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Abstract

The estimation of high dimensional precision matrices has been a central topic in sta-
tistical learning. However, as the number of parameters scales quadratically with the
dimension p, many state-of-the-art methods do not scale well to solve problems with
a very large p. In this paper, we propose a very efficient algorithm for precision ma-
trix estimation via penalized quadratic loss functions. Under the high dimension low
sample size setting, the computation complexity of our algorithm is linear in both the
sample size and the number of parameters. Such a computation complexity is in some
sense optimal, as it is the same as the complexity needed for computing the sample
covariance matrix. Numerical studies show that our algorithm is much more efficient
than other state-of-the-art methods when the dimension p is very large.
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1. Introduction1

Precision matrices play an important role in statistical learning and data analysis.2

On the one hand, estimation of the precision matrix is oftentimes required in various3

statistical analysis. On the other hand, under Gaussian assumptions, the precision ma-4

trix has been widely used to study the conditional independence among the random5

variables. Contemporary applications usually require fast methods for estimating a6

very high dimensional precision matrix (Meinshausen and Bühlmann, 2006). Despite7

recent advances, estimation of the precision matrix remains challenging when the di-8

mension p is very large, owing to the fact that the number of parameters to be estimated9

is of order O(p2). For example, in the Prostate dataset we are studying in this paper,10

6033 genetic activity measurements are recorded for 102 subjects. The precision ma-11
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trix to be estimated is of dimension 6033 × 6033, resulting in more than 18 million12

parameters.13

A well-known and popular method in precision matrix estimation is the graphical14

lasso (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008). Without loss15

of generality, assume that X1, · · · , Xn are i.i.d. observations from a p-dimensional16

Gaussian distribution with mean 0 and covariance matrix Σ. To estimate the pre-17

cision matrix Ω∗ = Σ−1, the graphical lasso seeks the minimizer of the following18

`1-regularized negative log-likelihood:19

tr(SΩ)− log |Ω|+ λ‖Ω‖1, (1)

over the set of positive definite matrices. Here S is the sample covariance matrix, ‖Ω‖120

is the element-wise `1 norm of Ω, and λ ≥ 0 is the tuning parameter. Although (1)21

is constructed based on Gaussian likelihood, it is known that the graphical lasso also22

works for non-Gaussian data (Ravikumar et al., 2011). Many algorithms have been23

developed to solve the graphical lasso. Friedman et al. (2008) proposed a coordinate24

descent procedure and Boyd et al. (2011) provided an alternating direction method of25

multipliers (ADMM) algorithm for solving (1). In order to obtain faster convergence26

for the iterations, second order methods and proximal gradient algorithms on the d-27

ual problem are also well developed; see for example Hsieh et al. (2014), Dalal and28

Rajaratnam (2017), and the references therein. However, eigen-decomposition or cal-29

culation of the determinant of a p × p matrix is inevitable in these algorithms, owing30

to the matrix determinant term in (1). Note that the computation complexity of eigen-31

decomposition or matrix determinant is of order O(p3). Thus, the computation time32

for these algorithms will scale up cubically in p.33

Recently, Zhang and Zou (2014) and Liu and Luo (2015) proposed to estimate Ω∗34

by some trace based quadratic loss functions. Using the Kronecker product and matrix35

vectorization, our interest is to estimate,36

vec(Ω∗) = vec(Σ−1) = vec(Σ−1 · Ip · Ip) = (Ip ⊗ Σ)−1vec(Ip), (2)

or equivalently,37

vec(Ω∗) = vec(Σ−1) = vec(Ip · Ip · Σ−1) = (Σ⊗ Ip)−1vec(Ip), (3)

where Ip denotes the identity matrix of size p, and⊗ is the Kronecker product. Motivat-
ed by (2) and the LASSO (Tibshirani, 1996), a natural way to estimate β∗ = vec(Ω∗)
is

arg min
β∈Rp2

1

2
βT(Ip ⊗ S)β − βTvec(Ip) + λ‖β‖1. (4)

To obtain a symmetric estimator we can use both (2) and (3), and estimate β∗ by

arg min
β∈Rp2

1

4
βT(S ⊗ Ip + Ip ⊗ S)β − βTvec(Ip) + λ‖β‖1. (5)
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Denoting β = vec(Ω), (4) can be written in matrix notation as

Ω̂1 = arg min
Ω∈Rp×p

1

2
tr(ΩTSΩ)− tr(Ω) + λ‖Ω‖1. (6)

Symmetrization can then be applied to obtain a final estimator. The loss function

L1(Ω) :=
1

2
tr(ΩTSΩ)− tr(Ω),

is used in Liu and Luo (2015) and they proposed a column-wise estimation approach
called SCIO. Lin et al. (2016) obtained these quadratic losses from a more general
score matching principle. Similarly, the matrix form of (5) is

Ω̂2 = arg min
Ω∈Rp×p

1

4
tr(ΩTSΩ) +

1

4
tr(ΩSΩT)− tr(Ω) + λ‖Ω‖1. (7)

The loss function

L2(Ω) =
1

2
{L1(ΩT) + L1(Ω)} =

1

4
tr(ΩSΩT) +

1

4
tr(ΩTSΩ)− tr(Ω),

is equivalent to the D-trace loss proposed by Zhang and Zou (2014), owing to the fact38

that L2(Ω) naturally force the solution to be symmetric.39

In the original papers by Zhang and Zou (2014) and Liu and Luo (2015), the authors40

have established consistency results for the estimators (6) and (7) and have shown41

that their performance is comparable to the graphical lasso. As can be seen in the42

vectorized formulation (2) and (3), the loss functions L1(Ω) and L2(Ω) are quadratic43

in Ω. In this note, we propose efficient ADMM algorithms for the estimation of the44

precision matrix via these quadratic loss functions. In Section 2, we show that under the45

quadratic loss functions, explicit solutions can be obtained in each step of the ADMM46

algorithm. In particular, we derive explicit formulations for the inverses of (S + ρI)47

and (2−1S ⊗ I + 2−1I ⊗ S + ρI) for any given ρ > 0, from which we are able to48

solve (6) and (7), or equivalently (4) and (5), with computation complexity of order49

O(np2). Such a rate is in some sense optimal, as the complexity for computing S is50

also of order O(np2). Numerical studies are provided in Section 3 to demonstrate the51

computational efficiency and the estimation accuracy of our proposed algorithms. An52

R package “EQUAL” has been developed to implement our methods and is available at53

https://github.com/cescwang85/EQUAL, together with all the simulation54

codes. All technical proofs are relegated to the Appendix section.55

2. Main Results56

For any real matrix M , we use ‖M‖2 =
√

tr(MMT ) to denote the Frobenius57

norm, ‖M‖ to denote the spectral norm, i.e., the square root of the largest eigenvalue58

of MTM , and ‖M‖∞ to denote the matrix infinity norm, i.e., the element of M with59

largest absolute value.60
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We consider estimating the precision matrix via

arg min
Ω∈Rp×p

L(Ω) + λ‖Ω‖1, (8)

where L(Ω) is the quadratic loss function L1(Ω) or L2(Ω) introduced above. The
augmented Lagrangian is

La(Ω, A,B) = L(Ω) + ρ/2‖Ω−A+B‖22 + λ‖A‖1,

where ρ > 0 is the step size in the ADMM algorithm. By Boyd et al. (2011), the
alternating iterations are

Ωk+1 = arg min
Ω∈Rp×p

La(Ω, Ak, Bk),

Ak+1 = arg min
A∈Rp×p

La(Ωk+1, A,Bk) = soft(Ωk+1 +Bk, λ/ρ),

Bk+1 = Ωk+1 −Ak+1 +Bk,

where soft(A, λ) is an element-wise soft thresholding operator. Clearly the computa-
tion complexity will be dominated by the update of Ωk+1, which amounts to solving
the following problem:

arg min
Ω∈Rp×p

L(Ω) + ρ/2‖Ω−Ak +Bk‖22. (9)

From the convexity of the objective function, the solution of (9) satisfies

L′(Ω) + ρ(Ω−Ak +Bk) = 0.

Consequently, for the estimation (6) and (7), we need to solve the following equations
respectively,

SΩ + ρΩ = Ip + ρ(Ak −Bk), (10)

2−1SΩ + 2−1ΩS + ρΩ = Ip + ρ(Ak −Bk). (11)

By looking at (10) and the vectorized formulation of (11) (i.e. equation (5)), we im-61

mediately have that, in order to solve (10) and (11), we need to compute the inverses62

of (S + ρI) and (2−1S ⊗ I + 2−1I ⊗ S + ρI). The following proposition provides63

explicit expressions for these inverses.64

Proposition 1. Write the decomposition of S as S = UΛUT where U ∈ Rp×m, m =
min(n, p), UTU = Im and Λ = diag{τ1, · · · , τm}, τ1, . . . , τm ≥ 0. For any ρ > 0,
we have

(S + ρIp)
−1 = ρ−1Ip − ρ−1UΛ1U

T, (12)

and

(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2)−1

=ρ−1Ip2 − ρ−1(UΛ2U
T)⊗ Ip − ρ−1Ip ⊗ (UΛ2U

T)

+ ρ−1(U ⊗ U)diag{vec(Λ3)}(UT ⊗ UT), (13)
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where

Λ1 =diag
{

τ1
τ1 + ρ

, · · · , τm
τm + ρ

}
, Λ2 = diag

{
τ1

τ1 + 2ρ
, · · · , τm

τm + 2ρ

}
,

Λ3 =

{
τiτj(τi + τj + 4ρ)

(τi + 2ρ)(τj + 2ρ)(τi + τj + 2ρ)

}
m×m

.

Using the explicit formulas of Proposition 1, we can solve (10) and (11) efficiently.65

Theorem 1. For a given ρ > 0,66

(i) the solution to the equation SΩ + ρΩ = C is unique and is given as Ω =67

ρ−1C − ρ−1UΛ1U
TC;68

(ii) the solution to the equation 2−1SΩ + 2−1ΩS + ρΩ = C is unique and is given69

as Ω = ρ−1C − ρ−1CUΛ2U
T − ρ−1UΛ2U

TC + ρ−1U{Λ3 ◦ (UTCU)}UT,70

where ◦ denotes the Hadamard product.71

Note that when S is the the sample covariance matrix,U and Λ can be obtained from the72

thin singular value decomposition (Thin SVD) of X = (X1, . . . , Xn) whose complex-73

ity is of orderO(mnp). On the other hand, the solutions obtained in Theorem 1 involve74

only elementary matrix operations of p × m and m × m matrices and thus the com-75

plexity for solving (10) and (11) can be seen to be of order O(mnp+mp2) = O(np2).76

Based on Theorem 1 we next provide an efficient ADMM algorithm for solving77

(8). For notation convenience, we shall use the term “EQUAL” to denote our proposed78

Efficient ADMM algorithm via the QUAdratic Loss L(Ω) = L1(Ω), and similarly, use79

“EQUALs” to denote the estimation based on the symmetric quadratic loss L(Ω) =80

L2(Ω). The algorithm is given as follows.81

Algorithm 1 Efficient ADMM algorithm via the quadratic loss L1(Ω) or L2(Ω).
Initialization:

1: Thin SVD of X to obtain S = UΛUT where U ∈ Rp×m, m = min(n, p), UTU = Im
and Λ = diag{τ1, · · · , τm}, τ1, . . . , τm ≥ 0.

2: Define

Λ1 =diag
{

τ1
τ1 + ρ

, · · · , τm
τm + ρ

}
, Λ2 = diag

{
τ1

τ1 + 2ρ
, · · · , τm

τm + 2ρ

}
,

Λ3 =

{
τiτj(τi + τj + 4ρ)

(τi + 2ρ)(τj + 2ρ)(τi + τj + 2ρ)

}
m×m

.

3: Start from k = 0, B0 = Ip and A0 = Ip.
Iteration:

4: k = k + 1, C = Ip + ρ(Ak−1 −Bk−1).
5: Update Ωk = ρ−1C − ρ−1UΛ1U

TC when Method=“EQUAL”, or Update Ωk = ρ−1C −
ρ−1CUΛ2U

T − ρ−1UΛ2U
TC + ρ−1U{Λ3 ◦ (UTCU)}UT when Method=“EQUALs”;

6: Update Ak = soft(Ωk +Bk−1, λ/ρ).
7: Update Bk = Ωk −Ak +Bk−1.
8: Repeat steps 4-7 until convergence.

Output: Return Ω̂ = (ωij)p×p where ωij = Ak
ijI{|Ak

ij | < |Ak
ji|} + Ak

jiI{|Ak
ij | ≥ |Ak

ji|}
when Method=“EQUAL”, or return Ω̂ = Ak when Method=“EQUALs”.
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The following remarks provide further discussions on our approach.82

Remark 1. Generally, we can specify different weights for each element and consider
the estimation

Ω̂k = arg min
Ω∈Rp×p

Lk(Ω) + λ‖W ◦ Ω‖1, k = 1, 2,

where W = (wij)p×p, wi,j ≥ 0. For example,83

• Setting wii = 0 and wi,j = 1, i 6= j where the diagonal elements are left out of84

penalization;85

• Using the local linear approximation (Zou and Li, 2008), we can set W =86

{p′λ(Ω̂ij)}p×p, where Ω̂ = (Ω̂ij)p×p is a LASSO solution and pλ(·) is a gen-87

eral penalized function such as SCAD or MCP.88

The ADMM algorithm will be the same as the `1 penalized case, except that the Ak+1
89

related update is replaced by a element-wise soft thresholding with different threshold-90

ing parameters. More details will be provided in Section 3.3 for better elaboration.91

Remark 2. Compared with the ADMM algorithm given in Zhang and Zou (2014), our92

update of Ωk+1 only involves matrix operations of some p ×m and m ×m matrices,93

while matrix operations on some p×p matrices are required in Zhang and Zou (2014);94

see for example Theorem 1 in Zhang and Zou (2014). Consequently, we are able to95

obtain the orderO(np2) in these updates while Zhang and Zou (2014) requiresO((n+96

p)p2). Our algorithm thus scales much better when n� p.97

Remark 3. For the graphical lasso, we can also use ADMM (Boyd et al., 2011) to
implement the minimization where the loss function is L(Ω) = tr(SΩ) − log |Ω|. The
update for Ωk+1 is obtained by solving ρΩ−Ω−1 = ρ(Ak−Bk)−S.Denote the eigen-
value decomposition of ρ(Ak − Bk) − S as QTΛ0Q where Λ0 = diag{a1, · · · , ap},
we can obtain a closed form solution,

Ωk+1 = QTdiag

a1 +
√
a2

1 + 4ρ

2ρ
, · · · ,

ap +
√
a2
p + 4ρ

2ρ

Q.

Compared with the algorithm based on quadratic loss functions, the computational98

complexity is dominated by the eigenvalue decomposition of p× p matrices which is of99

order O(p3).100

Remark 4. A potential disadvantage of our algorithm is the loss of positive definite-101

ness. Such an issue was also encountered in other approaches, such as the SCIO algo-102

rithm in Liu and Luo (2015), the CLIME algorithm in Cai et al. (2011), and threshold-103

ing based estimators (Bickel and Levina, 2008). From the perspective of optimization,104

it is ideal to find the solution over the convex cone of positive definite matrices. Howev-105

er, this could be costly, as we would need to guarantee the solution in each iteration to106
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be positive definite. By relaxing the positive definite constraint, much more efficient al-107

gorithms can be developed. In particularly, our algorithms turn out to be computation-108

ally optimal as the complexity is the same as that for computing a sample covariance109

matrix. On the other hand, the positive definiteness of the quadratic loss based estima-110

tors can still be obtained with statistical guarantees or by further refinements. More111

specifically, from Theorem 1 of Liu and Luo (2015) and Theorem 2 of Zhang and Zou112

(2014), the estimators are consistent under mild sparse assumptions, and will be posi-113

tive definite with probability tending to 1. In the case when an estimator is not positive114

definite, a refinement procedure which pulls the negative eigenvalues of the estimator115

to be positive can be conducted to fulfill the positive definite requirement. As shown116

in Cai and Zhou (2012), the refined estimator will still be consistent in estimating the117

precision matrix.118

3. Simulations119

In this section, we conduct several simulations to illustrate the efficiency and esti-120

mation accuracy of our proposed methods. We consider the following three precision121

matrices:122

• Case 1: asymptotic sparse matrix:

Ω1 = (0.5|i−j|)p×p;

• Case 2: sparse matrix:

Ω2 = Ω−1
1 =

1

3


4 −2
−2 5 −2

. . . . . . . . .
−2 5 −2

−2 4

 ;

• Case 3: block matrix with different weights:

Ω3 = diag{w1Ω0, · · · , wp/5Ω0},

where Ω0 ∈ R5×5 has off-diagonal entries equal to 0.5 and diagonal 1. The123

weights w1, · · · , wp/5 are generated from the uniform distribution on [0.5, 5],124

and rescaled to have mean 1.125

For all of our simulations, we set the sample size n = 200 and generate the data126

X1, · · · , Xn from N(0,Σ) with Σ = Ω−1
i , i = 1, 2, 3.127

3.1. Computation time128

For comparison, we consider the following competitors:129

• CLIME (Cai et al., 2011) which is implemented by the R package “fastclime”130

(Pang et al., 2014);131
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• glasso (Friedman et al., 2008) which is implemented by the R package “glasso”;132

• BigQuic (Hsieh et al., 2013) which is implemented by the R package “BigQuic”;133

• glasso-ADMM which solves the glasso by ADMM (Boyd et al., 2011);134

• SCIO (Liu and Luo, 2015) which is implemented by the R package “scio”;135

• D-trace (Zhang and Zou, 2014) which is implemented using the ADMM algo-136

rithm provided in the paper.137

Table 1 summaries the computation time in seconds based on 100 replications where138

all methods are implemented in R with a PC with 3.3 GHz Intel Core i7 CPU and139

16GB memory. For all the methods, we solve a solution path corresponding to 50 λ140

values ranging from λmax to λmax
√

log p/n. Here λmax is the maximum absolute141

elements of the sample covariance matrix. Although the stopping criteria is different142

for each method, we can see from Table 1 the computation advantage of our methods.143

In particularly, our proposed algorithms are much faster than the original quadratic loss144

based methods “SCIO” or “D-trace” for large p. In addition, we can roughly observe145

that the required time increases quadratically in p in our proposed algorithms.146

3.2. Estimation accuracy147

The second simulation is designed to evaluate the performance of estimation accu-
racy. Given the true precision matrix Ω and an estimator Ω̂, we report the following
four loss functions:

loss1 =
1
√
p
‖Ω− Ω̂‖2, loss2 = ‖Ω− Ω̂‖,

loss3 =

√
1

p
{tr(Ω−1Ω̂)− log |Ω−1Ω̂| − p},

loss4 =

√
1

p
{tr(Ω̂TΩ−1Ω̂)/2− tr(Ω̂) + tr(Ω)/2},

where loss1 is the scaled Frobenius loss, loss2 is the spectral loss, loss3 is the normal-148

ized Stein’s loss which is related to the Gaussian likelihood and loss4 is related to the149

quadratic loss.150

Table 2 reports the simulation results based on 100 replications where the tuning151

parameter is chosen by five-fold cross-validations. We can see that the performance152

of all three estimators are comparable, indicating that the penalized quadratic loss esti-153

mators are also reliable for high dimensional precision matrix estimation. As shown in154

Table 1 , the computation for quadratic loss estimator are much faster than glasso. We155

also observe that the EQUALs estimator based on the symmetric loss (5) has slightly s-156

maller estimation error than EQUAL based on (4), which indicates that considering the157

symmetry structure does help improve the estimation accuracy. Moreover, to check the158

singularity of the estimation, we report the minimum eigenvalue for each estimator in159

the final column of Table 2. We can see when the tuning parameter is suitably chosen,160

the penalized quadratic loss estimator is also positive definite.161
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Table 1: The average computation time (standard deviation) of solving a solution path for the precision
matrix estimation.

p=100 p=200 p=400 p=800 p=1600

Case 1: Ω = Ω1

CLIME 0.390(0.025) 2.676(0.101) 15.260(0.452) 117.583(4.099) 818.045(11.009)
glasso 0.054(0.009) 0.295(0.052) 1.484(0.233) 8.276(1.752) 45.781(12.819)

BigQuic 1.835(0.046) 4.283(0.082) 11.630(0.368) 37.041(1.109) 138.390(1.237)
glasso-ADMM 0.889(0.011) 1.832(0.048) 5.806(0.194) 21.775(0.898) 98.317(2.646)

SCIO 0.034(0.001) 0.238(0.008) 1.696(0.041) 12.993(0.510) 106.588(0.271)
EQUAL 0.035(0.001) 0.184(0.008) 0.684(0.045) 3.168(0.241) 15.542(0.205)
D-trace 0.034(0.002) 0.215(0.010) 1.496(0.107) 11.809(1.430) 118.959(1.408)

EQUALs 0.050(0.002) 0.294(0.014) 0.903(0.053) 3.725(0.257) 18.860(0.231)

Case 2: Ω = Ω2

CLIME 0.361(0.037) 2.583(0.182) 14.903(0.914) 114.694(2.460) 812.113(16.032)
glasso 0.095(0.012) 0.576(0.069) 2.976(0.397) 15.707(2.144) 93.909(16.026)

BigQuic 2.147(0.040) 5.360(0.099) 15.458(0.347) 51.798(1.059) 186.025(3.443)
glasso-ADMM 0.949(0.016) 1.976(0.056) 5.710(0.161) 19.649(0.428) 123.950(6.130)

SCIO 0.039(0.001) 0.263(0.007) 1.762(0.029) 13.013(0.132) 108.112(0.887)
EQUAL 0.067(0.002) 0.361(0.009) 1.264(0.028) 4.892(0.105) 20.622(0.521)
D-trace 0.081(0.003) 0.489(0.015) 2.901(0.063) 17.331(0.310) 167.160(8.216)

EQUALs 0.113(0.004) 0.660(0.021) 1.731(0.034) 5.619(0.094) 24.904(0.669)

Case 3: Ω = Ω3

CLIME 0.446(0.028) 2.598(0.169) 16.605(1.133) 129.968(3.816) 918.681(12.421)
glasso 0.009(0.001) 0.072(0.006) 0.317(0.013) 1.818(0.015) 7.925(0.080)

BigQuic 1.786(0.043) 4.121(0.035) 11.293(0.164) 36.905(0.302) 140.656(1.949)
glasso-ADMM 0.517(0.051) 1.182(0.027) 3.516(0.079) 14.467(0.128) 102.048(4.502)

SCIO 0.138(0.008) 0.230(0.007) 1.640(0.016) 12.697(0.143) 106.806(0.988)
EQUAL 0.095(0.015) 0.143(0.002) 0.580(0.010) 2.962(0.028) 17.002(0.220)
D-trace 0.057(0.025) 0.164(0.003) 1.253(0.048) 10.758(0.258) 131.724(5.031)

EQUALs 0.039(0.011) 0.226(0.003) 0.768(0.014) 3.430(0.026) 19.133(0.224)
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Table 2: The estimation error (standard deviation) for the precision matrix estimation.

loss1 loss2 loss3 loss4 min-Eigen

Case 1: Ω = Ω1

p = 500

EQUAL 0.707(0.005) 2.028(0.016) 0.329(0.003) 0.344(0.003) 0.364(0.011)
EQUALs 0.664(0.010) 1.942(0.026) 0.297(0.005) 0.320(0.004) 0.333(0.011)

glasso 0.685(0.006) 1.973(0.015) 0.313(0.002) 0.332(0.001) 0.216(0.010)
p = 1000

EQUAL 0.701(0.008) 2.033(0.020) 0.331(0.004) 0.344(0.004) 0.361(0.012)
EQUALs 0.681(0.003) 1.983(0.013) 0.314(0.002) 0.331(0.002) 0.353(0.011)

glasso 0.690(0.005) 1.984(0.012) 0.335(0.004) 0.344(0.002) 0.172(0.012)
p = 2000

EQUAL 0.860(0.106) 2.351(0.190) 0.446(0.066) 0.426(0.049) 0.322(0.023)
EQUALs 0.666(0.020) 1.984(0.042) 0.317(0.008) 0.331(0.007) 0.348(0.011)

glasso 0.695(0.004) 1.992(0.012) 0.365(0.007) 0.361(0.003) 0.118(0.011)

Case 2: Ω = Ω2

p = 500

EQUAL 0.508(0.010) 1.178(0.045) 0.273(0.004) 0.286(0.004) 0.555(0.018)
EQUALs 0.465(0.010) 1.116(0.045) 0.240(0.003) 0.254(0.004) 0.500(0.015)

glasso 0.530(0.011) 1.179(0.037) 0.234(0.003) 0.269(0.003) 0.267(0.013)
p = 1000

EQUAL 0.605(0.011) 1.323(0.036) 0.304(0.005) 0.326(0.005) 0.578(0.017)
EQUALs 0.550(0.008) 1.272(0.039) 0.267(0.003) 0.289(0.004) 0.527(0.015)

glasso 0.542(0.008) 1.217(0.026) 0.260(0.005) 0.289(0.002) 0.211(0.015)
p = 2000

EQUAL 0.555(0.006) 1.294(0.051) 0.291(0.003) 0.307(0.003) 0.560(0.015)
EQUALs 0.539(0.008) 1.253(0.043) 0.279(0.003) 0.294(0.003) 0.550(0.014)

glasso 0.558(0.005) 1.263(0.019) 0.297(0.006) 0.317(0.004) 0.144(0.011)

Case 3: Ω = Ω3

p = 500

EQUAL 1.181(0.013) 4.336(0.221) 0.427(0.000) 0.451(0.000) 0.110(0.011)
EQUALs 1.183(0.014) 4.342(0.221) 0.427(0.001) 0.451(0.000) 0.126(0.011)

glasso 1.188(0.013) 4.351(0.218) 0.420(0.001) 0.450(0.000) 0.087(0.009)
p = 1000

EQUAL 1.183(0.009) 4.276(0.143) 0.428(0.000) 0.453(0.001) 0.101(0.008)
EQUALs 1.189(0.009) 4.337(0.148) 0.426(0.000) 0.451(0.000) 0.106(0.007)

glasso 1.189(0.010) 4.349(0.153) 0.421(0.001) 0.450(0.000) 0.080(0.006)
p = 2000

EQUAL 1.217(0.009) 4.649(0.120) 0.436(0.001) 0.458(0.001) 0.097(0.006)
EQUALs 1.239(0.006) 4.563(0.102) 0.450(0.002) 0.461(0.001) 0.062(0.006)

glasso 1.190(0.007) 4.399(0.109) 0.422(0.001) 0.450(0.000) 0.076(0.004)
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3.3. Local linear approximation162

In this part, we consider the estimator with more general penalized functions based
on the one step local linear approximation proposed by Zou and Li (2008). In details,
we consider the SCAD penalty (Fan and Li, 2001):

pλ(x) =λ|x|I(|x| ≤ λ) +
τλ|x| − (x2 + λ2)/2

τ − 1
I(λ < |x| ≤ τλ)

+
λ2(τ + 1)

2
I(|x| > τλ), τ = 3.7,

and MCP (Zhang, 2010):

pλ(x) =
[
λ|x| − x2

2τ

]
I(|x| ≤ τλ) +

λ2τ

2
I(|x| > τλ), τ = 2.

The new estimator is defined as

arg min
Ω∈Rp×p

L(Ω) +
∑
i 6=j

pλ(Ωij),

where L(Ω) is the quadratic loss function and pλ(·) is a penalty function. Following
(Zou and Li, 2008), we then seek to solve the following local linear approximation:

arg min
Ω∈Rp×p

L(Ω) +
∑
i 6=j

p′λ(Ω
(0)
ij )|Ωij |,

where Ω(0) is an initial estimator. We consider Cases 1-3 with n = p = 200. For163

each tuning parameter λ, we calculate the LASSO solution Ω̂λ, which is set to be the164

initial estimator, and calculate the one-step estimator for the MCP penalty and SCAD165

penalty respectively. Figure 1 reports the four loss functions defined above based on166

the LASSO, SCAD and MCP penalties, respectively. For brevity, we only report the167

estimation for EQUALs. From Figure 1, we can see that SCAD and MCP penalties do168

produce slightly better estimation results.169

3.4. Real data analysis170

Finally, we apply our proposal to two real data. The first one is the Prostate dataset171

which is publicly available at https://web.stanford.edu/˜hastie/CASI_172

files/DATA/prostate.html. The data records 6033 genetic activity measure-173

ments for the control group (50 subjects) and the prostate cancer group (52 subjects).174

Here, the data dimension p is 6033 and the sample size n is 50 or 52. We estimate the175

6033 × 6033 precision for each group. Since our EQUAL and EQUALs give similar176

results, we only report the estimation for EQUALs. It took less than 20 minutes for177

EQUALs to obtain the solution paths while “glasso” cannot produce the solution due178

to out of memory in R. The sparsity level of the solution paths are plotted in the up-179

per panel of Figure 2. To compare the precision matrices between the two groups, the180

network graphs of the EQUALs estimators with tuning λ = 0.75 are provided in the181

lower panel of Figure 2.182

11

https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html


●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

lambda

lo
ss

1

●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

MCP
SCAD
LASSO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

lambda

lo
ss

1

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
4

0.
6

0.
8

1.
0

1.
2

lambda

lo
ss

1

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

Case 1: loss1 for Ω1 Case 2: loss1 for Ω2 Case 3: loss1 for Ω3

●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

lambda

lo
ss

2

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

MCP
SCAD
LASSO

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

lambda

lo
ss

2

●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●
●

●
●

●
●

●
●●●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

lambda

lo
ss

2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

Case 1: loss2 for Ω1 Case 2: loss2 for Ω2 Case 3: loss2 for Ω3

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

lambda

lo
ss

3

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

lambda

lo
ss

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

lambda

lo
ss

3

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

Case 1: loss3 for Ω1 Case 2: loss3 for Ω2 Case 3: loss3 for Ω3

●●●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

lambda

lo
ss

4

●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●

●
●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

lambda

lo
ss

4

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
3

0.
4

0.
5

0.
6

0.
7

lambda

lo
ss

4

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

MCP
SCAD
LASSO

Case 1: loss4 for Ω1 Case 2: loss4 for Ω2 Case 3: loss4 for Ω3

Figure 1: The performance of the quadratic loss based estimators with LASSO, SCAD and MCP penalties.
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(a) Solution path for control subjects (b) Solution path for prostate cancer subjects
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(c) Estimated networks for control subjects (d) Estimated networks for prostate cancer subjects

Figure 2: Estimation for the Prostate data using EQUALs. Upper panel: sparsity level (average number of
non-zero elements for each row/column) versus λ. Lower panel: network graphs for the two patient groups
when λ = 0.75.

The second dataset is the leukemia data, which is publicly available at http://183

web.stanford.edu/˜hastie/CASI_files/DATA/leukemia_big.csv.184

The dataset consists of 7128 genes for 47 acute lymphoblastic leukemia (ALL) patients.185

It took about 45 minutes for EQUALs to obtain the solution path and again, “glasso”186

fails to produce the results due to the vast memory requirement issue in R. The solution187

path and the network for top 1% nodes with most links when λ = 0.6095 are presented188

in Figure 3.189
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(a) Solution path (b) Estimated network with top 1% links

Figure 3: Estimation for the Leukemia data using EQUALs. (a) Sparsity level (average number of non-zero
elements for each row/column) versus λ. (b) Network graphs when λ = 0.6095.
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Appendix196

Throughout the proofs, we will use two important results of the Kronecker product

vec(AXB) =(BT ⊗A)vec(X), (A⊗B)(C ⊗D) = (AC)⊗ (BD),

where X,A,B,C and D are matrices of such size that one can form the matrix prod-197

ucts.198

3.5. Proofs of Proposition 1199

The main techniques used for the proofs is the well-known Woodbury matrix iden-200

tity. In details, (12) is the direct application of the Woodbury matrix identity and (13)201

can be obtained by invoking the identity repeatedly. The derivation involves length-202

y and tedious calculations. Here, we simply prove the proposition by verifying the203

results.204

For the first formula (12), we have

(S + ρIp)(ρ
−1Ip − ρ−1UΛ1U

T)

=(UΛUT + ρIp)(ρ
−1Ip − ρ−1UΛ1U

T)

=ρ−1UΛUT − ρ−1UΛΛ1U
T + Ip − UΛ1U

T

=Ip + ρ−1U(Λ− ΛΛ1 − ρΛ1)UT = Ip.

For the second formula (13), we evaluate the four parts on the right hand side respec-
tively. Firstly we have,

(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2)ρ−1Ip2

=Ip2 + (2ρ)−1(UΛUT)⊗ Ip + (2ρ)−1Ip ⊗ (UΛUT). (14)

Secondly,

(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2){−ρ−1(UΛ2U
T)⊗ Ip}

=− (2ρ)−1(UΛΛ2U
T)⊗ Ip − (2ρ)−1(UΛ2U

T)⊗ (UΛUT)− (UΛ2U
T)⊗ Ip

=− (2ρ)−1{U(ΛΛ2 + 2ρΛ2)UT} ⊗ Ip − (2ρ)−1(U ⊗ U)(Λ2 ⊗ Λ)(UT ⊗ UT)

=− (2ρ)−1(UΛUT)⊗ Ip − (2ρ)−1(U ⊗ U)(Λ2 ⊗ Λ)(UT ⊗ UT). (15)

Thirdly, similarly to (15), we have

(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2){−ρ−1Ip ⊗ (UΛ2U
T)}

=− (2ρ)−1Ip ⊗ (UΛUT)− (2ρ)−1(U ⊗ U)(Λ⊗ Λ2)(UT ⊗ UT), (16)

and lastly, we have

(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2){ρ−1(U ⊗ U)diag{vec(Λ3)}(UT ⊗ UT)}
=(2ρ)−1(U ⊗ U)(Λ⊗ Im)diag{vec(Λ3)}(UT ⊗ UT)

+ (2ρ)−1(U ⊗ U)(Im ⊗ Λ)diag{vec(Λ3)}(UT ⊗ UT)

+ (U ⊗ U)diag{vec(Λ3)}(UT ⊗ UT)

=(2ρ)−1(U ⊗ U)diag{vec(Λ3Λ + ΛΛ3 + 2ρΛ3)}(UT ⊗ UT). (17)
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Combing (14), (15), (16) and (17), it suffices to show

diag{vec(Λ3Λ + ΛΛ3 + 2ρΛ3)} = Λ2 ⊗ Λ + Λ⊗ Λ2,

which is true since

Λ3Λ + ΛΛ3 + 2ρΛ3 =

{
τiτj(τi + τj + 4ρ)

(τi + 2ρ)(τj + 2ρ)

}
m×m

=

{
τiτj

τi + 2ρ
+

τiτj
τj + 2ρ

}
m×m

.

The proof is completed.205

3.6. Proofs of Theorem 1206

Conclusion (i) is a direct result of Proposition 1, and next we provide proofs for
conclusion (ii). Note that

vec(2−1SΩ + 2−1ΩS + ρΩ) = (2−1Ip ⊗ S + 2−1S ⊗ Ip + ρIp2)vec(Ω).

Therefore, the solution is given by

vec(Ω) =(2−1S ⊗ Ip + 2−1Ip ⊗ S + ρIp2)−1vec(C).

By Proposition 1,207

vec(Ω) ={ρ−1Ip2 − ρ−1(UΛ2U
T)⊗ Ip − ρ−1Ip ⊗ (UΛ2U

T)

+ ρ−1(U ⊗ U)diag{vec(Λ3)}(UT ⊗ UT)}vec(C)

=ρ−1vec(C)− ρ−1vec(CUΛ2U
T)− ρ−1vec(UΛ2U

TC)

+ ρ−1(U ⊗ U)diag{vec(Λ3)}vec(UTCU)

=ρ−1vec(C)− ρ−1vec(CUΛ2U
T)− ρ−1vec(UΛ2U

TC)

+ ρ−1(U ⊗ U)vec{Λ3 ◦ (UTCU)}
=ρ−1vec(C)− ρ−1vec(CUΛ2U

T)− ρ−1vec(UΛ2U
TC)

+ ρ−1vec{U [Λ3 ◦ (UTCU)]UT}

which yields

Ω = ρ−1C − ρ−1CUΛ2U
T − ρ−1UΛ2U

TC + ρ−1U{Λ3 ◦ (UTCU)}UT.

The proof is completed.208
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