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Abstract

Emerging brain connectivity network studies suggest that interactions between various distributed 

neuronal populations may be characterized by an organized complex topological structure. Many 

neuropsychiatric disorders are associated with altered topological patterns of brain connectivity. 

Therefore, a key inquiry of connectivity analysis is to detect group-level differentially expressed 

connectome patterns from the massive neuroimaging data. Recently, statistical methods have been 

developed to detect differentially expressed connectivity features at a subnetwork level, extending 

more commonly applied edge level analysis. However, the graph topological structures in these 

methods are limited to community/cliques which may not effectively uncover the underlying 

complex and disease-related brain circuits/subnetworks. Building on these previous subnetwork 

detection methods, a new statistical approach is developed to automatically identify the latent 

differentially expressed brain connectivity subnetworks with k-partite graph topological structures 

from large brain connectivity matrices. In addition, statistical inferential techniques are provided 

to test the detected topological structure. The new methods are evaluated via extensive simulation 

studies and then applied to resting state fMRI data (24 cases and 18 controls) for Parkinson’s 

disease research. A differentially expressed connectivity network with the k-partite graph 

topological structure is detected which reveals underlying neural features distinguishing 

Parkinson’s disease patients from healthy control subjects.
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1. Introduction

Brain connectomic research has suggested that neuropsychiatric disorders are associated 

with altered interactions between distributed neuronal populations and brain regions 

(Buckner et al, 2009; Craddock et al, 2013; Stam, 2014; Fornito et al, 2015; Chen et al, 

2016a). Recent neuroimaging studies have used graph theory as a tool to understand 5 the 

brain connectivity patterns, which denote brain regions as nodes, and connections between 

regions as edges (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Craddock et al, 

2013; Biswal et al, 2010; Yeo et al, 2011; Sporns, 2014; Smith et al, 2015). Such studies 

have identified connectome-phenotype relationships by leveraging these graph techniques, 

mainly using network graph descriptive metrics (Bullmore and Sporns, 2009; Seeley et al, 

2009; Stam et al, 2009; Rubinov and Sporns, 2010; Achard et al, 2012; van den Heuvel and 

Sporns, 2013; Crossley et al, 2013; Crossley et al, 2014; Stam, 2014; Fornito et al, 2015).

The overarching goal of brain connectivity network/circuitry research is to enhance 

understanding of underlying pathophysiological mechanisms and clinically useful 

predictions concerning disease diagnosis and treatment selection (Fornito et al, 2013; 

Craddock et al, 2013; Fornito et al, 2015).

However, generally it is challenging to detect such differential connectivity subnetworks that 

simultaneously i) control false positive rate and obtain sufficient statistical power; ii) reflect 

complex connectome topological properties; iii) are spatially localized (edge - specific) for 

explicit clinical interpretation and pathophysiological mechanism discovery; and iv) are 

reliable and reproducible (van Diessen et al, 2013; Simpson et al, 2015). A driver of these 

challenges is the nature of connectome data, containing complex topological structure and 

high-dimensionality.

Most network graph metrics (e.g. small-worldness and modularity) summarize a set of edges 

as individual measures and lose localized connectivity information (edge - specific). Such 

measures may lead to difficult clinical interpretability and may lack specificity and 

sensitivity (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Simpson et al, 2015). 

On the other hand, the mass univariate analyses may keep localized information but are 

subject to the trade-off between controlling false positive findings and lack of statistical 

power. Direct application of the family-wise error control (FWER) and false positive 

discovery rate (FDR) could successfully prohibit spurious positive findings, yet they may be 

overly conservative and reduce the statistical power and lead to few or no significant 

findings. To mitigate such trade-offs, many studies pre-define networks of interest to lower 

the multiple testing burden. But, pre-defined networks are limited and may exclude true 

signals. Recently, more advanced statistical methods leverage multivariate models to link the 

edge connection strength and overall topological structure to improve model estimation 

(Simpson et al, 2012; Simpson and Laurienti, 2015; Narayan and Allen, 2016; Monti et al, 

2017). However, these may not allow to automatic detection of differentially expressed 

subgraphs.
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Differentially expressed edges may be distributed in an organized pattern rather than 

randomly in the brain. Therefore, we consider the union of differentially expressed edges 

and their organized topological pattern as a potential brain connectivity subnetwork 

biomarker candidate. Statistical methods have been developed to test the statistical 

significance of a subset of edges, for example, network based statistic (NBS) and 

parsimonious differential network detection (Pard) (Zalesky et al, 2010; Chen et al, 2015a). 

The Pard algorithm can recognizes differentially expressed edges in latent and organized 

topological structures by applying the principle of parsimony. The detected latent 

topological structures of differentially expressed subnetworks bring additional information 

for group-level inference and thus can increase statistical power while effectively controlling 

multiple testing false positive errors. Hence, automatic detection of latent topological 

structures in imaging data offers a viable pathway to connectivity network biomarker 

discovery. In addition, the detected topological structure may help reveal the underlying 

neurophysiological and neuropathological mechanisms for brain disorders. In graph theory, 

a clique (or community) refers to a subgraph such that every pair of distinct nodes in the 

subset are connected. Here, a clique/community refers to a differential network suggesting 

most edges between the nodes within the subgraph are differentially expressed. The Pard 

algorithm only detects clique/community differential networks, however more complex 

topological structure may appear.

In graph theory, a k-partite subgraph is a graph whose nodes could be partitioned into k 
distinct sets such that the nodes in the same set are not connected but nodes from different 

sets are connected. For brain connectivity analysis, the quantity of an edge is often 

continuous (rather than binary) that represents i) the connection strength for one subject (e.g. 

the Pearson correlation coefficient) at an individual subject level or ii) to what extent the 

connection is differentially expressed between different clinical groups (e.g. a test statistic). 

In this paper, we use distinct symbols to denote these two cases. When we try to identify the 

differentially expressed subnetworks, we use the latter case to detect latent topological 

structures. Specifically, we refer to a “k-partite phenomenon” (for illustration we let k = 2) 

when: i) there are two sets of nodes and the edges connecting nodes within the same set 

show non-differential connectivity strengths between clinical groups; ii) the between set 

connections demonstrate group-wise difference. Many studies have reported disrupted long-

range connectivity patterns by neuropsychiatric disorders, for example, Parkinson’s disease 

(Baggio et al, 2014; Lopes et al, 2016). These altered long-range connections may often be 

distributed in an organized yet hidden k-partite subgraph as in our data example. If the “k-

partite phenomenon” exists in a group-wise connectivity study, we may infer that the brain 

disease alters the inter-community interactions between two sets of neural populations 

(nodes) but not the intra-community interactions. One possible explanation is that the within 

community connections may be linked to basic human brain functions which are more 

reliable and well-wired for both patients and healthy controls (Göttlich et al, 2013), whereas 

the inter-community connections are more vulnerable to the pathophysiology of diseases and 

more likely to show patient-healthy control differences(Baggio et al, 2014; Lopes et al, 

2016).

However, in practice, the “k-partite phenomenon” of neuroimaging data is latent and not 

directly observable. In the statistics and machine learning, uncovering latent k-partite 
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subgraphs in a graph G has been a longstanding challenge. A few algorithms have been 

developed to recognize the latent k-partite subgraph (Long et al, 2006; Neubauer and 

Obermayer, 2009; Hartsperger et al, 2010). However, these methods are not applicable to 

detect potential brain connectivity networks biomarkers because i) they rely on prior 

knowledge of k; ii) they do not allow k-partite subgraph detection in a relatively large graph; 

and iii) the computational costs of these iterative algorithms are high. Moreover, our input 

data is a weighted complete graph (i.e. weighted adjacency matrix) and most algorithms 

only handle binary input adjacency matrices.

Motivated by these needs of group-level brain connectivity network analysis, we develop 

novel algorithms to detect k-partite subnetworks from a large weighted adjacency matrix. In 

addition, we develop a new statistical inferential procedure to determine whether the 

detected differentially expressed subnetwork has a k-partite topological structure. Our 

method is characterized by several appealing features as follows: i) it can identify altered (by 

clinical or experimental conditions) connectivity subnetworks with the k-partite topological 

structure from whole brain network from the whole brain connectivity network; ii) the 

results (i.e. altered subnetworks)are at the network level which can simultaneously reveal the 

complex graph topological structure and specific locations of differentially expressed 

connectivity features; iii)comparing with the conventional multiple testing control methods 

(e.g. FDR), our approach increases the statistical power by integrating the spatial constraints 

and k-partite topological structure into the statistical inference.

The remainder of the paper is organized as follows. In section 2, we present the proposed k-

partite graph detection algorithm and statistical tests. We evaluate the performance of the 

proposed k-partite detection algorithm by simulation studies in Section 3. In Section 4, we 

apply these methods to our motivating resting-state fMRI Parkinson’s disorder (PD) study, 

and we detect a differentially expressed connectomic subnetwork with a k-partite topological 

structure and statistical significance. We conclude with a discussion in Section 5.

2. Methods

2.1. Background

We consider data from S subjects, representing distinct subgroups (e.g. based on the 

presence of clinical diagnosis). fMRI data from each subject undergoes preprocessing and is 

used to calculate functional connectivity between all pairs of n nodes or brain regions, with 

whole-brain connectivity for a subject s represented by an n × n symmetric matrix Ms. 

Therefore, the overall data set is denoted by M = M2, ⋯, MS . The spatial location (3D 

coordinates) of a node i (i ∈ 1, ⋯ , n) is identical for all subjects. The whole brain 

connectome network can be represented by a graph G = {V, E}, where V is the set of nodes 

(|V| = n) and E is the set of edges. We denote Mij
s  as the connectivity metric between node i 

and node j for subject s. For instance, Pearson correlation coefficient is the most commonly 

used metric for the functional connectivity (FC), and each edge represents the correlation 

between two fMRI time courses from the respective pair of nodes (Zalesky et al, 2012; Kim 

et al, 2015a).
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Next, we perform statistical analysis (e.g. two sample test or regression for a case-control 

study) on each edge Mij across subjects while accounting for the covariance between edges 

(Chen et al, 2018), and record a p-value pij between nodes i and j. Although direct inference 

on all {pij} or the corresponding test statistics by using FWER and FDR could be performed, 

the results are often overly conservative due to ignoring the spatial and topological 

dependence structure between edges (Craddock et al, 2013).

Therefore, instead of making inference by pij on each edge we aim to detect differentially 

expressed subgraphs (Gc ⊂ G) fusing edge-wise inference and graph combinatoric 

probability. We use a weighted matrix W with elements Wij = − log(pij), as our initial input 

weighted adjacency matrix (see Figure 2a). Wij serves as a metric to delineate how 

differentially expressed two clinical groups are with respect to a corresponding edge. We 

refer to edges as informative if there is a high degree of differential expression between 

groups. W is the input matrix for both NBS and Pard algorithms, and the outputs of these 

algorithms are clique/community differential subnetworks {Gc} (c = 1, ⋯ , C and C is the 

number of detected communities) with significance levels (p-values). In this article, we 

develop a new k-partite graph detection (KPGD) algorithm to identify the latent k-partite 

structure of differentially expressed connectivity networks.

2.2. k-partite graph detection algorithm

We let Gc be a k-partite subgraph. Note that, as illustrated in Figure 1a, the k-partite pattern 

of Gc = {Vc, Ec} is latent in G. To observe the k-partite graph explicitly as shown in Figure 

1b, we need to reorder and group the nodes. In our algorithm, we seek an edge preserving 

bijective mapping (node reordering) function π : Gc → Hc or Hc = π(Gc). Under such 

mapping π, Gc is isomorphic to Hc (Gc ≃ Hc), where Hc = V c′, Ec′ . The bijective mapping 

function π permutes the order of nodes (in columns and rows of the adjacency matrix) 

simultaneously. If nodes i and j are connected, denoted i ~ j, then after permutation π(i) ~ 

π(j). Figure 1b illustrates a desirable mapping function π because in Hc = π(Gc), the 

bipartite structure is directly apparent.

One challenge in determining k-partite graphs is that the number of all possible permutations 

is massive with n! permutations for a graph with n nodes. For example, when n=100 there 

are more than 10 × 10157 possible permutations. Therefore, it is impractical to search all 

permutations, and we need an algorithm to seek an appropriate mapping π that reveals the k-

partite structure. Note that edges in our input matrix Wc are weighted. The key heuristic of 

our algorithm is that the target mapping function π allocates more informative edges to off-

diagonal blocks and less informative edges along the diagonal blocks. The diagonal blocks 

represent independent sets of a k-partite graph, where edges within the same independent set 

are less differentially expressed between groups.

We define the objective function of the KPGD algorithm as:

arg max
C, Gc c 1

C
exp log (wi j ei j ∈ Gc) − λ0log( |Ec | ) , (1)
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with following definitions and conditions:

1. ∪c = 1
C V c = V , ∩c = 1

C V c = ∅ and ∪c = 1
C Ec ⊆ E.

2. the size of a subgraph Gc is determined by the number of edges |Gc| = |Ec|;

3. Gc (c = 1, ⋯ , C) is a k-partite subgraph that Gc = {Vc, Ec} and |Vc| ≥ 1;

4. Within each Gc, there are 1 ≤ Kc ≤ |Vc| independent sets Ak
c  and Ak

c = V k
c, Ek

c

that ∪kc = 1
Kc V c

k = V c and ei, j = ∅ if both i, j ∈ Ak
c

Formula 1 maximizes the informative edges in a set of k-partite subgraphs, while penalizing 

the sizes of the subgraphs. λ0 is the tuning parameter for the penalty term, and a larger λ0 

often leads to detected subnetworks with higher proportion of more informative edges and 

smaller sizes whereas a smaller λ0 often produces larger networks including more 

informative edges in G. Generally, the default λ0 is set as 0.5 and the algorithm performs 

well when λ0 ranges between 0.35 to 0.65 balancing precision and recall rates. For each Gc, 

the subgraph size Ec = k k Kc V k
c V k,c  as there are no edges connecting nodes within 

an independent set Ak
c. When Kc = |Vc|, the k-partite subgraph becomes a clique. We also 

estimate parameters in a subgraph Gc including Kc and Ak
c to specify the k-partite 

topological structure. The penalty term is crucial for accurately detecting the latent 

topological patterns because: i) the objective function often selects a relatively large Ĉ and 

include many Gc as singletons to minimize the subgraph sizes, which can suppress false 

positive noises; ii) the more advanced topological structures (e.g. k-partite and rich-club) are 

preferred than the community/clique structure to further reduce the sizes of the subgraphs. 

For instance, in Figure 2 the penalized objective function can identify the altered 

connectivity network Gc and further specify the bipartite topological structure. The 

organized network topological structure may reveal the underlying neurophysiopathological 

mechanisms.

However, the direct optimization of the non-convex objective function 1 is difficult. We 

develop a multi-level iterative algorithm to optimize C, {Gc}, Kc, and Ak
c in the objective 

function for the latent k-partite structure detection. We provide detailed derivation and 

optimization algorithms for detecting the latent k-partite in the Supplementary Materials and 

sample code online.

2.3. Statistical test for k-partite structure

In section 2.1, by applying the KPGD algorithm, we detect independent sets Ak
c  from Gc, 

where the intra-set edges are less informative than inter-set edges. We propose a statistical 

test to verify the k-partite structure (i.e. the organized pattern of informative edges) and 

provide a p-value for statistical inference. With Gc denoting a differentially expressed 

subgraph, by default the our goal is to test whether the informative edges of Gc are 

distributed in a k-partite structure Hc = π Gc = ∪k = 1
Kc

Ak
c, as opposed to a random ordering. 

Therefore, our null and alternative hypotheses are:
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H0: The informative edges are distributed randomly in Gc and the topological structure of Gc 

is a community.

H1: The informative edges are distributed as a k-partite pattern in Gc.

We develop a ‘graph edge permutation’ testing strategy to determine the statistical 

significance of the non-randomness of the k-partite topological structure. The non-

parametric permutation test for statistical inferences is appealing here, given the challenges 

posed for determining appropriate asymptotic distributions of the test statistic based on the 

complex object Gc and multiple testing issues (Nichols and Holmes, 2002; Zalesky et al, 

2010; Winkler et al, 2014).

The edge permutation test shuffles the order/location of each edge in Gc. We first transform 

the input matrix Wc of Gc into a vector of edges Ec, with the length |Vc| × (|Vc| − 1)/2 (|Vc| 

is the number of nodes in Gc), so that Ec = W 1, 2
c , W 1, 3

c , ⋯, W V c − 1, V c
c . The edge 

permutation results from a mapping function ϕ that projects Wc to Wc
m = ϕ(Wc) for the mth 

permutation. But, the mapping is not edge preserving as Wc(i, j) ≠ Wm(i, j). Then the edge 

permutation can map a subgraph Gc with an organized topological structure, e.g. k-partite 

structure, to a random subgraph ϕ(Gc). Here, we use a test statistic

Tc0 = 1/ |Ecoff | ∑
k = 1

Kc
∑

i ∈ Ak
c , j ∉ Ak

c
{−log(pij)} − 1/ |Ecdiag | ∑

k = 1

Kc
∑

i ∈ Ak
c , j ∈ Ak

c
{−log(pij)},

to contrast the differential levels of edges between the independent sets (off-diagonal blocks) 

and within these sets (diagonal blocks). Since the proportion of informative edges in Gc is 

high as a selected subgraph, if the informative edges are distributed in an organized pattern, 

the test statistic of Wc should be greater than those Tc
m  calculated for most of the 

permutations Wc
m m = 1, ⋯, M . Tc

0 is the contrast between empirical estimates of 

information entropy (Paninski, 2003) of the detected k-partite subgraph and the rest of the 

clique. If there exists a latent and organized k-partite structure in Gc, Tc
0 is a large positive 

number. When differentially expressed edges are randomly distributed in Wc, Tc
0 is close to 

zero and the probability of Tc
0 being a large number is very small. When Kc = |Vc|, we set 

Tc
0 = 0. We leverage the edge permutation and graph combinatorics to examine the 

hypotheses H0 and H1, that is whether differentially expressed edges are concentrated in the 

detected topological pattern of Gc. The detailed algorithm is described in Algorithm 1. The 

goal of the GEP test is model comparison, which statistically examines whether a more 

sophisticated topological structure (H1) fits better than the default community structure (H0). 

The GEP test functions similarly to the likelihood ratio test regarding the model comparison 

because both methods compare the test metrics under H1 vs. H0 after optimizing the 

objective function (the likelihood function and (1)). Therefore, the proposed testing scheme 

is general and applicable to test any organized graph topological structure of Gc against the 

default community structure, for example, rich-club and overlapped communities (van den 
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Heuvel and Sporns, 2011) versus the default community/clique structure. A more precise 

topological structure of the latent phenotype-related subnetwork can reduce false positive 

rates while maintaining similar true positive rates. Last, we perform the commonly used 

permutation strategy (e.g. Nichols and Holmes, 2002; Zalesky et al, 2010; Chen et al, 

2016b) to examine whether the subgraph is differentially expressed between clinical groups. 

The proposed statistical testing strategy is similar to the commonly used spatial scan 

statistics in spatial statistics, which first identifies the ‘incidence’ edges (differential edges) 

and next examines the distribution patterns of the differential edges in the whole brain 

connectome. Therefore, the issues of multiple testing and selection bias can be solved by the 

above procedure (Waller and Gotway, 2004).

Algorithm 1

Graph Edge Permutation (GEP) Test

  1: procedure GEP –ALGORITHM

  2: Apply the KPGD algorithm to Wc, and calculate a statistic 

Tc
0 = 1/ |Ec

off | k 1
Kc

i Ak
c j Ak

c log(pij) − 1/ |Ec
diag | k 1

Kc
i Ak

c j Ak
c log(pij),

where Ec
off  is the number of edges between the independent sets and Ec

diag  is the number of edges within the 

independent sets.

  3: List all edges in Gc as vectors in the original order, vec(Wc) = W 1, 2
c , ⋯, W V c − 1, V c

c
, where |Vc| is the 

number of nodes and W i, j
c = − log(pi, j).

  4: for each permutation iteration m = 1 : M do

  5: Shuffle the order of edges in vec(Wc), and obtain an edge reordered graph Gc
m with a weighted edge matrix Wc

m;

  6: Apply the KPGD algorithm on Gc
m (or Wc

m) and obtain Kc
m independent sets, where Kc

m is determined by the 

‘quantity and quality’ criteria;

  7: Calculate the test statistic Tc
m as described in line 2.

  8: end for

  9: If Tc
0 is greater than the top 5th percentile of Tc

m, we reject the null hypothesis, and thus Gc has a k-partite 

topological structure.

10: end procedure

3. Numerical Results

We conduct simulation studies i) to evaluate the performance of the proposed approach and 

to compare it with existing methods by analyzing group-wise functional connectivity data; 

ii) to examine whether the KPGD algorithm can optimally determine the number of 

independent sets and recognize the latent k-partite structure of Gc; iii) to evaluate the 

computational cost of the KPGD algorithm.

3.1. Simulations of group-wise functional connectivity data analysis

We simulate group-wise functional connectivity data, which have properties that mimic 

those of our experimental data (forthcoming) from a resting-state fMRI study of Parkinson’s 

disease (PD). We consider data from 30 PD patients and 30 healthy control subjects, and for 
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each subject we generate (preprocessed) time series of 150 data points for 90 brain regions 

of interest (ROIs), which correspond to the first 90 regions from a commonly used 

Automated Anatomical Labeling (AAL) brain parcellation (Tzourio-Mazoyer et al, 2002). 

For subject s in the control group, a vector of 90 elements is sampled by xts ∼ MV N(0, Ω0)

and Xs = x1
2, ⋯, xT

s  (T=150) and for subject from the patient group Ω0 is replaced by Ω1 

with Δ = Ω1 − Ω0 (Kim et al, 2015b). The non-zero (truly differential) elements of Δ are 

around 0.5 and are distributed in a latent bi-partite subgraph. Ω0 and Ω1 are smoothed to be 

semi-positive definite. We introduce white noises to the time series with signal to noise 

ratios (SNR) around 2.5 (the mean contrast to standard deviation). We obtain each Ms of M
by calculating the Fisher’s Z transformed correlation coefficients between the time series of 

two ROIs, and then perform statistical testing on each edge. The test produces p-values pij, 

which are stored in W with elements Wi,j = −log(pi,j) (Figure 2a). We use different sizes of 

k-partite subgraphs ranging from 10 to 30, with signal to noise ratio (SNR) of 2.5, and 

increase the noise levels by tuning SNR to 1.5, 1, and 0.7 for the size 20 k-partite subgraph. 

In addition, we increase the number of subjects per group to 60 and 100 and increase the 

number of regions to 250. For larger sample sizes, we use the size 20 k-partite subgraph 

because the performance is similar for other sizes.

Figure 2 demonstrates the FC analysis pipeline of our approach. We apply the KPGD 

algorithm and the edge permutation test to detect the differentially expressed subnetwork 

(Figure 2b) and identify the k-partite topological structure with formal statistical inferential 

results (Figure 2c). We compare our method with some existing network testing methods 

including adaptive sum of powered score (aSPU) and NBS (Zalesky et al, 2010; Pan et al, 

2014; Kim et al, 2014; Kim et al, 2015b) on simulated M. We repeat the data simulation 100 

times for each setting considered and record the percent of times that aPSU, NBS, and 

KPGD identify the differentially expressed subnetwork. For the NBS and KPGD results, we 

further compare the detected network Gc with ‘true’ network Gc by measuring the size 

difference as |(|V c| − |V c|)|.

When the noise level is low, all methods have similar power to detect that there exist 

differentially expressed edges/subnetworks between the brain connectomes of healthy 

controls and PD patients. However, only the KPGD method can correctly identify the latent 

k-partite structure (from Figure 2a to 2c). Although NBS can identify the existence of 

differentially expressed subnetworks, the accuracy to capture the network is relatively low in 

comparison to KPGD because the principle of parsimony in KPGD effectively controls 

falsely discovered edges (Chen et al, 2015a). The KPGD method could be a good 

complement to the omnibus tests of aSPU and/or aSPUw to further identify the latent and 

organized differentially expressed subnetworks. When the noise level is higher, KPGD is 

more robust to noise and false positive edges since the false positive edges tend to appear 

randomly in G without organized topological structure and do not impact GEP inferential 

procedure based on graph combinatorics. We also tune p0 of the KPGD algorithm from 0.01 

to 0.1, and across all simulation settings, the maximum network size deviation |( V c| − |V c|)|
caused by p0 is two (in only 6 simulations) and the optimal Kc is not affected. The network 

sizes (from 10 to 30) seem not to affect the performance of the KPGD algorithm.

Chen et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, we let Δ = Ω1 − Ω0 follow a clique structure (i.e. Kc = 20) with SNR equal to 

2.5, and we examine the false positive rates of the KPGD and GEP methods. The 

permutation tests show significant k-partite structure three times (on average 97 failures), 

and thus the false positive rate is 3% for k-partite structure detection. We also investigate the 

false positive discovery rates when Δ = Ω1 − Ω0 = 0 (SNR=0 for all edges) with a size of 20, 

and all methods show similar performance with appropriate false positive rates. In contrast 

to applying community detection, the KPGD results can more accurately identify the latent 

differentially expressed subnetwork.

In summary, the power of KPGD method is mainly affected by the SNR and sample size 

which are critical to distinguish differentially expressed edges from false positive edges. 

When SNR and sample size are moderate (e.g. SNR=0.7 and n=60), the power is around 

80% to accurately capture the latent network structure. The false positive network detection 

error rate is below 5% for all settings because the combinatorial probability of false positive 

edges to compose an organized topological structure is close to zero.

3.2. k-partite structure detection and automatic selection of k

We generate a 20 × 20 Wc matrix with each edge given by −log(pij). Next, we let the number 

of independent components (k) of the k-partite graph equal 2, 4, and 10, and we use larger 

values of −log(pij) for off-diagonal edges. For example, we set the edges within the diagonal 

blocks around −log(0.35) = 1.05, and edges within the off-diagonal blocks around 

−log(0.02) = 4.0. We set the center difference between diagonal and off-diagonal block 

edges as a parameter δ. We permute the order of the nodes, and the k-partite structures are 

not directly observable (subfigures of the left column, Figure 3). We apply the KPGD 

algorithm to detect the topological structure and the GEP test for statistical inferences. For 

all settings, our algorithm successfully identifies the correct numbers of independent sets k 
and reveals the k-partite graph. We evaluate the performance of our new methods by 

simulating 100 data sets with different values of both k and δ.

We summarize our results in Table 2, specifically reporting the average numbers of false 

positive (FP) and false negative (FN) edges across the 100 repetitions. We observe that in 

general the KPGD algorithm performs well, and the GEP testing strategy successfully 

recognizes k-partite structure. When k is smaller, the numbers of FP and FN edges decrease, 

because the pattern is closer to a complete subgraph (clique) when k is large. Moreover, our 

‘quantity and quality’ rule successfully determines the optimal k, and we consistently 

estimate the true k correctly for each simulated data set (more than 99%). Also, our methods 

demonstrate robustness to the choice of δ. The selection of p0 between 0.01 and 0.1 has no 

impact for the results above. We also test the KPGD and GEP algorithms for δ = 0, and the 

GEP report false positive fining two of the 100 simulated data sets.

3.3. Computational costs

We evaluate the scalability and computational costs of our method. We apply our approach 

to larger k-partite subgraphs, for example varying k-partite subgraph sizes with 100, 200, 

500, and 1000 nodes. We simulate 10 data sets for each setting and evaluate the average 

computational time of KPGD on a computer with i7 CPU and 32G memory without and 
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with parallel computing (four threads). The results show all k-partite structures can be 

detected and the computational times ranged roughly from a few seconds to about 24 

minutes, without parallel computing. The detailed results are summarized in Table 3. For FC 

analysis and general k-partite subgraph identification, we consider a community subnetwork 

of 1000 nodes as relatively large. Therefore, our method is scalable for larger networks and 

the computational time seems to be affordable.

4. Data example

We apply our method to data from an fMRI Parkinson’s disease study (Bowman et al, 2016). 

The fMRI data were acquired using a multi-slice ZSAGA sequence, yielding 30 axial slices 

(4mm thick) covering the entire cerebrum. Subjects lay supine with eyes open, maintaining 

attention to a visual fixation point on the computer screen, without other explicit tasks. The 

data include 42 subjects, with 24 Parkinson’s patients (PD) patients and 18 healthy control 

subjects. The 42 subjects include 21 males and 21 females, and are at the mean age of 65.0 

±9.0 (standard deviation). The mean age is 61.9±8.7 years for the PD group and 71.4±5.8 

years for the control group. Among the 24 patients 13 are females (46.4%), and 8 of 14 

controls are females (57.1% of controls) with p = 0.74. The mean Unified Parkinson’s 

Disease Rating Scale (UPDRS) Part III (motor) score for these patients is 19.4 ±10.2.

The data were preprocessed in AFNI using several steps commonly applied to fMRI 

neuroimaging data, including slice-timing correction, co-registration, spatial normalization, 

and regional parcellation using AAL. For the region level signal, we summarize the temporal 

signals from all voxels in each of the 90 AAL regions (Tzourio-Mazoyer et al, 2002), 

separately for each subject, by averaging the preprocessed time courses.

We calculate 4005 Pearson correlation coefficients between the time courses of all pairs of 

90 AAL regions. We then perform statistical tests on Fisher’s Z transformed correlation 

coefficients while adjusting the dependence between edges (Chen et al, 2018) and calculate 

the graph matrix W, with the (i,j)th entry of Wij = −log(pij). Age and sex of subjects are 

corrected in the regression analysis. The overall network detection procedure is 

demonstrated in Figure 4. Figure 4a displays our input data W, which is a 90 × 90 matrix of 

testing results −log(pij), and the original distribution of differentially expressed edges (hot 

color) is also shown in the heatmap. We apply the KPGD algorithm on W for differential 

brain connectivity subnetwork detection, which seeks to capture the most significantly 

differentially expressed connectivity edges within minimal-sized k-partite subnetworks. 

Figure 4b shows the detected disease -related community subnetwork and the resulting k-

partite structure is revealed by Figure 4c. Based on the GEP testing results, this subnetwork 

is differentially expressed and the k-partite structure (k = 2) is significant (with p < 0.001 

based on 5000 iterations). The k-partite structure includes 23 AAL regions such as orbito-

frontal cortex, parietal region, basal ganglia, and limbic gyrus (see Table 4). We also apply 

NBS to the data with multiple tuning parameters, however, no significant network is 

detected.

We enlarge the detected k-partite network in Figure 4d. There are two large independent 

sets: set one mainly includes insular cortices, occipital lobes and frontal lobes, and set two 
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mainly includes central frontal lobes and temporal lobes. In set one, the altered connectivity 

of regions from the occipital lobe of the patients with PD which are well documented in 

Burton et al, 2004 and Emre et al, 2007. Similarly, the functions of insular cortex are linked 

with many symptoms of the Parkinson’s disease (Kikuchi et al, 2001; Mattay et al, 2002; 

and Wu et al, 2005). The findings regarding temporal lobes in set two have also been 

identified in previous studies (e.g. Tam et al, 2005; Moody et al, 2004). Interestingly, many 

of our long-range differentially expressed edges are also reported by recent literature (e.g. 

Baggio et al, 2014; Lopes et al, 2016). Yet, we first identify the underlying organized graph 

topological structures of these findings. Overall, most differentially expressed edges in the 

detected k-partite subgraph based on data analysis coincide with findings of numerous 

precedent studies (Prodoehl et al, 2014). The 132 differentially expressed inter-set edges are 

summarized in Supplementary Table 1.

In this article, we identify a differentially expressed connectivity network with a latent 

bipartite topological structure. The network is not predefined but rather is automatically 

detected by our proposed methods. In the detected differential network with a bipartite 

topological structure, most connections within each independent set are high for most 

subjects, yet they have no significant difference in connectivity between normal controls and 

PD patients. Nevertheless, the connections between the two sets are differentially expressed 

between the two groups. We illustrate the k-partite structure in a 3D brain image (Figure 5). 

We note that the normal control group shows stronger connections for most differentially 

expressed edges (around 85%) in the detected k-partite subgraph (edge color code yellow in 

Figure 5). These results concur with the fact that Parkinson’s disease is a neurodegenerative 

disorder. In addition, the normal control group exhibits stronger connections for most long-

range differentially expressed edges such as edges from occipital lobes and inferior temporal 

lobes to insular and superior temporal lobes. There is only a small proportion of the 

differentially expressed edges in which the PD patients express hyper-connections relative to 

the normal controls, mainly including edges connected with the nodes of insular(R) or 

superior frontal gyrus orbital part. The structure apparent in our detected “k-partite 

phenomenon” may reflect neuropathology of Parkinson’s disease.

5. Discussion and Conclusion

In this article, we have introduced algorithms to detect a specific yet pervasive network 

topological structure: k-partite graph topology along with new statistical testing techniques. 

The KPGD algorithm provides a convenient and fast solution to detect k-partite subgraphs in 

a large weighted graph and to identify the differentially expressed brain connectivity 

subnetworks more precisely. Besides the application to brain connectivity network analysis 

for neuroimaging data, the algorithm may also be used to uncover interesting findings in 

other applications (e.g. protein-protein interactions Singh et al, 2008; Liao et al, 2009). The 

low computational cost of our topological structure detection algorithms allows the 

implementation of the permutation test for statistical inference.

Functional integration has been a longstanding principle underlying complex human brain 

function, enabling interactions between different brain areas (Bowman, 2014). From a 

network perspective, the interactions are assumed to be highly organized, rather than 
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distributed randomly. Neurological disorders, such as PD, and psychiatric disorders may 

reveal patterns of dysregulation in such system level characterizations of brain function. Our 

work provides an illustration of how differentially expressed connectome features (between 

PD patients and normal controls) are also distributed in an organized topology. Our methods 

provide a pathway to reveal the phenotype of connectome features, along with the latent 

topological structure, and to conduct statistical tests about this organized topology. Detected 

connectivity patterns may serve as useful features, e.g. as network biomarkers, in the 

diagnosis and treatment of brain disorders.

Brain connectivity analyses naturally involve high dimensionality. Numerous statistical 

methods have been developed aiming to select differentially expressed features from high-

dimensional biomedical data that are based on the test statistics or p-values of univariate 

statistical inferences, for example, the FWER and FDR (and fdr) rate controlling methods 

(Benjamini and Yekutieli, 2002; Storey, 2002; Fan et al, 2012; Efron et al, 2012). Yet, these 

methods do not address the graph topology between the massive edge features (that each 

edge is constrained by a pair of nodes). Often, the graph topology is highly informative for 

the population level analysis of ‘edge’ type features (Bullmore and Sporns, 2009), and 

tailored statistical methods are needed. Rather than drawing statistical inferences on 

individual edges, methods including NBS, Pard, and KPGD are developed to detect and test 

altered ‘subnetworks’ at the group level. Our approach is a good addition to these methods.

The detected graph topology structure could reveal important underlying disease 

mechanisms. For example, the community detection algorithm detects a general clique 

subgraph structure revealing a differentially expressed ‘community’ of edges between 

clinical subgroups. We develop more advanced statistical tools to further examine whether 

the detected clique subgraph includes a k-partite graph structure. The k-partite topological 

structure may uncover new important characteristics of brain disorders, e.g. revealing 

systematic disrupted connections between neural network communities (say posterior cortex 

to frontal and parietal cortices Baggio et al, 2014; Lopes et al, 2016).

Although we use functional connectivity brain network data for demonstration, the ideas 

underlying our method are applicable to all types of weighted adjacency matrix including 

functional connectivity (FC, e.g. from EEG and fMRI data) and structural connectivity (SC, 

e.g. from diffusion-weighted imaging data) if the connectivity matrix represents an 

undirected graph. In addition, we choose correlation coefficients as connectivity metrics for 

our data example based on our empirical analysis and suggestions by previous works 

(Zalesky et al, 2012; Kim et al, 2015a). However, when outliers exist users are free to choose 

other connectivity metrics, for example, maximum information coefficient or rank-based 

coherence and perform normalization (Chen et al, 2015b). Similarly, when parametric 

testing assumptions are not met, nonparametric methods could be adopted. Our study results 

are based on a moderate sample size. Further verification analysis will be performed with 

additional subjects recruited for the study. As with many high-dimensional biomedical data, 

the data may contain sample heterogeneity, machine noises, different options of 

preprocessing procedure (e.g. the global regression for resting state fMRI preprocessing). 

These may jointly impact the following statistical analysis. Our method is robust to many of 

these factors because these false positive/negative edges are less likely to appear in an 
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organized graph topological structure. Therefore, when graph combinatorics is incorporated 

in the inferential procedure, the false false positive/negative error rates may be decreased. 

Moreover, here we only consider direct connections for group-wise inference because 

comparing indirect connections between clinical groups could introduce numerous 

complexities due to varying indirect connectivity paths (e.g. the shortest path between two 

nodes) across subjects and the variation of selected connectivity metrics. Finally, our 

proposed methods are currently based on region level connectivity metric. One may consider 

extensions to our approach that model voxels and regions in a hierarchical fashion, e.g. 

similar to ideas presented by (Chen et al, 2016a).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An example of k-partite (k=2) graph Gc with 20 nodes in a weighted adjacency matrix 

(heatmap) G with 90 nodes: (a) is the k-partite graph Gc with the original order of nodes that 

is comparable to our input data with a latent k-partite topological structure; and (b) is output 

graph after applying KPGD algorithm that is an isomorphic graph of Gc with reordered 

nodes and an explicit topological structure.
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Figure 2: 
Demonstration for simulation study of FC analysis: (a) W is the input data; (b) KPGD first 

identifies a community showing a differentially expressed clique subnetwork; (c) KPGD 

algorithm detects the K-partite structure within the detected community; (d) the scatter plot 

shows the K selection criteria score across different values , with K = 2 yielding the 

optimum.

Chen et al. Page 19

Comput Stat Data Anal. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Applying our approach to simulated data sets: the left side figures are input Gc with latent k-

partite structure and the right side figures are the results of the KPGD algorithm with the 

apparent k-partite structure.
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Figure 4: 
We apply the KPGD algorithm to first obtain (b) from (a), and then identify a subgraph with 

k-partite graph topology in (c). We enlarge the heatmap of the k-partite differentially 

expressed subnetwork with AAL region names in (d)
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Figure 5: 
3D demonstration of the differentially expressed connectivity network with k-partite graph 

topology: red nodes are brain regions from set one and blue nodes for set two; yellow edges 

indicate controls > cases and green edges indicate controls < cases, the width of an edge 

represent the difference between the two groups. The control group shows hyper-

connections for most differentially expressed edges in the k-partite structure.
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Table 1:

Simulation results: the columns of aSPU, NBS, and KPGD show the percentages to detect the differentially 

expressed edges/networks; the columns of NBS size-diff and KPGD size-diff report |( |V c | − |V c | )| by using 

NBS and Pard; and the last column demonstrates the times KPGD fails to detect a k-partite subgraph within a 

detected clique subgraph Gc. The first five rows represent different sizes of |Vc| at the SNR of 2.5; the 6-8th 

rows are the scenarios of lower SNRs with |Vc| = 20; the row Kc = 20 indicates the community has no k-partite 

structure; and the last row shows the false positive discovery rates when no edges are differentially expressed 

between clinical groups. We repeat this setting for results based on different sample sizes.

aSPU NBS NBS size-diff KPGD KPGD size-diff k-partite missing

n=30 per group

Size10 100% 72% 26.33±5.65 100% 0.45±1.03 0

Size15 99% 76% 35.99±4.11 100% 0.43±1.95 2

Size20 100% 89% 39.48±4.34 100% 0.12±0.41 0

Size25 97% 95% 41.12±2.89 100% 0.11±0.37 1

Size30 100% 97% 43.36±3.12 100% 0.1±0.33 0

SNR=1.5 79% 13% 28.13±3.60 92% 0.36±3.99 0

SNR=1 34% 8% 27.99±3.63 84% 0.12±2.72 0

SNR=0.7 13% 3% 31.22±4.73 62% 6.38±7.62 21

SNR=0.5 4% 6% 42.15±7.26 29% 18.96±15.18 19

G250 100% 89% 76.36±14.15 100% 0.91±2.82 0

Kc = 20 100% 100% 14.52±2.38 100% 0.03±0.01 97

Δ=0 7% 2% NA 6% NA NA

n=60 per group

Size20 100% 93% 37.16±5.93 100% 0.27±0.69 0

SNR=1.5 100% 72% 29.65±4.12 100% 0.08±1.83 0

SNR=1 92% 31% 32.51±3.52 100% 0.15±1.97 0

SNR=0.7 87% 5% 41.87±4.89 79% 5.36±9.14 7

SNR=0.5 59% 8% 36.59±3.18 52% 7.92±11.53 23

G250 100% 93% 118.19±56.83 100% 0.36±0.95 0

Kc = 20 100% 100% 18.17±4.28 100% 0.11±0.01 99

Δ=0 3% 6% NA 4% NA NA

n=100 per group

Size20 100% 98% 23.51±4.62 100% 0.05±0.32 0

SNR=1.5 100% 77% 31.78±5.19 100% 0.11±0.59 0

SNR=1 97% 73% 25.41±3.59 98% 0.09±0.24 0

SNR=0.7 94% 29% 39.72±6.11 100% 0.36±0.49 0

SNR=0.5 85% 12% 41.81±6.64 83% 0.29±2.55 6

G250 100% 88% 97.62±33.25 100% 1.27±0.75 0

Kc = 20 100% 100% 5.39±15.81 100% 0.01±0.02 95

Δ=0 6% 1% NA 3% NA NA
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Table 2:

K-partite simulation study to evaluate k optimally: in each cell we summarize the mean number (across 100 

simulations) of falsely grouped edges and its standard deviation. Each row shows the results based on a δ that 

is the difference of differentially and non-differentially expressed edges and in each column. In each column, 

we set K equal to 2, 4, or 10. The choice of K is robust to noise and the number of independent sets.

Difference δ K = 2 K = 4 K = 10

FP FN FP FN FP FN

2.50 0.08±0.94 0.75±1.59 0.29±1.52 0.92±1.20 1.21±1.85 1.50±1.24

3.00 0.02±0.14 0.78±1.52 0.47±2.01 0.82±1.16 1.03±1.82 1.36±1.10

3.50 0.08±1.05 0.81±1.69 0.42±1.89 0.94±1.25 0.96±1.70 1.36±1.11

4.00 0.06±0.71 0.58±1.32 0.22±1.41 0.88±1.11 1.07±1.87 1.32±1.21

4.50 0.09±0.10 0.84±1.66 0.41±1.85 0.77±1.11 1.10±1.89 1.46±1.21

5.00 0.16±1.50 0.91±1.68 0.45±1.91 0.86±1.20 0.89±1.84 1.46±1.13
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Table 3:

Computational times of the k-partite subgraph of different sizes

size time(mean) seconds Parallel time(mean) seconds

100 2.07 2.63

200 9.19 3.29

500 104.83 58.42

1000 1401.01 836.74
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Table 4:

AAL regions in the k-partite graph

AAL region ame abbrevation index x y z Set

Superior frontal gyrus, orbital part, Left ORBsup.L 5 −17 47 −13 1

Inferior frontal gyrus, orbital part, Left ORBinf.L 15 −36 30 −12 2

Rolandic operculum, Left ROL.L 17 −47 −8 14 2

Rolandic operculum, Right ROL.R 18 53 −6 15 2

Insula, Left INS.L 29 −35 7 3 2

Insula, Right INS.R 30 39 6 2 2

Calcarine fissure and surrounding cortex, Right CAL.R 44 16 −73 9 1

Cuneus, Left CUN.L 45 −6 −80 27 1

Cuneus, Right CUN.R 46 14 −79 28 1

Lingual gyrus, Right LING.R 48 16 −67 −4 1

Superior occipital gyrus, Left SOG.L 49 −17 −84 28 1

Superior occipital gyrus, Right SOG.R 50 24 −81 31 1

Middle occipital gyrus, Left MOG.L 51 −32 −81 16 1

Middle occipital gyrus, Right MOG.R 52 38 −80 19 1

Inferior occipital gyrus, Left IOG.L 53 −36 −78 −8 1

Heschl gyrus, Left HES.L 79 −42 −19 10 1

Heschl gyrus, Right HES.R 80 46 −17 10 2

Superior temporal gyrus, Left STG.L 81 −53 −21 7 2

Superior temporal gyrus, Right STG.R 82 58 −22 7 2

Temporal pole: superior temporal gyrus, Right TPOsup.R 84 48 15 −17 2

Middle temporal gyrus, Right MTG.R 86 57 −37 −1 2

Inferior temporal gyrus, Left ITG.L 89 −50 −28 −23 1

Inferior temporal gyrus, Right ITG.R 90 54 −31 −22 1
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