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Abstract

A novel approach for dynamic modeling and forecasting of realized covariance matrices
is proposed. Realized variances and realized correlation matrices are jointly estimated.
The one-to-one relationship between a positive definite correlation matrix and its asso-
ciated set of partial correlations corresponding to any vine specification is used for data
transformation. The model components therefore are realized variances as well as realized
standard and partial correlations corresponding to a daily log-return series. As such, they
have a clear practical interpretation. A method to select a regular vine structure, which
allows for parsimonious time-series and dependence modeling of the model components,
is introduced. Being algebraically independent the latter do not underlie any algebraic
constraint. The proposed model approach is outlined in detail and motivated along with
a real data example on six highly liquid stocks. The forecasting performance is evaluated
both with respect to statistical precision and in the context of portfolio optimization.
Comparisons with Cholesky decomposition based benchmark models support the excel-
lent prediction ability of the proposed model approach.

Keywords: Forecasting; Partial correlation vine; Realized volatility; Time-series modeling;
R-vine structure selection

1 Introduction

The increasing availability of high-frequency data makes volatility modeling and forecasting
to one of the most vividly discussed topics in financial econometrics. Also, the strongly in-
creasing interaction and interconnectedness between financial markets have stimulated the
need for reliable modeling and forecasting techniques to capture the cross-sectional and tem-
poral dependencies of financial asset returns. Especially during negative economic phases
and periods of financial turmoil, assets become more dependent and linkages between asset
market volatility tighten (Cappiello et al. 2006). This affects fields such as asset pricing,
portfolio allocation and evaluation of risk.

High-frequency data allow to consistently estimate ex-post realized volatility and real-
ized covariances using the sum of squared intra-day returns (Doléans-Dade and Meyer 1970;
Jacod 1994). By making naturally latent variables, namely volatilities and covariances, ob-
servable and measurable, standard time-series approaches can be applied to model their
realized counterparts. Building upon the aforementioned classical estimator first used in the
context of high-frequency data by Barndorff-Nielsen and Shephard (2004), many refinements
were investigated to improve its overall quality and precision (Zhang 2011), to reduce market
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microstructure noise (Gençay et al. 2001; Zhang et al. 2005) and to take into account jumps
(Christensen et al. 2010) and asynchronicity (Hayashi et al. 2005).

The main modeling challenge when developing prediction tools for realized covariance
matrices are the algebraic restrictions of symmetry and positive definiteness the forecasts
need to satisfy. Direct modeling of the components using univariate time-series models does
not meet this constraint (Andersen et al. 2006) and neglects e.g. dynamic volatility spillovers
among the series of variances and covariances (Voev 2008). Several multivariate approaches
such as the Wishart Autoregressive (WAR) model (Gouriéroux et al. 2009) and its dynamic
counterpart the Conditional Autoregressive Wishart (CAW) model (Golosnoy et al. 2012)
have been developed. Andersen et al. (2006) propose a multivariate generalization of the
realized GARCH model (Hansen et al. 2012) by modifying the Dynamic Conditional Corre-
lation (DCC) model of Engle (2002). The basic idea of the latter model is to split up the
estimation problem into the two simpler tasks of modeling the conditional volatilities and
the correlation dynamics. Halbleib and Voev (2014) adopt this strategy using high-frequency
data in the volatility part and daily data in the correlation part at the expense of less flex-
ible correlation specifications. As an alternative, data transformation is one of the most
frequently used approaches. Bauer and Vorkink (2011) apply the matrix logarithm function
and a factor model approach to the individual components, which, however, leads to a com-
putationally demanding model. First proposed by Andersen et al. (2003) and having evolved
to one of the standard ways to proceed, the Cholesky decomposition is a proven tool to guar-
antee symmetry and positive definiteness of the forecasts. For example, Chiriac and Voev
(2011) decompose the series of realized covariance matrices via the Cholesky factorization and
model the so-obtained series of Cholesky elements with a vector autoregressive fractionally
integrated moving average (VARFIMA) process. Brechmann et al. (2018) build upon this
model approach, but pay special attention to the specific dependencies among the Cholesky
series induced by the nonlinear data transformation. While Cholesky decomposition based
models are straightforward and easy to implement, they also come with drawbacks. There is
no clear interpretation of the model components obtained after data transformation and the
latter induces an additive bias in the forecasts of the original data due to its nonlinear nature.
Also, the Cholesky decomposition depends on the ordering of the data within the realized
covariance matrices with no obvious way to fix the order in advance. Complete enumeration
leads to a computationally expensive estimation problem. On the other hand, fixing the order
upfront ignores a possible changing behavior of the data over time.

Irrespective of the considered data transformation, multivariate approaches for time-series
modeling often suffer from lacking flexibility in the parameters. Further, they barely allow
for convenient modeling of non-Gaussianity and conditional heteroscedasticity, which, how-
ever, are typical features of volatility data. In comparison, univariate time-series models
allow for various extensions and refinements to tackle these problems. Besides ARFIMA
processes (Andersen et al. 2006), heterogeneous autoregressive (HAR) processes are most
commonly applied to (log-transformed) realized volatility time-series capturing their long-
memory behavior. They include volatility measured over different time horizons and account
for multifractal scaling (Corsi 2009). Both ARFIMA and HAR models can be extended by
e.g. GARCH augmentations to account for non-Gaussianity and volatility clustering (Corsi
et al. 2008). By considering skewed error distributions for the residuals, typically observed
high skewness and kurtosis can be additionally captured (Bai et al. 2003; Fernández and Steel
1998).

In the light of the above discussion, a tool to transform the realized covariance matrices,
which allows for reasonable computational effort, interpretability of the model components
obtained after data transformation and to exploit the beneficial features of univariate time-
series modeling, is desirable. A promising candidate which meets these requirements are
partial correlation vines. The latter assign partial correlations to the edges of an R-vine
tree structure. The latter is a graph theoretical object first proposed by Bedford and Cooke
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(2002), which consists of a set of linked trees specifying bivariate conditional constraints. The
set of standard and partial correlations specified through an R-vine structure has attractive
properties. Bedford and Cooke (2002) proof that there is a bijection between the specified
(partial) correlations and the set of symmetric and positive definite correlation matrices. Fur-
ther, Kurowicka and Cooke (2003) find that any partial correlation vine specifies algebraically
independent (partial) correlations, i.e. the latter can take arbitrary values in (−1, 1) while
still guaranteeing positive definiteness of the corresponding correlation matrix. This result
advocates partial correlation vines to be a useful tool in several applications. Kurowicka
and Cooke (2006) use them to solve the completion problem for positive definite matrices,
whereas Lewandowski et al. (2009) introduce a method to uniformly generate random corre-
lation matrices from the space of positive definite correlation matrices. Brechmann and Joe
(2014) base a parsimonious parameterization of correlation matrices on partial correlation
vines in combination with factor analysis and Brechmann and Joe (2015) use these find-
ings to capture the dependence structure in multivariate data. Considering financial data,
Poignard (2017) introduces a vine-GARCH approach as flexible multivariate GARCH-type
model, which parametrizes the latent correlations appearing in the DCC model of Engle
(2002) in terms of a partial correlation vine. Based on the specific nature of an R-vine tree
structure, their estimation technique proceeds iteratively by evoking only bivariate GARCH
models in each tree level and thus allows for dimension reduction as compared to computa-
tionally highly demanding classical multivariate GARCH models.

To our knowledge, data transformation using partial correlation vines has not yet been
investigated to model and forecast multivariate realized volatility time-series. We propose a
joint estimation and prediction model of the realized variance times-series and a subset of
realized standard and partial correlation time-series. The latter are obtained after transform-
ing the series of realized correlation matrices based on an R-vine structure as first step of
the model approach. To select among the large number of possible R-vine structures the one
used for data transformation, we propose a selection method, which exclusively relies on his-
torical information of the modeled time-series and thus dynamically adapts to changing data
behavior over time. We will show that data transformation based on this R-vine structure
further allows for parsimony in the resulting multivariate time-series models, which are to be
estimated as second step of the model approach. We opt for a copula based time-series model
to exploit the beneficial features of elaborate univariate time-series models. By considering
flexible copulas for the dependence between the model components possible asymmetry and
nonlinearity can be captured. Combining in a third step the predicted realized variances and
the predicted realized correlation matrix obtained after back-transformation of the under-
lying realized partial correlation vine guarantees a symmetric and positive definite realized
covariance matrix forecast.

The paper is structured as follows. In Section 2, we introduce partial correlation vines
combining the notion of partial correlations and an R-vine structure. The transformation
of a correlation matrix to a partial correlation vine based on a given R-vine structure and
vice versa is explained in detail. In Section 3, we introduce the general data setting and
motivate the choice of Cholesky decomposition based models as our main benchmarks. In
Section 4, we outline in detail the three main steps of the proposed partial correlation vine
data transformation approach including R-vine structure selection in Section 4.2 and mul-
tivariate time-series modeling in Section 4.3. Supported by the analysis of high-frequency
data for six stocks listed on the NYSE, AMEX and NASDAQ beneficial properties of the
proposed modeling strategy will be explored. In Section 5, detailed investigation of the real
data example will be continued. Section 5.4 shows the excellent forecasting performance of
the partial correlation vine data transformation approach both with respect to statistical pre-
cision and mean-variance balance in portfolio optimization. This paper comes with extensive
supplementary material.
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2 Partial correlation vines

First, we provide necessary background on the two main ingredients of the proposed model
approach – partial correlations and regular vines.

2.1 Partial correlations

We consider a random vectorXI := (X1, . . . , Xd), d ≥ 2, with zero mean, where I is the index
set {1, . . . , d}. We denote the d × d covariance matrix by Y and obtain the corresponding
d × d correlation matrix R as R = D−1/2Y D−1/2, where D = diag (y1,1, . . . , yd,d) is the
diagonal matrix of variances. Further, we define a subset L ⊆ I having at least cardinality 2,
i.e. |L| ≥ 2. For a pair i, j ∈ L, i 6= j, we denote L with the subset {i, j} removed by D{i,j} :=
L−{i,j} = L\{i, j} and the corresponding random vector by XD{i,j} := {Xk, k ∈ D{i,j}}. The
partial regression coefficients bi,j;D{i,j} are defined as the quantities that minimize

E
[
(Xi −

∑
j∈L−{i}

bi,j;D{i,j}Xj)
2
]
.

The corresponding partial correlation coefficients ρi,j;D{i,j} quantify the dependence between
Xi and Xj without the linear effect of XD{i,j} and are defined by (Kurowicka and Joe 2011,
p. 47)

ρi,j;D{i,j} := sgn(bi,j;D{i,j})
(
bi,j;D{i,j}bj,i;D{i,j}

)1/2
.

We refer to the cardinality of D{i,j} as order of the partial correlation coefficient. For order
zero, i.e. |L| = |{i, j}| = 2 and thus D{i,j} = ∅, we obtain pairwise standard correlations
between Xi and Xj , i, j ∈ I, i 6= j. We write ρi,j;∅ = ρi,j . Now, consider for a subset
L ⊆ I of at least cardinality 3, a set of distinct indices {i, j, k} ⊆ L, i 6= j 6= k. We define
D̃ := L−{i,j,k} such that D{i,j} = D̃ ∪ k. Anderson (1958) derives a formula to recursively
calculate the partial correlations of any order |D{i,j}| with |D{i,j}| ≥ 1 in terms of (partial)
correlations of lower order. With ρ2

i,k;D̃
< 1 and ρ2

j,k;D̃
< 1 it holds that

ρi,j;D{i,j} =
ρi,j;D̃ − ρi,k;D̃ρj,k;D̃√
1− ρ2

i,k;D̃

√
1− ρ2

j,k;D̃

. (1)

Since the evaluation of higher order partial correlations gets too involved when exclusively
relying on this recursion formula, in practice typically a more efficient calculation procedure
is used (see e.g. Whittaker (2009)). Let Ω be the submatrix of standard correlations with
indices L ⊆ I, i.e. Ω = (ωk,`)k,`=1,...,|L| = (ρlkl`)k,`=1,...,|L|, where lk is the k-th element in L.

Let P be its inverse, i.e. P = Ω−1 = (pk,`)k,`=1,...,|L|. Then, it holds

ρlk,l`;D{lk,l`}
= −

pk,`√
pk,kp`,`

. (2)

Thus, through inversion of Ω all partial correlations between Xi and Xj (i, j ∈ L, i 6= j)
given all other variables XD{i,j} are simultaneously calculated. If interest is in a single partial
correlation ρi,j;D{i,j} for i, j ∈ L with i 6= j fixed, computing complexity can be reduced by
assorting Ω blockwise with indices (i, j) and D{i,j}, i.e.

Ω−1 =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)−1
= P =

(
P 1,1 P 1,2

P 2,1 P 2,2

)
,

4



where Ω1,1 is a 2 × 2 matrix with elements ω1,1 = ω2,2 = 1, ω1,2 = ω2,1 = ρi,j and P 1,1

its counterpart with elements p1,1, p1,2 = p2,1, p2,2. Using standard results for block matrix
inversion (see e.g. Bernstein (2005)) we have P−11,1 = Ω1,1 −Ω1,2Ω

−1
2,2Ω2,1 with elements p̃1,1,

p̃1,2 = p̃2,1, p̃2,2. We conclude that

ρi,j;D{i,j}
(2)
= − p1,2√

p1,1p2,2
= −

− 1
detP 1,1

p̃1,2√
1

detP 1,1
p̃1,1

1
detP 1,1

p̃2,2
=

p̃1,2√
p̃1,1p̃2,2

. (3)

From now on, we refer to Cd as the set of all standard correlations and to Cpd as the set of all

pairwise standard and partial correlations. The 1×
(
d
2

)
vector P Cd and the 1×

(
d
2

)
2d−2 vector

P Cpd
record all standard correlations and all standard and partial correlations, respectively,

of the random vector XI in lexicographical order with increasing subset L ⊆ I, i.e.

P Cd :=
(
ρ1,2, . . . , ρ1,d, ρ2,3, . . . , ρ2,d, . . . , ρ(d−1),d

)
and

P Cpd
:= (P Cd ,

ρ1,2;3, . . . , ρ1,2;d, ρ1,3;2, . . . , ρ1,d;(d−1), ρ2,3;1, . . . , ρ(d−1),d;(d−2),

...,

ρ1,2;3,...,d, . . . , ρ1,d;2,...,(d−1), . . . , ρ(d−1),d;1,...,(d−2)
)
.

To conclude and as illustrated in Figure 1, from a d×d covariance matrix Y the 1×d vector
of variances y and the d×d correlation matrix R can be obtained. The latter fully determines
the vector P Cpd

, which takes values in (−1, 1) and collects all
(
d
2

)
2d−2 standard and partial

correlations. In the following, we will show that the other way round the correlation matrix
R can be uniquely determined from only a few elements of P Cpd

, which are defined through
a regular vine.

Data: random vector XI ∈ Rd
with covariance matrix Y ∈ Rd×d

Variance vector of XI
y′ = (y1,1, . . . , yd,d)

′ ∈ Rd>0

Correlation matrix of XI

R =


1 ρ1,2 · · · ρ1,d

ρ1,2 1 · · ·
...

...
...

. . .
...

ρ1,d · · · · · · 1

 ∈ (−1, 1)d×d

Vector of standard correlations of XI

P ′Cd =
(
ρ1,2, . . . , ρ(d−1),d

)′ ∈ (−1, 1)(
d
2)

Vector of standard and partial correlations of XI

P ′Cpd
=
(
ρ1,2, . . . , ρ(d−1),d;1,...,(d−2)

)′ ∈ (−1, 1)(
d
2)2

d−2

formulas (1), (2)

Figure 1: Data prespecified by a given covariance matrix Y .
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2.2 Regular vines

According to Bedford and Cooke (2002), a regular vine (R-vine) on d elements is a set of
d − 1 linked trees, i.e. undirected and acyclic graphs, Vd := (T1, . . . , Td−1) with the set of
edges E (Vd) := E1 ∪ · · · ∪ Ed−1 and the set of nodes N (Vd) := N1 ∪ · · · ∪Nd−1 such that

(i) T1 is a tree with nodes N1 = {1, . . . , d} and edges E1,

(ii) for ` = 2, . . . , d− 1, T` is a tree with nodes N` = E`−1 and edges E`,

(iii) the proximity condition holds: For ` = 2, . . . , d − 1, whenever two nodes of T` are
connected by an edge, the corresponding edges of T`−1 share a node.

According to property (ii), the d− (`− 1) edges E`−1 in T`−1 become nodes in T`. Based on
this linkage, each sequence of trees of an R-vine – from now on referred to as R-vine structure
– allows to identify a set of

(
d
2

)
(conditional) bivariate constraints. We refer to Kurowicka

and Cooke (2003) and consider an arbitrary edge e = {a, b} ∈ E` of Vd, 2 ≤ ` ≤ d− 1, with
a, b ∈ N`. Its complete union U∗e is the subset of nodes in T1, i.e. the subset of {1, . . . , d},
reachable from e by the membership relation, i.e.

U∗e := {n ∈ N1 : ∃e1 ∈ E1, . . . , e`−1 ∈ E`−1 : n ∈ e1 ∈ · · · ∈ e`−1 ∈ e}.

The conditioning set De corresponding to e = {a, b} is the intersection of the complete unions
U∗a and U∗b corresponding to the edges a, b ∈ E`−1, i.e.

De := U∗a ∩ U∗b .

The corresponding symmetric difference is referred to as conditioned set

{Ce,a, Ce,b} := {U∗a\De, U
∗
b \De}.

By definition, each conditioned set in Vd consists of two single elements and forms a unique
pair of variables {i, j} with i, j ∈ {1, . . . , d}, i 6= j. Thus, each pair is modeled by Vd exactly
once either unconditioned, if it appears in the first tree level, or via conditioning if it appears
in tree levels ` = 2, . . . , d−1. If Vd specifies in each tree level one central node being attached
to all edges, we speak of a C-vine. The latter reflects an ordering by importance.

Example 2.1. Figure 2 shows an R-vine structure on six elements labeled with the condi-
tioned set and the conditioning set corresponding to each edge. The latter is indicated by a
leading “|”. The bold tree segment in T2 corresponds to the edge e = {{1, 2}, {2, 6}}. Reach-
able from edge {1, 2} ∈ T1 and {2, 6} ∈ T1 are the nodes 1, 2 ∈ N1 and 2, 6 ∈ N1, respectively.
Thus, De = U∗{1,2} ∩ U

∗
{2,6} = {1, 2} ∩ {2, 6} = {2} is the conditioning set corresponding to e

and the conditioned set is {Ce,{1,2}, Ce,{2,6}} = {{1, 2}\{2}, {2, 6}\{2}} = {1, 6}.

2.3 Partial correlation vines

Now, building the bridge between partial correlations determined by a d × d correlation
matrix and an R-vine structure Vd is straightforward: in a partial correlation vine with
R-vine structure Vd each edge e = {a, b} ∈ E (Vd) is identified with the partial correlation
coefficient ρCe,a,Ce,b;De that coincides with the conditioned and conditioning set specified by e.

Thus, to each edge in Vd a value in (−1, 1) is assigned. We define the set of the
(
d
2

)
standard

and partial correlations specified by Vd as C (Vd) and denote by P C(Vd) the 1 ×
(
d
2

)
vector
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6

2

3

5

1

4

T1

1,2

2,3
2,4

2,6

3,5

T2

2,6

1,2

2,3

3,5

2,4

1, 6|2

1, 3|2

3, 4|2
2, 5|3

T3

1, 6|2

1, 3|2

3, 4|2

2, 5|3

3, 6|1, 2

1, 4|2, 3

4, 5|2, 3

T4

3, 6|1, 2

1, 4|2, 3

4, 5|2, 3

4, 6|1, 2, 3

1, 5|2, 3, 4

T5

4, 6|1, 2, 3

1, 5|2, 3, 4

5, 6|1, 2, 3, 4

Figure 2: Example of a 6-dimensional R-vine structure with conditioning and conditioned sets
corresponding to each edge.

that collects the corresponding values specified by the correlation matrix R in lexicographical
order.

Bedford and Cooke (2002) provide the fundamental result that for any R-vine structure
Vd there is a one-to-one relationship between the set of d × d positive definite correlation
matrices and its set C (Vd), i.e. for each R-vine structure Vd there exists a bijection

FCor2PCor : (−1, 1)(
d
2) → (−1, 1)(

d
2) , FCor2PCor (P Cd) = P C(Vd). (4)

In particular, according to Kurowicka and Cooke (2003) the elements in P C(Vd) are alge-
braically independent, i.e. for any arbitrary assignment of values in (−1, 1) to the edges of
R-vine structure Vd the correlation matrix calculated from P C(Vd) using the ‘inverse’ of (4)
is positive definite with correlation values in (−1, 1) for all off-diagonal elements. An effi-
cient implementation of the bijection FCor2PCor and its ‘inverse’ is available in the R-package
VineCopula (Schepsmeier et al. 2017). Pseudo-code is provided in Joe (2014). Note that
while in the derivation of (3) and in the following explanations we assume the submatrix of
standard correlations Ω to be assorted blockwise with indices (i, j) and D{i,j}, Joe (2014)
assorts the indices using the order D{i,j} and (i, j).

Example 2.1 (continued). We illustrate the data transformation based on R-vine structure
V6 in Figure 2. As illustrated below, each standard correlation in R on the left-hand side is
specified in the partial correlation vine corresponding to V6 through a (partial) correlation of
order `− 1 modeled in tree T` (` = 1, . . . , 5) , i.e.

R =


ρ1,2 ρ1,3 ρ1,4 ρ1,5 ρ1,6

ρ2,3 ρ2,4 ρ2,5 ρ2,6
ρ3,4 ρ3,5 ρ3,6

ρ4,5 ρ4,6
ρ5,6

�


ρ1,2 ρ1,3;2 ρ1,4;2,3 ρ1,5;2,3,4 ρ1,6;2

ρ2,3 ρ2,4 ρ2,5;3 ρ2,6
ρ3,4;2 ρ3,5 ρ3,6;1,2

ρ4,5;2,3 ρ4,6;1,2,3
ρ5,6;1,2,3,4


Transformation of correlation matrix. First, we derive from R the partial correlations
corresponding to V6. Thus, proceeding in the illustration of the above matrices is from left to
right. While the standard correlations in T1 can simply be taken from the correlation matrix
R, the first order partial correlations in T2 can be calculated using recursion formula (1), e.g.
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ρ1,6;2 =
ρ1,6 − ρ1,2ρ2,6√

1− ρ21,2
√

1− ρ22,6
.

From tree level ` = 3 on, we rely on formula (3) and elementwise calculate the partial
correlations specified by T3 to T5. For example, for ρ3,6;1,2 we set

Ω1,1 =

 1 ρ3,6

ρ3,6 1

 , Ω1,2 =

ρ1,3 ρ2,3

ρ1,6 ρ2,6

 , Ω2,1 =

ρ1,3 ρ1,6

ρ2,3 ρ2,6

 and Ω2,2 =

 1 ρ1,2

ρ1,2 1



and evaluate

p̃1,1 p̃1,2

p̃1,2 p̃2,2

 = Ω1,1 −Ω1,2Ω
−1
2,2Ω2,1. Then, we calculate

ρ3,6;1,2
(3)
=

p̃1,2√
p̃1,1p̃2,2

.

Back-transformation to correlation matrix. Now, proceeding in the illustration of
the above matrices is from right to left. We proceed treewise. The standard correlations
from T1 can directly be taken. To calculate the standard correlations that correspond to the
conditioned sets of the first order partial correlations available in T2, we use recursion formula
(1), e.g.

ρ1,6 = ρ1,6;2

√
1− ρ21,2

√
1− ρ22,6 + ρ1,2ρ2,6.

Note that due to the proximity condition of an R-vine structure all standard correlations
needed for this evaluation are available from the previous step.

From tree level ` = 3 on, we rely on formula (3) to calculate the standard correlations
that correspond to the conditioned sets of the partial correlations specified in T3 to T5. For
example, to obtain ρ3,6 we set Ω1,2, Ω2,2 and Ω2,1 as above. Due to the proximity condition
all standard correlations to do so are available from previous steps ` = 1, 2. We calculate

q1,1 q1,2

q1,2 q2,2

 = Ω1,2Ω
−1
2,2Ω2,1

such that p̃1,1 = 1− q1,1, p̃1,2 = p̃2,1 = ρ3,6 − q1,2, p̃2,2 = 1− q2,2 and obtain

ρ3,6
(3)
= ρ3,6;1,2

√
(1− q1,1)(1− q2,2) + q1,2.

To conclude, the set of all standard correlations Cd can be determined from any set C (Vd)
specified by the partial correlation vine with R-vine structure Vd. In particular, positive
definiteness of the correlation matrix is always guaranteed. Figure 3 provides a summary
overview of the relationships between the sets Cd, Cpd and C (Vd).
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set Cpd
with |Cpd | =

(
d
2

)
2(d−2)

(
d
2

)
standard correlations
ρ1,2, . . . , ρ(d−1),d

(
d
2

)
(d − 2) order 1 pcors

ρ1,2;3, . . . , ρ(d−1),d;(d−2)

...

(
d
2

)
order d-2 pcors

ρ1,2;3,...,d, . . . , ρ(d−1),d;1,...,(d−2)
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Figure 3: Illustration of the transformation of the set of standard correlations Cd through a
partial correlation vine, which consists of a subset of algebraic independent (partial) correlations
C (Vd) ⊂ Cpd from all standard and partial correlations. The abbreviation “pcor” is used for partial
correlation.

3 General setting and benchmark models

In the following, partial correlation vine based data transformation will be used to model and
forecast multivariate volatility time-series. To do so, we introduce the general data setting
first. For the daily price series St ∈ Rd, t = 1, . . . , T , of d assets let rt = log (St)− log (St−1)
be the d× 1 vector of daily log-returns. The process rt can be written as

rt = E[rt|Ft−1] + εt,

where Ft−1 is the information set containing all information up to and including time point

t − 1. For the innovation term εt, we suppose that εt = Σ
1/2
t ηt, where Σt = Var[rt|Ft−1] is

the (d× d)-dimensional symmetric and positive definite conditional covariance matrix. For
the i.i.d. vector ηt ∈ Rd it holds that E[ηt] = 0 and Var[ηt] = Id. Interest is in modeling
and forecasting the series of daily conditional covariance matrices Σt, t = 1, . . . , T , which
however are naturally latent variables and therefore are unobservable. Still, as proposed by
Barndorff-Nielsen and Shephard (2004) Σt, t = 1, . . . , T , can be specified nonparametrically
using the realized covariance matrices as consistent estimates. Considering M intra-day
periods per day t, the latter are calculated from high-frequency intra-day log-returns r`,t =
log
(
St−1+`/M

)
− log

(
St−1+(`−1)/M

)
based on the price series S`,t ∈ Rd, ` = 1, . . . ,M . The

modeling and forecasting framework is then based on the matrix valued time-series of realized
covariance matrices

Y t =

M∑
l=1

r`,tr
′
`,t, t = 1, . . . , T. (5)
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Since for the matrix forecasts symmetry and positive definiteness have to be ensured, algebraic
restrictions are imposed on time-series models. Thus, popular modeling strategies avoid direct
modeling of the realized covariance matrices considering transformed data instead. Then, the
modeling approach basically consists of three consecutive steps: (S1) data transformation
of the realized covariance matrices; (S2) multivariate time-series modeling and prediction
based on the transformed data; (S3) back-transformation of the transformed data to obtain
predictions for the realized covariance matrices, which are proxies for the future conditional
covariance matrices.

The novelty in this paper lies in the use of partial correlation vines for data transformation
in steps (S1) and (S3). By modeling and forecasting the time-series of partial correlation
vines, we obtain forecasts for the transformed data, which do not underly any algebraic
restrictions. On the contrary, due to the algebraic independence of the model components
positive definiteness of the corresponding predicted correlation matrices is always guaranteed.
In literature, besides the matrix log transformation suggested by Bauer and Vorkink (2011)
data transformation based on the Cholesky factorization is one of the most commonly used
approaches.

Here, the series of realized covariance matrices Y t, t = 1, . . . , T , is decomposed such that
Y t = C ′tCt, where C ′t is a lower triangular matrix with positive diagonal elements. The
Cholesky elements ci,j;t (i, j = 1, . . . , d) are recursively calculated by

ci,j;t =


1

ci,i;t

(
yi,j;t −

∑i−1
k=1 ck,i;tck,j;t

)
for i < j,√

yj,j;t −
∑j−1

k=1 c
2
k,j;t for i = j,

0 for i > j.

(6)

By modeling and forecasting the Cholesky elements in step (S2) no parameter restrictions
need to be imposed on the multivariate time-series models. Symmetry and positive defi-
niteness of the predicted covariance matrices Ŷ t, t = T + 1, T + 2, . . ., are automatically
guaranteed through the back-transformation

ŷi,j;t =

min{i,j}∑
k=1

ĉk,i;tĉk,j;t. (7)

Chiriac and Voev (2011) use the Cholesky decomposition in steps (S1) and (S3) and apply a
parsimonious VARFIMA model to the multivariate time-series of the Cholesky components
in step (S2). In their detailed analysis, they show the superiority of their approach over a
variety of competitor models. The comparison includes the above mentioned matrix log trans-
formation used in steps (S1) and (S3) for data transformation combined with VARFIMA and
vector HAR models in step (S2). Further, the Wishart autoregressive model of Gouriéroux
et al. (2009) as well as the multivariate GARCH model with dynamic conditional correlations
of Engle (2002) and its fractionally integrated version proposed by Baillie et al. (1996) are
considered. Brechmann et al. (2018) refine the Cholesky-VARFIMA model of Chiriac and
Voev (2011) and allow for more flexible modeling of the multivariate time-series in step (S2).
They take account of challenging data characteristics in the Cholesky elements by model-
ing the univariate marginal time-series with elaborate HAR and ARFIMA models including
GARCH-augmentations for the residuals. The possibly complex dependence between the
Cholesky components is captured by a copula. Given these profound model reviews and
comparisons already existing in literature, models based on the Cholesky decomposition will
be our main benchmarks.

Chiriac and Voev (2011) and Brechmann et al. (2018) both consider high frequency data
from the NYSE TAQ database containing tick-by-tick bid and ask quotes on six stocks listed
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on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and the Na-
tional Association of Security Dealers Automated Quotation System (NASDAQ). The original
raw data were processed by Chiriac and Voev (2011), who provide detailed information on
the employed data preparation. Data of the six stocks American Express Inc. (AXP), Citi-
group (C), General Electric (GE), Home Depot Inc. (HD), International Business Machines
(IBM) and JPMorgan Chase & Co (JPM) were sampled from 9:30 until 16:00 for the period
January 1, 2000, until July 30, 2008, i.e. for 2156 trading days. While in (5) a single realized
covariance matrix is computed from M intra-day log-returns, Chiriac and Voev (2011) ob-
tained for each day a refined subsampled realized covariance matrix, which is more robust to
market microstructure noise. For each day t, a 5-minute spaced time grid, i.e. M = 78, was
shifted by 10 seconds, resulting in 30 distinct sets of realized covariance matrices calculated
from 78 intra-day log-returns. By taking the average of these sets, the subsampled realized
covariance matrix for day t was calculated. Although the data are less recent, we consider
the same data for comparison reasons. Further, the data cover interesting periods of financial
turmoil such as the aftermath of the dotcom bubble in 2000 and the beginning of the financial
crisis in 2008. Since focus in this paper is on the novel data transformation defined by partial
correlation vines, this will provide new interesting insights about the data.

4 Partial correlation vine data transformation approach

In this section, we outline – supported by real data characteristics – steps (S1) to (S3) for
the proposed modeling strategy based on partial correlation vines.

4.1 Data characteristics

Time-series of realized co(variances) typically exhibit long-memory behavior detectable by
high autocorrelations, which decay at a slow rate (see e.g. Andersen and Bollerslev (1997);
Andersen et al. (2001)). Chiriac and Voev (2011) find that the time-series of Cholesky com-
ponents obtained through data transformation inherit this data feature. Further, according
to Brechmann et al. (2018) appropriate time-series models need to capture non-Gaussianity
and volatility clustering of the residuals extracted from the series of Cholesky elements.

In order to also appropriately setup the partial correlation vine data transformation
model it is essential to understand the properties of the corresponding model components,
namely realized variances and realized (partial) correlations. The latter are specified through

the realized covariance matrix via Y t = D
1/2
t RtD

1/2
t , t = 1, . . . , T . For day t, Dt =

diag (y1,1;t, . . . , yd,d;t) contains the realized variances and Rt is the realized correlation ma-
trix. Realized partial correlations can easily be obtained either using recursion formula (1) or
through simultaneous calculation using (2). For reasonable time-series modeling later in step
(S2), for all model components data on the real line are needed. Thus, we log-transform the
all positive realized variance time-series and apply the Fisher z-transformation to the series
of (partial) correlations, i.e. for ρt being an arbitrary (partial) correlation at day t

z (ρt) =
1

2
log

(
1 + ρt
1− ρt

)
, t = 1, . . . , T. (8)

For the considered real data, Figure 4 shows a selection of time-series both on the original
(left) and the transformed (right) scale. The first panel illustrates for JPM the daily realized
variance series. Striking is the highly volatile behavior particularly during periods of financial
turmoil such as the aftermath of the dotcom bubble and the beginning of the financial crisis
in August 2007. Panels 2 to 6 show selected daily time-series of realized (partial) correlations
with increasing order, e.g. the last panel illustrates the time-series of the fourth order realized
partial correlation between HD and JPM. For each day, the latter is a proxy of the conditional
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Figure 4: Daily realized variance series (1st row) and daily realized (partial) correlation series (2nd
– 6th row). Original data are shown in the left panel, log-transformed and Fisher z-transformed
data, respectively, are shown in the right panel.

(with respect to the information set) correlation between the log-returns of HD and JPM given
the four remaining stocks. With increasing order the realized partial correlation time-series
become more stable while still exhibiting highly volatile behavior. Further, in Figure 5 data
characteristics of four time-series are illustrated. The figures in the top row correspond to the
realized variance time-series of JPM, which together with the remaining five realized variance
series always will be a model component. The long hyperbolic decay of the autocorrelation
function of the squared data on the left confirms the long-memory behavior and the presence
of volatility clustering. The log-periodogram shows higher peaks only for short frequencies
as expected for self-similar processes. In the second and third row, exemplary time-series,
which would appear in tree level T1 and T4, respectively, of an R-vine structure are shown.
Interestingly, while the realized standard correlation time-series corresponding to tree level
T1 inherits the data characteristics of the realized variance time-series, the latter are less
pronounced for the realized third order partial correlation time-series in T4.

To gain a deeper understanding of this last observation, recall that in a partial correlation
vine each variable pair (i, j) (i, j ∈ {1, . . . , d}, i 6= j) forms exactly once the conditioned set of
an edge. Thus, depending on the tree level ` the proxy for the conditional (with respect to the
information set) correlation between the log-returns of stocks i and j is either represented by
the realized standard correlation (if (i, j) occurs as conditioned set in T1) or through a (`−1)-
th order realized partial correlation (if (i, j) occurs as conditioned set in T` (` = 2, . . . , d−1)).
In the latter case, the linear effect of the `−1 stocks forming the conditioning set is removed.
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Figure 5: Illustration of autocorrelation functions of squared data (left panel) and corresponding
log-periodograms (right panel) based on data from July 1, 2006, to June 30, 2008. In the first row,
the log-transformed realized variance time-series of JPM is considered. In rows 2 to 4 exemplary
Fisher z-transformed realized (partial) correlation time-series of increasing order are considered.

Clearly, for some pairs the realized standard correlations might mainly be driven by other
variables. Once this influence is removed data features such as long-memory behavior weaken
and the corresponding realized partial correlation time-series behave more and more like noise.
On the other hand, this effect is not observable for pairs, which truly are strongly correlated
such as the log-returns of the two financial stocks C and JPM. The corresponding realized
fourth order partial correlation time-series, which would occur in the highest tree level, i.e.
T5, of an R-vine structure, underlies the two figures in the last row of Figure 5. It shows
similar data characteristics as the realized variance time-series in the top row.

The above analysis clearly stresses the practical interpretability of the model components
in the partial correlation vine data transformation approach, namely realized variances and
realized (partial) correlations. In the following, the detected inhomogeneous data complexity
motivates a specific choice for the R-vine structure used for data transformation in step (S1).

4.2 Step (S1): R-vine structure selection for data transformation

In d dimensions there exist d!/2·d(d−2)(d−3)/2 valid R-vines (Morales Napoles et al. 2010). It is
important to note that, in general, each of these tree structures allows a valid transformation
of the realized correlation matrices. To allow for model parsimony later in step (S2), when
modeling the dynamics of the realized variance series and the realized (partial) correlation
time-series selected by the R-vine structure, we refer to the data characteristics detected in
Section 4.1 and propose in this section an algorithm for R-vine structure selection.

We know that when transforming a series of realized correlation matrices based on the
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same R-vine structure, to each edge in this R-vine a univariate time-series of realized standard
or partial correlations is assigned. Therefore, each edge can be characterized by a weight
derived from sample properties of the corresponding time-series. We decide for the average
(partial) correlation strength: we consider the average correlation matrix R̄ = (ρ̄i,j)i,j=1,...,d
(which is positive definite) calculated from Rt, t = 1, . . . , T . Then, we find the maximum
spanning tree T1 (Katoh et al. 1981) with edge weights set to ρ̄Ce,a,Ce,b

. To construct tree
T2, we calculate all average first order partial correlations ρ̄Ce,a,Ce,b;De , i.e. |De| = 1, where
(Ce,a, Ce,b;De) satisfies the proximity condition given T1. Based on these weights, we find
the maximum spanning tree T2. In general, we construct the R-vine structure Vd within a
top-down procedure and find tree by tree (` = 1, . . . , d − 1) the maximum spanning tree T`
with edge weights set to ρ̄Ce,a,Ce,b;De , where |De| = ` − 1 and (Ce,a, Ce,b;De) satisfies the
proximity condition given T1 to T`−1. By doing so, we equip based on historical information
the R-vine structure with the highest realized (partial) correlation means.

The correlation matrix R̄ can be obtained in various ways depending on how the average
is calculated. Considering for each pair (i, j) (i, j ∈ {1, . . . , d}, i 6= j) the empirical mean
ρ̄i,j = 1

T

∑T
t=1 ρi,j;t assigns to each day’s value ρi,j;t the same influence 1/T irrespective of how

far it lies in the past. By using e.g. an exponentially weighted moving average (EWMA) more
influence can be assigned to values of more recent days. Here, the exact weights are controlled
by the smoothing parameter λ ∈ ]0, 1[ and are defined as wt = (1 − λ)λT−t, t = 1, . . . , T .
Thus, for decreasing λ the impact of more recent days increases and therewith the sensitivity
of the selected R-vine structure with respect to market changes.

For the real data example, the proposed R-vine structure selection method is illustrated
in Table 1. Recall that the data include three market participants of financial sectors, namely
AXP, C and JPM, IBM as an IT service, HD representing building materials trade and the
diversified industrial corporation GE. As edge weights the empirical means of the realized
(partial) correlation series based on all data points, i.e. t = 1, . . . , 2156 (January 1, 2000 - July
30, 2008), are chosen. In T1, we start with a full graph, i.e. all edges are allowed to be chosen.
Edge by edge a tree, i.e. a connected and acyclic graph, is built adding edges with the highest
possible correlation mean. Including e.g. the pair (AXP,JPM) would result in a cycle and is
thus not allowed. For T2 only edges satisfying the proximity condition given T1 are allowed.
A tree is constructed by the four edges with the highest mean values of realized first order
partial correlations, etc. The resulting R-vine structure captures the strong pairwise realized
correlations between the three financial services in trees T1 and T2. From T3 on only realized
partial correlations corresponding to stocks from different market sectors are modeled such
as the one investigated in the last row of Figure 5. Consequently, using in step (S1) an R-vine
structure selected by the proposed algorithm will likely result in higher order realized partial
correlation series, which allow for a parsimonious time-series model specification in step (S2).

4.3 Step (S2): Multivariate time-series modeling and forecasting

After transforming the series of realized covariance matrices in step (S1), multivariate time-
series models in step (S2) can be applied to the transformed data without imposing any
parameter restrictions. Except for the considered modeling components this step does not
differ from Cholesky decomposition based benchmark models. In both approaches, there are
d(d+ 1)/2 model components after data transformation. In particular, the time-series of log-
transformed realized variances and Fisher z-transformed realized (partial) correlations could
be modeled using a VARFIMA model as suggested for the Cholesky elements in Chiriac and
Voev (2011). Compared with this, copula based time-series modeling as applied in Brechmann
et al. (2018) showed superior results especially for economic applications.

A d̃-dimensional copula is a multivariate distribution function on [0, 1]d̃ with uniformly
distributed margins. Since data are required to be approximately i.i.d., the copula model usu-
ally is not directly applied to the observed time-series, but to the corresponding standardized
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Table 1: Illustration of the R-vine structure selection method for the real data example considering
all available data points, i.e. the mean values ρ̄Ce,a,Ce,b;De

are based on t = 1, . . . , 2156.

pairs allowed by proximity condition
selected tree

De Ce,a, Ce,b ρ̄Ce,a,Ce,b;De

∅ C,JPM 0.547

IBM

AXP

HD

JPM

C

GE

0.400GE,IBM

0.456AXP,C
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residuals
(
ε1;t, . . . , εd̃;t

)
, t = 1, . . . , T . The latter are extracted after fitting appropriate uni-

variate time-series models to the original marginal data. While no longer being subject to
temporal dependence, the residuals inherit the cross-sectional dependence between the time-
series components. According to Sklar (1959), their joint distribution function F can be
expressed in terms of its marginal distributions Fj (j = 1, . . . , d̃) and its corresponding cop-
ula, i.e. F

(
ε1, . . . , εd̃

)
= C{F1 (ε1) , . . . , Fd̃

(
εd̃
)
}. Consequently, in a copula based time-series

model the individual behavior of the time-series components and their dependence are mod-
eled separately. This allows us to deepen the analysis of the realized variance and (partial)
correlation series.

Marginal time-series modeling

As discussed in Section 4.1 specific univariate time-series models are needed to reproduce the
long-memory property of the Cholesky components as well as of the realized variance and
some of the realized (partial) correlation series. HAR (Corsi 2009) and ARFIMA (Andersen
et al. 2003) models are popular models capable of doing so.

Let ηt denote the variable of interest, i.e. a log-transformed realized variance, a Fisher
z-transformed realized (partial) correlation or a Cholesky element, at time t. A basic HAR
model accounts for different time horizons by incorporating one day (d = 1), one week (w = 5)

and one month (m = 22) averages ηt−1, η
(w)
t−1 and η

(m)
t−1 as regressors for ηt:

ηt = α0 + α1ηt−1 + α2η
(5)
t−1 + α3η

(22)
t−1 + εt.

The error term εt is usually assumed to be Gaussian white noise. While showing very good
modeling and prediction performance given complex data features, the basic HAR model
describes an easy to estimate restricted autoregressive process.

The ARFIMA(p, D, q) model for the time-series ηt, t = 1, . . . , T , is specified by

φ (L) (1− L)D (ηt − µ) = ψ (L) εt,

where φ (L) = 1−φ1L− . . .−φpLp and ψ (L) = 1 +ψ1L+ . . .+ψqL
q are lag polynomials for

p, q ∈ N. D is the parameter of fractional differencing. We choose D ∈ (0, 0.5) to guarantee
stationarity of the process. Gaussian white noise is usually assumed for the error term εt.

In these basic models, the volatility h of the error term εt = hεt with εt ∼ N (0, 1) is
assumed to be constant. Given the presence of volatility clustering in the Cholesky series,
Brechmann et al. (2018) include a GARCH (1, 1) component, i.e. εt = htεt with h2t = ω +
β1ε

2
t−1 + β2h

2
t−1. Usually, the innovation terms εt are standard normally distributed, i.e.

εt ∼ N (0, 1). To additionally capture possible high kurtosis and skewness, Brechmann et al.
(2018) further allow the innovations to follow a skewed generalized error distribution, i.e.
εt ∼ SGED (µ, σ, ν, ξ) (Bai et al. 2003; Corsi et al. 2008; Fernández and Steel 1998). A
specification of the skewed generalized error distribution is provided in Appendix A.

Dependence modeling

After fitting one of the above univariate time-series models to each of the model components,
the sample of i.i.d. standardized residuals

(
ε1;t, . . . , εd(d+1)/2;t

)
, t = 1, . . . , T , can be extracted.

To them, usually a two-stage proceeding is applied, called inference for margins methods
(Joe and Xu 1996; Joe 2005). First, the probability integral transform, ûj;t = F̂j (εj;t), is
applied to each residual component (j = 1, . . . , d(d + 1)/2) to obtain pseudo copula data(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T . The marginal estimates F̂j are specified through the

corresponding marginal time-series fit. In case of e.g. a basic HAR or ARFIMA model, F̂j
is a normal distribution with sample mean (approximately 0) and sample standard deviation
(approximately 1).
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Second, a copula is fitted to the pseudo copula data. To do so, we consider R-vine copulas.
Note that while in step (S1) and (S3) of the partial correlation vine data transformation
approach, R-vines are exclusively used as a graph theoretical tool for data transformation,
they are now the cornerstones for this flexible copula class. Given the limited choice of
copula families for more than two variables, Joe (1996) proposed to recursively decompose
the multivariate copula density into a cascade of (conditional) bivariate copula densities
through conditioning. Through R-vines the variety of possible pair-copula constructions can
be organized. To each edge in an R-vine structure bivariate unconditional copulas in tree
T1 and bivariate conditional copulas in trees T2 to Td−1 with arbitrary type and strength
of dependence are assigned. This is allows to capture complex asymmetric and nonlinear
dependence patterns. A detailed introduction to R-vine copulas is provided in Appendix B.
Fitting an R-vine copula to the sample

(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T , finalizes the model

specification based on in-sample data.

Forecasting of the model components

A one-day-ahead out-of-sample forecast Ŷ T+1 is now generated in multiple steps. First, in-
novations on the copula scale

(
û1;T+1, . . . , ûd(d+1)/2;T+1

)
are sampled from the R-vine copula

fit. The corresponding innovations on their original scale are obtained using the inverse prob-
ability integral transform, i.e. ε̂j;T+1 = F̂−1j (ûj;T+1) (j = 1, . . . , d(d+ 1)/2). Then, based on
the corresponding time-series fit forecasts for the model components, which involve the corre-
sponding simulated innovations, are calculated. In the Cholesky decomposition based model,
this results in a predicted upper triangular matrix ĈT+1. In the partial correlation vine data
transformation approach, the log-transformation of the realized variances and the Fisher z-
transformation of the realized (partial) correlations have to be reversed first. This results
in the predicted realized partial correlation vine stored in P̂ C(Vd);T+1 and the corresponding
predicted realized variance vector (ŷ1,1;T+1, . . . , ŷd,d;T+1).

4.4 Step (S3): Back-transformation

Finally, based on ĈT+1 back-transformation (7) is applied for the Cholesky decomposition
based approach. Likewise, P̂ C(Vd);T+1 is back-transformed to a symmetric and positive defi-
nite correlation matrix (Section 2) based on the R-vine structure selected in step (S1) (Sec-
tion 4.2). Combined with the predicted realized variances a forecast for the realized covariance
matrix is obtained. Given that both backward procedures involve nonlinear transformations
of the copula-distributed innovation terms, the underlying dependence pattern has an explicit
effect on the matrix forecast. Clearly, in practice this simulation based procedure is to be
replicated several times. The final point-forecast Ŷ T+1, which is considered as a proxy for
the conditional covariance matrix, is obtained as the mean of the simulation based matrix
forecasts.

In both modeling approaches the predictions of Ŷ T+1 are obtained after inverting a
nonlinear data transformation. Consequently, while the prediction errors of the model com-
ponents have zero mean, the nonlinear back-transformation induces a bias. Even though
Chiriac and Voev (2011) derive the theoretical bias correction for the Cholesky decomposi-
tion based model, they stress that the theoretical formula crucially depends on the considered
time-series model and thus, has to be estimated in practice. However, given that in a copula
based time-series model the marginal time-series are estimated independently of each other,
consistent estimation of the covariance matrix of the forecast errors in Brechmann et al.
(2018) is not feasible. Against this background, Chiriac and Voev (2011) and Brechmann
et al. (2018) both advocate a data-driven bias correction. In the partial correlation vine data
transformation approach, the forecast bias of the variable pair (i, j) in Ŷ T+1 depends not
only on the underlying time-series model but also on the R-vine structure used for data trans-
formation, making a theoretical correction practically infeasible. We therefore as well opt for

17



the heuristic data-driven bias correction proposed in Chiriac and Voev (2011). The basic idea
is to match the level of the observed volatilities by scaling the predicted volatilities

√
ŷj,j;T+1

(j = 1, . . . , d) by the corresponding mean 1
T−s+1

∑T
t=s

√
yj,j;t√
ŷj,j;t

, where s controls the number

of past days included for level matching. Note that this proceeding has no influence on the
predicted correlation structure. Thus, in the partial correlation vine data transformation
approach only the nonlinear inversion of the log-transformation can be corrected.

4.5 Modeling approach at a glance

Figure 6 summarizes the partial correlation vine data transformation approach discussed in
the previous sections.

5 Empirical study

The real data example introduced in Section 3 and Section 4 will now be investigated in
more detail. Based on the model specifications in Section 5.2 and Section 5.3, the out-of-
sample forecasting performance of the partial correlation vine data transformation approach
and Cholesky decomposition based benchmark models will be evaluated both with respect to
statistical precision and mean-variance trade-off in portfolio optimization strategies.

It is crucial to keep in mind that the realized covariance matrices are proxies for the
unobservable true conditional covariance matrices, which we aim to predict. As a conse-
quence, when comparing the performance of different forecasting models, loss functions have
to satisfy the condition to deliver the same ranking whether the evaluation is based on the
unbiased proxy, i.e. the realized covariance matrix, or the true conditional covariance matrix.
We will therefore rely on loss functions, which according to Patton (2011) and Laurent et al.
(2013) are robust to noise in the volatility proxies. Further, numerous different models for
prediction will be compared. To avoid pairwise comparison of loss functions we apply the
model confidence set (MCS) approach developed by Hansen et al. (2011). It allows to select
a set of superior models, which contains the best one with a specified level of confidence.

5.1 Moving window approach

In the following, we proceed in a moving window approach. Data for the period from January
1, 2000, until June 30, 2008, are available, i.e. for 2156 days. For each time window 502 days
(about two years) are used as training set and 22 days (about one month) constitute the
test set for which one-day-ahead forecasts are made. Since in case of HAR based time-series
models a monthly (22 days) average of the data is involved, the first forecast is obtained
for day 525. In total, there are 75 time windows. Figure 7 illustrates the moving window
approach.

5.2 Step (S1): Dynamic data transformation

For each time window Wi (i = 1, . . . , 75) the realized covariance matrices of the corresponding
training set are transformed in step (S1). Clearly, application of the R-vine structure selection
algorithm proposed in Section 4.2 can lead to varying R-vine structures among time windows.
Thus, data transformation in the partial correlation vine data transformation approach may
dynamically change over time. Depending on how the average correlation matrix used for
R-vine structure selection is calculated, the selected R-vine structure is more or less sensitive
to market developments.
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Data: series of daily realized covariance matrices Y t, t = 1, . . . , T
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Series of realized (partial)
correlation vectors specified by Vd

P C(Vd);t, t = 1, . . . , T

Series of model components scaled to Rd(d+1)/2

Univariate time-series modeling resulting in an approximately i.i.d. sample of innovations(
ε1;t, . . . , εd(d+1)/2;t

)
, t = 1, . . . , T , and pseudo copula data

(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T

Fit an R-vine copula to
(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T

set i = 1

Simulate copula data
(
û1;T+1, . . . , ûd(d+1)/2;T+1

)
according to the R-vine copula fit

and calculate simulated innovations
(
ε̂1;T+1, . . . , ε̂d(d+1)/2;T+1

)

Calculate predicted model components scaled to Rd(d+1)/2

Predicted realized variance vector
(ŷ1,1;T+1, . . . , ŷd,d;T+1)

Predicted realized partial correlation
vine stored in P̂ C(Vd);T+1

Predicted realized correlation matrix R̂

Predicted realized covariance matrix based on i-th simulated innovation vector Ŷ
i

T+1

i = Ni = i+ 1

One-day-ahead forecast Ŷ T+1 obtained as mean of Ŷ
i

T+1, i = 1, . . . , N

Figure 1 Figure 3, Section 4.2

log-transformation
Fisher z-transformation

Section 4.3

Appendix B

exp-transformation inverse Fisher z-transformation

Section 2, F−1
Cor2PCor

no

yes

Figure 6: Modeling and forecasting approach using partial correlation vine based data transforma-
tion of the series of realized covariance matrices in step (S1) and an R-vine copula based time-series

model in step (S2). The one-day-ahead forecast Ŷ T+1 is obtained as mean of N simulation based
matrix forecasts.

19



Empirical data (observed days)

1 23 525 547 569

Jan 2000 Feb 2000 Feb 2002 Mar 2002 Apr 2002

45

1st monthly
HAR average

1st training set 1st forecasting
window W1

2nd training set 2nd forecasting
window W2

...

Figure 7: Moving window approach illustrated for the considered real data example.

In Figure 8, the first trees of the R-vine structures selected in each of the 75 time win-
dows are shown indicating the included model components by a black square. In the first
row, empirical means of the realized standard correlations are considered. In the second
and third row, exponentially weighted moving averages based on λ = 0.995 and λ = 0.98,
respectively, are used. While in case of empirical means all days of the two training years
are of equal weight, for λ = 0.995 and λ = 0.98 the six most recent months and one and a
half months, respectively, already contribute half of the information for average calculation.
Thus, in the latter case R-vine structure selection is most sensitive to market changes re-
sulting in more frequent variations of the selected model components. Changes e.g. for the
prediction months in mid 2004 or at the beginning of the financial crisis are observed earliest.
Nevertheless, for all three setups the selected first tree is quite stable and we may identify
three distinct periods: February 2002–August 2006, September 2006–July 2007 and August
2007–July 2008. For these periods, Figure 9 illustrates the first tree T1 of the predominantly
chosen R-vine structures. Until August 2006, pairwise correlations between the log-returns
including Citigroup (C) and General Electric (GE) seem to be most pronounced. While C
plays a key role within the financial sector, GE as a diversified industrial corporation con-
nects the representatives of the financial sector with the two non-financial stocks. During
the period from September 2006 to July 2007 C becomes the first root node in a C-vine, i.e.
the node in T1 with the highest possible number of edges attached to it. At the beginning
of the financial crisis in August 2007, the correlations between JP Morgan (JPM) and the
other market participants seem to tighten. This results in a predominantly chosen R-vine
structure, where except for GE all pairwise correlations including JPM are modeled. Note
that in 2007 JPM replaced C as the biggest US-bank in terms of revenues.

To conclude, selecting the R-vine structure for data transformation as proposed in Sec-
tion 4.2 gives interesting insights into market activities over time. In addition, we already
know about the resulting inhomogeneous data complexity of the corresponding time-series,
which will be further analyzed in the next section. There, the R-vine structures will be se-
lected using EWMA based edge weights with λ = 0.995. Recall, however, that any R-vine
structure could be used for data transformation. To demonstrate the general adequacy of
the partial correlation vine data transformation approach irrespective of the R-vine struc-
ture used for data transformation, we will consider two alternative ways of R-vine structure
selection as well. First, we reverse the idea of inducing model parsimony and select for each
time window a C-vine, where in each tree level the root node induces the on average lowest
correlation strength. Thus, the effect of decreasing data complexity as for the proposed R-
vine structure selection should be eliminated. Second, an R-vine structure on 6 elements is
randomly sampled in each time window (Joe et al. 2011).
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Figure 8: Illustration of the dynamically changing R-vine structures used for transforming the
series of realized correlation matrices in each of the 75 time windows. The horizontal time axis
states the prediction month. Model components selected in tree T1 are indicated by black squares.
Green squares indicate selectable components allowed by the proximity condition (which does not
trigger in T1). In the first panel, the average correlations used for R-vine structure selection are
the empirical means of the training set data. In the second and third row, they are exponentially
weighted moving averages with λ = 0.995 and λ = 0.98, respectively.

Feb ’02 – Aug ’06

C

AXP JPM

GE

HD

IBM

Sep ’06 – Jul ’07

C

AXP JPM

GE

HD

IBM

Aug ’07 – Jul ’08

C

AXP JPM

GE

HD

IBM

Figure 9: Predominantly selected first tree of the R-vine structure used for data transformation
during the periods February 2002 to August 2006, September 2006 to July 2007 and August 2007
to July 2008.
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For the Cholesky decomposition, the model components depend on the ordering of the
assets. However, as opposed to the data transformation based on partial correlation vines
there is no justifiable rule to decide ‘on the fly’ for a specific order. Thus, the ordering has
to be set upfront. In this sense, the Cholesky decomposition based data transformation is
static. As the only way to proceed, Brechmann et al. (2018) test all possible permutations for
the underlying data. Coincidently, the alphabetic ordering of the six stocks performs best.
We therefore, choose the latter for all time windows.

5.3 Step (S2): Multivariate time-series modeling

As explained in Section 4.3, to the sample of model components obtained after transforming
the series of realized covariance matrices, marginal time-series models need to be applied
first.

Marginal time-series modeling

Given the proposed R-vine structure selection method, we know that with increasing tree
level the data complexity decreases such that less elaborate time-series models might already
be sufficient for accurate in-sample estimation and out-of-sample forecasting. To support
this presumption, for each period within the moving window approach time-series models of
different complexity are fitted to the log-transformed realized variance time-series and to the
Fisher z-transformed realized (partial) correlations specified by the R-vine structure found
in Section 4.2. For comparison, also the time-series specified by the C-vine, of which in each
tree level the root node induces the on average lowest correlation strength, are investigated.

Besides simply considering the mean value over time, basic univariate HAR and ARFIMA
models as well as HAR and ARFIMA models including a GARCH(1,1) component with nor-
mal innovations (abbreviated as HN and AN) and with SGED innovations (abbreviated as
HSGED and ASGED) are fitted. To evaluate the statistical precision we use the root mean
squared error (RMSE), which according to Patton (2011) is robust to noise in the volatility
proxies. Table 2 shows the out-of-sample RMSE for all time-series model components un-
der consideration. In each row, the set of superior models based on the MCS approach of
Hansen et al. (2011) with a confidence level of 10% is highlighted in gray. The model with
the lowest RMSE, which is the last one that would be rejected from the model confidence
set, is highlighted in bold. In general, ARFIMA based models show a superior prediction
performance with respect to the RMSE criterion. However, especially within the variations
of the two base models the RMSE values often are very close to each other. For the realized
variance time-series and the realized standard correlation time-series in T1 of the selected
R-vine structure, the best model usually includes a GARCH(1, 1) augmentation. For tree
level T2 and T3, there is a shift to basic ARFIMA models, while for tree level T4 and T5
even simply using the mean realized partial correlation value as forecast is included in the
model confidence set at a confidence level of 10%. This confirms the presumption that given
the proposed R-vine structure selection method with increasing tree level more parsimonious
time-series models already are sufficient. This hierarchical pattern is not observed for the
considered C-vine. Here, base models including a GARCH(1, 1) augmentation with normal
or SGED innovations most often would be the last ones to be eliminated from the model
confidence set. In particular, a simple mean forecast clearly is insufficient even in high tree
levels. Similar results are detected for the Cholesky elements and are given in Table 5 in
Appendix C.

In the following, we consider two groups of models. One including only HAR based time-
series models and the other including only ARFIMA based models. Given the above findings
within the partial correlation vine data transformation approach, we use HN and AN models,
respectively, for all components in case that a C-vine or a randomly sampled R-vine structure
is taken for data transformation. Likewise, we proceed for the Cholesky decomposition based
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Table 2: RMSE with respect to the complete out-of-sample forecasting horizon (1632 days) for
the model components in the partial correlation vine data transformation approach. Two different
R-vine structures for data transformation are considered. The set of superior models according
to the MCS approach at a confidence level of 10% is highlighted in gray. The lowest RMSE is
highlighted in bold.

mean HAR HN HSGED ARFIMA AN ASGED

AXP 1.0429 0.4711 0.4715 0.4719 0.4684 0.4668 0.4680
C 1.0154 0.4469 0.4479 0.4510 0.4465 0.4455 0.4483
GE 0.8105 0.4634 0.4632 0.4647 0.4627 0.4625 0.4627
HD 0.7766 0.4554 0.4557 0.4568 0.4540 0.4543 0.4543
IBM 0.7242 0.4320 0.4322 0.4323 0.4317 0.4331 0.4327
JPM 1.0137 0.4653 0.4647 0.4671 0.4652 0.4641 0.4655
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4.
2)

AXP,C 0.2183 0.1572 0.1573 0.1576 0.1568 0.1568 0.1571
C,GE 0.1984 0.1531 0.1531 0.1530 0.1526 0.1526 0.1524
C,HD 0.1857 0.1519 0.1520 0.1520 0.1515 0.1516 0.1512
C,JPM 0.2149 0.1619 0.1620 0.1620 0.1615 0.1615 0.1615
GE,IBM 0.1914 0.1489 0.1490 0.1490 0.1490 0.1490 0.1490

AXP,GE;C 0.1395 0.1317 0.1317 0.1316 0.1313 0.1313 0.1313
AXP,JPM;C 0.1364 0.1295 0.1295 0.1296 0.1297 0.1297 0.1297
C,IBM;GE 0.1340 0.1271 0.1271 0.1272 0.1270 0.1270 0.1270
GE,HD;C 0.1384 0.1300 0.1301 0.1301 0.1292 0.1292 0.1292

AXP,IBM;C,GE 0.1246 0.1237 0.1237 0.1237 0.1231 0.1231 0.1232
GE,JPM;AXP,C 0.1211 0.1196 0.1196 0.1196 0.1191 0.1191 0.1191
HD,IBM;C,GE 0.1260 0.1253 0.1254 0.1254 0.1250 0.1250 0.1251

AXP,HD;C,GE,IBM 0.1175 0.1171 0.1171 0.1172 0.1168 0.1168 0.1170
IBM,JPM;AXP,C,GE 0.1237 0.1227 0.1227 0.1227 0.1225 0.1223 0.1225

HD,JPM;AXP,C,GE,IBM 0.1177 0.1175 0.1175 0.1175 0.1178 0.1177 0.1178

C
-v

in
e

AXP,HD 0.1873 0.1547 0.1547 0.1549 0.1538 0.1538 0.1539
C,HD 0.1857 0.1519 0.1520 0.1520 0.1515 0.1516 0.1512
GE,HD 0.1856 0.1517 0.1517 0.1517 0.1509 0.1509 0.1509
HD,IBM 0.1731 0.1488 0.1489 0.1489 0.1484 0.1484 0.1483
HD,JPM 0.1804 0.1532 0.1533 0.1533 0.1525 0.1523 0.1525

AXP,IBM;HD 0.1491 0.1349 0.1349 0.1349 0.1345 0.1344 0.1345
C,IBM;HD 0.1502 0.1320 0.1320 0.1320 0.1317 0.1317 0.1315
GE,IBM;HD 0.1574 0.1352 0.1352 0.1353 0.1353 0.1354 0.1355
IBM,JPM;HD 0.1486 0.1382 0.1382 0.1383 0.1376 0.1376 0.1376

AXP,GE;HD,IBM 0.1387 0.1303 0.1303 0.1302 0.1299 0.1300 0.1299
C,GE;HD,IBM 0.1371 0.1270 0.1270 0.1268 0.1270 0.1270 0.1268

GE,JPM;HD,IBM 0.1312 0.1251 0.1251 0.1251 0.1251 0.1251 0.1252
AXP,C;GE,HD,IBM 0.1496 0.1283 0.1283 0.1285 0.1281 0.1281 0.1282

AXP,JPM;GE,HD,IBM 0.1526 0.1321 0.1321 0.1321 0.1317 0.1316 0.1316
C,JPM;AXP,GE,HD,IBM 0.1398 0.1247 0.1247 0.1248 0.1241 0.1241 0.1242

model. In case of R-vine structure selection according to Section 4.2, we stepwise increase
model parsimony. For model components corresponding to the realized variance and realized
standard correlation time-series in T1, we use HN and AN models, respectively. For the ones in
tree level T2 and T3 we apply basic HAR and ARFIMA models, respectively. For components
in T4 and T5 we consider in one setting basic HAR and ARFIMA models, respectively, and
take in another setting simply the mean value of the underlying training set as forecast.
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Dependence modeling

Now, for each time window interest is in the cross-sectional dependence between the model
components. Since dependencies between stocks are expected to be most pronounced during
financial turmoil, we consider as an example the time window from July 2006 to July 2008.
Based on the specified time-series models, the sample of innovations is obtained and trans-
formed to pseudo copula data (Section 4.3). Figure 10 shows the resulting data based on
R-vine structure selection according to Section 4.2 and HAR based time-series modeling. It
illustrates the corresponding histograms on its diagonal, pairwise contour plots with standard
normal margins in the lower left corner and pairs plots with corresponding Kendall’s τ values
in the upper right corner. Only dependencies between model components corresponding to
realized variances (last six components) and realized standard correlations (first 5 compo-
nents) are significant with Kendall’s τ values ranging from 0.2 to 0.5. Dependencies including
components, which correspond to partial correlations, are rather small and close to zero for
higher tree levels. Based on these findings, we subsequently consider five different R-vine
copula settings. First, independence for all pairs is assumed. Second, a 21-dimensional R-
vine copula is fitted to capture dependence between all model components. Third, a reduced

PCV1

0.38 0.33 0.30 0.27 0.088 0.022 0.061 0.033 0.06 0.041 0.069 0.041 -0.017 0.078 0.23 0.25 0.16 0.19 0.18 0.25
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0.37 0.31 0.28 0.0036 0.058 0.051 -0.016 0.044 0.025 0.075 -0.011 0.016 0.003 0.21 0.25 0.20 0.19 0.18 0.32
PCV3

0.30 0.30 0.036 0.075 0.085 0.049 0.065 0.031 0.13 0.016 0.012 0.04 0.25 0.24 0.29 0.23 0.18 0.30

PCV4

0.26 0.055 0.016 0.05 0.041 0.02 0.045 0.049 0.053 0.08 0.019 0.18 0.21 0.17 0.20 0.18 0.22

PCV5

0.069 0.036 0.11 0.084 0.10 0.053 0.063 0.033 0.0061 0.057 0.21 0.21 0.24 0.21 0.19 0.22

PCV6

0.20 0.027 0.069 0.071 0.14 0.089 0.031 0.11 0.017 0.082 0.11 0.079 0.069 0.091 0.13

PCV7

0.082 0.076 0.015 0.11 0.16 0.036 0.033 0.019 0.069 0.11 0.11 0.054 0.053 0.086
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0.14 0.13 0.035 0.086 -0.032 0.0075 0.004 0.065 0.11 0.11 0.12 0.076 0.11

PCV9

0.056 0.14 0.046 0.17 -0.029 0.029 0.10 0.10 0.057 0.07 0.12 0.10

PCV10

0.013 0.12 0.034 0.00015 -0.02 0.0073 0.052 0.087 0.072 0.072 0.075

PCV11

0.028 0.041 0.067 -0.03 0.0052 0.046 0.045 0.11 0.038 0.0085

PCV12

0.066 0.025 0.03 0.12 0.11 0.12 0.08 0.12 0.13

PCV13

-0.025 0.056 -0.0016 0.037 0.044 0.02 0.036 0.029

PCV14

0.033 0.024 0.037 0.023 0.02 0.024 0.022

PCV15

0.07 0.073 0.045 0.029 0.014 0.076

PCV16

0.41 0.31 0.30 0.29 0.39
PCV17

0.34 0.33 0.34 0.49
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0.34 0.29 0.36
PCV19

0.29 0.35
PCV20

0.33
PCV21

Figure 10: Exploratory data analysis for the pairwise dependencies of the 21-dimensional pseudo
copula data estimated for the period July 2006 to July 2008 using the proposed method for R-vine
structure selection (Section 4.2) and HAR based time-series modeling. Pairwise contour plots with
normalized margins, histograms and pairs plots with empirical Kendall’s τ values are shown. The
first five components PCV1 to PCV5 correspond to realized standard correlations in T1, components
PCV6 to PCV9 correspond to realized first order partial correlations in T2, etc. Variables PCV16
to PCV21 correspond to realized variances.
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structured dependence is imposed, where a 11-dimensional R-vine copula is fitted only to
the components corresponding to realized variances and realized standard correlations. The
components corresponding to realized partial correlations are assumed to be independent.
Both in case of full and reduced structured R-vine copula based dependence modeling, we
allow as a first setting the pair-copulas to stem from various copula families such as Clayton,
Gumbel, Frank, etc. including their reflected forms. Thus, possible asymmetric and nonlinear
dependence patterns can be detected. Given the primarily elliptical shapes in Figure 10 we
also consider an R-vine copula exclusively built from bivariate (conditional) Gaussian cop-
ulas, i.e. a Gaussian vine. Except for the structured dependence, the same settings for the
copula models are taken in the Cholesky decomposition based benchmarks. To fit an R-vine
copula model we rely on the R-package VineCopula (Schepsmeier et al. 2017).

5.4 Forecasting performance

Based on the above model specifications, one-day-ahead forecasts as described in Section 4.4
are obtained. In addition to the 36 data transformation based prediction models, we consider
three naive benchmarks. First, Ŷ T+1 is set to the realized covariance matrix at time point
T , i.e. Ŷ T+1 = Y T . Second, Ŷ T+1 is calculated as the equally weighted average of the
realized covariance matrices in the corresponding training set. Third, Ŷ T+1 is obtained as
an exponentially weighted moving average, i.e. in our setup Ŷ T+1 = λŶ T + (1− λ)Y T ,
where the smoothing parameter λ is set to 0.94 as commonly suggested in the framework of
a RiskMetrics approach (Morgan 1996).

Out-of-sample forecasting precision

To illustrate that the proposed forecasting approach is on target, Figure 11 shows for the
realized variance time-series of JPM (top panel), the realized covariance time-series of C and
JPM (mid panel) as well as IBM and JPM (bottom panel) the historical time-series from
January 2002 until July 2008 together with the one-day-ahead forecasts based on the R-vine
structure selected according to Section 4.2, ARFIMA based time-series modeling and a 21-
dimensional Gaussian vine for dependence modeling. Results for all other realized variances
and covariance pairs are similar and given in Figure 14 in Appendix C. The trends in all
time-series including high short-term peaks are well detected and modeled. Distances between
historical extreme peaks and corresponding forecasts are large. This finding holds true for all
prediction models and is due to the high volatility of the realized variances and covariances.
The predicted time-series incorporate smoothed long-term information of historical data and
thus, are more stable.

To evaluate the statistical precision of the matrix forecasts, Table 3 summarizes for all
considered models the RMSE based on the Frobenius norm between the realized and the
predicted covariance matrices. This loss function satisfies the conditions in Laurent et al.
(2013) for consistent model ranking. In the right column, the RMSE based on bias cor-
rected (bc) matrix forecasts are shown. We use historical data over the period of one year
for level correction reducing the out-of-sample forecasting horizon to 1368 days. As in the
previous analysis of the single model components, ARFIMA based models in general have
smaller RMSE values compared to HAR based models. All models using partial correlation
vine based data transformation and full dependence modeling exhibit a smaller RMSE than
Cholesky decomposition based models and show very similar performance among each other.
This confirms that any R-vine structure can be used for data transformation in step (S1) of
the model approach. Among the partial correlation vine data transformation based models
those with a C-vine structure used for data transformation have the highest RMSE. Recall
that by construction more complex data features are induced even for high tree levels. For
C-vine and random R-vine structures, time-series modeling in step (S2) with independent
components and reduced structured dependence between components is clearly improved by
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Figure 11: Daily realized variance time-series for JPM (1st row) and daily realized covariance
time-series (2nd and 3rd row) together with the time-series of the corresponding daily forecasts
based on the partial correlation vine data transformation approach with R-vine structure selected
according to Section 4.2, ARFIMA based time-series modeling and a 21-dimensional Gaussian vine
for dependence modeling.

models, which capture dependence between all model components. Here, the decreasing data
complexity does not trigger. However, for the R-vine structure selected according to Sec-
tion 4.2 the performance in case of reduced structured dependence is only slightly improved
by full dependence modeling. Thus, also the dependence between the model components
allows for model parsimony. In general, using a Gaussian vine for dependence modeling
between the model components shows comparable results as using more elaborate copulas al-
lowing e.g. for tail-dependence. All discussed prediction models clearly show superior results
as compared to the naive benchmarks. Bias correction in step (S3) slightly improves results
while maintaining the above observations among the different models.

To test the statistical significance of the results, we apply the MCS approach of Hansen
et al. (2011). Based on the above findings, we restrict the analysis to models using a Gaussian
vine for dependence modeling between the model components. Only in case of R-vine struc-
ture selection according to Section 4.2 we consider reduced structured dependence modeling
in addition to the full one. Figure 12 shows for each half-year period of the out-of-sample
horizon the set of superior models (indicated by a gray dot), which contains the best model
at a confidence level of 10%. A blue triangle and an orange cross indicate the last and the
next model, respectively, that would be eliminated. For almost all periods, all models are
selected at the given confidence level showing very close performance of all models. Most
often, HAR based models would be eliminated next, while ARFIMA based models usually
would be the last ones to be eliminated from the set of superior models. In three out of eleven
periods, the ARFIMA-Cholesky model has the smallest RMSE based on the Frobenius norm
and therefore automatically would be the last model to be eliminated. All ARFIMA and
partial correlation vine data transformation based models show rather robust performance
over the out-of-sample forecasting horizon. Especially, the models based on R-vine structure
selection according to Section 4.2 usually are the ones to be eliminated last from the MCS,
i.e. having the smallest loss.
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Table 3: RMSE based on the Frobenius norm between the realized and predicted correlation
matrices with respect to the complete out-of-sample forecasting horizon (1368 days) for all models.

Marginals
Data transformation R-vine copula assumed

RMSE RMSE bc
based on for transformed data

A
R

F
IM

A
b

as
ed

P
C

V
independence 6.6314 6.6045

R-vine selection full all 6.5725 6.5632
(Section 4.2) full Gauss 6.5685 6.5619

structured all 6.5858 6.5740
structured Gauss 6.5864 6.5742

C-vine

independence 6.7076 6.6733
full all 6.5968 6.5854
full Gauss 6.5967 6.5860
structured all 6.6436 6.6189
structured Gauss 6.6410 6.6166

random R-vine

independence 6.6694 6.6393
full all 6.5826 6.5746
full Gauss 6.5886 6.5810
structured all 6.6155 6.5968
structured Gauss 6.6138 6.5954

Cholesky
independence 6.6732 6.6437
all 6.6121 6.6001
Gauss 6.6193 6.6075

H
A

R
b

as
ed

P
C

V

independence 6.7218 6.6566
R-vine selection full all 6.6332 6.5998

(Section 4.2) full Gauss 6.6313 6.5962
structured all 6.6544 6.6146
structured Gauss 6.6522 6.6122

C-vine

independence 6.7900 6.7085
full all 6.6574 6.6153
full Gauss 6.6575 6.6158
structured all 6.7117 6.6480
structured Gauss 6.7094 6.6453

random R-vine

independence 6.7527 6.6830
full all 6.6432 6.6117
full Gauss 6.6474 6.6158
structured all 6.6821 6.6334
structured Gauss 6.6796 6.6310

Cholesky
independence 6.7400 6.6866
all 6.6863 6.6621
Gauss 6.6841 6.6603

mean over training set 12.0894
previous day 7.2937
EWMA with λ = 0.94 7.8790
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Figure 12: Model confidence sets of Hansen et al. (2011) with confidence level 10% for all half-year
periods of the out-of-sample forecasting horizon. Gray dots indicate selected models, blue triangles
and orange crosses indicate the last and the next model, respectively, that would be eliminated
from the set of superior models.

Mean-variance trade-off in portfolio optimization

For additional economic evaluation of the forecasts, we construct portfolios based on each
prediction model, which are mean-variance efficient. For a risk-averse investor we assume a
quadratic utility function. Then, the problem to maximize the utility is reduced to finding the
asset weights w, which minimize the portfolio volatility σp based on a fixed target expected
return µp (Markowitz 1952). The optimal portfolio is obtained by solving the quadratic
problem

min
wt+1

w′t+1Σ̂t+1wt+1 s.t. w′t+1E [rt+1|Ft] = µp and w′t+11d = 1,

where wt+1 is the d×1 vector of portfolio weights chosen at day t for t+1, 1d is a d×1 vector
of ones, µp is the daily target expected return and Σ̂t+1 is the conditional (with respect to
the information set) covariance forecast at day t for t + 1. The latter corresponds to the
realized covariance forecasts Ŷ t+1.

For each prediction model, we solve the above optimization problem for a daily target
return µp for all 1368 days in the out-of-sample horizon. Based on the optimal portfolio
weights wt for day t (t = 1, . . . , 1368) the expected risk in terms of standard deviation,√
w′tŶ twt, corresponding to the target expected return µp can be calculated. Taking the

averages over the forecasting horizon and repeating the procedure for a grid of target returns,
results in an average efficient frontier for each prediction model. To obtain an average oracle
efficient frontier, the true realized covariance matrices for each day t are used. Figure 13
shows the efficient frontiers for the considered HAR and ARFIMA based prediction models.
All partial correlation vine data transformation based models show a clear improvement in
terms of the expected mean-variance trade-off compared to the two Cholesky decomposition
based prediction models.

To validate this observation in an out-of-sample setting we calculate for each prediction
model based on the corresponding optimal portfolio weights wt+1 estimated at day t for t+1
(t = 0, . . . , 1367) the ex-post realized portfolio return rp,t+1 = w′t+1rt+1 and the ex-post

realized portfolio volatility σp,t+1 =
√
w′t+1Y t+1wt+1. Here, rt+1 and Y t+1 are the true

returns and the true covariance matrix, respectively, realized at day t + 1. Given a small
enough grid of target returns, we are able to obtain for each prediction model the series

28



-5

0

5

10

15

20

11.5 12.0 12.5 13.0 13.5

Standard deviation (annualized)

E
xp

ec
te

d 
re

tu
rn

 in
 %

 (
an

nu
al

iz
ed

)

Model

oracle

H-PCV-Sel-full

H-PCV-Sel-struc

H-PCV-CVine

H-PCV-random

H-Chol

-5

0

5

10

15

20

11.5 12.0 12.5 13.0 13.5

Standard deviation (annualized)

E
xp

ec
te

d 
re

tu
rn

 in
 %

 (
an

nu
al

iz
ed

)

Model

oracle

A-PCV-Sel-full

A-PCV-Sel-struc

A-PCV-CVine

A-PCV-random

A-Chol

Figure 13: Efficient frontier for each HAR and ARFIMA based prediction model plotting the
expected return versus its corresponding risk in terms of standard deviation. The curves are
obtained as averages over the out-of-sample horizon (1368 days).

of ex-post portfolio standard deviation σp,t+1, t = 0, . . . , 1367, corresponding to a certain
average ex-post realized return. For an average annualized ex-post realized portfolio return
of approximately 7.5%, 10%, 12% and 15%, Table 4 shows the average annualized ex-post
realized portfolio standard deviation for each prediction model. The set of models, which
includes the model with the lowest standard deviation at a confidence level of 10% based on
the MCS approach of Hansen et al. (2011), is highlighted in gray. The model with the lowest
loss (deviation from zero) is highlighted in bold. In general, HAR based prediction models
perform better than their ARFIMA based counterparts. In the ex-post analysis, all ARFIMA
based partial correlation vine data transformation based models have the highest average
standard deviation. This confirms the often seen phenomenon that models with the lowest
statistical loss do not necessarily show superior results in economical applications (Laurent
et al. 2013). The HAR based model with R-vine structure selected according to Section 4.2
and with reduced structured dependence among the model components is the best model
at a confidence level of 10% for all considered annualized ex-post realized portfolio returns.
Comparing the average ex-post realized standard deviations of the HAR based prediction
models, further demonstrates the strength of the proposed methodology irrespective of the
R-vine structure used for data transformation.

29



Table 4: Annualized average ex-post standard deviation corresponding to four levels of annualized
ex-post realized return. The set of models, which includes the one with the smallest standard
deviation at a confidence level of 10%, are highlighted in gray. The last model to be eliminated is
highlighted bold.

Model Realized return in % (annualized)
7.5 10 12.5 15

A-PCV-Sel-full 12.5217 12.9545 13.5492 14.2832
A-PCV-Sel-struc 12.5055 12.9254 13.5086 14.2317

A-PCV-CVine 12.4981 12.9269 13.5252 14.2722
A-PCV-random 12.4949 12.9151 13.5027 14.2366

A-Chol 12.4616 12.8641 13.4352 14.1510
H-PCV-Sel-full 12.4754 12.8748 13.4359 14.1363

H-PCV-Sel-struc 12.4588 12.8447 13.3937 14.0796
H-PCV-CVine 12.4595 12.8606 13.4293 14.1429

H-PCV-random 12.4680 12.8680 13.4349 14.1413
H-Chol 12.4718 12.8729 13.4396 14.1475

6 Discussion

In this paper, we introduce a novel approach to model and forecast time-series of realized
covariance matrices. Realized variances and realized correlation matrices are jointly mod-
eled. We address the challenge of generating symmetric and positive semi-definite correlation
matrix forecasts by introducing partial correlation vines as a tool to transform the series of
realized correlation matrices. Along with a real data example we explore in detail the bene-
fits of the proposed methodology as compared to Cholesky decomposition based competitor
models. Given the large number of R-vine structures for data transformation, we propose
an R-vine structure selection method, which exclusively relies on historical information of
the underlying data. This procedure allows the R-vine structure to dynamically change over
time and therewith to adapt to market changes. The selection method is motivated by the
practical interpretation of the model components, which are proxies for the conditional vari-
ances and conditional correlations corresponding to a daily log-return series. High average
correlation strengths are captured in lower tree levels of the R-vine structure leaving higher
order realized partial correlation time-series, for which parsimonious univariate time-series
modeling is sufficient. For the latter also dependence is negligible allowing for dimension
reduction in the multivariate time-series model. The forecasting performance both in terms
of statistical precision and in an economic evaluation, where ex-post realizations of mean-
variance efficient portfolios are investigated, shows very good and in several settings even
statistically significant superior prediction capability compared to the Cholesky decompo-
sition based benchmark models. Given the excellent prediction power of the latter often
demonstrated in literature, these findings provide strong evidence for the use of the partial
correlation vine data transformation approach in practice.
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A Skewed generalized error distribution

The skewed generalized error distribution is specified by the location parameter µ, the scale
parameter σ, the shape parameter ν and the skewness parameter ξ. Its density function is
given by

f (ε|µ, σ, ν, ξ) =
C

σ
exp

(
− |ε− µ+ δσ|ν

[1− sign (ε− µ+ δσ) ξ]ν θνσν

)
with

C =
ν

2θ
Γ

(
1

ν

)−1
,

θ = Γ

(
1

ν

)1/2

Γ

(
3

ν

)−1/2
S (ξ)−1 ,

δ = 2ξAS (ξ)−1 ,

S (ξ) =
√

1 + 3ξ2 − 4A2ξ2,

A = Γ

(
2

ν

)
Γ

(
1

ν

)−1/2
Γ

(
3

ν

)−1/2
.

For the parameter specification ν = 2 and ξ = 0 the normal distribution is obtained.

B R-vine copula models

R-vine distributions are also referred to as pair-copula constructions, since they assign to
each of the d (d− 1) /2 edges of a d-dimensional R-vine structure a bivariate unconditional
copula (in tree T1) or a bivariate conditional copula (in trees T2 to Td−1). We consider the
copula data (U1, . . . , Ud) corresponding to the random vector (X1, . . . , Xd) with marginal
distribution functions Fj (j = 1, . . . , d), i.e. Uj = Fj (Xj). Since in this case the marginals
of the underlying data are uniform, we speak of an R-vine copula. Following Czado (2010),
the d-dimensional R-vine copula density based on the R-vine structure Vd with edge set
E (Vd) = E1 ∪ · · · ∪ Ed−1 can be written as

c (u1, . . . , ud) =

d−1∏
`=1

∏
e∈E`

cae,be;De{Cae|De
(uae |uDe) ,Cbe|De

(ube |uDe) ;uDe}, (9)

where

• cae,be;De (·, ·;uDe) denotes the copula density corresponding to the conditional distri-
bution of (Uae , Ube)

′ given UDe = uDe with UDe the vector containing all variables
corresponding to the conditioning set De. The corresponding copula will be denoted
by Cae,be;De (·, ·;uDe).

• Cae|De
(·|uDe) denotes the conditional distribution of Uae given UDe = uDe .

Given the large number of valid R-vine structures and given that the pair-copulas correspond-
ing to each edge of the underlying R-vine structure can be chosen and combined arbitrarily
R-vine copulas clearly constitute a highly flexible class of dependence models.

We assume that in (9) the conditional pair-copulas cae,be;De in trees T` (` = 2, . . . , d −
1) do not depend on the conditioning vector uDe . Their arguments Cae|De

(uae |uDe) and
Cbe|De

(ube |uDe) indeed do depend on uDe . For details on this simplifying assumption, see
e.g. Hobæk Haff et al. (2010) and Stoeber et al. (2013).

Joe (1997) provides the important result for pair-copula constructions that the conditional
distributions Cae|De

(·|uDe) and Cbe|De
(·|uDe), subsequently abbreviated as Ca|D (·|uD) and
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Cb|D (·|uD), can be evaluated using only the pair-copulas specified in lower tree levels of the
underlying R-vine structure. Define for i ∈ {a, b} the set D+i := D ∪ {i}. Then,

Ca|D+b

(
ua|uD+b

)
= ha|b;D{Ca|D (ua|uD)

∣∣Cb|D (ub|uD)}

and

Cb|D+a

(
ub|uD+a

)
= hb|a;D{Cb|D (ub|uD)

∣∣Ca|D (ua|uD)},

where

ha|b;D{Ca|D (ua|uD)
∣∣Cb|D (ub|uD)} :=

∂

∂u
Ca,b;D{Ca|D (ua|uD) , u}

∣∣∣∣
u=Cb|D(ub|uD)

.

and

hb|a;D{Cb|D (ub|uD)
∣∣Ca|D (ua|uD)} :=

∂

∂u
Ca,b;D{u,Cb|D (ub|uD)}

∣∣∣∣
u=Ca|D(ua|uD)

.

are the h-functions corresponding to the pair-copula Ca,b;D. Clearly, the arguments of the h-
functions can again be expressed in terms of h-functions such that a recursive representation
of Ca|D (ua|uD) and Cb|D (ub|uD) in terms of lower tree pair-copulas is obtained.

R-vine copulas have been extensively studied in the recent years including the development
of comprehensive statistical software available in the R-package VineCopula (Schepsmeier
et al. 2017).

C Additional results for the empirical study

Table 5: RMSE with respect to the complete out-of-sample forecasting horizon (1632 days) for
the model components in the Cholesky decomposition based model. The set of superior models
according to the MCS approach at a confidence level of 10% is highlighted in gray. The lowest
RMSE is highlighted in bold.

mean HAR HN HSGED ARFIMA AN ASGED

AXP,AXP 0.5215 0.2355 0.2358 0.2359 0.2334 0.2336 0.2340
AXP,C 0.6789 0.3730 0.3706 0.3769 0.3698 0.3684 0.3750
C,C 0.4579 0.2069 0.2076 0.2094 0.2063 0.2070 0.2081

AXP,GE 0.4142 0.2648 0.2646 0.2682 0.2618 0.2616 0.2659
C,GE 0.2431 0.1725 0.1726 0.1735 0.1714 0.1718 0.1727
GE,GE 0.3676 0.2111 0.2108 0.2112 0.2102 0.2099 0.2096
AXP,HD 0.4624 0.2976 0.2998 0.3023 0.2944 0.2972 0.2997
C,HD 0.2732 0.2160 0.2176 0.2165 0.2155 0.2163 0.2153
GE,HD 0.2352 0.1906 0.1913 0.1925 0.1900 0.1904 0.1917
HD,HD 0.3516 0.2165 0.2165 0.2169 0.2158 0.2157 0.2156

AXP,IBM 0.3102 0.2190 0.2180 0.2202 0.2174 0.2166 0.2189
C,IBM 0.1929 0.1529 0.1539 0.1534 0.1527 0.1533 0.1532
GE,IBM 0.1768 0.1401 0.1404 0.1409 0.1399 0.1401 0.1404
HD,IBM 0.1321 0.1260 0.1257 0.1254 0.1248 0.1246 0.1246
IBM,IBM 0.3390 0.2021 0.2020 0.2021 0.2020 0.2022 0.2026
AXP,JPM 0.6646 0.3918 0.3895 0.3946 0.3894 0.3879 0.3931
C,JPM 0.4075 0.2777 0.2804 0.2803 0.2767 0.2789 0.2784
GE,JPM 0.1981 0.1758 0.1757 0.1756 0.1745 0.1743 0.1744
HD,JPM 0.1619 0.1552 0.1554 0.1556 0.1550 0.1551 0.1556
IBM,JPM 0.1559 0.1498 0.1497 0.1500 0.1496 0.1498 0.1500
JPM,JPM 0.4461 0.2114 0.2112 0.2123 0.2107 0.2107 0.2116
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Figure 14: (part 1/3) Daily realized variance time-series and daily realized covariance time-series
together with the time-series of the corresponding daily forecasts based on the partial correlation
vine data transformation approach.
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Figure 14: (part 2/3) Daily realized variance time-series and daily realized covariance time-series
together with the time-series of the corresponding daily forecasts based on the partial correlation
vine data transformation approach.
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Figure 14: (part 3/3) Daily realized variance time-series and daily realized covariance time-series
together with the time-series of the corresponding daily forecasts based on the partial correlation
vine data transformation approach.
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