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Abstract

A novel computational approach to log-concave density estimation is proposed. Previous approaches
utilize the piecewise-affine parametrization of the density induced by the given sample set. The number
of parameters as well as non-smooth subgradient-based convex optimization for determining the maximum
likelihood density estimate cause long runtimes for dimensions d ≥ 2 and large sample sets. The presented ap-
proach is based on mildly non-convex smooth approximations of the objective function and sparse, adaptive
piecewise-affine density parametrization. Established memory-efficient numerical optimization techniques
enable to process larger data sets for dimensions d ≥ 2. While there is no guarantee that the algorithm
returns the maximum likelihood estimate for every problem instance, we provide comprehensive numerical
evidence that it does yield near-optimal results after significantly shorter runtimes. For example, 10000
samples in R2 are processed in two seconds, rather than in ≈ 14 hours required by the previous approach to
terminate. For higher dimensions, density estimation becomes tractable as well: Processing 10000 samples
in R6 requires 35 minutes. The software is publicly available as CRAN R package fmlogcondens.

Keywords: log-concavity, maximum likelihood estimation, nonparametric density estimation, adaptive piecewise-
affine parametrization

1. Introduction

1.1. Motivation, Related Work

Log-concave density estimation has been an active area of research. Quoting Chen and Samworth
(2013), the “allure is the prospect of obtaining fully automatic nonparametric estimators, with no tuning
parameters to choose”, as a flexible alternative to parametric models, like the Gaussian, that are often
adopted by practitioners in an ad-hoc way. The mathematical analysis as well as the design of algorithms
benefit from the convexity properties of the class of log-concave densities. We refer to Samworth (2017) for
a recent survey.

The general form of a log-concave density reads

f(x) = exp
(
− ϕ(x)

)
, ϕ ∈ F0(Rd), (1.1)

where F0(Rd) denotes the class of convex lower-semicontinuous proper functions ϕ : Rd → (−∞,∞] such
that

∫
Rd f = 1. Given i.i.d. samples

Xn = {x1, . . . , xn} ⊂ Rd (1.2)

of a random vector X ∼ f , with n ≥ d+ 1, the task is to determine an estimate

f̂n = exp
(
− ϕ̂n(x)

)
(1.3)

of f . This estimate, determined as maximizer of the log-likelihood, exists and is unique with probability
1 (Cule et al., 2010, Thm. 1). Moreover, the corresponding convex function ϕ̂n ∈ F0 is supported on the
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convex hull Cn = convXn of the given data and is piecewise linear, in the sense of Rockafellar and Wets
(2009, Def. 2.47): Cn can be represented as union of finitely many polyhedral sets

Cn =

Nn,d⋃
i=1

Cn,i, (1.4)

relative to each of which ϕ̂n admits the affine representation

ϕ̂n(x)
∣∣
Cn,i

=: ϕ̂i,n(x) = 〈ai, x〉+ bi, ai ∈ Rd, bi ∈ R, i = 1, . . . , Nn,d. (1.5)

This is equivalent to the fact that the epigraph of ϕ̂n, denoted by

epi ϕ̂n =
{

(x, α) ∈ Rd × R : α ≥ ϕ̂n(x)
}

(1.6)

is polyhedral and ϕ̂n admits the representation (Rockafellar and Wets, 2009, Thm. 2.49)

ϕ̂n =

{
max

{
ϕ̂1,n(x), . . . , ϕ̂Nn,d,n(x)

}
, x ∈ Cn,

∞, x 6∈ Cn.
(1.7)

We denote the class of piecewise linear proper convex functions over Cn by

Φn :=
{
ϕn ∈ F0(Rd) : ϕn has the form (1.5) and (1.7)

}
. (1.8)

Figure 1.1 displays a function ϕn in the planar case d = 2. Given the function values

yϕ = (yϕ,1, . . . , yϕ,n) :=
(
ϕn(x1), . . . , ϕn(xn)

)
, (1.9)

ϕn is uniquely determined as lower convex envelope, that is the largest convex function majorized at the
given sample points xi by yϕ,i,

ϕn(xi) ≤ yϕ,i, i = 1, . . . , n. (1.10)

Due to Cule et al. (2010, Thm. 2), a natural and admissible variational approach for determining the

maximum likelihood estimate f̂n in terms of ϕ̂n and ŷϕ, respectively, is given by

ŷϕ = arg min
yϕ

J(yϕ), J(yϕ) =
1

n

n∑
i=1

yϕ,i +

∫
Cn

exp
(
− ϕn(x)

)
dx (1.11)

where the latter integral acts like a Lagrangian multiplier term enforcing the constraint
∫
Cn
fn = 1 (Silver-

man, 1982, Thm. 3.1). In fact, it was shown that solving problem (1.11) amounts to effectively minimizing
over Φn (1.8) to obtain ϕ̂n and in turn the ML-estimate (1.3).

An algorithm for computing ŷϕ was worked out by Cule et al. (2010) based on the convexity of J . While
this algorithm is guaranteed to return the global optimum, its runtime complexity suffers from two facts:

(i) The objective function J is convex but non-smooth due to the polyhedral class of functions (1.8) in
which the algorithm searches for ϕ̂n. As consequence, the iterative scheme is based on subgradients
which are known to converge rather slowly.

(ii) The integral of (1.11) has to be evaluated in every iterative step for each subset Cn,i of the polyhedral
decomposition (1.4), where the subsets Cn,i are required to be simplices. While this can be conveniently
done in closed form (Cule et al., 2010, App. B), it is the increasing number of these subsets for larger
dimension d > 2 that slows down the algorithm.
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Figure 1.1: A piecewise affine concave function −ϕn(x) (1.5) whose parameters determine the density estimate (1.3).
The function values −ϕ(x1), . . . ,−ϕ(xn) at given data points Xn = {x1, . . . , xn} ⊂ Rd induce a polyhedral decomposition
Cn of the convex hull conv(X), here shown for the case of bivariate data. Determining the parameters through iterative
numerical optimization may change this decomposition depending on which data point defines a vertex of the hypograph
(green point) or not (yellow and blue points). This increases the complexity considerably, in particular for larger n
and dimension d. In this paper, we work with a smooth approximation that enables more efficient log-concave density
estimation.

The number Nn,d of components of the decomposition (1.4) is known to depend linearly on n, Nn,d = O(n),
for n points uniformly distributed in Rd (Dwyer, 1991), whereas the worst case bound for ‘pathologically’

distributed n points is Nn,d = O(nd
d
2 e), i.e. grows exponentially with the dimension d (McMullen, 1970).

For n points sampled from log-concave distributions that are unimodal and in this sense simply shaped,
it is plausible to assume that the lower complexity bound holds approximately, i.e. a linear dependency
Nn,d = O(n). This means, in particular, that the number of parameters of the affine functions forming ϕ̂n
due to (1.7) linearly depends on n as well. While these bounds take into account the entire data set Xn, it
was shown for d = 1 that under sufficient smoothness and other conditions, not all xi need to participate in
the decomposition Cn (Dümbgen and Rufibach, 2009). No proofs exist for d > 1, but results presented in
this paper indicate that this property of the ML estimator carries over to the multivariate case. Therefore
the actual dependency of Nn,d on n may be lower than O(n).

On the other hand, concerning the ultimate objective of accurately estimating a multivariate log-concave
density f , it was recently shown by Diakonikolas et al. (2017) that in order to achieve an estimation error ε

in total variation distance with high probability, a function f̂n suffices that is defined by O
(
(1/ε)(d+1)/2

)
hyperplanes. In the univariate case d = 1, an algorithm that matches this complexity bound was published
recently (Acharya et al., 2017). In the multivariate case d > 1, on the other hand, the design of a computa-
tionally efficient algorithm was considered as a “challenging and important open question” by Diakonikolas
et al. (2017).

Quite recently, two approaches where published (Axelrod and Valiant, 2018; Diakonikolas et al., 2018)
which solve the log-concave MLE (1.11) with high probability with an estimation error ε < 1 in terms
of the total log-likelihood in poly(n, d, 1/ε) time. Both approaches are stochastic and rely on the work of
Lovász and Vempala (2007) to sample from ϕn over the convex body Cn. Regarding the computational
efficiency of the latter approach, Lovász and Deák (2012) noted that they ”could not experiment with other
convex bodies than cubes, because the oracle describing the convex bodies took too long to run”. Since
neither Axelrod and Valiant (2018) nor Diakonikolas et al. (2018) provide an implementation of their novel
approaches, a fair and competitive evaluation has to be left for future work.
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(b) Cule et al. (2010),
l(θ) = −29.4109, Nn,d = 23
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(c) Our estimate,
l(θ) = −29.4109, Nn,d = 1

Figure 1.2: Example due to D. Schuhmacher from the discussion in the appendix of Cule et al. (2010) regarding
computational efficiency: (a) n=25 data points Xn form a n-gon. Due to the symmetry of Xn, the density estimate f̂n is
the uniform density (not explicitly shown here; both the approach Cule et al. (2010) and our approach return this estimate,
as the equal log-likelihood values l(θ) (3.1) demonstrate). It is clear that this uniform density can be represented by a
single hyperplane, Nn,d = 1, that our approach correctly finds (panel (c)). In contrast, the approach of Cule et al. (b)
relies on a triangulation of Cn, which leads to a more involved density parameter estimation problem: Nn,d = 23 affine
function parameters. This gap of complexity increases considerably with larger numbers n of data points and dimension
d of the data space.

1.2. Contribution, Organization

This preceding discussion motivated us to address the two shortcomings (i), (ii) raised above as follows.

(1) We consider the representation (1.8) of ϕ̂n and adopt a smooth approximation of the non-smooth max-
operation. While the resulting modification of (1.11) no longer is convex, numerical methods can be
applied that are orders of magnitude more efficient than the subgradient based iterative schemes of
Cule et al. (2010). Furthermore, we exploit the fact that the smoothness of the approximation can be
controlled by a single parameter γ: While we utilize strong smoothing to obtain an initial parameter
vector, the subsequent optimization is carried out with minimal smoothing.

(2) Rather than optimizing all parameters of (1.7), we apply a threshold criterion in order to drop ‘inactive’
hyperplanes, since the optimal estimate ϕ̂n can be expected to be defined by a small subset of them, as
discussed above. This measure speeds up the computations too without essentially compromising the
accuracy of the resulting density estimator f̂n. Moreover, unlike the approach of Cule et al. (2010), we
do not restrict polyhedral subsets Cn,i to simplices. Figure 1.2 shows a somewhat extreme academical
example in order to illustrate these points.

Due to the non-convexity of our objective function, we cannot guarantee that our approach determines the
maximum-likelihood density estimate for every problem instance, as does the approach of Cule et al. (2010).
This was the case, however, in a comprehensive series of numerical experiments indicate, that we report
below. In particular, log-concave density estimation for large sample sets and for higher dimensions becomes
computationally tractable.

Our paper is organized as follows. We present our approach in Section 2 and discuss details of the
algorithm and its implementation. In Section 3, we report extensive numerical results up to dimension
d = 6 using sample sizes in the range n ∈ [102, 105]. In the univariate case d = 1, our method is on par
with the active set approach of Dümbgen et al. (2007) regarding both runtime and accuracy. This method
is not applicable to higher dimensions, however. In such cases, d ∈ {2, . . . , 6}, our method is as accurate
as the algorithm of Cule et al. (2010) but orders of magnitude more efficient. For example, for d = 2 and
n = 10.000 samples, the algorithm of Cule et al. takes 4.6 hours whereas our algorithm terminates after 0.5
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seconds. For d = 6 and n = 1.000 samples, the algorithm of Cule et al. takes about 10 hours, whereas our
algorithm terminates after 5 minutes.

An implementation of our approach is publicly available as software R package fmlogcondens (Rathke
and Schnörr, 2018) on CRAN.

2. Approach

We define in Section 2.1 the objective function as smooth approximation of the negative log-likelihood.
The subsequent sections discuss how the parameter values of the log-concave density estimate are determined
by numerical optimization. The overall structure of the approach is summarized as Algorithm 1 on page 11.

2.1. Objective Function

We rewrite the negative log-likelihood functional (1.11) in the form

L(θ) :=
1

n

n∑
i=1

ϕn(xi) +

∫
Cn

exp
(
− ϕn(x)

)
dx , (2.1a)

θ :=
{

(a1, b1), . . . , (aNn,d
, bNn,d

)
}
, (2.1b)

where ϕn and all ϕi,n have the form (1.5) and (1.7), respectively, and θ collects all parameters that determine
ϕn. We define the log-concave density estimate (1.3) in terms of the function

ϕ̂n = ϕn|θ=θ̂ : θ̂ locally minimizes L(θ). (2.2)

Our next step is to smoothly approximate the representation (1.7) of ϕn. Using the convex log-exponential
function

logexp: Rd → R, x 7→ logexp(x) := log
( d∑
i=1

exi

)
(2.3)

we introduce a smoothing parameter γ > 0 and define the rescaled smooth convex function

logexpγ : Rd → R, x 7→ logexpγ(x) := γ logexp
(x
γ

)
= γ log

( d∑
i=1

exp
(xi
γ

))
, (2.4)

that uniformly approximates the non-smooth max-operation (Rockafellar and Wets, 2009, Example 1.30) in
the following sense:

logexpγ(x)− γ log d ≤ max
i=1,...,d

{x1, . . . , xd} ≤ logexpγ(x), ∀x ∈ Rd. (2.5)

Utilizing this function, we define in view of (1.7) the smooth approximation

ϕn,γ(x) :=

{
logexpγ

(
ϕ1,n(x), . . . , ϕNn,d,n(x)

)
, x ∈ Cn,

∞, x 6∈ Cn,
(2.6)

and in turn the smooth approximation of the objective function (2.1)

Lγ(θ) :=
1

n

n∑
i=1

ϕn,γ(xi) +

∫
Cn

exp
(
− ϕn,γ(x)

)
dx . (2.7)

We point out that by virtue of (2.5), we have

∀x ∈ Cn, 0 ≤ ϕn,γ(x)− ϕn(x) ≤ γ log d → 0 for γ → 0 (2.8)

and consequently, by continuity,
Lγ(θ)→ L(θ) for γ → 0. (2.9)
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2.2. Numerical Optimization

We apply an established, memory-efficient quasi-Newton method known as L-BFGS in the literature
(Nocedal and Wright, 2006), to compute a sequence(

θ(k)
)
k≥1

(2.10)

of parameter values that converges to a local minimum θ̂ of the objective function (2.7). A key aspect
of this iterative procedure is to maintain at each step k an approximation H(k) of the inverse Hessian(
∇2Lγ(θ(k))

)−1
of the objective function (2.7), in terms of a few gradients ∇Lγ(θ(k′)) evaluated and stored

at preceding iterative steps k′ < k. This avoids to handle directly the Hessian of size (dim θ)2 =
(
(d+1)Nn,d

)2
and hence enables to cope with much larger problem sizes.

The basic update steps with search direction p(k) and step size λk read

θ(k+1) = θ(k) + λkp
(k), p(k) = −H(k)∇Lγ(θ(k)). (2.11)

The stepsize λk is determined by backtracking line search. More specifically, we select the largest λk in the
set {1, p, p2, . . .}, p = 0.1, such that the condition

Lγ(θ(k) + λkp
(k))− Lγ(θ(k)) ≤ σλk(p(k))T∇Lγ(θ(k)) (2.12)

holds. We chose σ = 10−2, meaning we accept a decrease in Lγ by 1% of the prediction based on the linear
extrapolation.

Now, instead of computing Hk anew in every iteration, it is merely updated to account for the curvature
measured in the most recent step. Given a new iterate θ(k+1), the update for H(k) in the BFGS approach
is (Nocedal and Wright, 2006, Chap. 6.1)

H(k+1) = (V (k))TH(k)V (k) + ρ(k)s(k)(s(k))T , (2.13)

where

ρ(k) =
1

(y(k))T s(k)
, V (k) = I − ρ(k)y(k)(s(k))T ,

and
s(k) = θ(k+1) − θ(k), y(k) = ∇Lγ(θ(k+1))−∇Lγ(θ(k)).

This update has the property, that if H(k) is positive definite and the curvature condition

(y(k))T s(k) > 0 (2.14)

is fulfilled, then H(k+1) is also positive definite, which in turn guarantees that the step p(k+1) (2.11) is a
descent direction.

While (2.14) automatically holds in the convex case, this property has to be enforced explicitly for non-
convex objective functions. Li and Fukushima (2001), therefore, proposed the following modification of
y(k):

ỹ(k) = y(k) + tks
(k), tk = ‖∇Lγ(θ(k))‖+ max

{
− (y(k))T s(k)

‖s(k)‖2
, 0

}
, (2.15)

which fulfills (2.14) since (ỹ(k))T s(k) ≥ ‖∇Lγ(θ(k))‖‖s(k)‖2 > 0. Thus using ỹ(k) in (2.13) guarantees the
positive definiteness of H(k+1). See Li and Fukushima (2001, Thm. 5.1) for a proof of convergence.

Storing H(k) in memory quickly becomes prohibitive with growing dim(θ). This is addressed by limited-
memory BFGS (L-BFGS) by only storing the m most recent vectors (y(k), s(k)), representing H(k) implicitly.
At every iteration p(k) (2.11) is directly calculated by recursively applying formula (2.13), see (Nocedal and
Wright, 2006, Ch. 7.2). As a result, this approximation of H(k) only requires the curvature information of
the last m steps. We set m = 40 to obtain a reasonably accurate approximation.
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Figure 2.1: (a-b) Two integration schemes for the dataset from Figure 1.1 illustrate difficulties that arise for convex
integration areas: Integration schemes (a) designed for cubic integration areas lose accuracy when truncated outside the
convex integration domain (gray dots). Schemes (b) suited for simplical integration domains degrade when the simplices
are not well aligned to the polyhedral subdivision of Cn induced by ϕn(x) (1.5). Higher dimensions d aggravate these
effects. (c-d) Simple Riemann sums using the midpoint rule and uniform weights performed best in our experiments, as
they do not assume any specific integration area. Simplex based schemes worked only well for small n and d.

2.3. Numerical Integration

The numerical optimization steps of Section 2.2 require the accurate integration of smooth functions
over Cn, due to (2.7).

We examined various numerical integration schemes: Sparse grid approaches (Bungartz and Griebel,
2004) utilize truncated tensor products of one-dimensional quadrature rules and scale well with the dimension
d. But they are not practical for integrating over non-quadrilateral domains (Bungartz and Griebel, 2004,
Sec. 5.3), an observation confirmed by our experiments. Another family of approaches are Monte-Carlo
methods based on random-walks (Lovász and Vempala, 2006; Rudolf, 2013), that specifically address the
problem of integrating a log-concave density f over a convex body. Nevertheless, experimental results
(Lovász and Deák, 2012) raised doubts about their efficiency, and we did not further pursue this type of
approach.

In addition, we examined various dense integrations schemes for the hypercube (simple Newton-Cotes
schemes and Clenshaw-Curtis quadrature) as well as schemes tailored to simplical integration domains,
e.g. Grundmann and Möller (1978). Again, regarding the quadrature rules designed for the hypercube,
the need to truncate them outside convex subsets (illustrated in Figure 2.1 (a)) had a negative impact on
integration accuracy. On the other hand, the simplex-based schemes only worked well if the randomly chosen
simplical decomposition of Cn for the integration resembled the decomposition (1.4) of ϕ̂n. This was only
the case for small d and n, however. Figure 2.1 (b) illustrates a typical case of misalignment.

Overall, simple Riemann sums with uniform integration weights performed best in our experiments,
because the influence of the shape of the integration domain is minor (Figure 2.1 (c-d)). For future reference,
we denote the integration grid by

Zm = {z1, . . . , zm} ⊂ Rd, (2.16)

and the uniform integration weights by ∆. Accordingly, the numerical approximation of the integral of the
objective (2.7) reads ∫

Cn

exp
(
− ϕn,γ(x)

)
dx ≈ ∆

m∑
i=1

exp
(
− ϕn,γ(zi)

)
. (2.17)

While naively evaluating (2.17) for the combination of all hyperplanes and grid points would quickly
become intractable, we point out that the impact of each hyperplane (ai, bi) is close to zero for most grid
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Figure 2.2: Effect of the grid density (number of grid points of Zm) versus (a) quality, (b) runtime and (c) complexity
of the solution for a sample of n = 5000 points in R4. As the log-likelihood converges rapidly along with the number of
hyperplanes, the runtime increases linearly with the number of grid points. The red marked square defines the density
used in our implementation, a trade-off between accuracy and runtime.

points. This fact combined with further plausible measures renders the integration task tractable even for
larger dimensions. See Appendix A for details and discussion.

Regarding the density of the integration grid, we traded off accuracy against computational complexity.
Figure 2.2 (a) illustrates, for a sample of 5000 points in R4, how the accuracy improves with increasing grid
density and finally converges to a solution close to the optimum. As expected, the runtime grows linearly
with the number of grid points (Figure 2.2 (b)). In general we found the ratio of grid points to number
of hyperplanes (Figure 2.2 (c)) to be a good performance indicator. Keeping this ratio above 3 yielded
good results, and we set a minimal number of grid points based on the expected number of hyperplanes for
each dimension d (except for 6-D, where we chose a lower ratio for performance reasons). The red square
indicates our choice for 4-D.

2.4. Initialization

Initialization of θ plays a crucial role due to the non-convexity of Lγ(θ). We examined two different
approaches: The first approach is based on a kernel density estimate fkernel(x) as in Cule et al. (2010), using
a multivariate normal kernel with a diagonal bandwidth matrix M with entries

Mjj = σjn
−1/(d+4), j = 1, . . . d,

where σj is the standard deviation of Xn in dimension j. Setting yi = log fkernel(xi) for i = 1, . . . , n, we
compute a simplical decomposition of Cn induced by the upper convex hull of (X, y), using the popular
quickhull algorithm (Barber et al., 1996). The simplical decomposition combined with y then yields an
initial set of hyperplane parameters θ(0), one for each simplex Cn,i.

As for the second approach, we randomly initialize a small number of hyperplanes and optimize Lγ(θ)
with γ = 1. The rational behind this is that since γ governs the degree of non-convexity and smoothness of
Lγ(θ), its optimization is less involved than for smaller γ. Having found the optimal log-concave density for
γ = 1, we evaluate yi for all xi and proceed as described above (first approach) to obtain θ(0). Regarding the
specific choice for γ, experiments showed that initializations with γ = 1 yielded superior results compared
to other initial values of γ, thus offering the “best” trade-off between smoothness of the objective and initial
accuracy of the max approximation.

Except for small datasets, in general the second initialization performs better. In practice, we calculate
both and select the one with smaller Lγ(θ(0)).

2.5. Pruning Inactive Hyperplanes

Both initializations produce a very large set of hyperplanes based on a simplical decomposition of Cn, with
one hyperplane per simplex. During the optimization, hyperplanes may become inactive. Inactivity of some
hyperplane (aj , bj) in the light of (1.5) means that there exists no x ∈ Cn for which ϕ̂n(x) = 〈aj , x〉+ bj . In
terms of our smooth approximation ϕn,γ(x) (2.6), every hyperplane contributes due to exp(x) > 0, ∀x ∈ R,
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(e) Optimal solution, Nn,d = 5,
Dümbgen et al. (2007)
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(f) Optimal solution, Nn,d = 20,
Cule et al. (2010)

Figure 2.3: (a)-(d) Several steps of the optimization process for a sample of 100 points in R drawn from a gamma
distribution Gamma(α = 5, β = 1). Hyperplanes to be dropped in the next step are drawn in red. (a) The initial density
is represented by 99 hyperplanes, one for each simplex of the simplical decomposition of Cn and based on the smooth
max-approximation ϕn,γ=1(x) (see Section 2.6). Plots (b) and (c) show the transition towards the optimal final shape
composed of Nn,d = 5 hyperplanes (d). For comparison the non-sparse solution of Cule et al. (2010) (f) and in (e) the
optimal solution (only available in 1-D) with a minimal representation by Dümbgen et al. (2007) which is identical to the
solution returned by our approach.

albeit the contribution may be very close to 0. We therefore resort to the following definition of inactivity
using our integration grid:

m∑
i=1

exp
(
γ−1(〈aj , zi〉+ bj)

)∑Nn,d

k=1 exp(γ−1(〈ak, zi〉+ bk))
≤ ϑ. (2.18)

After each update of θ(k) we remove all hyperplanes that satisfy (2.18) with ϑ = 10−3, which corresponds to
a total contribution of less than 10−3 grid points. We chose this criterion after observing that hyperplanes
usually remained inactive once they lost support on the integration grid, due to their very small contribution
to the objective function gradient.

Figure 2.3 visualizes several intermediate steps during an optimization process for d = 1, together with
the shrinking set of hyperplanes. Plots (d)-(f) show the effectiveness of this scheme, since we arrive at the
same parametrization as the approach of Dümbgen et al. (2007), which – provided d = 1 – finds the minimal
representation for ϕ̂n(x) in R.

9



2.6. Termination

To determine convergence at each iteration, we check if the following inequalities are satisfied:

|1−∆

m∑
i=1

exp
(
− ϕ̂n,γ(zi)

)
| ≤ ε, (2.19a)

|Lγ(θ(k+1))− Lγ(θ(k))| ≤ δ, (2.19b)

where we use ε = 10−3 and δ = 10−7. The first criterion asserts that the current density estimate f̂n =
exp(−ϕ̂n,γ) satisfies

∫
f̂n dx ≥ 1 − ε. Then second condition detects when the decrease of the objective

function becomes negligible. We denote the final parameter vector by θ(final).

2.7. Exact Normalization

As a final step, after convergence of the optimization algorithm, we normalize the estimated density
using exact integration and the non-smoothed representation (1.7) of ϕ̂n, which may be seen as setting
γ = 0 in (2.6). Setting yi = ϕ̂n,γ(xi) for all xi ∈ Xn, we again use qhull (Barber et al., 1996) to obtain a
triangulation of Cn and calculate a hyperplane ϕ̂i,n for every simplex Cn,i. We then split the integral over
Cn into separate integrals over simplices Cn,i and denote the result by λ:

∫
Cn

exp(−ϕ̂n(x)) dx =

Nn,d∑
i=1

∫
Cn,i

exp(−ϕ̂i,n(x)) dx := λ (2.20)

We make use of Lemma Appendix B.1 to evaluate (2.20) exactly.
The value of λ is close to 1 but not equal to 1. We therefore add the same offset parameter δ to every

hyperplane ϕ̂i,n, to obtain

ϕ̃i,n(x) := ϕ̂i,n(x) + δ = 〈x, ai〉+ bi + δ, i = 1, . . . , Nn,d. (2.21)

Inserting ϕ̃i,n into (B.1) shows that the integral for the modified hyperplanes (2.21) changes to exp(−δ)λ.

Therefore, after setting δ = log(λ), the final density estimate is f̂n = exp(−ϕ̃n) with ϕ̃n|Cn,i = ϕ̃i,n given
by (2.21). We denote the corresponding dense parameter vector by

θ̂. (2.22)

The normalization process eliminates the sparsity of the parametrization used for optimization, since it
relies on a simplical decomposition of Cn, as does the approach of Cule et al. (2010). Nevertheless, the results
of our approach are shown using the sparse parameterization θ(final), which is the essential characteristic of
our approach causing the significant speed ups reported in Section 3, whereas the reported log-likelihood
values are for θ̂.

3. Experiments

This section provides empirical evidence that our approach can find sparse solutions that are very close to
the optimum and determined computationally using substantially less CPU runtime. Section 3.1 contrasts
qualitative properties of our approach with the state of the art, using experiments in dimensions d ∈ {1, 2}
along with illustrations. Quantitative results up to dimension d = 6 are reported in Section 3.2. Finally, we
extend our approach to the estimation of mixtures of log-concave densities in Section 3.3.

For all our experiments we used γ = 10−3 for determining the accuracy of the smooth approximation
ϕn,γ (2.6) to the max function. This choice is a compromise between less accurate approximations (that
is larger gammas) and more accurate but numerically unstable ones. As noted in the previous section,
qualitative results show θ(final), i.e. the sparse parametrization found during the optimization (Section

2.2 - 2.6), whereas quantitative results are reported in terms of θ̂, the dense parametrization obtained by

10



Algorithm 1: Fast Log-Concave Density Estimation

Input: X, parameters: γ = 10−3, ϑ = 10−3, ε = 10−3, δ = 10−7

Output: Log-concave density estimate f̂n parametrized by θ (2.1).
Find initial θ(0) (Section 2.4);
for k = 1, 2, . . . do

Delete inactive hyperplanes from θ(k) based on criterion (2.18);

Compute the gradient ∇Lγ(θ(k)) of the objective (2.7) using numerical integration;

Find descent direction p(k) from the previous m gradients vectors and step size λk (2.11) and
update θ(k+1);

if the termination criterion (2.19) holds, then
Denote final parameter vector by θ(final);
Quit for-loop;

end

end

Switch from ϕ̂n,γ to ϕ̂n and perform exact normalization: θ(final) → θ̂ (Section 2.7);

return θ̂ (2.22)

performing the final analytical normalization (Section 2.7), and the non-smoothed representation (1.7) of
ϕn. The quality of our solutions is measured in terms of

l(θ̂) =

n∑
i=1

−ϕn(xi), (3.1)

the total log-likelihood.

3.1. Qualitative Evaluation

In order to illustrate the sparse structure of solutions determined by our approach, we investigated
examples in one and two dimensions. We compared the results with Cule et al. (2010) whose approach
(implemented in the R package LogConcDEAD) finds optimal solutions in terms of L(θ), but cannot take
advantage of any sparsity of the solution, since its representation is based on the fixed triangulation induced
by Xn (recall Figure 1.2). For d = 1, we additionally compared to the approach of Dümbgen et al. (2007)
using their R package logcondens, which can be only applied to univariate data, but finds optimal solutions
in terms of L(θ) and utilizes the minimal representation of the solution in terms of the number Nn,d of
hyperplanes. We sampled 500 data points from three different distributions in 1-D (normal, gamma and
exponential) and 500 samples from a normal distribution N (0, I2) in 2-D.

Figure 3.1 depicts the results of all three approaches for univariate data in terms of −ϕ̂n(x) = log f̂n(x).
While all solutions are almost identical in terms of the estimated density, their parametrizations differ. The
solution of Dümbgen et al. (2007) is guaranteed both to have the optimal sparse structure in terms of the

number of hyperplanes and to yield the optimal value L(θ̂). Comparing their solution to ours, we see that
they are almost identical, with only hyperplanes missing that have very small support and negligible impact
on L(θ̂) and l(θ̂) respectively. The solution of Cule et al. (2010), on the other hand, is densely parametrized.
The runtimes reflect these different parametrizations.

We made similar observations for two-dimensional data d = 2. Our approach found an density estimate
f̂n that is almost identical to the optimal solution but required only about 10% of the parameters. Panels
(a) and (b) of Figure 3.2 depict the density f̂n(x) estimated by the approach of Cule et al. (2010) and our
approach, respectively, whereas panels (c) and (d) show the respective decompositions of ϕ̂n(x) into its affine
representation ϕ̂i,n (1.5). While the solution of Cule et al. (2010) is based on a fixed hyperplane arrangement
and simplical supports Cn,i induced by the given data, our decomposition of Cn (1.4) is adaptive and can
utilize more general convex polytopes Cn,i. Comparing panels (c) and (d) of Figure 3.2 clearly shows the
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(f) Our approach (0.27 s),

l(θ̂) = −1096.31, Nn,d = 6
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Figure 3.1: Estimates −ϕ̂n(x) and their piecewise linear representation for 500 samples drawn from a (a-c) normal
distribution N (0, 1), (d-f) gamma distribution Γ(2, 2) and (g-i) exponential distribution with λ = 1. (a,d,g) The approach
of Dümbgen et al. (2007) returns ground truth for univariate data, that is the maximal log-likelihood l(θ̂) and the correct
piecewise linear representation of −ϕ̂n. (b,e,h) The approach of Cule et al. (2010) also returns the optimal value l(θ̂) but
generally works with a redundant piecewise linear representation that significantly increases runtime. (c,f,i) Our approach
is as efficient as the former and only misses components of the piecewise linear representation that have very small support
and hence a negligible impact on l(θ̂).
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(a) f̂n(x), Cule et al. (14.35 s), l(θ̂) = −1159.19
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(b) f̂n(x), Our approach (0.16 s), l(θ̂) = −1159.53
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(c) Cn, Nn,d = 610
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(d) Cn, Nn,d = 66

Figure 3.2: Top row : Contour lines displaying estimates f̂n(x) = exp(ϕ̂n(x)) for a sample of size n = 500 drawn
from N (0, I2). The density plots (a) and (b) as well as the log-likelihood values l(θ̂) demonstrate that both solutions are
very close to each other. Bottom row : Decomposition of Cn induced by the piecewise-linear concave functions −ϕ̂n(x).
While the approach of Cule et al. induces a triangulation of Cn, our approach works with more general polytopes. Our
approach adapts this representation to given data and thus avoids overfragmented representations as depicted by (c) that
significantly increase runtime.
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Figure 3.3: The three levels of anisotropy used in our experiments: None (a), mild (b) and strong (c).

beneficial effect of adaptivity which is an ‘automatic’ byproduct of minimizing L(θ) using our approach,
together with pruning inactive hyperplanes.

3.2. Quantitative Evaluation

Besides the introductory experiments used for illustration, we conducted a comprehensive numerical
evaluation using more challenging examples. The authors of Cule et al. (2010) reported the evaluation of up
to n = 2000 data points and dimension d = 4, drawn from N (0, Id). In order to demonstrate the ability of
our approach to process efficiently large data sets, we evaluated samples set of size up to n = 10000 points
and dimension d = 6, drawn from the same distribution.

We extended their benchmarks in terms of sample size, dimension as well as introducing anisotropy to
the covariance matrices: Besides the identity matrix (degree 0), we defined two levels of anisotropy (I, II)
based on the following metric for symmetric positive definitive matrices S1 and S2 (Bhatia, 2006):

d(S1, S2) =

√√√√ d∑
i=1

(
log λi(S

−1
1 S2)

)2

. (3.2)

Setting S1 = Id, we can see that the metric reduces to the euclidean norm of the logarithm of eigenvalues
of S2. We define our two levels of anisotropy as

I : d(Id, S2) = 2.5,

II : d(Id, S2) = 5.0.
(3.3)

Let S2 be
S2 = DEDT , E = diag(e), (3.4)

with D being a random orthogonal matrix. Since the eigenvalues of S2 are solely determined by the vector
e, we fix the last value of e to 1 and set the remaining values to be equidistant in log-space, such that
d(Id, S2) = ‖ log e‖2 ∈ {2.5, 5.0}. For dimension d = 2 and n = 500, Figure 3.3 depicts examples for each
degree of anisotropy.

For each level of anisotropy, we drew samples of sizes n ∈ {100, 250, 500, 1000, 2500, 5000, 10000} in
dimensions d ∈ {2, . . . , 6} and repeated each experiment five times. We run the R package LogConcDEAD

(Version 1.6-1) by Cule et al. (2010) in all dimensions but stopped increasing n when the runtime exceeded
24 hours. Table 3.1 reports the results for all sample sizes, the speed ups as well as the quality of the solution
achieved by our approach in comparison to the optimal solution returned by the approach of Cule et al.
(2010), measured as the difference of total log-likelihoods l(θ̂).

Overall we see that our approach delivers very accurate results, with very small differences given the
respective number of samples. Regarding the influence of anisotropy on the accuracy, we notice only a slight

increase the difference of l(θ̂)). Figure 3.4 (d) provides a different perspective on the quality of the estimated
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Table 3.1: Runtimes for Cule’s (mark: C) and our approach (X) and the resulting speedups. For d = 1 we additionally
report results for the approach of Dümbgen et al. (D). Quality is the difference in total log-likelihood l(θ̂) to the solution
of C. For the multidimensional datasets, accuracy is reported separately for all three levels of anisotropy (O, I, II).
While accuracy slightly decreases for examples with strong anisotropy (degree II), it is still comparatively small given the
number of samples. For some samples we achieved a better log-likelihood value, because the implementation of Cule et
al. terminates after a hard-coded number of 15000 iterations which is no issue with our approach (for 2-D less than 500
iterations are required).

n 100 250 500 1000 2500 5000 10 000

1-D

Runtime
D 0.08 s 0.2 s 0.3 s 0.4 s 0.7 s 2 s 3 s
X 0.02 s 0.02 s 0.03 s 0.03 s 0.06 s 0.1 s 0.3 s
C 0.2 s 0.7 s 3 s 25 s 16 min 1 h 49 min 12 h 52 min

Speedup 10 x 43 x 121 x 780 x 17 695 x 65 513 x 159 534 x

Quality
D 0.0 0.0 0.0 −0.1 −0.1 −11.2 −69.1
X 0.0 0.0 0.1 0.1 0.2 −10.4 −68.0

2-D
Runtime

X 0.5 s 0.5 s 0.6 s 0.7 s 0.8 s 1.0 s 2 s
C 0.7 s 4 s 16 s 1 min 19 min 2 h 17 min 14 h 2 min

Speedup 1 x 8 x 26 x 116 x 1396 x 8358 x 27 708 x

Quality
O 0.1 0.2 0.3 0.7 1.0 1.3 −43.0
I 0.1 0.1 0.4 0.6 1.0 1.2 −44.9
II 0.1 0.3 0.8 1.3 1.4 3.3 0.5

3-D
Runtime

X 3 s 6 s 6 s 7 s 8 s 10 s 13 s
C 3 s 17 s 1 min 3 min 34 min 2 h 58 min 18 h 17 min

Speedup 1 x 3 x 11 x 34 x 248 x 1028 x 5209 x

Quality
O 0.1 0.3 0.6 1.2 2.3 5.6 10.5
I 0.3 0.2 0.5 1.1 3.0 5.5 12.1
II 0.6 0.4 0.7 2.0 3.8 9.5 23.0

4-D
Runtime

X 11 s 14 s 23 s 32 s 1 min 1 min 1 min
C 13 s 1 min 5 min 24 min 2 h 57 min 13 h 16 min –

Speedup 1 x 7 x 16 x 46 x 200 x 699 x –

Quality
O 0.5 0.7 0.5 1.0 2.2 7.6 –
I 0.2 0.9 0.6 0.8 2.0 6.8 –
II 0.5 0.7 0.6 3.1 2.5 7.4 –

5-D
Runtime

X 14 s 24 s 44 s 1 min 2 min 3 min 4 min
C 1 min 9 min 29 min 1 h 23 min 13 h 4 min – –

Speedup 5 x 23 x 40 x 51 x 319 x – –

Quality
O 0.3 0.8 0.9 1.1 2.8 – –
I 0.5 0.9 1.0 1.3 3.4 – –
II 0.4 1.4 2.2 2.2 6.4 – –

6-D
Runtime

X 46 s 1 min 2 min 6 min 13 min 19 min 35 min
C 9 min 1 h 14 min 3 h 6 min 10 h 8 min – – –

Speedup 12 x 41 x 75 x 93 x – – –

Quality
O 0.4 1.4 2.9 2.5 – – –
I 0.3 1.4 2.0 3.1 – – –
II 0.4 1.1 1.6 3.3 – – –
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(d) X vs. C for degree II examples

Figure 3.4: Top row : Complexity of the density f̂n in terms of the number Nn,d of linear functions forming −ϕ̂n(x) =
log

(
f̂n(x)

)
. While scales linearly with the number of samples n for the approach of Cule et al. Nn,d, our approach shows

only sublinear growth and starts to become flat for larger n. Bottom row : Squared Hellinger distance h2(f̂n, f) between
(c) the estimate f̂n and the underlying density f versus runtime, evaluated for our test suite introduced in Section 3.2
with additional results for n = 25 and n = 50. For a specific runtime, our approach (solid lines) obtains estimates closer
to the underlying density f while being able to process significantly more data points n. Panel (d) depicts the average
squared Hellinger distance between our estimates and those of Cule et al. for degree II samples (cf. Figure 3.3). While
constituting the most difficult samples, differences are very small and decrease with sample size.

densities, by showing the very small squared Hellinger distance between our estimates and those of C for
degree II samples. While our approach estimated almost optimal densities, it achieved speed ups of up to
a factor 30 000 (even more for d = 1, though Cule et al. (2010) point out that their approach is not designed
with the one-dimensional case in mind). These factors increase with dimension and, in particular, with the
number of data points.

We empirically observed and estimated how runtime t depends on the sample size n. Regarding the
approach Cule et al. (2010) we observed linear dependency of the number of iterations on n, as is also

mentioned in Cule et al. (2010). Moreover, we found that the complexity of their density estimate f̂n,
expressed by the number of hyperplanes Nn,d, also grew linearly with n (see Figure 3.4 (a)), which is in
accordance with our discussion in Section 1. Altogether runtime grew quadratically with the number of
samples: O(n2).

Examining the results for our approach revealed that the number of iterations depends much less on
n. For example, for dimension d = 3, the number of iterations for n ∈ {100, 1000, 100000} was about the
same, while for d = 4 it doubled from n = 100 to n = 1000 but did not change when increasing n to 10000.
This observation relates to the next paragraph below. Concerning the complexity of ϕn(x) depending on
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the sample size n, we found that the number Nn,d of hyperplanes grew sublinearly and started to become
flat when n > 1000, c.f. Figure 3.4 (b). All in all we found the average dependency of t on n to be roughly
O(
√
n) for d < 6 and somewhat larger for d = 6.

The above observations partially relate to computational constraints for dimensions d ≥ 5, where the
grid size for numerical integration may limit the number Nn,d of hyperplanes. For example, increasing the
number of grid points by the factor 5 left unchanged the number of hyperplanes for n = 5000 and d = 2,
increased it slightly by 20% for d = 4, but by about 50% for d = 6. Apparantly, this had no impact on the
quality of the corresponding density estimates, but we cannot predict Nn,d for d > 4.

We conducted further experiments in order to demonstrate that our approach achieves both nearly
optimal log-likelihoods and short runtimes: Based on the squared Hellinger distance

h2(f̂n, f) = 1−
∫ √

f̂n(x)f(x)dx (3.5)

to measure the similarity between the estimate f̂n and the true density f , Figure 3.4 (c) depicts h2(f̂n, f)
for the experiments performed in this section, plotted against the required runtime. Additional results for
n = 25 and n = 50 are included. The plot demonstrates that our approach obtains much more accurate
density estimates within a specific runtime. This enables to take more data points into account than the
approach of Cule et al. (2010), due to the adaptive sparse parametrization.

3.3. Mixtures of Log-Concave Densities

We extended our approach to the estimation of mixtures of log-concave densities. Let

Π = {π1, . . . , πK},
K∑
k=1

πk = 1 (3.6)

be the mixing coefficients for classes 1 to K and Θ = {θ1, . . . , θK} be class-specific hyperplane parameters.
Then the log-concave mixture distribution is

fn(x|Θ,Π) =

K∑
k=1

πkfn(x|θk), (3.7)

where fn(x|θk) is a log-concave density as defined in Section 1, parametrized by θk. Given i.i.d samples
Xn = {x1, . . . , xn}, maximizing the log-likelihood function

L(Θ,Π) :=

n∑
i=1

log

K∑
k=1

πifn(xi|θk) (3.8)

is challenging due to the summation over k inside the logarithm. A common technique to maximize locally
L(Θ,Π) is the EM algorithm (Dempster et al., 1977). Here one introduces assignment probabilities

γi,j =
πjfn(xi|θj)∑
k πkfn(xi|θk)

, i = 1, . . . , n, j = 1, . . . ,K (3.9)

that point xi belongs to class j as latent parameters, that are iteratively estimated along with the mixture
coefficients and the parameters of the mixture components. More specifically, the EM algorithm iterates
the following two steps until convergence: The E-Step computes (3.9). The M-Step updates the mixing
coefficients

πk =
1

n

∑
i

γi,k, k = 1, . . . ,K, (3.10)

and refines the parameters θk, k = 1, . . . ,K by minimizing the modified negative log-likelihood function

Lγ(θk) :=
1

nk

n∑
i=1

γi,kϕn,γ(xi) +

∫
Cn

exp(−ϕn,γ(x))dx, nk =
∑
i

γi,k, k = 1, . . . ,K. (3.11)
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Table 3.2: Performance parameters for the estimation of log-concave mixture densities using the approach of Cule
et al. (2010) (mark: C) and our approach (mark: X). Estimates based on our approach are very close to the solutions
of C in terms of the log-likelihood (Quality) as well as the number of misclassified points, in one case even performing
significantly better. Moreover, runtime is significantly reduced. Gaussian mixture models (GMMs) are clearly outperformed
by log-concave mixtures for both datasets.

Wisconsin USPS

2-D 3-D 2-D 3-D

Runtime
X 21 s 3 min 38 s 20 min

C 19 min 1 h 3 min 2 h 21 min 12 h 50 min

Speedup 54 x 20 x 222 x 38 x

Quality 2.6 4.2 1.5 15.3

Missclassified
X 47 47 200 78

C 45 45 201 109

Quality GMM 97.18 % 93.36 % 96.88 % 93.93 %

Missclassified GMM 58 64 239 215

Since the objective function (3.8) is non-convex, good initialization is essential. To obtain initial values for
all γi,j , we follow Cule et al. (2010) and use hierarchical clustering (Fraley et al., 2012). We terminated the
EM approach if the difference between L(Θ,Π) values in three subsequent iterations dropped below 10−5.

We tested our approach on two datasets:

• The Wisconsin breast cancer dataset, consisting of 569 samples with 30 features each, with 357
benign and 212 malignant instances.

• The well-known USPS dataset, containing 11000 images of dimension 32× 32 (i.e. 256 features) of
handwritten digits from zero to nine. We selected all samples for the two classes ‘five‘ and ‘six‘, 1100
each.

We reduced the dimension for both datasets to d ∈ {2, 3} using PCA. Figure 3.5 (a) depicts the USPS dataset
projected onto the first two PCA eigenmodes. One can see the skewness of class ’six’, which the Gaussian
distribution is not able to capture. We compared our approach to Cule et al. (2010) as well as to the standard
Gaussian mixture model (GMM). Performance was measured in terms of the achieved log-likelihood and
the number of misclassified samples, where each sample was assigned to the class argmaxkπkfn(x|θk).

First, we compare Gaussian mixtures and log-concave mixtures. Table 3.2 demonstrates that the log-
concave mixture better reflects the structure of both datasets and clearly outperforms GMMs with respect
to both performance measures. Naturally, using more information by increasing the dimension of the PCA
subspace may lead to better estimates for the class-wise probabilities, as can be seen for the USPS dataset.
Comparing the results of the log-concave mixture density estimates of both approaches, we again see very
similar results in terms of the log-likelihood as well as the number of misclassified samples, the only exception
being the USPS dataset for d = 3. Again our approach achieves significant speedups.

Figure 3.5 (b)-(d) visualizes some mixture distributions for the USPS dataset for d = 2 and d = 3. While
the GMM fails to properly model class ‘five‘ as expected, log-concave mixtures succeed, especially for d = 3.

4. Conclusion

This work presented a new computational approach to the estimation of multivariate log-concave densities
f̂n. Its crucial feature is the iterative search of a sparse representation of f̂n in terms of the number of
hyperplanes Nn,d comprising the piecewise-linear concave function ϕ̂n(x) = − log f̂n(x). In addition, its
parametrization involves hyperplanes supported on general polytopes Cn,i, whereas the approach of Cule
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(d) Log-Concave, d = 3, 78 points missclassified

Figure 3.5: (a) The USPS dataset projected onto the first two eigenmodes. (b,c) GMM and log-concave mixture
estimates for this dataset. Missclassified points are drawn red. (d) Log-concave mixture estimate for d = 3 with the third
PCA dimension marginalized out by numerical integration for visualization.
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et al. (2010) is restricted to simplices. By smoothing the original non-smooth objective, efficient established
numerical methods can be applied. Overall, this led to significant speed ups compared to the state-of-the-art
approach, in particular for larger data sets and increasing dimension. Although our approach minimizes a
non-convex objective, we showed that this does not compromise the quality of the solution. On the contrary,
almost optimal results are returned after runtimes that are shorter by factors up to 30 000 x.

Empirical evidence suggests the following dependency on the runtime t and the sample size n: We
observed that t grows like O(n2) for the approach by Cule et al. (2010), resulting from a linear growth of
both Nn,d and the number of iterations with n. The observed linear dependency of Nn,d on n supports our
reasoning in Section 1 that the lower bound O(n) for Nn,d (cf. Dwyer (1991)) also applies to data sampled
from log-concave distributions.

Regarding our approach we observed a O(
√
n) dependency, due to a sublinear growth of t with both

Nn,d and the number of iterations. We pointed out that, at least for d ≤ 4, there is strong empirical
evidence that the sparse parametrization of ϕ̂n(x) reflects structural properties of the maximum-likelihood
estimator of log-concave densities, which the approach of Cule et al. (2010) does not exploit: Our approach

successfully identifies maximal polytopes where log
(
f̂n
)

is linear. Since no theoretical results are available,
to our knowledge, regarding the sparse parametrization of ϕ̂n(x) for the case d ≥ 2, our empirical results
may stimulate corresponding research.

We published our code with the R package fmlogcondens in the CRAN repository (Rathke and Schnörr,
2018). A Matlab implementation is also available
at https://github.com/FabianRathke/FastLogConvDens.
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Appendix A. Calculating ∇Lγ(θ(k))

A large amount of computation time is is spent on computing the gradient ∇Lγ(θ(k)) of the objective
(2.7). The gradient component with respect to a hyperplane normal aj reads

∇ajLγ(θ) =
1

n

n∑
i=1

wijxi −∆

m∑
l=1

wljzl exp
(
− ϕn,γ(zl)

)
, wij :=

exp
(

1
γ (〈aj , xi〉+ bj)

)
∑Nn,d

k=1 exp
(

1
γ (〈ak, xi〉+ bk)

) . (A.1)

Gradient components for the intercepts bj are similar. Since 1
γ (〈aj , xi〉 + bj)) → ∞ for γ → 0, a robust

evaluation of terms wij that prevents numerical overflow of the exp-function is given by

wij =
exp(νj)∑Nn,d

k=1 exp(νk)
=

exp(νj −max ν)∑Nn,d

k=1 exp(νk −max ν)
,

νk(xi) := γ−1(〈ak, xi〉+ bk), ν = (ν1, . . . , νNn,d
).

(A.2)

Similarly, the smooth max-approximation ϕn,γ(x) (2.6) is numerically evaluated as

ϕn,γ(x) = γ log

Nn,d∑
k=1

exp(νk) = γmax ν + γ log

Nn,d∑
k=1

exp(νk −max ν). (A.3)

Calculating ∇Lγ(θ(k)) for all combinations of hyperplanes and grid points is the by far most expensive step
in our approach. The problem is inherently sparse, however, since for most grid and data points only a few
hyperplanes are relevant with most terms wij negligibly small. We exploit this property in several ways.
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Computing the exponential function on a CPU is relatively expensive (about 50 times more than ad-
dition/multiplication (Ueberhuber, 2012)). We set exp(νj −max ν) = 0, whenever νj − max ν ≤ −25. A
second strategy attempts to reduce the number of hyperplane evaluations νk. It utilizes two integration
grids of varying density: A sparse grid to filter inactive hyperplanes and a dense grid to evaluate the integral
of f(x) and its gradient for all active hyperplanes. The sparse grid is divided into boxes Bi consisting of 2d

adjacent grid points {vi1, . . . , vi2d}, e.g. 4 boxes in Figure 2.1 (a). For each box Bi we perform the following
steps:

1. Pick the point z ∈ Bi that is closest to the mean of Xn, evaluate all νk(z), k = 1, . . . , Nn,d and set
k̄ = arg max k νk.

2. For each k = 1, . . . , Nn,d find ∆k, the upper bound on the increase of hyperplane k relative to hyper-
plane k̄ in Bi. Let wj be the width of box Bi in dimension j and

ζj =

{
1 zj = minl v

i
l,j ,

−1 otherwise.
(A.4)

Then

∆k =
d∑
j=1

max
(
(ak,j − ak̄,j)wjζj , 0

)
. (A.5)

3. If νk(z) + ∆k − νk̄(z) ≤ −25, exclude hyperplane k from the integration over Bi.

For medium sized problems, this scheme reduces the number of evaluations of wij by about 90%.
Using a numerical integration scheme based on a regular grid facilitates parallelization. We automatically

distribute the numerical integration (and other expensive for-loops) across all available CPU cores, using
the OpenMP API (Dagum and Menon, 1998). In addition, we utilize Advanved Vector Extensions (AVX),
a technique that vectorizes code by performing certain operations like addition or multiplication simultane-
ously for 8 floating point or 4 double values on a single CPU core. AVX is supported by all CPUs released
since 2010. Both techniques, within-core and across-core parallelization led to speed ups by a factor of more
than 10 on a standard four core machine. Due to the local character of most computations, transferring the
code to the GPU promises even larger speed-ups.

Appendix B. Exact integration

Cule et al. (2010) provided an explicit formula in order to evaluate exactly the integral in the objective
(1.11) based on a simplical decomposition of Cn:

Lemma Appendix B.1. Let j = (j0, . . . , jd) be a (d+1)-tupel of distinct indices in {1, . . . , n}, such
that Cn,i = conv(xj0 , . . . , xjd) is a simplex with associated affine function ϕi,n = 〈ai, x〉 + bi and values
yjl = ϕi,n(xjl) at its vertices. Then∫

Cn,i

exp(−ϕi,n(x)) dx = vol(Cn,i)

d∑
l=0

exp(−yjl)
∏

i∈{0,...,d}\{l}

(yji − yjl)−1. (B.1)

We apply this Lemma in Section 2.7 in order to normalize exactly the numerically computed density
estimate f̂n returned by our approach.
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Dümbgen, L., Hüsler, A., Rufibach, K., 2007. Active set and EM algorithms for logconcave densities based on complete and

censored data. Tech. Rep. 61, University of Bern.
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