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Abstract

In this work, we investigate the adequacy check of errors-in-variables varying-coefficient model-

s when replicate measurements are available. Estimation using the naive method that ignores

measurement errors is biased. After the calibration of the estimators of the regression coefficient

functions, we construct an empirical-process-based test statistic by the attenuation of corrected

residuals. The asymptotic properties of the test statistic under the null hypothesis, global and

various local alternatives are established. Simulation studies and real data analyses reveal that the

proposed test performs satisfactorily.

Keywords: Additive measurement error, Empirical process, Model check, Replicate

measurements, Varying-coefficient models

1. Introduction

The varying-coefficient regression models are widely known tools used to characterize the as-

sociation between a response and a group of dynamic covariates. The dynamic pattern is due to

the fact that the regression coefficients may be functions that have unknown forms and depend on

some other covariates. Hence, they still inherit the structure and interpretability of the traditional5

linear models, but possess the flexibility of nonparametric regression. See [1] and [2], among others.

Varying-coefficient regression modeling is widely used in a wide range of scientific areas, where

dynamic features are of importance. On the other hand, highly frequently, the covariates inevitably
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suffer from random measurement error. Within the errors-in-variables varying-coefficient data set-

ting, there is a vast amount of literature on estimation procedures. However, surprisingly, there10

are relatively fewer works on model adequacy checking. See [3], [4], [5], [6], [7] and [8], among oth-

ers. Among the existing literature, the works mainly focus on parametric model diagnostics. For

example, [5] considered the goodness-of-fit test of parametric models in the context of the classical

measurement error framework.

Parametric modeling often has to face the embarrassment of misspecification; distribution-free15

test procedures would be a robust alternative. Nevertheless, the treatments are quite different in

the aforementioned two scenarios. In the situation where the measurement error distribution is

completely unknown, practical needs call for more effective test procedures. To the best of our

knowledge, there are few works that can address such test problems in varying coefficient models.

Though the score-type test and the modification of estimation equations of [5] can be applied to20

many semiparametric models, they lose effect for the varying-coefficient models because of the

absence of the finite-dimensional parameter. Therefore, we investigate such model testing problems

by presenting empirical process (EP) based test methods. Such procedures enable effective local

and omnibus goodness-of-fit tests for a errors-in-variables varying-coefficient regression model with

replicate measurements.25

The lack-of-fit test of regression models serves as a useful tool to avoid model misspecification.

However, for research on hypothesis testing for measurement error regression models, the main

difficulty lies in the impossibility of calculating the likelihood or forming residuals when extending

classical testing procedures. In our methodology, we first calibrate the measurement error, which

avoids the biased estimation of residuals. Then, we use the idea of traditional residual analysis30

and derive a powerful test statistic based on an empirical process representation. Through the

combination of the local linear smoothing technique and correction of attenuation, we may provide

an accurate estimate of the regression coefficient function. Our novel approach is superior to the

existing methods such as deconvolutional kernel techniques or minimum distance procedures because

the accumulated residuals turn into an EP for model adequacy checking. Hence, this data-driven35

test method enjoys the advantage of the EP to avoid the nonparametric smoothing of the unknown

distribution function of model errors.

The contribution of our work is trifold. First, we fill the gap of model checking by a new

residual analysis technique for the errors-in-variables varying coefficient models with replicate mea-
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surements. Our proposed test can detect infinite moment conditions rather than only one or several40

moment conditions in score-type tests. Second, we establish the asymptotic properties for local and

omnibus test procedures and obtain the optimality of the test in testing local alternative models.

The subsequent inference is relatively challenging compared to that of most parametric models in

the literature. Finally, the EP-based test has a dimension-reduction effect compared to the ap-

proachesthat apply the nonparametric smoothing to the model errors, for example, the weighted45

integrated squared distance (WISD) test [9] and the test based on the U-statistic [10, 11].

The rest of the paper is organized as follows. In section 2, we propose our test statistic and

establish the main results for an omnibus test. In section 3, we investigate several other local test

procedures and establish the corresponding asymptotic theory. In section 4, we demonstrate the

numerical analysis by the design of simulation studies and two real-world data analyses. Finally,50

we provide a brief summary. The proofs are detailed in the appendix.

2. Methodology and omnibus test

We formulate the varying-coefficient model in the form of

Y = α(U)⊤X+ ε, (2.1)

where Y is the scalar response variable, X = (X1, · · · , Xp)
⊤ is a p × 1 covariate, and α(·) is a p-

dimensional vector of unknown coefficient functions depending on a single covariate U . A common55

assumption is that E(ε2|U,X) < ∞.

In practice, some covariates are often unavailable because they suffer from measurement error.

In (2.1), let X = (X⊤
1 ,X

⊤
2 )

⊤ with X1 = (X1, · · · , Xq)
⊤ and X2 = (Xq+1, · · · , Xp)

⊤. We consider

the case where the covariate X1 is measured with the classical additive error, and the covariate X2

is exactly observed. Instead of the covariate X1, we observe X̃1, which satisfies60

X̃1 = X1 + e1, (2.2)

where e1 is the measurement error with mean zero and the covariance matrix Σ1, which may

be unknown. We assume that e1 is independent of (X⊤, U, ε)⊤, and the measurement error is

nondifferential in the sense that E(Y |X, X̃1, U) = E(Y |X, U). Let X̃2 = X2 and e = (e⊤
1 0⊤)⊤.

Then, X̃ = X + e . Denote the covariance matrix of e by Σe. Then, the observed data from the

population (Y, X̃, U) may be written as {(Yi, X̃i, Ui), i = 1, · · · , n}.65
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One challenging issue in implementing varying coefficients models is that the nonlinear functional

form of the continuous variables may be misidentified. Therefore, it is important to implement a

suitable testing procedure before further statistical analyses. To the best of our knowledge, there

is no existing work addressing the adequacy check of varying-coefficient models when the variable

is measured with error and distribution information is absent. We aim to fill this gap and consider70

the following testing problem:

H0 : ∃ α(U) s.t. E[Y |X, U ] = α(U)⊤X, a.s. (2.3)

against the alternative hypothesis that H0 is not true when some components of X, for example,

X1, are measured with classical error. Under the alternative hypothesis, the covariates X, or U ,

or both need to enter the model as an unknown function, but α(U)⊤X. Therefore, we consider an

omnibus test.75

When the data are measured with classical error, the naive method ignores the measurement

error and applies directly the method appropriate for exactly observed data, yielding α̂naive(u),

which is the biased estimator of the coefficient function in (2.1). The corresponding naive estimated

model error may be decomposed into

ε̂naive(Yi, X̃i, Ui) =: Yi − α̂naive(Ui)
⊤X̃i

= {Yi − α(Ui)
⊤Xi}+ {α(Ui)− α̂naive(Ui)}⊤Xi + α̂naive(Ui)

⊤(Xi − X̃i),

for i = 1, 2, · · · , n. It is readily validated that under the null hypothesis, the expectations of the80

first and the third summands tend asymptotically to zero, but this is not true for the second term

as the sample size converges to ∞. Therefore the expectation of the naive residuals do not converge

to zero under the null hypothesis. Consequently, the naive model checking method for Model (2.1)

tends to reject the null hypothesis and loses its effect. It is natural that we calibrate the estimator of

the coefficient function vector α(u) as the first step, denoted by α̂n(u). We provide a brief overview85

in the Appendix as it is standard and analog to [12].

Note that the null hypothesis (2.3) is tautological to E[{Y − α(U)⊤X}1(X < x , U < u)] = 0

for x ∈ Rp and u ∈ R. When data are accurately observed, [13] constructed the following test

statistic:

T XZ
n =

∫
[ĈRn,XZ(x , u)]

2dF xz
n (x , u) (2.4)
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where F xz
n (·) is an empirical distribution function based on {(Xi, Ui), i = 1, · · · , n}. The cumulative

summation process ĈRn,XZ(x , u) is defined as

ĈRn,XZ(x , u) = n−1/2
n∑

i=1

{Yi − α̃n(Ui)
⊤Xi}1(Xi < x , Ui < u),

where α̃n(u) is the local constant kernel estimator of the coefficient function α(u) based on the90

sample {(Yi,Xi, Ui), i = 1, · · · , n}.

Because the predictor X1 is measured with error, as shown in the above discussion, the direct

application of the method of [13] cannot control Type I error since the naive residuals do not

converge to zero under the null hypothesis. A natural alternative is to use the corrected estimator

α̂n(u) of the coefficient function and replace the true variable X by the observed variable X̃. Thus,95

the following test statistic is constructed:

T direct
n =

∫
[ĈRn,direct(x , u)]

2dF̃n(x , u) (2.5)

where

ĈRn,direct(x , u) = n−1/2
n∑

i=1

{Yi − α̂n(Ui)
⊤X̃i}1(X̃i < x , Ui < u),

and F̃n(·) is the empirical distribution function based on {(X̃i, Ui), i = 1, · · · , n}.

It is readily validated that under the null hypothesis (2.3), E{ĈRn,direct(x , u)} =
√
nE{α(U)⊤(X−

X̃)1(X̃ < x , U < u)} + o(1) and E{α(U)⊤(X − X̃)1(X̃ < x , U < u)} ̸= 0. Thus, even under the

null hypothesis, T direct
n converges to ∞ as n → ∞. Clearly, the direct application of the variable100

with measurement error in the indicator function causes the test method to lose effect.

Under (2.3), by the nondifferential condition and because e is independent of (X⊤, U, ε)⊤,

we have E[(Y − α(U)⊤X̃)1(X2 < z , U < u)] = 0. Under the alternative hypothesis, E[(Y −

α(U)⊤X̃)1(X2 < z , U < u)] tends to be away from zero. Therefore, it is reasonable to devel-

op a test method based on E[(Y − α(U)⊤X̃)1(X2 < z , U < u)]. Another outstanding merit of105

E[(Y − α(U)⊤X̃)1(X2 < z , U < u)] is that it can be estimated consistently without involving the

unavailable true variable X1.

Thus we further concentrate on the shrunken estimated empirical process of E[{Y−α(U)⊤X̃}1(X2 <

z , U < u)],

ĈRn(z , u) = n−1/2
n∑

i=1

{Yi − α̂n(Ui)
⊤X̃i}1(X2i < z , Ui < u). (2.6)
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Then, we have a modified representation for T direct
n as our final version of the test statistic:110

Tn =

∫
[ĈRn(z , u)]

2dFn(z , u), (2.7)

where Fn(·) is an empirical distribution function based on {(X2i, Ui), i = 1, · · · , n}.

Let Q(U) = E(XX⊤|U). Denote

IFz ,u(Xi, X̃i, Ui, Yi, εi, ei)

= εi1(X2i < z , Ui < u)− α(Ui)
⊤e i1(X2i < z , Ui < u)

+X̃iεiE{Q−1(U)X̃1(X2 < x , U < u)|U = Ui}

−E{Q−1(U)X̃
⊤
1(X2 < z , U < u)|U = Ui}α(Ui)Xie

⊤
i

for i = 1, · · · , n. Then, we have the following asymptotic convergence of the omnibus test.

Theorem 2.1. Under the regular conditions listed in the Appendix, when the null hypothesis (2.3)

holds, we have the following results:115

(i) E[ĈRn(z, u)] converges to 0 as n → ∞.

(ii) The estimated empirical process ĈRn(z, u) has the following asymptotic expansion:

ĈRn(z, u) = n−1/2
n∑

i=1

IFz,u(Xi, X̃i, Ui, Yi, εi, ei) + op(1). (2.8)

Furthermore, we can prove that Tn
L−→

∫
{R(z, u)}2dF (z, u), where R(z, u) is a centered Gaussian

process with the covariance function,

Cov{R(z1, u1), R(z2, u2)} = E{IFz1,u1(X, X̃, U, Y, ε, e)IFz2,u2(X, X̃, U, Y, ε, e)}

and F (z, u) is the distribution function of (X2, U).120

Theorem 2.1 suggests that the expectation of ĈRn(z , u) converges to zero when n → ∞ for any

z ∈ Rp−q and u ∈ R under H0. The test statistic Tn tends to be zero under the null hypothesis

but becomes larger under the alternative hypothesis. Thus, the test is one-sided, and the null

hypothesis should be rejected for some large enough value of Tn.

Remark 1. The equation E[{Y − α⊤(U)X̃}1(X2 < z, U < u)] = 0, ∀ z ∈ Rp−q, u ∈ R is equal125

to E{Y − α(U)⊤X̃|X2, U} = 0. Moreover, it can be proven that E{Y − α(U)⊤X̃|X2, U} = 0

under the null hypothesis. Therefore, the proposed test Tn can judge the null hypothesis and control
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Type I error. Further, because the measurement error variable e is independent of (X⊤, U, ε)⊤, the

condition that E{Y − α(U)⊤X̃|X2, U} = 0 is tantamount to E{Y − α(U)⊤X|X2, U} = 0. Though

the proposed test Tn cannot detect the alternative models satisfying E[Y − α(U)⊤X|X, U ] ̸= 0 a.s.130

but E[(Y −α(U)⊤X)|X2, U ] = 0 a.s., compared with the score-type test, the above properties are still

desirable. The proposed test can detect infinite moment conditions. However, the score-type test only

detects one or several moment conditions. For example, looking into the expression ĈRn(∞,∞),

we obtain a score-type test, which actually tests the specific direction, E(Y − α(U)⊤X̃) = 0.

3. Local tests and asymptotic results135

In this section, we will introduce several local test procedures that are important in practice.

First, we consider the alternative hypothetical models:

H1n : Y = g(X, U) + ε a.s. (3.1)

with some arbitrary bounded measurable nonzero function g(X, U) which cannot take the form of

α(U)⊤X for any measurable function α(U).

Theorem 3.2. Under the regular conditions listed in the Appendix, under the alternative hypothesis140

(3.1), if E(η|X2, U) ̸= 0 a.s., where η = g(X, U)−α(U)⊤X+ ε, then the test statistic Tn converges

to ∞ as n → ∞.

The alternative hypothesis (3.1) is equivalent to E(η|X, U) ̸= 0 a.s.. It is only for the scenarios

when E(η|X, U) ̸= 0 a.s., but E(η|X2, U) = 0 a.s., that the proposed test loses some power. For

any other scenarios, the proposed test has asymptotic power one. This is an outstanding merit of145

the proposed test compared with the score-type test.

The second local test that we consider is Pitman local alternative hypothetical models:

H2n : Y = α(U)⊤X+ n−1/2D(X, U) + ε, a.s. (3.2)

with some arbitrary bounded measurable nonzero function D(X, U), which cannot take the form

of α(U)⊤X for any measurable function α(U). The Pitman local alternative hypothetical models

converge to the null one at the rate n−1/2.150

Let ∆(z , u) = E
[
Q−1(U)E{X̃D(X, U)|U = u}X̃1(X2 < z , U < u)

]
+E{D(X, U)1(X2 < z , U <

u)}. This is corresponding large sample convergence property.
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Theorem 3.3. Under the regular conditions listed in the Appendix, when the local alternative (3.2)

holds, we have the following results:

(i) E[ĈRn(z, u)] converges to ∆(z, u) as n → ∞;155

(ii) The test statistic Tn converges to
∫
{R(z, u) + ∆(z, u)}2dF (z, u), as n → ∞.

The drift function ∆(z , u) can measure the difference of the estimated empirical process under

the null hypothesis (2.3) and the alternative hypothesis (3.2). Thus, the test Tn has nonignorable

power for the alternative hypothesis (3.2). The property is unavailable for the local testing methods,

such as the weighted integrated squared distance (WISD) test and the test based on the U-statistic.160

Finally, we consider the local alternative hypothetical models:

H3n : Y = α(U)⊤X+BnD(X, U) + ε, a.s. (3.3)

with n1/2Bn → ∞ and an arbitrary bounded measurable nonzero function D(X, U), which cannot

take the form of α(U)⊤X for any measurable function α(U).

Denote the critical value of the test by c
α
, which satisfies Pr{Tn > c

α
} → α as n → ∞ under

H0 in (2.3). We have the results presented below.165

Theorem 3.4. Under the regular conditions listed in the Appendix, when the local hypothesis (3.3)

with n1/2Bn → ∞ holds, we have the following results:

(i) E[ĈRn(z, u)] converges to ∞ as n → ∞;

(ii) The test statistic Tn converges to ∞ as n → ∞. Therefore, the power function Pr{Tn >

cα |H3n} converges to 1 as n → ∞.170

The above theorem shows that the proposed test is consistent against the local alternative hypo-

thetical models (3.3).

Following [14] and [15], to obtain the critical value of the proposed test, we resort to the wild

bootstrap method to mimic the null distribution of the proposed test statistic. Let {Vi}ni=1 be the

random variable sequence with E(Vi) = 0, var(Vi) = 1 and |Vi| < C for some finite constant C.175

The details of the wild bootstrap are as follows:

Step 1: Calculate the test statistic Tn according to (2.7);

Step 2: Generate random variables {Vi}ni=1, and compute the bootstrap response variables:

Y ∗
i = α̂n(Ui)

⊤X̃i + {Yi − α̂n(Ui)
⊤X̃i}Vi, i = 1, · · · , n. (3.4)
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Employ the bootstrap sample {(Y ∗
i , X̃i, Ui), i = 1, 2, · · · , n}, and compute the test statistic Tn,

which we denote by T ∗
n ;180

Step 3: Repeat Step 2 B times, and obtain B values of T ∗
n , denoted by {T ∗

n1, · · · , T ∗
nB}. Take

the 1− α sample quantile of {T ∗
n1, · · · , T ∗

nB} as the critical value at the given level α.

By similar analyses of Theorem 1 of [15], we can obtain the result that the test statistic Tn and

the bootstrap test statistic T ∗
n have the same asymptotic distribution under the null hypothesis and

the local hypothesis (3.2). Therefore, the critical value determined by the bootstrap method is a185

good substitute for the unknown true critical value, which ensures that the wild bootstrap method

can maintain a nominal test size. Furthermore, the above wild bootstrap scheme is unrelated to

the distributional information of the model error and is robust to the conditional heteroscedasticity

of the model error. We can also find that the proposed test is data-driven, which means that a

conclusion whether a varying-coefficient model can fit the data or not can be drawn directly from190

the data.

4. Numerical studies

4.1. Simulations

In this section, we conduct simulation studies to assess the performance of the proposed test.

Recall that Σe = E(ee⊤). We consider both cases that Σe is known and unknown. When Σe is195

unknown, it can be estimated by employing the replicate measurements [16, 17]. Let mi be some

integer larger than one for i = 1, · · · , n. Let X̃i1, · · · , X̃imi be mi repeated observations of Xi, which

satisfy X̃ij = Xi+e ij for i = 1, 2, · · · , n; j = 1, 2, · · · ,mi. Here, we take mi = 3 for i = 1, · · · , n. We

calculate the mean of X̃i1, · · · , X̃imi , denoted by ¯̃Xi. Then, Σe can be estimated by the following:

Σ̂e =

∑n
i=1

∑mi

j=1(X̃ij − ¯̃Xi)(X̃ij − ¯̃Xi)
⊤∑n

i=1(mi − 1)
. (6.1)

We compute the empirical sizes and powers of the proposed test by considering the following three200

examples.

Example 4.1.1: We consider the model:

Y = U2X1 + 4 ln(U/2)X2 + d{sin((X1 +X2)
2)− ln(|X1X2|)}+ ε.

In this example, X1 and X2 follow N (1, 1), ε ∼ N (0, 1), U ∼ U(0, 2). The observed variables

with measurement errors, X̃1 and X̃2, satisfy X̃1 = X1 + e1 and X̃2 = X2 + e2 with (e1, e2)
⊤ ∼
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Laplace(0,Σe). We consider two choices of Σe: Σ1 = diag(0.5, 0) and Σ2 = diag(0.3, 0). Clearly,

the variable X2 is accurately observed. Let d0 be 0, 0.5, 1.5, 2.5, 4.0. The constant d is chosen to be205

d0n
−1/3.

Example 4.1.2: The following model is considered:

Y = −UX1 + (2 exp(U) + 1)X2 + cos(1.5
√
U)X3 + d exp(sin(X1X2) +X3 − 2U) + ε.

Let X1 and X2 follow N (1, 1), X3 ∼ U(0, 2π), ε ∼ N (0, 1), U ∼ U(0, 2). The observed variables

with measurement errors, X̃j , satisfy X̃j = Xj + ej for j = 1, 2, 3 with (e1, e2, e3)
⊤ ∼ N (0,Σe). We

consider two choices of Σe: Σ1 = diag(0.5, 0, 0) and Σ2 = diag(0.3, 0, 0). Let d0 be 0, 0.1, 0.2, 0.5, 1.0

and the constant d is chosen to be d0n
−1/2.210

Example 4.1.3: We consider the following model:

Y = log(3U)X1 − 1.5 sin(πU)X2 +
√
UX3 + exp(cos(U))X4

+d{cos(X1 +X3) + UX2X4}+ ε.

Let the covariates X1 and X3 follow N (1, 1) and the covariates X2 and X4 follow U(0, 2π). Further

we generate the model error variable ε and the covariate U from N (0, 1) and U(0, 1), respectively.

The observed variables with measurement errors, X̃j , satisfy X̃j = Xj + ej for j = 1, 2, 3, 4 with

(e1, e2, e3, e4)
⊤ ∼ N (0,Σe). We consider two choices of Σe: Σ1 = diag(0.5, 0.5, 0, 0) and Σ2 =

diag(0.3, 0.3, 0, 0). The constant d is chosen to be 0, 0.2, 0.5, 1.0, 2.0.215

In the above examples, when d = 0, the null hypothesis holds. The different values of d larger

than zero mean that different alternative models are considered. We fix the sample size n to be 100

and 200. Take test levels to be 0.05 and 0.1. The times of bootstrap resample B is set to be 300.

To estimate the regression coefficient, the Gaussian kernel function is selected.

Bandwidth selection: For the model checking problem, the choice of the associated bandwidth220

is a challenging problem. The proposed test involves a selection of bandwidth when estimating

the coefficient function. To illustrate the impact of bandwidth on the proposed test, we choose

five different bandwidths hn = Cσ̂(U)n−1/5 to compute the empirical sizes and powers with C

being one of 0.6, 0.8, 1, 1.2, 1.4. Here, σ̂(U) is the standard deviation of U based on the sample

{U1, · · · , Un}. For the Gaussian kernel function, the bandwidth hn = 1.06σ̂(U)n−1/5 is chosen by225

the rule of thumb [18]. The above five bandwidths are selected by considering both oversmoothing

and undersmoothing. The results under the sample sizes 100 and 200 and the test level 0.05 are

shown in Figure 1.
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Here inserts Figure 1

From Figure 1, it can be observed that the test with the ROT (rule of thumb) bandwidth230

(≈ σ̂(U)n−1/5) can control Type I error. When C = 0.6, 0.8, 1.2, the empirical sizes are similar.

But when C = 1.4, the empirical sizes tend to be larger than the test level. We also observed that

the bandwidth has an impact on the empirical powers when the alternative models are close to the

null hypothetical models corresponding to small values of d in all three examples. With the increase

in the values of d, the effect of the bandwidth on the empirical powers weakens.235

As shown in [19] and [20], finding an optimal bandwidth for hypothesis testing is still an open

problem. It is well-known that a maintenance of the significance level is important for the test-

ing methods. Therefore, by considering the feasibility and rationality, we choose the bandwidth

according to the following scheme. First, we take the bandwidth hn = Cσ̂(U)n−1/3 into account,

which satisfies the condition (C5) in the Appendix. Second, we compute the empirical sizes by240

considering the values of C varying from 1 to 3 at the 0.01 interval for all three examples based

on 500 repetitions. From the simulated results, we find that C = 2 is a good choice to keep the

empirical sizes close to the test levels. In the following simulation studies, we employ the bandwidth

hn = 2σ̂(U)n−1/3.

For the proposed method, the empirical sizes and powers are calculated based on 500 repetitions,245

which are listed in Tables 1-3. For comparison purposes, we apply the method of [13] to the errors-

in-variables settings considered in this paper directly. It should be noted that this method is actually

the naive method. The direct method T direct
n defined in (2.5) is also considered. The empirical

sizes and powers of these two tests are calculated and listed in Tables 1-3.

Here insert Tables 1-3250

From Tables 1-3, we can observe that the empirical sizes of the proposed method Tn are close

to the test levels for the case of Σe being known or unknown. These results demonstrate that the

proposed procedure works satisfactorily for controlling Type I error. Additionally, the empirical

powers of the proposed test increase with sample sizes and the values of d, which is reasonable.

However, it can be found that the empirical sizes of the method of [13] and T direct
n are much larger255

than the test levels. Clearly, these two methods cannot control Type I error and loss effect for

the considered testing problem with errors in variables. Note that if a test cannot control Type I

error, its high empirical powers are meaningless. Therefore, the superiority of the proposed test is

11



evident. As suggested by a reviewer, we have investigated the effect of mi on the performance of

the proposed test by making some additional simulation studies with mi = 6. We find that the260

empirical sizes and powers of the proposed test are similar for both cases of mi = 3 and mi = 6.

However, when practitioners use our test, if there are mi repeated observations in the dataset, we

suggest that all the mi repeated observations should be used.

4.2. Real Data Analyses

In this section, we employ the proposed method to analyze two datasets: the Framingham heart265

dataset and Duchenne Muscular Dystrophy (DMD) dataset. For the sake of comparison, we also

employ the method of [13] and the test method T direct
n to analyze these two datasets.

Example 4.2.1: Analysis of the data of the Framingham Heart Study The study

includes 1615 males aged from 31 to 65 years. We set the response variable Y to be the average

blood pressure in a fixed 2-year period. The covariates U , X1 andX2 denote age, the true cholesterol270

level, and the smoking status, respectively. The cholesterol level X1 is measured with error. The

observed cholesterol level X̃1 has two replicate measurements for each subject. All variables except

X2 are standardized. The description of this dataset can be found in [17].

We aim to check the adequacy of the following varying-coefficient model for this dataset:

Y = X1α1(U) +X2α2(U) + ε.

Here, X1 is measured with error e1, which satisfies E(e1) = 0 and var(e1) > 0. The variable X2

is free of measurement error. Hence, the covariance matrix of the measurement errors is Σe =275

diag(var(e1), 0).

The variance of e1 is estimated by applying the replicate measurements according to Equ.(6.1).

We choose the bandwidth and kernel function similar to the method in the simulation studies. We

employ the proposed method, the method of [13], and the method T direct
n in (2.5) to compute the

P -values, which are shown to be 0.077, 0.090, and 0.168. Thus, the null hypothetical varying-280

coefficient model is not adequate for this dataset. The runtime for the above three methods is

125.56 seconds, 128.73 seconds and 125.91 seconds.

To illustrate the rationale of the above results, we plot the residual plots of the proposed method

and the method of [13] in Figure 2. In Figure 2, we also plot the fitted and 95% confidence curves

of the estimated model errors.285
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Here inserts Figure 2

From Figure 2, we observe that the estimated model errors of the proposed method and the

method of [13] are distributed asymmetrically with regard to the abscissa axis. They are more

dispersive above the horizontal axis and are more centralized below the abscissa axis. We can also

note that the fitted curves of the estimated residuals deviate from the abscissa axis. Therefore the290

conclusion that the varying-coefficient model cannot fit the data is reasonable.

Example 4.2.2: Analysis of the data of Duchenne Muscular Dystrophy In the

following, we investigate the dataset of Duchenne Muscular Dystrophy (DMD) of 209 observations.

[21] analyzed this dataset to determine whether the partially linear model is adequate. They

calibrated the measurement error with the help of auxiliary variables under the framework of295

additive measurement error model. It is known that the choice of the auxiliary variables is a little

difficult and subjective. Here, we aim to check whether the varying-coefficient model is adequate

for this dataset by setting the response variable Y and the covariates U , X1, and X2 to be lactate

dehydrogenase (LD), age, creatine kinase (CK), and hemopexin (H), respectively.

For this dataset, we assume that the variables CK and H are measured with error because they300

are measured from frozen serum instead of fresh serum, and their measurements are affected by

environmental factors such as seasonality. The details can be found in [22]. Let X̃1 and X̃2 be the

observed values of CK and H respectively. Then, X̃1 = X1 + e1 and X̃2 = X2 + e2. We assume

two situations for Σe: Σ1 = diag(0.05, 0.05) and Σ2 = diag(0.07, 0.07). These assumptions mean

that the variables CK and H suffer from measurement errors with small variances. The other aim305

of these assumptions is to make the proposed method realizable.

All the data are standardized. The bootstrap procedure is repeated 1000 times. We compute

the P -values of the proposed method, which are 0.852 and 0.980 for Σ1 and Σ2, respectively. The

P -values of the test T direct
n in (2.5) are calculated, which are 0.521 and 0.938 for Σ1 and Σ2, re-

spectively. We also compute the P -value of the method in [13], which is 0.018. Therefore, it is310

concluded that the varying-coefficient model is not a good choice for the dataset when the mea-

surement errors are ignored. However, when the influence of the measurement errors is eliminated,

the varying-coefficient model can capture the relationship between the response and the covariates.

The runtime of the proposed test and the test T direct
n with Σe = diag(0.05, 0.05) is calculated

to be 1.957 seconds and 2.133 seconds, respectively. The runtime of the method of [13] is 2.047315

seconds.
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We plot residual plots, fitted residual curves and the 95% confidence curves of the estimated

residuals of the proposed method and the method of [13] in Figure 3. From Figure 3, we can

observe that for the method of [13], the estimated curve of the residuals deviates the abscissa axis.

However, for the proposed method, the estimated curves of the residuals for Σ1 and Σ2 coincide320

with the abscissa axis. Clearly, Figure 3 verifies that the test results are reliable.

Here inserts Figure 3

5. Conclusion

In this work, based on an estimated empirical process, we propose a new test statistic, and

establish several test procedures, to check the adequacy of the varying-coefficient models when some325

covariate is measured with error. The asymptotic properties of the test statistic were investigated for

various local and omnibus tests. The simulation results indicate that the proposed test procedures

are superior to the other two methods and can be applied regardless of whether the covariance of

the measurement errors is known or unknown. We admit that this type of test has high power for

some alternatives but may have power zero for other directions.330

The regression model checking with classical measurement error is very challenging. The existing

methods suffer from the heavy computational burden and the incapability to detect some alterna-

tive hypothetical models. The proposed method is computationally expedient and theoretically

reliable. Though the test method based on the deconvolution is difficult to extend conveniently to

semiparametric models, the proposed method can be extended to both semiparametric models and335

semiparametric models with complex structure. Further studies along this line of work can include

the adequacy check of semiparametric regression models with classical measurement errors or with

both classical measurement errors and other complex structure such as missingness, censorship or

high-dimensional covariates.
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Appendix

A.1. Assumptions400

We begin this section by listing the conditions needed in the proofs of the theorems.

(C.1) The function α(u) has the continuous second derivative related to u.

(C.2) The matrix Q(u) = E(XX⊤|U = u) is positive definite; E|ε|2+δ < ∞ and E|e |2+δ < ∞

with δ > 0.

(C.3) The density of U , say fu(u), exists and satisfies 0 < infu fu(u) ≤ supu fu(u) < ∞.405

(C.4) λ(·) is a bounded kernel function of order j(≥ 2) with bounded support.

(C.5) nhn → ∞, nh4
n → 0 and hn → 0 as n → ∞.

Remark 2. Condition (C.1) is needed when Taylor expansion of α(u) is conducted. Condition

(C.2) is necessary for the asymptotic normality of the model estimating procedure. Condition (C.3)

aims at avoiding tedious proofs of the theorems. Conditions (C.4)–(C.5) are common conditions in410

the nonparametric estimates.

A.2. Estimation of α(u)

Denote λh(·) = λ(·/hn)/hn, ωu = diag(λh(U1 − u), · · · , λh(Un − u)) and

Vu =


X̃

⊤
1

U1−u
hn

X̃
⊤
1

...
...

X̃
⊤
n

Un−u
hn

X̃
⊤
n

 .

Similarly to [12], we define an estimator of the regression coefficient function, denoted by α̂n(u), as

follows

α̂n(u) = (Ip 0){V ⊤
u ωuVu − Ω}−1V ⊤

u ωuY, (A.1)

where Ip is p× p identity matrix and

Ω =

n∑
i=1

Σe ⊗

 1 (Ui − u)/hn

(Ui − u)/hn {(Ui − u)/hn}2

λh(Ui − u).
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A.3. Proofs of Theorems415

Lemma 1. Under Conditions (C.1)-(C.5), under the alternative model (3.2), we have

(nhn)
1/2{α̂n(u)− α(u)− {Ip +Q−1(u)Σe}α(2)(u)µ2h

2
n}

= Q−1(u){ 1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)εi −

1√
nhn

n∑
i=1

Xie
⊤
i λ(

Ui − u

hn
)α(Ui)

⊤}

+
√
hnE{X̃D(X, U)|U = u}+ op(1) (A.2)

where α(2)(u) is the second derivative of α(u) related to u and µ2 =
∫
u2λ(u)du.

Proof: Step 1. Consider V ⊤
u ωuVu − Ω. By some simple computations, we can obtain that

1

n
V ⊤
u ωuVu =

1

nhn

n∑
i=1

 X̃iX̃
⊤
i X̃iX̃

⊤
i (Ui − u)/hn

X̃iX̃
⊤
i (Ui − u)/hn X̃iX̃

⊤
i ((Ui − u)/hn)

2

λ(
Ui − u

hn
).

By Conditions (C.4)-(C.5), we can prove that

1

nhn

n∑
i=1

X̃iX̃
⊤
i λ(

Ui − u

hn
) = E[X̃X̃

⊤|U = u]fu(u) + op(1),

1

nhn

n∑
i=1

X̃iX̃
⊤
i (Ui − u)/hnλ(

Ui − u

hn
) = op(1),

and

1

nhn

n∑
i=1

X̃iX̃
⊤
i ((Ui − u)/hn)

2λ(
Ui − u

hn
) = µ2E[X̃X̃

⊤|U = u]fu(u) + op(1).

By the facts that X̃ = X+ e and e is independent of U , it can be validated that E[X̃X̃
⊤|U = u] =

E(XX⊤|U = u) + Σe. So it follows the result:420

1

n
V ⊤
u ωuVu = {E(XX⊤|U = u) + Σe} ⊗

 fu(u) 0

0 µ2fu(u)

+ op(1).

Similarly, we can prove that

1

n
Ω = Σe ⊗

 fu(u) 0

0 µ2fu(u)

+ op(1).

Therefore we have

1

n
{V ⊤

u ωuVu − Ω} = E(XX⊤|U = u)⊗

 fu(u) 0

0 µ2fu(u)

+ op(1).
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Step 2. Consider (nhn)
1/2{α̂n(u) − α(u)}. Denote α(u) = (α1(u), . . . , αp(u))

⊤ and θ(u) =

(α1(u), . . . , αp(u), hnβ1(u), . . . , hnβp(u))
⊤, where βi(u) is the derivative of αi(u) for i = 1, · · · , p.

Let θ̂n(u) = {V ⊤
u ωuVu − Ω}−1V ⊤

u ωuY . Note that

1

n
V ⊤
u ωuY =

1

nhn

n∑
i=1

 X̃iYi

X̃iYi(Ui − u)/hn

λ(
Ui − u

hn
)

By some simple calculations, we can obtain that425

√
nhn{θ̂n(u)− θ(u)}

= { 1
n
(V ⊤

u ωuVu − Ω)}−1

√
hn√
n
{V ⊤

u ωuY − (V ⊤
u ωuVu − Ω)θ(u)}

= { 1
n
(V ⊤

u ωuVu − Ω)}−1

√
hn√
n
[{V ⊤

u ωuY − V ⊤
u ωuVuθ(u)}+Ωθ(u)]

=: { 1
n
(V ⊤

u ωuVu − Ω)}−1(Hn +Mn).

with

Hn =:

 1√
nhn

∑n
i=1 X̃iλ(

Ui−u
hn

)[Yi −
∑p

j=1{αj(u) + βj(u)(Ui − u)}X̃ij ]

1√
nhn

∑n
i=1 X̃i(Ui − u)/hnλ(

Ui−u
hn

)[Yi −
∑p

j=1{αj(u) + βj(u)(Ui − u)} X̃ij ]
.

and

(Ip 0){ 1√
nhn

(V ⊤
u ωuVu − Ω)}−1Mn =

√
nhnE

−1(XX⊤|U = u)Σeα(u)

+op(1).

Thus it yields

√
nhn{α̂n(u)− α(u)} = E−1(XX⊤|U = u)Gn + E−1[XX⊤|U = u]Σeα(u)

+op(1) (A.3)

with Gn = 1√
nhn

∑n
i=1 X̃iλ(

Ui−u
hn

)[Yi −
∑p

j=1{αj(u) + βj(u)(Ui − u)}X̃ij ].

Step 3. Consider Gn:430

Gn =
1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
){Yi − α(Ui)

⊤Xi}
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+
1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)(α(Ui)

⊤Xi − α(Ui)
⊤X̃i)

+
1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)[α(Ui)

⊤X̃i −
p∑

j=1

{αj(u) + βj(u)(Ui − u)}X̃ij ]

=:
3∑

j=1

Gnj (A.4)

Step 3.1. Consider Gn1: Under the alternative model (3.2), we have Yi − α(Ui)
⊤Xi =

n−1/2D(Xi, Ui) + εi for i = 1, · · · , n. Then it yields

Gn1 =
1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)[n−1/2D(Xi, Ui) + εi]

=
√
hnE{X̃D(X, U)|U = u}+ 1√

nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)εi

+op(1). (A.5)

Step 3.2. Consider Gn2:

Gn2 =
1√
nhn

n∑
i=1

(Xi + e i)λ(
Ui − u

hn
)α(Ui)

⊤(Xi − X̃i)

= − 1√
nhn

n∑
i=1

Xie
⊤
i λ(

Ui − u

hn
)α(Ui)−

1√
nhn

n∑
i=1

e ie
⊤
i λ(

Ui − u

hn
)α(Ui)

= − 1√
nhn

n∑
i=1

Xie
⊤
i λ(

Ui − u

hn
)α(Ui)

⊤ −
√

nhnΣeα(u) + op(1). (A.6)

Step 3.3. Consider Gn3:

Gn3 =
1√
nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)

p∑
j=1

α
(2)
j (u)(Ui − u)2X̃ij + op(1)

=
1√
nhn

n∑
i=1

X̃iX̃
⊤
i α

(2)(u)(Ui − u)2λ(
Ui − u

hn
) + op(1)

=
1√
nhn

n∑
i=1

(Xi + e i)(Xi + e i)
⊤α(2)(u)(Ui − u)2λ(

Ui − u

hn
) + op(1)

=
1√
nhn

n∑
i=1

(XiX
⊤
i + 2e iX

⊤
i + e ie

⊤
i )α

(2)(u)(Ui − u)2λ(
Ui − u

hn
) + op(1)

=
√

nhn{E(XX⊤|U = u) + Σe}α(2)(u)µ2h
2
n + op(1). (A.7)
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From (A.4)-(A.7), we have435

Gn =
√
hnE{X̃D(X, U)|U = u}+ 1√

nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)εi

− 1√
nhn

n∑
i=1

Xie
⊤
i λ(

Ui − u

hn
)α(Ui)

⊤ −
√

nhnΣeα(u)

+
√
nhn{E(XX⊤|U = u) + Σe}α(2)(u)µ2h

2
n + op(1). (A.8)

Further by (A.3), we can validate (A.2). �

Proof of Theorem 2.1 The results of Theorem 2.1 can be obtained from Theorem 3.3 by setting

D(X, U) = 0. We omit the details. �

Proof of Theorem 3.2 We rewrite Yi = g(Xi, Ui)+εi as Yi = α(Ui)
⊤Xi+g(Xi, Ui)−α(Ui)

⊤Xi+εi

for i = 1, · · · , n. Let ηi = g(Xi, Ui)−α(Ui)
⊤Xi + εi. By a similar method to prove Lemma 2.1, we440

can prove that

(nhn)
1/2

[
α̂n(u)− α(u)− {Ip +Q−1(u)Σe}α(2)(u)µ2h

2
n

]
= Q−1(u){ 1√

nhn

n∑
i=1

X̃iλ(
Ui − u

hn
)ηi −

1√
nhn

n∑
i=1

Xie
⊤
i λ(

Ui − u

hn
)α(Ui)

⊤}

+op(1). (A.9)

By setting D(Xi, Ui) = 0 and replacing εi by ηi for i = 1, · · · , n, we can prove that under H1n in

(3.1),

ĈRn(z , u) = n−1/2
n∑

i=1

ηi1(X2i < z , Ui < u)

+n−1/2
n∑

i=1

α(Ui)
⊤(Xi − X̃i)1(X2i < z , Ui < u)

−n−1/2
n∑

i=1

X̃iηiE[Q
−1(U)X̃1(X2 < z , U < u)|U = Ui] + op(1). (A.10)

The proof of (A.10) is similar to the proof of (A.14) which is listed in the following. So we omit

the details. Note that under (3.1), n−1/2
∑n

i=1 ηi1(X2i < z , Ui < u) =
√
nE[η1(X2 < z , U <445

u)] + op(1) and E[η1(X2 < z , U < u)] ̸= 0. So n−1/2
∑n

i=1 ηi1(X2i < z , Ui < u) → ∞ as

n → ∞. We can further prove that n−1/2
∑n

i=1 α(Ui)
⊤(Xi − X̃i)1(X2i < z , Ui < u) = Op(1) and
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n−1/2
∑n

i=1 X̃iηiE[Q
−1(U)X̃1(X̃ < x , U < u)|U = Ui] = n1/2Op(1). Thus we can obtain that

Tn → ∞ as n → ∞. And it is natural to obtain that Pr{Tn > cα |H1n} converges to 1 as n → ∞.

�450

Proof of Theorem 3.3 We can decompose ĈRn(z , u) into three parts:

ĈRn(z , u) = n−1/2
n∑

i=1

{Yi − α(Ui)
⊤Xi}1(X2i < z , Ui < u)

+n−1/2
n∑

i=1

α(Ui)
⊤(Xi − X̃i)1(X2i < z , Ui < u)

+n−1/2
n∑

i=1

{α(Ui)− α̂(Ui)}⊤X̃i1(X2i < z , Ui < u)

=:

3∑
j=1

ĈRnj(z , u). (A.11)

Step 1 Consider ĈRn1(z , u). Under H2n in (3.2), for ĈRn1(z , u), we have

ĈRn1(z , u) = n−1/2
n∑

i=1

{n−1/2D(Xi, Ui) + εi}1(X2i < z , Ui < u)

= n−1/2
n∑

i=1

εi1(X2i < z , Ui < u) + E[D(X, U)1(X2 < z , U < u)]

+op(1). (A.12)

Step 2 Consider ĈRn3(z , u). By employing the results of Lemma 1, it yields

ĈRn3(z , u)

= n−1/2
n∑

i=1

{Ip +Q−1(Ui)Σe}α(2)(u)µ2h
2
nX̃i1(X2i < z , Ui < u)

+n−1/2
n∑

i=1

Q−1(Ui)
1

nhn

n∑
j=1

X̃jλ(
Uj − Ui

hn
)εjX̃i1(X2i < z , Ui < u)

−n−1/2
n∑

i=1

Q−1(Ui)
1

nhn

n∑
j=1

X̃je
⊤
j λ(

Uj − Ui

hn
)α(Uj)

⊤X̃i1(X2i < z , Ui < u)

+n−1
n∑

i=1

Q−1(Ui)E{X̃D(X, U)|U = Ui}X̃i1(X2i < z , Ui < u) + op(1)

=:
4∑

j=1

ĈRn3,j(z , u).
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Step 2.1 Consider ĈRn3,1(z , u). By the law of large numbers, we have ĈRn3,1(z , u) = Op(
√
nh2

n).

By Condition (C5), we can obtain that ĈRn3,1(z , u) = op(1).455

Step 2.2 Consider ĈRn3,2(z , u). We first exchange the orders of the summations and then employ

the fact that 1
nhn

∑n
i=1 Q

−1(Ui)λ(
Uj−Ui

hn
)X̃i1(X2i < z , Ui < u) = E[Q−1(U)X̃1(X2 < z , U <

u)|U = Uj ] + op(1). We can obtain that

ĈRn3,2(z , u) = n−1/2
n∑

j=1

X̃jεj
1

nhn

n∑
i=1

Q−1(Ui)λ(
Uj − Ui

hn
)X̃i1(X2i < z , Ui < u)

= n−1/2
n∑

j=1

X̃jεjE[Q
−1(U)X̃1(X2 < z , U < u)|U = Uj ] + op(1).

Step 2.3 Consider ĈRn3,3(z , u). Similarly, we can prove that

ĈRn3,3(z , u)

= −n−1/2
n∑

i=1

Q−1(Ui)
1

nhn

n∑
j=1

Xje
⊤
j λ(

Uj − Ui

hn
)α(Uj)

⊤X̃i1((X2i < z , Ui < u)

= −n−1/2
n∑

j=1

{ 1

nhn

n∑
i=1

Q−1(Ui)X̃
⊤
i 1(X2i < z , Ui < u)λ(

Uj − Ui

hn
)}α(Uj)Xje

⊤
j

= −n−1/2
n∑

j=1

E[Q−1(U)X̃
⊤
1(X2 < z , U < u)|U = Uj ]α(Uj)Xje

⊤
j + op(1).

Step 2.4 Consider ĈRn3,3(z , u). By the law of large numbers, it can be validated that460

ĈRn3,4(z , u) = n−1
n∑

i=1

Q−1(Ui)E{X̃D(X, U)|U = Ui}X̃i1(X2i < z , Ui < u)

=: E[Q−1(U)E{X̃D(X, U)|U = u}X̃1(X2 < z , U < u)] + op(1).

Thus we have

ĈRn3(z , u)

= n−1/2
n∑

j=1

X̃jεjE[Q−1(U)X̃1(X2 < z , U < u)|U = Uj ]

−n−1/2
n∑

j=1

E[Q−1(Uj)X̃
⊤
j 1(X2 < z , U < u)|U = Uj ]α(Uj)Xje

⊤
j

+E[Q−1(U)E{X̃D(X, U)|U = u}X̃1(X2 < z , U < u)] + op(1). (A.13)

24



Further we can obtain that

ĈRn(z , u) = n−1/2
n∑

i=1

IFz ,u(Xi, X̃i, Ui, Yi, εi, ei)

+∆(z , u) + op(1) (A.14)

with IFz ,u(X, X̃, U, Y, ε, e) and ∆ defined in Sections 2 and 3. Because the indicator function is

monotone, it is easy to prove that Gz ,u = {IFz ,u(X, X̃, U, Y, ε, e) : z ∈ Rp, u ∈ R} is a V-C class

of functions. See [23]. By Theorem 3.1 of [24], we can show that ĈRn(z , u) converges to a Gaussian465

process. Further by the continuous mapping theorem, we have proved the result for Tn. �

Proof of Theorem 3.4 We rewrite H3n as

Yi = α(Ui)
⊤Xi + n−1/2{n1/2BnD(Xi, Ui)}+ εi, i = 1, 2, · · · , n

and take n1/2BnD(Xi, Ui) as the new deviation function. By the similar method to prove (A.14),

we can prove that

ĈRn(z , u) = n−1/2
n∑

i=1

IFz ,u(Xi, X̃i, Ui, Yi, εi, e i) + ∆∗ + op(1).

with ∆∗ = n1/2BnE[Q
−1(U)E{X̃D(X, U)|U = u}X̃1(X2 < z , U < u)] + n1/2BnE[D(X, U)1(X2 <

z , U < u)]. Therefore we have that E[ĈRn(z , u)] converges to ∞, as n → ∞. Furthermore, it can470

be proved that the test statistic Tn converges to ∞, as n → ∞. �
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Figure 1: The solid-circle lines (—◦—): the empirical sizes curves; the solid-asterisk lines (—∗—), the solid-diamond

lines (—♢—), the solid-square lines (—�—), the solid-triangle lines (—△—) are the empirical powers curves corre-

sponding to the four values of d from small to large as shown in the descriptions of the Examples 4.1.1-4.1.3; the

dash-dotted lines are the the horizontal line with the ordinate value 0.05. The horizontal ordinate C denotes the

coefficient of the bandwidth hn = Cσ̂(U)n−1/5.
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Table 1: Frequencies of rejecting the null hypothesis in Example 4.1.1 under different sample sizes and test levels. Tn: the proposed

test; T direct
n : the direct test defined in (2.5); T XZ

n : the test of Xu and Zhu (2008).

Σe known unknown

d0 n 100 200 100 200

Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n

α=0.05

0.0 Σ1 0.046 0.086 0.218 0.050 0.216 0.432 0.040 0.130 0.244 0.044 0.226 0.382

0.5 0.100 0.302 0.544 0.118 0.576 0.776 0.140 0.330 0.548 0.120 0.522 0.758

1.5 0.372 0.718 0.924 0.440 0.936 0.986 0.378 0.760 0.920 0.452 0.918 0.978

2.5 0.582 0.878 0.982 0.750 0.988 0.998 0.604 0.906 0.988 0.726 0.982 0.998

4.0 0.778 0.952 0.998 0.932 0.994 1.000 0.782 0.942 0.998 0.944 0.998 1.000

0.0 Σ2 0.064 0.134 0.174 0.062 0.198 0.262 0.062 0.122 0.158 0.058 0.158 0.216

0.5 0.190 0.344 0.462 0.250 0.556 0.606 0.204 0.360 0.454 0.242 0.524 0.598

1.5 0.624 0.846 0.874 0.756 0.972 0.984 0.586 0.864 0.914 0.756 0.960 0.978

2.5 0.866 0.982 0.982 0.932 0.998 0.998 0.862 0.976 0.986 0.934 0.996 0.998

4.0 0.958 0.994 0.998 0.996 1.000 1.000 0.958 0.980 0.992 0.988 1.000 1.000

α=0.1

0.0 Σ1 0.078 0.150 0.348 0.084 0.312 0.578 0.068 0.204 0.384 0.074 0.310 0.514

0.5 0.142 0.412 0.706 0.162 0.694 0.866 0.194 0.438 0.694 0.156 .650 0.850

1.5 0.454 0.796 0.968 0.512 0.956 0.996 0.446 0.810 0.948 0.536 0.952 0.988

2.5 0.666 0.904 0.996 0.802 0.992 1.000 0.676 0.924 0.996 0.782 0.988 0.998

4.0 0.824 0.952 0.998 0.942 0.994 1.000 0.806 0.948 0.998 0.962 0.998 1.000

0.0 Σ2 0.112 0.226 0.284 0.106 0.332 0.392 0.118 0.220 0.286 0.110 0.272 0.348

0.5 0.260 0.486 0.636 0.344 0.686 0.750 0.310 0.514 0.626 0.326 0.648 0.750

1.5 0.684 0.916 0.944 0.820 0.984 0.994 0.672 0.918 0.960 0.834 0.980 0.990

2.5 0.892 0.990 0.988 0.960 1.000 1.000 0.902 0.986 0.992 0.966 1.000 1.000

4.0 0.970 0.994 1.000 1.000 1.000 1.000 0.966 0.984 0.996 0.998 1.000 1.000
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Table 2: Frequencies of rejecting the null hypothesis in Example 4.1.2 under different sample sizes and test levels. Tn: the proposed

test; T direct
n : the direct test in (2.5); T XZ

n : the test of Xu and Zhu (2008).

Σe known unknown

d0 n 100 200 100 200

Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n

α=0.05

0.0 Σ1 0.032 0.076 0.202 0.034 0.122 0.292 0.026 0.064 0.190 0.032 0.150 0.312

0.1 0.262 0.346 0.678 0.202 0.606 0.794 0.206 0.354 0.598 0.220 0.548 0.808

0.2 0.464 0.586 0.870 0.570 0.856 0.976 0.430 0.582 0.852 0.556 0.844 0.972

0.5 0.668 0.760 0.972 0.884 0.962 1.000 0.622 0.726 0.970 0.860 0.960 1.000

1.0 0.756 0.810 0.988 0.932 0.976 1.000 0.694 0.788 0.968 0.928 0.974 1.000

0.0 Σ2 0.060 0.092 0.184 0.052 0.144 0.204 0.056 0.120 0.146 0.042 0.144 0.186

0.1 0.414 0.452 0.592 0.462 0.654 0.738 0.416 0.494 0.570 0.498 0.670 1.732

0.2 0.686 0.722 0.824 0.868 0.918 0.972 0.710 0.722 0.828 0.818 0.926 0.952

0.5 0.872 0.898 0.962 0.968 0.990 0.998 0.872 0.896 0.976 0.984 1.000 1.000

1.0 0.900 0.910 0.972 0.996 0.996 1.000 0.888 0.898 0.974 0.994 1.000 1.000

α=0.1

0.0 Σ1 0.054 0.142 0.320 0.052 0.202 0.430 0.056 0.148 0.322 0.054 0.226 0.454

0.1 0.332 0.480 0.806 0.292 0.698 0.890 0.288 0.492 0.722 0.322 0.678 0.892

0.2 0.544 0.700 0.946 0.652 0.912 0.992 0.500 0.688 0.942 0.634 0.918 0.992

0.5 0.728 0.820 0.994 0.914 0.972 1.000 0.690 0.792 0.990 0.894 0.970 1.000

1.0 0.800 0.858 0.998 0.944 0.978 1.000 0.762 0.834 0.994 0.948 0.976 1.000

0.0 Σ2 0.106 0.146 0.224 0.096 0.234 0.296 0.110 0.192 0.234 0.098 0.240 0.302

0.1 0.542 0.622 0.762 0.590 0.786 0.846 0.516 0.652 0.732 0.600 0.806 0.824

0.2 0.786 0.822 0.922 0.920 0.972 0.986 0.786 0.834 0.920 0.874 0.968 0.984

0.5 0.914 0.944 0.994 0.980 0.994 1.000 0.924 0.956 0.994 0.992 1.000 1.000

1.0 0.930 0.948 0.998 1.000 0.996 1.000 0.928 0.942 0.990 1.000 1.000 1.000

28



Table 3: Frequencies of rejecting the null hypothesis in Example 4.1.3 under different sample sizes and test levels. Tn: the proposed

test; T direct
n : the direct test in (2.5); T XZ

n : the test of Xu and Zhu (2008).

Σe known unknown

d0 n 100 200 100 200

Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n Tn T direct
n T XZ

n

α=0.05

0.0 Σ1 0.030 0.024 0.190 0.036 0.082 0.298 0.032 0.038 0.206 0.034 0.082 0.316

0.2 0.158 0.146 0.448 0.218 0.352 0.754 0.164 0.138 0.444 0.236 0.374 0.726

0.5 0.406 0.374 0.800 0.642 0.732 0.990 0.424 0.332 0.814 0.628 0.734 0.986

1.0 0.622 0.520 0.950 0.916 0.880 1.000 0.618 0.524 0.964 0.888 0.906 0.998

2.0 0.668 0.602 0.988 0.950 0.924 1.000 0.676 0.558 0.992 0.928 0.918 1.000

0.0 Σ2 0.056 0.054 0.126 0.050 0.102 0.176 0.058 0.078 0.120 0.048 0.094 0.168

0.2 0.380 0.284 0.382 0.524 0.480 0.668 0.318 0.244 0.376 0.496 0.500 0.650

0.5 0.762 0.622 0.782 0.944 0.922 0.986 0.772 0.550 0.800 0.942 0.922 0.982

1.0 0.894 0.802 0.954 0.992 0.984 1.000 0.896 0.782 0.966 0.984 0.978 1.000

2.0 0.946 0.880 0.982 0.996 0.998 1.000 0.922 0.888 0.974 0.998 1.000 1.000

α=0.1

0.0 Σ1 0.060 0.052 0.316 0.062 0.126 0.444 0.056 0.070 0.302 0.058 0.152 0.440

0.2 0.214 0.218 0.596 0.300 0.442 0.852 0.206 0.194 0.592 0.300 0.466 0.824

0.5 0.450 0.424 0.866 0.710 0.780 0.998 0.474 0.400 0.906 0.682 0.784 0.992

1.0 0.664 0.586 0.974 0.930 0.892 1.000 0.662 0.586 0.986 0.898 0.918 1.000

2.0 0.692 0.664 0.994 0.952 0.926 1.000 0.702 0.632 1.000 0.934 0.922 1.000

0.0 Σ2 0.114 0.120 0.232 0.102 0.184 0.290 0.116 0.146 0.216 0.100 0.154 0.304

0.2 0.478 0.376 0.558 0.604 0.598 0.808 0.430 0.352 0.546 0.564 0.632 0.786

0.5 0.806 0.712 0.862 0.960 0.944 0.992 0.808 0.648 0.874 0.962 0.952 0.992

1.0 0.906 0.844 0.980 0.994 0.984 1.000 0.902 0.836 0.988 0.990 0.980 1.000

2.0 0.950 0.914 0.990 1.000 0.998 1.000 0.936 0.914 0.990 1.000 1.000 1.000
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Figure 2: (a) Scatter plot of the calibrated model error estimator ε̂n versus α̂⊤
n (U)X̃ for Example 4.2.1 in Section 4;

(b) Scatter plot of the error estimator ε̂XZ versus α̂XZ (U)⊤X̃ for Example 4.2.1 in Section 4 for the method of [13].
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Figure 3: (a) Scatter plot of the calibrated model error estimator ε̂n versus α̂⊤
n (U)X̃ with Σ1 = diag(0.05, 0.05)

for Example 4.2.2 in Section 4; (b) Scatter plot of the calibrated model error estimator ε̂n versus α̂⊤
n (U)X̃ with

Σ2 = diag(0.07, 0.07) for Example 4.2.2 in Section 4; (c) Scatter plot of the model error estimator ε̂XZ versus

α̂XZ (U)⊤X̃ for Example 4.2.2 in Section 4 for the method of [13].
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