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Abstract

Quadratic forms of Gaussian variables occur in a wide rarse >f applications in statistics.
They can be expressed as a linear combination of chi-s#nareds TIhe coefficients in the linear
combination are the eigenvalues Aq,...,\, of ¥ A, where .* is the matrix representing the
quadratic form and 3 is the covariance matrix of ti.> Ga ssians. The previous literature
mostly deals with approximations for small quadra“ic torms (n < 10) and moderate p-
values (p > 1072). Motivated by genetic appli ..ious, moderate to large quadratic forms
(300 < m < 12,000) and small to very small p-vales (p < 107%) are studied. Existing
methods are compared under these settings a. 1 & cading-eigenvalue approximation, which
only takes the largest k eigenvalues, is shov m to ~ave the computational advantage without
any important loss in accuracy. For time con, lexity, a leading-eigenvalue approximation
reduces the computational complexity f. «.. 0t 23) to O(n?k) on extracting eigenvalues and
avoids speed problems with computing the sum of n terms. For accuracy, the existing
methods have some limits on calculat® . small p-values under large quadratic forms. Moment
methods are inaccurate for very s 1all p- alues, and Farebrother’s method is not usable if
the minimum eigenvalue is much smai. ~“nan others. Davies’s method is usable for p-values
down to machine epsilon. The s .dd’2point approximation is proved to have bounded relative
error for any A and ¥ in the rxtic me ight tail, so it is usable for arbitrarily small p-values.

Keywords: small p-values, rea ng-eigenvalue approximation, accuracy, computational
complexity

1. Introduction

A quadratic frm c.n be expressed as Q(X) = XTAX, where X = (Xy,...,X,,)" is
a multivariate no.mal random vector with mean vector p = (p,...,p,) and covariance
matrix Y, anc A is a n X n symmetric and non-negative definite matrix. The question of
interest is to stimat > the upper tail probability of Q(X)

Pr(cia” > q), (1)
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where ¢ is a scalar.

The distribution of Q(x) is a linear combination of noncentral x? variales, where the
coefficients are the non-zero eigenvalues \;,...\, of matrix M = “..' = XXT. When
@ = 0,, it is a linear combination of central y? variables.

These quadratic forms often occur when a set of asymptotical:» No.mal test statistics
are combined using a weight matrix other than the inverse of t*-ir ci =riance matrix. A
famous example is the Rao-Scott test (Rao and Scott, 1981) ir sur.e, statistics. The true
variance matrix of the individual test statistics tends to be poorly stimated; the Rao-Scott
test replaces it with the variance matrix under iid samplir g. Ir genomics, the Sequence
Kernel Association Test (SKAT) (Wu et al., 2011) evaluatc: the ssociation between rare
variants and phenotype. It replaces the true variance -.atrix with a set of weights that
ignore correlation and upweight less-common variants, « or espr nding to a diagonal matrix
A.

The null distribution of these tests is a weighted sun. of central x? variables, where
the coefficients are the eigenvalues of M. Many mc hors are proposed to evaluate the
upper tail probability of the distribution of Q(X). We -lassified these existing methods into
three categories: ‘exact’ methods (Davies, 1980; ."arebrother, 1984; Bausch, 2013), moment
methods (see, eg., the Satterthwaite approxim~tion a..d Liu et al. (2009)) and a saddlepoint
approximation (Kuonen, 1999).

The ‘exact’ methods are exact in the sen. « tha. an approximation with arbitrary accuracy
could be obtained if arbitrary precision arith me.ic were available. Davies (1980) exploited
the fact that the characteristic function ¢* a sw.n is the product of characteristic functions,
so the characteristic function for a weighted sum of x? variables is straightforward to obtain.
Farebrother (1984) showed that the ta.l nrobability can be written as an infinite series of
central chi-squared distributions, i;» writig the linear combination as a mixture (Robbins
and Pitman, 1949). Bausch (20.3) shc .ed that a linear combination of gamma densities
form an algebra under convolut’ ms and Jderived the density for weighted sums of x? variables.

The Satterthwaite appror imat..» approximates the distribution of Q(X) by ax? with
a and d chosen to give the co.ect mean and variance. Liu et al. (2009) proposed a four-
moment approximation us~¢ a noncentral chi-squared distribution of the form a + by3(v),
where a is an offset, b is « sc ling parameter and v is the non-centrality parameter. Kuonen
(1999) derived a form ot . ddlepoint approximation to the sum. The accuracy of these
approximations has b :en previous studied (Kuonen, 1999; Duchesne and De Micheaux, 2010;
Bausch, 2013), but on., for small quadratic forms (n < 10) and moderate p-values.

However, gene.ics s‘uaies often involve a large number of terms (n > 1000) and small
p-values (p < 10 %) rais ng concerns about both time complexity and accuracy. For time
complexity, ex*. .ctiug all set of eigenvalues scales as cube of sample size n and it would take
more time to ompu e a tail probability when the number of terms n is large. For accuracy,
moment metho~ ~ e anti-conservative in the right tail of the distribution.

Recent.”, « <. mpanion paper (Lumley et al., 2018) developed a leading-eigenvalue ap-
proximation »H solve above problems. This method is mainly developed for large quadratic
forms and ends up with less computational time without any important loss in accuracy.
This is done by extracting the largest k eigenvalues using a low-rank stochastic singular
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value decomposition (SSVD) (Halko et al., 2011) and utilizing the cheap Satterthwaite ap-
proximation to approximate the rest n — k terms.

This work is motivated by genetic problems which often involve .. e quadratic forms
with thousands or tens of thousands of terms, under which the existing me hods would have a
computational deficiency and may be less accurate. The main objec"ive 1. *o find an optimal
way to perform convolutions for large quadratic forms. We prov:'= ew.rirical evidence for
the existing methods and a leading-eigenvalue approximation uncect moderate and large
quadratic forms. Evaluations and discussions of the existing metn. 1s under large quadratic
forms are made in Section 2. In Section 3, accuracy and .omprt tational complexity of a
leading-eigenvalue approximation are discussed. Impact of s arsity rank and definiteness of
matrix M is discussed in Section 4. Discussions are mad . 1a Seciion 5.

R codes for producing numerical examples can be fc 1r . in Supplementary information
and are available from https://github.com/TOngChe.. ‘Laz ;:QuadraticForm.

o

2. Existing methods under genetic settings

This section evaluates the performance of the ‘xisting methods in the right tail of the dis-
tribution. Davies’s (1980) and Farebrother’s (1984) . ethods are usable even for thousands
of terms and achieve close to their nominal ac ‘ur.cy as long as the right tail probability is
much larger than machine epsilon. As they ~omy ite Equation (1) from 1 — Pr(Q(X) < q),
they break down completely if the extreme right v il probabilities are near or beyond machine
epsilon. The value of machine epsilon n.. wic.2 1 in this work is 2752 ~ 2 x 10716,

We observed that Farebrother’s (1984) mi thod ended up with fault indicator 1 when it
was evaluated using the quadratic for .. 1—Qg generated in this section. The fault indicator
1 represents the calculation has r w-fata underflow of a variable called ay (Farebrother,
1984). If Q(X) is a weighted su'a of ¢ ~cral x7 variables, the quantity ao in Farebrother’s
(1984) algorithm can be simpli“ed .o

1 n
ag = exp <§ (n log A\, — :log )\Z>> ,

where A, ..., A\, are sorte ' :igenvalues in descending order. For large quadratic forms, if A,
is much smaller than Lthor eigenvalues, a large n can cause the variable ay to underflow to
0. We cannot use Fa.~b oth «r’s (1984) method as a reference because the leading eigenval-
ues are much largr. chan ‘ae minimum eigenvalue in our simulated genome sequence data.
Bausch’s (2013) 11ethod has rounding errors especially in the left tail with double precision
for moderate and 1o Juadratic forms and is slow with multiple precision (see Supplemen-
tary informat on). Ve hereafter choose Davies’s (1980) method as a reference to conduct
numerical studies.

To eve .~*e the performance of these approximation methods, we simulated human
genome seq. < 1ce data using the Markov Coalescent Simulator (Chen et al., 2009). This
was done by 1.<ing the number of rows s (people) then choosing the length to make the
number of columns m (variants) approximately equal to the number of rows. We discarded
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variants with minor allele frequency greater than 5% to filter rare variar.ts, giving a large
sparse matrix. We generated six data sets ()1—(Q)s and their dimensions a e si.>wn in Table 1.
When we extracted eigenvalues, they are set to be zero if they are smal' .. *han 107!°. As the
exact methods have internal estimates of accuracy, we compare Davie s (.980) method with
simulation p-value to verify Davies’s (1980) method is exact and c.n be =sed for moderate
and large quadratic forms (see Supplementary information).

Name @1 (@ @3 Q4 Qs = _
s 500 1000 2000 7000 900% 20700
m 470 987 1643 7352 8887 22456
n 305 637 1063 3985 /234 11259

Table 1: The dimensions of simulated human genome sequence data, whe e s is the number of people, m is
the number of variants and n is the number of non-zero eigenvaluc

Next, we compare the accuracy of the Satterth..~ite «pproximation, Liu-Tang—Zhang’s
(2009) four-moment approximation and Kuoner’« /12 ) saddlepoint approximation when
p-value is greater than machine epsilon. R (R Core Team, 2017) packages survey (Lumley,
2011) and CompQuadForm (Duchesne and De 1.l ~mx, 2010) are used to perform analysis
in this section. The eigenvalues of ()1 to @)« arc :xtracted using a full eigendecomposition.
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Figure 1 Compa- .suns between methods for the quadratic forms Q1—Q¢ when p-value is greater than
machine epsilor Exact ralues are computed using Davies’s (1980) method with accuracy 10716,

Results are p.csented in Figure 1 and Table 1 in Supplementary information. The x-
axis represen. : corresponding underlying true p-value from 107! down to 1073, The y-axis
represents the logarithm of error ratio to the base 10. It is computed by generating the
underlying true p-values using Davies’s (1980) method and then calculating the logarithm
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ratio of each method to Davies’s (1980) method. Our numerical studies sk ow that Kuonen’s
(1999) saddlepoint approximation is highly accurate. The maximum log. ~ithm of error
ratio is less than 0.07 in all cases. Moment methods have better perfor ... nce than Kuonen’s
(1999) saddlepoint approximation in the left tail but are anti-conser «ati- e in the right tail.
The Satterthwaite approximation is accurate if the p-value is great.~ tha. 107!, Liu-Tang—
Zhang’s (2009) four-moment approximation performs better and is ~~cui.*e until 1072. After
that, the logarithm of error ratio for both two moment method: inc.ec 2s very fast. Figure
1 also shows that moment methods tend to have better performai. ~ for moderate quadratic
forms than large quadratic forms under our simulated hume .1 gen ‘me sequence data.

If the p-value is smaller than machine epsilon, neither the mome .t methods nor the exact
methods work. All that’s left is the saddlepoint approxim~..on. 1o analyse the extreme right
tail performance of the saddlepoint approximation, we ~c .sid r exponential tail rates. A
linear combination of chi-squared variables have an ex, ~ner**.l tail in the sense of Berman
(1992), with tail rate 1/2X;. We show in Appendix A tha. the saddlepoint approximation
has the same exponential tail rate in the extrem~ rig>t t.il, so that the relative error in
Pr(Q(X) > q) is bounded as ¢ — oo, for any A anu 3. Kuonen (1999) showed that the
relative error is of order 0(n‘3/ %), so the approxu. ation improves with increasing n, and the
saddlepoint approximation can be used as a r~ference in the extreme right tail.

3. A leading-eigenvalue approximatio « “nc °r genetic settings

This section explores accuracy and t ... =~ plexity for a leading-eigenvalue approxima-
tion. It approximates the distribution of Q(.7) by formula (4) in Lumley et al. (2018) which
1s

k
T~ (Z /\iX%> +axg, (2)
i=1

where A1, ..., Ay are the largest k <> nvalues of matrix M, a = (3, A?)/(>r,; Ai) and
A= (T M/ 22).

The leading eigenvalur  are excracted using a low-rank SSVD (Halko et al., 2011). In
Equation (2), the leadi’ g t rms can be combined using either the exact methods or the
saddlepoint approximstion, and the remainder term is obtained by the Satterthwaite ap-
proximation. Followe 1 bv the performance of approximation methods discussed in Section 2,
the leading terms are ¢. mb'ned using Davies’s (1980) method if the p-value is greater than
machine epsilon a 1d using Kuonen’s (1999) saddlepoint approximation if the p-value is near
or beyond machii ¢ epsi on. If the number of leading eigenvalues k is much smaller than
n, a leading-e’_cnvaiue approximation also works well with Farebrother’s (1984) method,
because the vriable ag would not underflow to zero for small quadratic forms.

For accurac, e compare the leading-eigenvalue approximation with Davies’s (1980)
method wi.~n ) -, lue is greater than machine epsilon and with Kuonen’s (1999) saddlepoint
approximatic ' in the extreme right tail using data generated in Section 2. R package bigQF
(Lumley, 2019) is used to do the leading-eigenvalue approximation. SSVD uses 50, 50, 100,
100, 200 and 200 eigenvalues for quadratic forms ()1—Qg respectively.
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q D LD RLD q D LD RLD

Q1 1.2x10% 1.647x107% 1.654x107% 0.005 Q. 4.0x10% 1.214x107% ©.215,.°09  0.000
1.6x10% 1.511x1079 1.518x107 0.005 5.4x10% 3.277x107°7 Z9276x10°°7 -0.001
1.9x10% 1.473x1079 1.480x10-%  0.005 6.8x10% 1.022x107% 1. 21x107% -0.001
2.3x10%  1.513x1071% 1.520x107°  0.004 8.2x10% 3.395x107'< 7.390x107'2 -0.001
Qs 1.1x10% 1.515x10°% 1.512x10-% -0.002 @, 1.2x10% 4.396x10 " 4.5.ix107%* -0.008
1.5%x10%  2.770x10797 2.766x107°7 -0.002 1.7x10%  4.158% 7,797 4.27x107°7 -0.007
1.9x10% 5.804x10710 5.885%x1071° -0.001 2.2x10%  4.625 <10 1.592x107'° -0.007
2.3x10%  1.348x107'? 1.341x107'? -0.005 2.7x10% 5421, 'r “13 5438%x10~13  0.003
Qs 2.0x10% 2242%x107% 2.242x107% 0.000 Qs 9.0x10°% 37°23x10 ' 3.024x107% -0.001
2.5x10% 1.515%x107°7 1.515x107%7  0.000 1.2x10°7 ' .826x1. 797 8.820x10797 -0.001
3.0x10%  1.091x107% 1.091x107%  0.000 1.5x10%7 £ R72x1r 99 2.870%x107% -0.001
3.5x10% 8.134x10'? 8.126x10~'2 -0.001 1.8x10%  9.852~107'2 9.806x10~'2 -0.003

Table 2: Probability that the quadratic forms Q1—Qg exceed ¢, 1: exact v .lue using Davies’s (1980) method
with accuracy 10716; Lp: the leading-eigenvalue approximation wi e the leading eigenvalues are combined
using Davies’s (1980) method; Ry,: (Lp — D)/D.

q S Lg Ry, q S Lg Ry

Q1 2.8x10% 2.364x107'% 2.374x1071%  0.004 ., °x10% 8455x107'2 8.449x10~'2 -0.001
3.8x10% 8.871x107! 8.910x10~Y  0.004 1.0x10%  2.578x107* 2.576x10~'> -0.001
4.8x10% 35101072 3.525x10%* 0.0 - 1.2x10%  8.124x107*° 8.117x10~' -0.001
5.8x10% 1.430x107%° 1.436x10~%  0.004 1.4x10%  2.614x10~2 2.612x1072%2 -0.001
Qs 2.0x10% 1.406x10710 1.404x1071  .2°t 0, 3.0x10% 1.090x10-* 1.082x10~'* -0.007
2.5x10%  7.213x107  7.203x1071 -0.u " 3.5x10%  1.356x107'7 1.347x107'7 -0.007
3.0x10% 3.838x10'7 3.832x107'7 -0.001 4.0x10% 1.714x1072° 1.701x1072° -0.007
3.5x10% 2.088x10729 2.085x10" - - 001 4.5%x10% 2189%x10723 2.174x107% -0.007
Qs 4.0x10% 6.899x1071 6.907x? ¥  0.101 Qg 2.0x10°7 2.524x1071 2.538x107'*  0.006
4.5x10% 5.342x107% 534910~ r.001 2.5%x10°7 2.125%x10~17 2.137x10~Y  0.006
5.0x10% 4.177x107'8 4.18 x10 ' v.001 3.0x10% 1.845x107%' 1.856x1072' 0.006
5.5%x10% 3.291x10720 3.2.7x',=20  0.001 3.5%x10°7 1.634x10"%° 1.643x10~%  0.006

Table 3: Probability that the qus a.. “ic forms Q1—Qg exceed ¢, S: approximation obtained by a full eigende-
composition of Kuonen’s (1999) saddlep. 'nt approximation; Lg: the leading-eigenvalue approximation where
the leading eigenvalues are cc nb1 ed using Kuonen’s (1999) saddlepoint approximation; Ry : (Ls — S)/S.

Results are shown in Table 2 and 3. The convolutions of leading terms are approximated
by Davies’s (1980) 1. *.od .n Table 2 and Kuonen’s (1999) saddlepoint approximation in
Table 3. The relat’vc error 1s less than 1% for all examples in the whole probability range. So
that the leading- igenva ue approximation is consistent with Davies’s (1980) method when
the p-value is muci. '~_ger than machine epsilon and with the saddlepoint approximation
in the extrem > righu tail. There is no important loss in accuracy for the leading-eigenvalue
approximation. In Table 3, comparisons are made at very small p-values where the order is
smaller th .. **~#Y. As discussed in Section 2, the relative error of Kuonen’s (1999) saddle-
point approx-aation is uniformly bounded as ¢ — oo and the approximation improves with
increasing n. | umerical examples in Section 2 also show that Kuonen’s (1999) saddlepoint
approximation is highly accurate. It is reasonable to assume it will have the same accuracy
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as ¢ — 00. Therefore, a saddlepoint approximation and a leading-eigenva'ae approximation
combine to be usable for all p-values and all large enough numbers of v .ria. 'es.

For time complexity, except the moment methods, implementat’.. of other existing
methods needs to extract all the eigenvalues. It would cost O(n?) t me ¢o do a full eigen-
decomposition for X or X? (Golub and Van Loan, 2012). The cc mpu.. +Hional complexity
for SSVD (Halko et al., 2011) is of order O(n*k) to get the 1-aesy ™ eigenvalues. As
ST A = trace(M) and > A7 = trace((M)?), the remainder t rm o1 Zquation (2), which
is approximated by the Satterthwaite approximation, also take. O(n?) time. So that a
leading-eigenvalue approximation would reduce the comput stione! complexity from O(n?)
to O(n?k).

Moment methods are implemented by matching mom- ... "l ne Satterthwaite approxima-
tion can be calculated in O(n?) time, but Liu-Tang-Zh -, s ( /009) four-moment approxi-
mation is no faster than singular value decomposition ("VD) "ecause computing the fourth
moment would take as much work (n? operations) as gettu 3 all the eigenvalues.

Even after the eigenvalues are computed, there 15 ~ler a speed problem in adding up
thousands or tens of thousands of terms. In order to ~chieve the same accuracy, Davies’s
(1980) and Farebrother’s (1984) methods woula “pend more computational time for large
n, because Davies’s (1980) method needs mo== integ.ation terms and Farebrother’s (1984)
method needs more terms in truncated series. " hese two methods would also take more
time to compute a small p-value as the nun. .~r o1 “erms they need is dependent on accuracy.
The computational time of moment methods and the saddlepoint approximation does not
increase when the p-value is getting sma. ~r.

For Davies’s (1980) method, it is slow to get high accuracy if the sum is dominated by
a small number of eigenvalues and *ae .. mmber of terms n in the sum is large, because the
number of integration terms is higi.'v dep« ndent on accuracy in this context. Table 4 shows
that, for large quadratic forms, n orac: to get high accuracy (107'% in our example), the
computational time of Davies’s (1€¢30) nethod increases with the largest eigenvalue.

(ab\ A B C D E
Time(s) 0.01 0.05 041 3.96 34.77

Table 4: Computational tin.. <. computing a single p-value around 10~% with accuracy at 1073 using
Davies’s (1980) method. _ase A . ses eigenvalues of @5, case B, C, D and E are obtained by multiplying
the largest eigenvalue of case A b - 10,102,10% and 10* respectively.

A leading-eig: nvalue approximation would do well in such situation because only the
largest k eigenvali~s ar: combined using either the exact methods or the saddlepoint ap-
proximation. A leac'ing-eigenvalue approximation has the computational advantage in both
computing th. eigen ralues and adding them up.

However uniess n is greater than hundreds, there is no reason to use the leading-
eigenvalue «or coximation as it does not save any time. We compare computational time of
SSVD and SV for 1—Q, and a small example @)y (s = 2000; m = 67) provided in the SKAT
package (Lee et al., 2017). SSVD uses 50 eigenvalues for Qo and 100 eigenvalues for Q1-Qy.
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As shown in Table 5, SSVD does not save time for small n. For moderat : and large n, the
choice of k is not important as long as k is large enough. The criterion for v. » choice of k is
provided in Section 3.3 of companion paper (Lumley et al., 2018). As T-ble 2 and 3 show,
the relative error does not increase way out in the tails. So the crit rio’. is also applicable
here even the p-value is much smaller than the companion paper (I nmic - et al., 2018).

Qudratic foom Qo Q1 Q- Qs Q.
SVD(s)  0.03 024 222 1340 .56

SSVD(s) 0.12 024 084 255 34.0v

Table 5: Comparisons of computational time between "SVT and SVD.

4. Impact of sparsity, rank and definiteness of .~atriv M

Sparsity would affect the speed of computing eig nvalue:, but the leading-eigenvalue ap-
proximation still has the computational advantage ~ver .. rull eigendecomposition for mod-
erate and large quadratic forms. SSVD (Halko et =1 *"11) takes & matrix multiplications.
Suppose M = X X7 if matrix X is sparse with ar.” non-zero entries, a matrix-vector multi-
plication takes an? time, so the leading eigen ...~ ~an be computed in O(an?k) time. The
setting in the companion paper (Lumley et al., :018) was for situations where X or M is
not sparse, but matrix X is the product of ¢ s arre matrix and a projection on to residuals
for an adjustment model. If the number ~f adj stment variables is p, the leading eigenvalues
are available in O(k(an? + np?)).

If X is a general dense matrix, a matrix-vector multiplication takes n? operations, com-
puting the k leading eigenvalues wr uld te ke O(n?k) time. Therefore, for moderate or large
quadratic forms, the leading-eigenva. "o ar proximation is always faster than a full decompo-
sition, and the advantage can b . lar ger if the matrix X has a special structure.

The rank of matrix M does » ,t a’.ect computational complexity, because the leading-
eigenvalue approximation is ot simply a low-rank approximation. The matrices simulated
in Section 2 are not full rank, .t their ranks are still much larger than k and computa-
tion would be the same " v. ey were full rank. Figure 2 in the companion paper (Lumley
et al., 2018) illustrated {.-is "y comparing a leading-eigenvalue approximation with a rank-k
approximation, showir g thay “he low-rank approximation is much less accurate.

Davies’s (1980) r atb »d, ~aoment methods and the saddlepoint approximation are usable
when matrix M h=e ne~'ive eigenvalues but Farebrother’s (1984) method is not usable
in such a situati m. A leading-eigenvalue approximation thereafter also works for nega-
tive definite, nega ive ¢ mi-definite and indefinite matrices as long as convolutions of the
leading eigent alues are calculated using either Davies’s (1980) method or the saddlepoint
approximatio. .

5. Discuss 91

Moment methods are inaccurate for very small p-values. They use a single x? distribution
to approximate the distribution of Q(X) giving a right tail that decreases faster than the
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true distribution. Except for the Satterthwaite approximation, the other moment methods
are no faster than getting all the eigenvalues: computing the third mo aen. would take as
much work as extracting all the eigenvalues.

Davies’s (1980) and Farebrother’s (1984) methods are exact wh n t'.e p-value is much
larger than machine epsilon. However, for large quadratic forn = Fe ebrother’s (1984)
method breaks down if the minimum eigenvalue is small and D--ries . method is slow to
obtain high accuracy if the sum is dominated by a small nu abe oI terms. A leading-
eigenvalue approximation avoids above problems, so that it wors. well with both Davies’s
(1980) and Farebrother’s (1984) methods.

The saddlepoint approximation ends up with highly acc. rate 2 pproximation results for
very small p-values. We show it has the correct exponer.ial rave in the extreme right tail,
so the relative error is bounded as ¢ — oo, for any A anc > In »ur numerical examples, the
maximum logarithm of error ratio is less than 0.07. ThL.vefo: -, a saddlepoint approximation
and a leading-eigenvalue approximation combine to be usahle for all p-values and all large
enough numbers of variables.

For large quadratic forms, a leading-eigenvalue app ~ximation provides a computational
advantage without any important loss in accuracy ~nd convolutions of the leading eigenvalues
can be approximated by either the exact methnds or ‘he saddlepoint approximation.
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Appendix A. Exponenti' .l tai. vate of the saddlepoint approximation

Theorem 1. The saddlepoint ap, oximation has the correct exponential rate in the extreme
right taal.

PROOF. One form of saddlepuint approximation defined in Equation (3) of Kuonen (1999)
can be expressed in .~rr. of :rror function

1 v 1 1 x
where z = w + (1/u) log (v/w), w = sign(¢)[2{Cq — K({)}]2, v = {{K"()}2, K(C) is the
cumulant gener«. g function of Q(X) and é is the saddlepoint. When x > 1, the asymptotic
form of er1. v r.uccion can be expanded as (Decker, 1975)

—* 0 (=1)™(2m — 1)
erf(z) = 1 — e\/?_T Z (1) (21:1 ) g~ C@m+D)
m=0
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where (2m — 1)!! is the product of all odd numbers up to 2m — 1.
Retain the first term (m = 0) in above summation and then plug it i ito T"auation (A.1).
Using Theorem 3.1 of Berman (1992), the exponential tail rate then F_. ymes

dlog S 1 v 1 dx
— = —log(—)+ ————— | —. A2
dq <w+w Og(w)+w+ilog(%)) dg (8.2)

To get w and v, K (¢) and its derivatives should be deduced. (¥ is a linear combination

of central x variables, so that K (¢) = —3 Y7, log(1—2C\;), v ere ., ... A, are the non-zero

cigenvalues and ¢ < 3 min1/);. As the saddlepoint is the ve lue of " satisfying K’ () =gq, it
can be simplified to

T

. A\
K'(Q) = z; 1——26)\2 =q. (A.3)

Equation (A.3) shows that as ¢ tends to infiniv, ¢ veuds towards 1/2X;, but it will be
always less than 1/2);, where A; is the largest eicon=' . In above summation, the largest
term is Ay /(1 — 25‘)\1), so that ¢ can be approximate. by (¢—XA1)/2X1q. Then the asymptotic
expression of w and v can be written as ((¢ - A, )2 and (g — A1)/v2A1. As ¢ — oo, w
and v tend towards infinity as well. Plugging a. /dg, w and v into Equation (A.2), the tail
rate can be expressed as

dlog S L1 (v)+ 1 \ 1 1 | (v) 1 n 1
— ~ | w+ —log(— — og(—) —
dq w S Wt Llog(2)) (2)\110 2\ w3 S 220w 2\ vw
1 1
~w = —.
2)\1'11} 2)\1
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