

qGL 0.383 0.797 0.476 0.563 0.420 0.900 0.375 1.007

400 qSGL 0.038 0.133 0.137 0.177 0.070 0.393 0.241 0.298

3 qL 0.065 0.147 0.456 0.350 0.123 0.404 0.814 0.500

qGL 0.312 0.516 0.242 0.344 0.383 0.778 0.405 0.802

qSGL 0.146 0.794 0.540 0.502 0.176 0.799 0.604 0.758

4 qL 0.414 0.952 2.281 0.919 0.461 1.269 2.478 1.140

qGL 0.376 0.771 0.448 0.527 0.433 1.177 0.412 1.041

Table 6: Individual funtional L2 error when SNR=1, as for Table 2.
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GS GIC

n Noise Method MISE GA VA MAPE MISE GA VA MAPE

qSGL 0.907 0.988 0.906 1.617 0.920 0.935 0.839 1.683

1 qL 1.962 0.917 0.939 1.835 1.964 0.792 0.910 1.917

qGL 1.679 1.000 0.064 2.195 1.743 0.994 0.132 2.578

qSGL 0.898 0.992 0.912 1.576 0.913 0.943 0.840 1.662

2 qL 1.866 0.932 0.942 1.784 1.917 0.790 0.912 1.888

qGL 1.669 1.000 0.067 2.172 1.779 0.989 0.161 2.857

200 qSGL 0.498 1.000 0.903 1.124 0.709 0.943 0.849 1.482

3 qL 1.203 0.993 0.943 1.325 1.756 0.828 0.914 1.867

qGL 1.603 1.000 0.062 2.170 1.659 0.995 0.109 2.465

qSGL 0.842 0.992 0.915 1.502 0.911 0.943 0.843 1.656

4 qL 1.774 0.952 0.944 1.709 1.928 0.792 0.913 1.904

qGL 1.656 1.000 0.065 2.116 1.722 0.996 0.125 2.420

qSGL 0.499 0.999 0.892 1.142 0.610 0.963 0.874 1.222

1 qL 0.981 0.965 0.932 1.187 1.029 0.838 0.879 1.278

qGL 1.371 1.000 0.051 1.684 1.557 0.998 0.208 2.183

qSGL 0.458 1.000 0.890 1.069 0.565 0.981 0.897 1.145

2 qL 0.902 0.975 0.933 1.114 0.927 0.867 0.894 1.190

qGL 1.361 1.000 0.052 1.665 1.567 0.996 0.216 2.275

400 qSGL 0.096 1.000 0.874 0.602 0.167 1.000 0.918 0.671

3 qL 0.151 1.000 0.903 0.617 0.299 0.999 0.941 0.681

qGL 1.220 1.000 0.050 1.679 1.260 1.000 0.081 1.759

qSGL 0.410 1.000 0.891 0.981 0.515 0.978 0.899 1.067

4 qL 0.837 0.988 0.934 1.025 0.866 0.898 0.898 1.105

qGL 1.336 1.000 0.050 1.627 1.494 0.997 0.175 2.075

Table 7: Simulation summary of SNR=10, as for Table 1.
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GS GIC

n Noise Method ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

qSGL 0.080 0.298 0.220 0.286 0.082 0.292 0.222 0.284

1 qL 0.166 0.340 0.819 0.570 0.165 0.317 0.799 0.569

qGL 0.334 0.625 0.312 0.407 0.338 0.637 0.318 0.449

qSGL 0.081 0.299 0.216 0.282 0.087 0.294 0.218 0.277

2 qL 0.158 0.315 0.776 0.559 0.177 0.321 0.746 0.565

qGL 0.334 0.621 0.310 0.403 0.342 0.641 0.318 0.477

200 qSGL 0.040 0.117 0.146 0.188 0.061 0.206 0.182 0.233

3 qL 0.077 0.148 0.540 0.415 0.141 0.265 0.737 0.512

qGL 0.330 0.597 0.289 0.387 0.333 0.607 0.296 0.423

qSGL 0.072 0.270 0.211 0.271 0.080 0.293 0.227 0.273

4 qL 0.137 0.293 0.751 0.543 0.171 0.308 0.788 0.549

qGL 0.333 0.618 0.306 0.397 0.337 0.630 0.319 0.435

qSGL 0.038 0.119 0.145 0.188 0.050 0.164 0.156 0.214

1 qL 0.052 0.109 0.440 0.349 0.056 0.119 0.415 0.334

qGL 0.307 0.501 0.229 0.333 0.316 0.562 0.279 0.400

qSGL 0.036 0.100 0.141 0.173 0.046 0.146 0.157 0.202

2 qL 0.044 0.094 0.412 0.327 0.050 0.099 0.385 0.309

qGL 0.305 0.498 0.227 0.330 0.316 0.560 0.278 0.413

400 qSGL 0.005 0.007 0.043 0.040 0.008 0.017 0.069 0.072

3 qL 0.007 0.007 0.076 0.059 0.009 0.013 0.154 0.121

qGL 0.291 0.430 0.198 0.301 0.294 0.445 0.209 0.312

Q 0.028 0.080 0.135 0.160 0.038 0.122 0.150 0.191

4 qL 0.039 0.076 0.397 0.306 0.043 0.085 0.380 0.294

qGL 0.302 0.485 0.223 0.325 0.311 0.532 0.263 0.388

Table 8: Individual funtional L2 error when SNR=10, as for Table 2.
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Figure 3: Boxplot of L2 norm for each slope function, by using the quantile lasso method.
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Figure 4: Boxplot of L2 norm for each slope function, by using the quantile group lasso method.
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7.1 Proof of Theorem 1

Proof. First, we introduce some notation. The orthonormal wavelet basis set of L2[0, 1] is defined

as {ϕ j0k, k = 1, . . . , 2 j0} ∪ {ψ jk, j ≥ j0, k = 1, . . . , 2 j}. Without loss of generality, the wavelet

basis are ordered according to the scales from the coarsest level J0 to the finest one. Let VNn :=

Span{ϕ1, . . . , ϕNn} be the space spanned by the first Nn basis function, for example, if Nn = 2 j0+t,

then the collection of {ϕ j0k, k = 1 . . . , 2 j0} ∪ {ψ jk, j0 ≤ j ≤ j0 + t − 1, k = 1, . . . , 2 j} is the basis

of VNn . Let b j
Nn

be an Nn × 1 parameter vector with elements b j
k = 〈β j(t), ϕk〉. In addition, let

β
j
Nn

be the functions reconstructed from the vector b j
Nn

. Here β j
Nn

is a linear approximation to β j

by the first Nn wavelet coefficients, while β̂ j denotes the function reconstructed from the wavelet

coefficients b̂ j from (10).

By the Parseval theorem, we have ||β̂ j − β j||
2
L2

= ||b̂ j
Nn
− b j

Nn
||22 +

∑∞
k=Nn+1 θ

j
k

2
. To derive the

convergence rate of β̂ j to β j, we bound the error in estimating β j
Nn

by β̂ j and the error in approx-

imating β j by βNn . By the Theorem 9.5 of Mallat (2008), the linear approximation error goes to

zero as
∞∑

k=Nn+1

b j
k

2
= o(N−2d

n ). (16)

Let Υ0 = (α0,γ0, θ0) be the true coefficients with θ0 = vecT
(
b1

Nn
, . . . , bm

Nn

)
. To obtain the

result, we show that for any given ε > 0, there exists a constant C such that

Pr
{

inf
||z||=C

Ln

(
Υ0 + rn z

)
+ Pλ1,λ2

(
θ0 + rn zθ

)
> Ln

(
Υ0

)
+ Pλ1,λ2

(
θ0

)}
≥ 1 − ε, (17)

where rn =
√

Nn/n and z = (z1, . . . , zk, zγ, zθ) is a vector with the same length of vector Υ0. This

implies that there exists a local minimizer in the ball {Υ0 + rnz : ||z|| ≤ C} with probability at least

1 − ε. Hence, there is a local minimizer Υ̂ such that ||Υ̂ − Υ0|| = Op(rn).

To show (17), we compare Ln(Υ0) + Pn(θ0) with Ln(Υ0 + rn z) + Pn(θ0 + rn zθ). By using the

Knight identity,

ρτ(u − v) − ρτ(u) = −v%τ(u) +

∫ v

0
(I(u ≤ t) − I(u ≤ 0))dt,
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where %τ(u) = τ − I(u < 0), we have

I := Ln(Υ0 + rnv) − Ln(Υ0)

=

K∑
k=1

n∑
i=1

[ρτk(eki − dki) − ρτk(eki)]

= −

K∑
k=1

n∑
i=1

[−dki%τk(eki)] +

K∑
k=1

n∑
i=1

∫ dki

0
(I(eki ≤ t) − I(eki ≤ 0))dt

= I1 + I2,

where eki = yi − α
0
τk
− uT

i γ
0 − vT

i θ
0 and bki = rnzk + rnuT

i zu + rnvT
i zθ. Note that eki = εi −

F−1(τk) + o(N−2d
n ), hence we have E(%τk(eki) = o(N−2d

n ). By the definition of dki, we obtain

I1 ≤ rn||z||(
∑s

k=1 ||
∑n

i=1 %τk(eki)AT
i ||) and

E||
n∑

i=1

%τk(eki)Ai||
2 = E||

mNn+1∑
j=1

n∑
i=1

n∑
l=1

ai jal jψτk(eki)ψτk(ekl)||

= Op(nNn),

which leads to E(I1) ≤ Op(rn
√

nNn)||z|| = Op(nr2
n)||z||.

Now, we consider the expectation of I2. Using the expression of eki, we get

E(I2) =

K∑
k=1

n∑
i=1

∫ dki

0
(Pr(eki ≤ t) − Pr(eki ≤ 0))dt

=

K∑
k=1

n∑
i=1

∫ dki

0
(F(F−1(τk) + o(N−2d

n ) + t) − F(F−1(τk) + o(N−2d
n )))dt

=

K∑
k=1

n∑
i=1

∫ dki

0
( f (F−1(τk) + o(N−2d

n ))t +
f ′(ξ)

2
t2)dt,

where ξ lies between F−1(τk) + o(N−2d
n ) and F−1(τk) + o(N−2d

n ) + dki. Since there exists M such

that ||Ai||
2
2 < M, we have

max
1≤i≤n
|rnzk + rnvT

i zθ| → 0.

Then, the lower bound of E(I2) is of the form

E(I2) =
1
2

r2
n

K∑
k=1

{[ f (F−1(τk) + o(N−2d
n )) + op(1)](gT

k AT Agk)}

≥
c1nr2

n

2
||z||22 min

k
{ f (F−1(τk) + o(N−2d

n )) + op(1)},
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where gk is a vector, such as gk = (zk, zT
θ , zT

u )T . Finally, since rn → 0 and ||z||2 ≤ C, we have

II := Pn(θ0 + rn zθ) − Pn(θ0) ≤ λ1rn||zθ||1 + λ2rn

m∑
j=1

||zθ j ||2

≤ λ1rn

√
mN ||zθ||2 + λ2rnm||zθ||2

= Op(nr2
n ||zθ||2).

Since II is bounded by r2
n ||zθ||2 ,we can choose a C such that the II is dominated by the term I2 on

||u|| = C uniformly. So Qn(Σ0 + rnu) − Qn(Σ0) > 0 holds uniformly on ||u|| = C. This completes

the proof. �
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