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Abstract

Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., 

samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal 

intrinsic associations between rows and columns. However, most existing methods rely on 

Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way 

tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating 

Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and 

multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family 

distributions and co-clusters are identified in the natural parameter space via sparse 

CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively 

reweighted) least squares algorithm is devised for model fitting and a deflation procedure is 

exploited to automatically determine the number of co-clusters. Comprehensive simulation studies 

and three real data examples demonstrate the efficacy of the proposed method. The data and code 

are publicly available1.
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1. Introduction

Biclustering is a powerful analytical tool for matrix data. It simultaneously clusters rows and 

columns of a matrix to identify checkerboard-like biclusters. Unlike standard clustering 

which focuses on grouping features only in one dimension, biclustering is flexible enough to 

identify important subgroup structures in both dimensions of a matrix. It has unique 

advantages in many applications. For example, in gene expression analysis, a subset of genes 

(variables) may be co-expressed in a subgroup of samples who share similar traits, but not in 

others. Such co-expression pattern may not be discovered by standard clustering algorithms 

because the structure only exists in a subgroup of samples. When leveraging all samples for 

1The code is available at https://github.com/reagan0323/CORALS
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clustering, the signal may be overwhelmed by noise from irrelevant samples. Biclustering, 

however, has the potential to correctly identify such local structure by performing 

simultaneous clustering of genes and samples. Biclustering excels at identifying local 

patterns and has gained popularity in gene expression analysis [1], text mining [2] and 

beyond [3].

The idea of biclustering dates back to 1970s [4]. Since then, different biclustering algorithms 

have been proposed. There are mainly two schools of thought: matrix-based approaches [5, 

6] and graph-based approaches [7, 8]. The former focuses on the decomposition of a matrix 

into blocks, while the latter converts biclustering to a graph partitioning problem. Other 

computational methods also exist, which typically exploit an iterative clustering procedure 

between rows and columns [9, 10, 11]. A comprehensive review of biclustering methods can 

be found in [1].

Most existing biclustering methods explicitly or implicitly assume observed data to be 

continuous with Gaussian errors. For example, [10] proposed a significance-based method 

where the significance score is derived from a Gaussian likelihood; [12] and [13] developed 

probabilistic additive models for biclustering under the Gaussian assumption; [11] proposed 

a sparse and symmetrized version of K-means clustering based on the minimization of a 

Gaussian likelihood. In addition, most matrix-based methods employ a least squares term in 

the objective function, closely pertinent to the Gaussian likelihood [14, 6, 5].

In practice, non-Gaussian matrix data are frequently encountered. For instance, in one of the 

motivating examples, music annotation data [15] are collected from a set of songs to study 

semantic annotation. Each song has a binary list of annotations. It is of interest to cluster 

songs and annotations simultaneously from the binary matrix to identify song groups that 

share similar features. Another example concerns a bag of words study on NIPS conference 

papers [16]. The data set contains counts of high-frequency words in thousands of NIPS 

papers published between 1987 and 2015. By investigating biclusters in this count-valued 

matrix, we aim to study how machine learning topics shifted in the past decades. Other 

examples such as co-morbidity studies (binary matrix of patientsxdiseases) and RNA-Seq 

studies (count matrix of samplesxgenes) may also involve biclustering of non-Gaussian data. 

Despite the prevalence of non-Gaussian matrix data, few biclustering methods are directly 

applicable.

In this paper, we develop a new method, called generalized Co-clustering via Regularized 

Alternating Least Squares (CORALS), to conduct simultaneous clustering on non-Gaussian 

data. We use the term “co-clustering” because the proposed method is general enough to 

handle multi-way tensor arrays which subsume matrix data (i.e., two-way tensors) as a 

special case. Hereafter, we will use the term “biclustering” if a method can only be applied 

to matrix data, and use “co-clustering” only if it is applicable to higher-order tensor data. We 

model non-Gaussian data with exponential family distributions which cover a range of 

continuous and discrete data types. The proposed method exploits a likelihood framework 

and identifies co-clusters in the natural parameter space. The likelihood function better 

accommodates the discreteness, boundedness and heteroscedasticity of non-Gaussian data 

than the commonly used squared loss function. The natural parameter of an exponential 
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family distribution is typically continuous and unbounded, and carries straightforward 

interpretations. We develop a regularized alternating (iteratively reweighted) least squares 

algorithm to estimate one co-cluster at a time, and exploit a deflation algorithm to 

automatically determine the number of co-clusters. The method enjoys great flexibility by 

allowing co-clusters to overlap and permitting the existence of background entries that do 

not belong to any co-clusters.

Biclustering for non-Gaussian matrix data has been scarcely studied in the literature. Among 

them, a class of probabilistic biclustering models termed latent block models has been 

developed [17, 18, 19]. The model-based methods handle binary, count, and categorical data 

via a likelihood approach. They connect to stochastic block models under the binary settings 

[20, 21, 22]. Flynn and Perry [23] proposed a profile likelihood-based approach which 

accommodates more general exponential family data modalities. However, these methods 

are exhaustive and require each matrix element to be assigned to one and only one bicluster. 

The exhaustive biclustering result is very restrictive in practice, as true biclusters may 

overlap and there may also exist non-belonging entries. More recently, Lee and Huang [24] 

developed a penalized Bernoulli likelihood approach for biclustering binary matrices, which 

allow overlapping, non-exhaustive results. However, the delicate Majorize-Minimization 

algorithm does not generalize to other non-Gaussian distributions. In addition, none of the 

aforementioned methods can be easily extended to multi-way tensor arrays.

Multi-way tensor arrays, as a generalization of matrices, are frequently encountered in 

practice as modern data become more heterogeneous and complex. For example, in 

neuroimaging analysis, multi-dimensional images across multiple subjects or conditions 

naturally form a higher-way data array; in genomics, gene expression data collected at 

different times or locations can also be represented as a tensor. A detailed tutorial on tensors 

can be found in [25]. Co-clustering analyses of multi-way tensors have grown in popularity 

in recent years. [26] proposed a hyperplane detection method coupled with higher-order 

singular value decomposition (i.e., Tucker decomposition). [27] converted a non-negative 

tensor to higher-order Markov chains and devised a spectral partitioning method. [28] and 

[29] developed low-rank decomposition methods with truncated loadings under Gaussian 

errors. [30] generalized a convex biclustering approach [14] to nulti-way tensors to achieve 

exhaustive co-clustering (i.e., each element is assigned to one co-cluster). However, the 

existing methods have various limitations such as 1) arbitrary numbers of co-clusters that 

may affect the stability of final results [26]; 2) rigid requirements of data format [27]; 3) ad 

hoc algorithms for model fitting [28, 29]; 4) unrealistic exhaustive and exclusive co-

clustering assumptions [30]. Moreover, no method can adequately handle heterogeneous 

data types.

Our proposed method addresses the above limitations and provides a useful co-clustering 

tool for the exploratory analysis of non-Gaussian tensor data. The main contributions of the 

paper are as outlined below:

• We develop a very general framework for co-clustering analysis which is 

applicable to multi-way tensor arrays with observations from the exponential 

family.
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• The method identifies realistic local structures by allowing co-clusters to overlap 

and not requiring every element of a tensor to belong to a co-cluster.

• The model fitting procedure is based on a principled penalized likelihood 

framework.

• The algorithm automatically selects the number of co-clusters in a tensor and can 

stop early with nested results.

The rest of the paper is organized as follows. In Section 2, we introduce the model 

framework of co-clustering for non-Gaussian tensor data. In Section 3, we devise the model 

fitting algorithm and an adaptive method to choose the number of co-clusters. 

Comprehensive simulation results are presented in Section 4 and three real application 

examples are included in Section 5. We discuss remaining questions and further research 

directions in Section 6. Technical details of the algorithm and additional simulation results 

can be found in the appendix.

2. Co-clustering Framework in Exponential Family

2.1. Notation

Throughout the paper, we use bold Euler script letters (e.g., X) to represent multi-way (3 or 

more) tensor arrays, and bold capital and lowercase letters (e.g., X and x) to represent 

matrices (2-way tensors) and vectors (1-way tensors), respectively. Let ‖X‖F  denote the 

Frobenius norm of the matrix X, and ‖x‖1 denote the ℓ1 norm of the vector x. Define 

X : p1 × ⋯ × pK as a K-way tensor, with pk being the dimension of the kth mode. Let 

X[i1, ⋯, iK] denote the (i1, ⋯ , iK)th element of the tensor. The matricization operation 

transforms a multi-way tensor into a matrix, by unfolding the array along a particular mode. 

In particular, we denote X(k) : pk × ∏j = 1, j ≠ k
K pj as the matricization of X along the kth 

mode. The vectorization operator, denoted by vec(·), stacks the columns of a matrix into a 

vector. A unit-rank K-way tensor X of dimensions p1 × ⋯ × pK can be represented by the 

outer product of unit-norm vectors v1, ⋯ , vK of length p1, ⋯ , pK and a positive constant γ 
as X = γv1 ∘ ⋯ ∘ vK, with entries X[i1, ⋯, iK] = ∏k = 1

K γvk[ik]. Correspondingly, the 

CANDECOMP/PARAFAC (CP) decomposition factorizes a rank-R tensor X into a sum of 

R unit-rank tensors

X = ∑
r = 1

R
γrv1r ∘ ⋯ ∘ vKr ≔ [γ; V 1, ⋯, V K],

where vkr is the rth column of Vk with unit norm and γ = (γ1, ⋯ , γR is a vector with 

positive elements. More details about tensor notations and calculations can be found in [25].

2.2. Exponential Family Matrix Data Biclustering

We start from matrix data. Let X be an n × p matrix of observed data, which may take 

continuous or discrete values. We assume the data follow some distribution in the single-

parameter exponential family. Different entries may not be identically distributed, but they 
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are from the same distribution. In particular, we assume the distribution is known or chosen 

beforehand based on domain knowledge. Denote the probability density function of an entry 

xij as

f(xij ∣ θij) = ℎ(xij) exp{xijθij − b(θij)},

where θij is the corresponding natural parameter and b(·) and h(·) are distribution-specific 

functions. We collect all the natural parameters in Θ which has the same size as X. Although 

dispersion is not explicitly considered in the likelihood, having entry-wise natural 

parameters actually compensates the lack of dispersion parameters. A detailed discussion 

can be found in [31]. The singular value decomposition (SVD) of Θ can be written as

Θ = ∑
i = 1

r
diuiviT , (1)

where r ≤ min(n, p) is the rank of Θ and D = diag(d1, ⋯ , dr), U = (u1, ⋯ , ur) and V = (v1, 

⋯ , vr) are the matrices of positive non-increasing singular values, orthonormal left and right 

singular vectors, respectively. Without loss of generality, we let U absorb the singular values 

in D.

We further assume U and V are sparse. The sparsity can naturally induce biclustering 

patterns in the natural parameter space. To see this, let us assume both ui and vi are sparse in 

the ith layer. Correspondingly, the non-zero entries in uiviT  form a submatrix, which can be 

viewed as a bicluster. The bicluster is a local pattern that differs from the rest of the entries. 

Different layers may identify different (potentially overlapping) biclusters. In particular, if 

only one of ui and vi is sparse or neither is sparse, the layer is deemed to capture a global 

pattern. The sum of different layers will give rise to global patterns as well as checkerboard-

like biclustering patterns.

To achieve sparse estimation of U and V, we propose to solve the following penalized 

likelihood optimization problem

min
U, V

− ℓ(X ∣ Θ) + Pu(U) + Pv(V )

s . t . Θ = UV T
(2)

where ℓ(X ∣ Θ) ∝ ∑i = 1
n ∑j = 1

p {xijθij − b(θij)} is the log likelihood function of X, and Pu(·) 

and Pv(·) are column-wise sparsity-inducing penalty functions for U and V. Possible options 

include the ℓ1 or LASSO penalty [32], smoothly clipped absolute deviation (SCAD) penalty 

[33], minimax concave penalty (MCP) [34], among others. The proposed framework 

associates with many existing methods in the literature. For example, a similar approach 

called sparse SVD (SSVD) has been developed for continuous data [6]. The method 

minimizes a penalized least squares function to achieve biclustering of continuous data 

matrix. Our approach essentially generalizes the squared loss to a negative log likelihood 

loss to accommodate more general data types. The proposed method also connects to the 

exponential family principal component analysis (EPCA) model in [31], without the penalty 
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terms. With structural penalties, it also coincides with the exponential family functional 

principal component analysis in [35].

The biclusters identified in this way have several properties. First, the biclusters are in the 

natural parameter space and thus offer straightforward interpretations. A natural parameter is 

a monotone transformation of the expectation of a random variable. For example, for binary 

data, the natural parameter is the log odds of success. A bicluster in the natural parameter 

space captures a subset of samples and variables that manifest higher or lower than average 

log odds. Second, different biclusters may overlap. Each layer only determines one bicluster 

and the non-zero entries in one layer may overlap with those in another layer. The 

overlapping feature is desired because in practice samples and variables may appear in 

multiple biclusters (e.g., a gene may belong to multiple pathways). Third, the biclustering is 

non-exhaustive. Namely, there may be samples and variables that are not contained in any 

bicluster. Since biclusters only capture the most coherent samples and variables, it is 

reasonable to believe that many are in the background. The proposed method is flexible 

enough to allow the existence of non-belonging entries which may be captured by the global 

structure. Finally, with proper treatment (which we shall introduce in Section 3), the leading 

biclusters are not subject to the total number of biclusters. For many computational methods, 

biclustering results highly depend on the preset number of biclusters. Adding or subtracting 

one bicluster may drastically change the structure of all biclusters. Our method, thanks to the 

nested feature of SVD, is insensitive to the misspecification of the number of biclusters and 

thus enjoys more stability.

2.3. Extension to Tensor Data

The proposed biclustering framework is readily generalizable to multi-way tensor arrays. 

For simplicity, we focus on 3-way tensors hereafter. All derivations can be trivially extended 

to higher-way tensors. Let X denote a p1 × p2 × p3 tensor with continuous or discrete values 

from the exponential family. Let T denote the underlying natural parameter tensor with the 

same dimensions. Similar to (1), we assume T has a low-rank CP decomposition as

T = ∑
i = 1

r
div1i ∘ v2i ∘ v3i,

where Vk = (vk1, ⋯ , vkr) contains sparse loading vectors (k = 1,2,3). For identifiability, we 

require each loading vector to have unit norm. Unlike SVD for matrix data, the strict 

orthogonality between different loading vectors is not required. Instead, a much weaker 

condition based on the concept of k-rank is sufficient to guarantee the identifiability of the 

CP decomposition [25]. To identify local structure, if all v1i, v2i and v3i are sparse in the ith 

layer, the non-zero entries in v1i ∘ v2i ∘ v3i form a sub-tensor, or what we call, a co-cluster. 

The co-clusters identified by different layers may overlap because the loadings may have 

overlapping non-sparsity patterns. To induce sparsity, we optimize the following objective 

function

− ℓ(X ∣ T) + Pv1(V 1) + Pv2(V 2) + Pv3(V 3), (3)
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where Pvk(·)s are column-wise sparsity-inducing penalty functions. Again, the negative log 

likelihood in the objective function is a generalization of the squared loss in standard CP 

decomposition [36, 37].

The previous biclustering framework (2), other than its additional orthogonality constraints 

on the loadings, can be viewed as a special case of this co-clustering framework. In fact, in 

order to obtain sparsity, people rarely enforce strict orthogonality of loadings in matrix 

decomposition [38, 39, 6]. We hereby follow the convention and relax the orthogonality 

constraints in biclustering. As a result, (2) exactly becomes a special case of the above co-

clustering framework. Without loss of generality, hereafter we just focus on the general co-

clustering framework for presentation.

Remark: Sometimes it may be desired to separate positive entries from negative entries in a 

non-zero sub-tensor and treat them as separate co-clusters [28]. As a result, a non-zero sub-

tensor identified in each layer may contain more than one co-cluster. For example, in binary 

scenarios, large positive values correspond to high odds (success rates greater than 0.5), 

while large negative values correspond to low odds (success rates lower than 0.5). If one 

cares more about co-clusters with high odds (i.e., more 1s), one should primarily focus on 

positive-value sub-sub-tensors within a non-zero sub-tensor. The signs of the values within a 

sub-tensor are determined by the signs in each loading vector. The total number of same-

sign co-clusters within a non-zero sub-tensor is up to 2K for a K-way tensor. These co-

clusters are mutually exclusive. In other words, we may identify ur to 2K non-overlapping 

co-clusters within each layer of Model (3).

3. Estimation Algorithm

In this section, we first introduce a regularized alternating least squares (ALS) algorithm for 

solving (3) of each layer, and then devise a deflation algorithm to sequentially estimate 

different layers. The deflation algorithm automatically determines the total number of co-

clusters and produces nested results.

3.1. Regularized Alternating Least Squares

We focus on the estimation of a unit rank model in this subsection. To induce sparsity in the 

loading estimates in (3), we particularly focus on the LASSO penalty term [32]. We propose 

a regularized ALS algorithm which alternates the estimation of v1, v2, v3. Each step can be 

formulated as a regularized generalized linear model (GLM) estimation problem. We remark 

that other sparsity-inducing penalties [33, 34] can also be used if desired and the proposed 

algorithm largely remains the same.

More specifically, we aim to solve the following optimization problem

min
v1, v2, v3

− ∑
i1 = 1

p1
∑

i2 = 1

p2
∑

i3 = 1

p3
{X[i1, i2, i3]T[i1, i2, i3] − b(T[i1, i2, i3])}

+ λ1‖v1‖1 + λ2‖v2‖1 + λ3‖v3‖
s . t . T = dv1 ∘ v2 ∘ v3
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where λ1, λ2, λ3 are tuning parameters and b(·) is a distribution-specific convex function. 

For simplicity, we let v1 absorb the constant d. The optimization problem does not have 

closed-form solution, but the objective function is convex with respect to each loading vector 

while holding the other two fixed. Thus, it is natural to use an ALS algorithm to solve the 

problem. Below we discuss the estimation of v1 while holding v2 and v3 constant. By 

symmetry, the estimation of v2 and v3 can be obtained similarly.

With fixed v2 and v3, we first matricize X and T along the first mode as X(1) and T(1). In 

particular, given the unit-rank decomposition, we have T(1) = v1(v3 ⊗ v2)T. We further 

vectorize T(1)T as

vec T (1)T = {I ⊗ (v3 ⊗ v2)}v1,

where I is an p1 × p1 identity matrix. Consequently, the original optimization problem has an 

equivalent form as

min
v

−vec X(1)T T
{I ⊗ (v3 ⊗ v2)}v + 1Tb({I ⊗ (v3 ⊗ v2)}v) + λ1‖v‖1, (4)

where 1 is a length-(p1p2p3) vector of all 1s and b(·) represents an entrywise function with a 

little abuse of notation. It immediately follows that the first part of the above objective 

function resembles a GLM problem with vec(X(1)T) being the response, I⊗(v3⊗v2) being 

the (orthogonal) design matrix and v being the coefficient vector to be estimated. With the 

additional LASSO penalty, the optimization problem becomes a regularized GLM problem, 

which can be solved via an iteratively reweighted penalized least squares algorithm. A 

detailed description can be found in the appendix.

Once estimated, we fix v1 and continue to estimate v2 and v3 in a similar fashion. We 

alternate the estimation of different loadings until convergence. With fixed tuning 

parameters, the algorithm always converges because the objective function decreases in each 

step. However, since the optimization is not convex, it is not guaranteed to converge to the 

global optimum. The choice of initial values and the order in which the loadings are 

estimated may affect the final result. In practice, one may run the algorithm from multiple 

starting points and in different orders, and compare the likelihood values corresponding to 

different estimates.

3.2. Deflation Algorithm

To identify multiple non-zero sub-tensors from the observed array, we exploit a deflation 

algorithm. It is a sequential procedure where we estimate one unit-rank structure at a time 

given what has already been estimated. In the Gaussian scenario, this can be simplified as 

applying the unit-rank estimation algorithm to a residual tensor, obtained by subtracting 

previously estimated sub-tensors from the observed data [6, 38]. However, for non-Gaussian 

data, the residual tensor is not well defined. One cannot directly subtract a sub-tensor in the 

natural parameter space from the observed data. Instead, we treat the previously estimated 

sub-tensors as an offset in the subsequent estimation.
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More specifically, suppose V 1, V 2, V 3 have been estimated in previous steps. Let 

T = [V 1, V 2, V 3]. We have T = T + v1 ∘ v2 ∘ v3, where v1, v2, v3 are the loading vectors to 

be estimated. In order to estimate v1, we note that

vec T (1)T = vec T (1)T + {I ⊗ (v3 ⊗ v2)}v1 .

By substituting the above quantity in the optimization problem (4), we obtain a regularized 

GLM with offset being vec T (1)T . Consequently, we can use a similar iteratively reweighted 

penalized least squares algorithm as before to estimate v1 (similar for v2 and v3). As a result, 

we can sequentially identify non-zero sub-tensors from the observed data array. An 

advantage of the deflation algorithm is that the identified structure is nested with respect to 

different ranks. In other words, regardless of the preset rank, the first few sub-tensors always 

remain the same.

Although not guaranteed, the order of identified unit-rank structures is usually in agreement 

with the order of the norm of the loading vectors in V 1. The latter can be viewed as the level 

of importance of the identified co-clusters. In practice, one could always reorder co-clusters 

post hoc if desired.

3.3. Tuning Parameter Selection

There are a few tuning parameters to be selected, including the rank r of the natural 

parameter tensor T and the sparsity parameters λk (k = 1,2,3). The rank determines the 

upper bound of the total number of co-clusters to be identified (given that some unit-rank 

layers may actually capture global patterns). Thanks to the deflation algorithm and sparse 

estimation, the rank can be automatically selected. That is, we terminate the algorithm when 

one of the loadings in a layer is estimated to be zero. By design, no more local or global 

patterns can be found given what has been identified. Thus, the number of non-zero layers is 

a good estimate of r.

Regarding the sparsity parameters, one may particularly design some information criterion 

that balances the goodness of fit and parsimony, and search over a multi-dimensional grid 

for the best triplet. However, such a criterion may not be readily available and the 

computation may be prohibitive for higher-way tensor arrays. Alternatively, we exploit an 

adaptive approach to select the tuning parameters. Note that there is only one tuning 

parameter involved in (4). The proposed solution (see appendix) seeks to iteratively optimize 

a penalized least squares function, which resembles a standard LASSO regression problem. 

The tuning parameter selection for LASSO regression has been well studied in the literature 

[40]. Here we use the Bayesian information criterion (BIC) to select the tuning parameter 

within each step of the iterative algorithm. We remark that the adaptively selected tuning 

parameters may vary from one iteration to another, but our numerical studies show that they 

tend to stabilize within a few iterations. Such adaptive selection has been widely used in the 

literature for its computational advantage [35, 38, 6].
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4. Simulation

In this section, we conduct comprehensive simulation studies to compare the proposed 

method with existing competitors. In particular, we consider EPCA [31], SSVD [6], convex 

biclustering [14], consistent biclustering [23], binary biclustering [24], Tensor Truncated 

Power (TTP) method [29], Poisson CP decomposition [37] and Generalized CP (GCP) 

decomposition [36] under different scenarios. For fair comparison, we set the rank to be the 

true rank whenever applicable and use the default setting to select tuning parameters for 

each method. We further explore the rank selection accuracy of the proposed method in 

Section 4.3. Additional simulation results on model misspecification can be found in the 

appendix.

4.1. Settings

We consider the following settings in the main paper.

• Setting 1 (count-valued matrix): Let X be a 100 × 100 count-valued matrix, 

where each entry is generated from a Poisson distribution. The underlying 

natural parameter (logarithmic Poisson rate) matrix Θ is generated by

Θ = μ11T + u1v1
T + u2v2

T ,

where 1 is a length-100 vector of 1s and μ = 2. The loading vectors u1 and u2 

have nonzero values in entries 1–50 and 31–70; the loading vectors v1 and v2 

have nonzero values in entries 1–40 and 21–60. The nonzero values are 

generated from a uniform distribution on [−0.5, −0.4] and [0.4, 0.5] (to be 

bounded away from 0). We subsequently normalize the loading vectors to have 

unit norms, and further multiply u1 and u2 by 15 and 10. We note that μ11T 

implies the global structure and u1v1
T + u2v2

T  captures the local biclustering 

structure. The biclusters induced by (u1, v1) and (u2, v2) are overlapping and 

non-exhaustive.

• Setting 2 (binary matrix): The setting is very similar to Setting 1, except that 

data are generated from Bernoulli distributions with the underlying natural 

parameter matrix Θ containing log odds instead of log rates. We simulate 

Θ = u1v1
T + u2v2

T  where the loadings are generated in the same way as in Setting 

1. To enhance signal, we multiply standardized u1 and u2 by 100 and 80, 

respectively.

• Setting 3 (continuous 3-way tensor): The elements of a 3-way tensor array X
of dimension 50 × 50 × 50 are simulated independently from univariate Gaussian 

distributions with the mean tensor T being

T = λ1v11 ∘ v12 ∘ v13 + λ2v21 ∘ v22 ∘ v23,
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where all the loading vectors are sparse. We particularly consider two scenarios 

where the two co-clusters defined by the two layers are of 1) equal size (i.e., 20 × 

20 × 20) and 2) unequal size (i.e, 20 × 20 × 20 and 30 × 30 × 30). The first 

scenario is in favor of the competing method TTP because it is specifically 

designed to identify equal-sized co-clusters. In both scenarios, we vary the 

standard deviation of the Gaussian random variables to allow the signal-to-noise 

ratio (SNR, defined as the signal variance divided by the noise variance) ranging 

from 0.1 to 1.

• Setting 4 (count-valued 3-way tensor): The setting is similar to Setting 1 in 

spirit, where data are simulated from a Poisson distribution with the underlying 

natural parameter tensor T. In particular, T has the global structure μ1 ∘ 1 ∘ 1 

with μ = 2 and the individual structure λ1v11 ∘ v12 ∘ v13 + λ2v21 ∘ v22 ∘ v23 with 

λ1 = 50 and λ2 = 40. The subtensor v11 ∘ v12 ∘ v13 has nonzero values in {1, ⋯, 

20} × {1, ⋯ , 20} × {1, ⋯ , 20} while the subtensor v21 ∘ v22 ∘ v23 has nonzero 

values in {11, ⋯ , 40} × {11, ⋯ , 40} × {21, ⋯ , 40}. The nonzero entries in the 

loading vectors are generated in the same way as in Setting 1.

Other than the proposed CORALS method, we implement SSVD, EPCA, consistent 

biclustering and convex biclustering under Setting 1 (SSVD and convex biclustering are 

applied to the log-transformed data); EPCA, consistent biclustering and binary biclustering 

are implemented under Setting 2; CP and TTP are implemented under Setting 3; CP, Poisson 

CP and GCP methods are implemented under Setting 4. Since most methods cannot identify 

co-clusters or capture overlapping, non-exhaustive patterns, the main comparison criterion is 

the estimation accuracy of the underlying natural parameters. We evaluate the following 

Frobenius loss for estimates from different methods

Loss = ‖Θ − Θ‖F, or ‖T − T‖F .

Moreover, for those methods that can capture overlapping co-clusters (e.g., SSVD and 

binary biclustering), we also compare the sensitivity and specificity of co-cluster 

identification, which are defined as follows:

Sen = # of correctly identified co‐cluster elements
# of true co‐cluster elements ,

Spc = # of correctly specified non‐co‐cluster elements
# of true non‐co‐cluster elements .

In addition, we also compare the fitting times of different methods. Under each setting, we 

fix the generative natural parameters and repeat the simulation 100 times.

4.2. Results

The results from Setting 1 are presented in Table 1. The proposed method has the lowest loss 

of parameter estimation among all methods. It also provides reasonably high sensitivity and 

specificity rates. We note that both convex biclustering and consistent biclustering are 

designed for exhaustive biclustering, and thus they cannot adequately identify overlapping 

biclusters. The fitting time of CORALS is similar to EPCA, and is significantly faster than 
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convex biclustering. The results from Setting 2 are shown in Table 2. Similar to the results 

from Setting 1, CORALS outperforms the competing methods in estimation loss and has 

desirable sensitivity and specificity of bicluster identification.

In Setting 3, we compare CORALS with CP and TTP over a range of SNRs in both 

scenarios. The results are presented in Figure 1. In the first scenario where co-clusters in 

different layers are of equal size, TTP has the smallest losses. This is not surprising because 

the scenario is in favor of TTP and the true co-cluster size is only provided to TTP as a 

required input. When the signal increases, the loss decreases for all methods and the 

difference between different methods diminishes. In the second scenario where co-clusters 

have different sizes, both CORALS and CP significantly outperform TTP, especially when 

the SNR is high. Moreover, CORALS is computationally more efficient than TTP (the 

model fitting time of CORALS is over 20 times faster than TTP in this setting).

Table 3 contains the results from Setting 4. Again, CORALS has the lowest estimation loss 

while achieving satisfactory co-clustering performance. None of the competing methods can 

achieve co-clustering. The computing time of CORALS depends on the data distribution and 

dimension, but overall it is computationally efficient.

4.3. Rank Selection

As a proof of concept, we rerun the simulation under Settings 1, 2 and 4 with the proposed 

CORALS method, and let the method determine the number of co-clusters in each case. In 

other words, we do not specify the rank, but let the deflation algorithm determines when to 

terminate. In Settings 1 and 2, the algorithm correctly identifies the true rank in almost all 

simulation runs (≥ 99%). In Setting 4, the count-valued tensor setting, the deflation 

algorithm correctly specifies the rank more than two thirds of the simulation runs. For the 

remaining runs, it mostly underestimates the true rank by one. This may be due to the 

relatively low signal level. Nonetheless, the first few layers still capture the dominant global 

and local patterns, and are not subject to the rank misspecification.

5. Real Applications

We apply CORALS to three real data examples and demonstrate its utility. The NIPS Bag of 

Words data are publicly available from https://archive.ics.uci.edu/ml/datasets/NIPS

+Conference+Papers+1987-2015 [16]; the CAL500 data are available from the Mulan 

library (http://mulan.sourceforge.net/datasets-mlc.html) [15]; the multiple sclerosis (MS) 

data are available from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33464 

[41]. The Matlab code for analyzing the data sets is available upon request.

5.1. NIPS Bag of Words

The NIPS Bag of Words data consist of 5,811 NIPS conference papers published from 1987 

to 2015. The data set contains counts of 11,463 unique words by paper. Analysis of the word 

counts may reveal interesting evolution of topics in the field of machine learning. We first 

preprocess the data by aggregating papers from the same year. The number of papers per 

year is presented in the left panel of Figure 2. We further reduce the number of words by 
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removing words with zero count in any year. As a result, we end up with 3,556 unique 

words. We subsequently apply the proposed method to the word×year count-valued matrix.

The method identifies 4 layers of global and local patterns. In particular, the first layer 

corresponds to the global structure. The loading corresponding to years is shown in the right 

panel of Figure 2. It apparently coincides with the trend of paper volumes over years, 

indicating that the global pattern mainly captures the overall volume effect.

Next, we look into the 3 layers of local patterns. In each layer, the non-zero entries in both 

loadings form a bicluster. Following the remark in Section 2, we specially focus on the two 

sub-biclusters with positive values within each layer. In particular, one sub-bicluster consists 

of words and years both with positive loading values, and the other with negative loading 

values. These sub-biclusters capture more-frequent-than-usual appearance of words in a 

period of time. They potentially reflect the surge of certain topics in certain years. In total, 

there are 6 word×year sub-biclusters of size 287 × 19,530 × 10,127 × 18,118 × 4,13 × 21 

and 82 × 7 identified from the 3 layers of local patterns. In particular, Bicluster 1 (BC1) lasts 

from 1987 to 2005 and highlights words such as “network”, “neural” “architecture” and 

“pattern”, which imply the popularity of neural network and pattern recognition-related 

topics in the 90s and early 2000. BC3 lasts from 1995 to 2012 and highlights “kernel”, 

“spike”, “margin”, “label”, “clustering” and “mixture”, which indicate the prevalence of 

supervised and unsupervised learning during the period. BC4 mainly consists of 2013 to 

2015 and highlights “network”, “layer”, “deep” and “net” as a result of the deep-learning 

fever. BC5 spans 1987–1997 and 2006–2014 and highlights “parallel”, “distributed” and 

“memory”, which suggest the long-lasting interest of parallel/distributed computing in the 

field. These findings are in part consistent with those in [16] and provide interesting insights 

into the evolution of topics in the machine learning field.

5.2. CAL500 Music Annotation

The CAL500 data set contains semantic annotations for 502 western popular songs. The 

original data contain 174 candidate annotations, including 36 emotion features, 47 genres, 

15 usage variables, 33 instrument variables, 27 characteristic features and 16 vocal types. 

Each song can be tagged with multiple annotations. The annotations of a song were 

determined by multiple human listeners with consensus. A more detailed description can be 

found in [15]. We preprocess the data by filtering out annotations that show up in fewer than 

30 songs. As a result, we end up with a 502 × 103 binary matrix, with 1 indicating the 

presence of an annotation in a song and 0 otherwise. A heat map of the matrix is shown in 

the left panel of Figure 3.

One question of interest is to identify song sets that share similar annotations. Moreover, we 

are interested in knowing what the common annotations are that distinguish each song set. 

Once achieved, it will enhance our understanding of the relationship between semantic 

annotations and songs, and facilitate music retrieval. The process of identifying songs and 

annotations is essentially a biclustering analysis. Thus, we apply CORALS to the processed 

binary matrix. The method identify 3 layers of structure, including a global pattern and two 

local patterns of size 421 × 87 and 386 × 90. The estimated loadings of the local patterns are 

not as sparse as desired, possibly due to a low signal-to-noise level. To improve 
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interpretation, we focus on the most dominant entries in both dimensions. In particular, we 

threshold the normalized loadings for songs by ±0.05 (values between −0.05 and 0.05 are set 

to 0) and loadings for annotations by ±0.1. Subsequently, we obtain two local patterns of 

size 144×29 and 133×18. We further restrict our focus on sub-matrices of the local patterns 

with positive estimated values (see the remark in Section 2). As a result, we get 4 

meaningful sub-biclusteis of 79 × 14, 65 × 15, 67 × 11 and 66 × 7. The identified biclusters 

are shown in the right panel of Figure 3. They are highly accordant with the observed data.

We further look into the identified sub-biclusters. The first sub-bicluster highlights 

annotations such as “Emotion-Pleasant-Comfortable”, “Emotion-Touching-Loving”, “Not 

Heavy Beat” and “Usage-Going to sleep”, and includes songs such as “Imagine” by John 

Lennon, “In the mood” by Glenn Miller and “For you and I” by 10cc. The second sub-

bicluster, which belongs to the same local pattern with the first sub-bicluster but is on the 

other end of the spectrum, highlights annotations such as “Emotion-Angry-Aggressive”, 

“Emotion-Powerful-Strong”, “Song-Fast-Tempo” and “Song-High-Energy”, and includes 

songs such as “Six pack” by Black Flag and “Last depression” by Skitzo. The third and 

fourth sub-biclusters capture the contrast of songs with happy/positive emotions vs sad/

negative emotions. In summary, the method proves useful for identifying similar songs based 

on semantic annotations.

5.3. Multiple Sclerosis

The MS data were collected to study the transcriptional effects of subcutaneous Interferon 

(IFN)-β treatment in patients with MS. Blood samples were collected from 12 patients at 

multiple time points (before first and second IFN-β injection as well as after 1 month, 1 year 

and 2 years). Gene expression profiles were measured by Affymetrix DNA microarrays. We 

follow the preprocessing steps in [26] and focus on the therapy-related genetic pathways 

with 56 genes. As a result, we obtain a gene expression array (gene×subject×time) of size 56 

× 12 × 5. Our goal is to identify co-clusters that shed light on the effect of IFN-β therapy on 

gene expressions.

We apply CORALS to the MS data. The method identifies 5 layers of non-zero structures, 

including 1 global pattern and 4 local patterns. In particular, the 4 co-clusters are very 

similar with slight differences in different dimensions. The numbers of selected genes in 

different co-clusters are 16, 12, 13 and 23. We focus on 12 genes (CXCL10, DDX58, 

EIF2AK2, IFI27, IFIH1, IFIT1, IRF7, ISG15, MX1, OAS1, RSAD2, ZBP1) that are 

commonly selected by most co-clusters and conduct a gene ontology (GO) enrichment 

analysis using the analysis tool from the PANTHER Classification System (http://

pantherdb.org/). The significant results under the nominal level of 0.05 are presented in 

Table 4.

We find that the selected genes are highly enriched for molecular function (RNA binding) 

and biological processes (defense response to virus and negative regulation of viral genome 

replication). Within the regulation process, the following functional subclasses are also 

significantly enriched: negative regulation of viral life cycle, regulation of viral process, 

regulation of symbiosis (encompassing mutualism through parasitism), regulation of viral 

life cycle, and regulation of viral genome replication. Some of these findings have been 

Li Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pantherdb.org/
http://pantherdb.org/


reported in the literature [42, 26]. We further identify that the Interferon Signaling pathway 

is significantly enriched (1.97 fold difference between the 12 selected genes and 56 

reference genes) with a p-value of 0.032. Since most samples were measured after the IFN-β 
treatment, it is reasonable that the interferon signaling pathway genes are significantly 

enriched in the selected gene set. Overall, the proposed method replicates existing results 

and may provide new insights into the transcriptional effects of IFN-β treatment.

6. Discussion

We propose a general framework for co-clustering analysis of multi-way tensor arrays. The 

method can effectively accommodate continuous, binary or count-valued data by identifying 

co-clusters in the natural parameter space. The model fitting algorithm is adaptive and 

efficient. The number of co-clusters can be automatically determined from the estimation 

procedure. Numerical studies demonstrate the efficacy and utility of the proposed method.

The proposed method can be readily generalized to composite data with different data types. 

With prior information about the distribution of each data entry, one could simply modify 

the estimation algorithm in Section 3 by using distribution-specific likelihood functions. 

However, a co-cluster in composite data may not have a straightforward interpretation 

because natural parameters in different distributions have different meanings. A related 

future research direction is to adapt the method to multi-view multi-type data, where 

multiple data sets are measured on the same set of samples and each data set may have a 

unique data type [43, 44]. How to simultaneously cluster samples and variables (in different 

sets) is an intriguing question.

We only consider single-parameter exponential family distributions in this paper. The 

extension to multi-parameter distributions may also be desired. However, several challenges 

remain. First, different parameters may have different co-clustering patterns, and it is not 

clear about how to define consensus co-clusters. Second, the proposed model may be over-

saturated for multi-parameter distributions since we treat each entry of a tensor as an 

observation in the current framework. Third, the computation may be prohibitive because we 

can no longer leverage the equivalence to a GLM problem in the estimation procedure. More 

efforts are needed to address these challenges.

Another direction of interest is to generalize the CP decomposition to the Tucker 

decomposition. The Tucker decomposition has grown in popularity in recent years due to its 

general form. It subsumes the CP decomposition as a special case. Many tensor models are 

based on the Tucker decomposition [see 45, 46, for example]. More recently, [47] proposed 

a tensor block model for multiway clustering, which is a special form of the Tucker 

decomposition. It can be used to identify exclusive, constant-mean clusters. Nonetheless, it 

remains an open area to exploit the Tucker decomposition for flexible overlapping co-

clustering.

There are a few additional open questions for future research. First, the computational 

efficiency of CORALS may be further improved for large-scale problems. The proposed 

estimation algorithm has nested loops of iterations. Within each iteration, all the entries of a 
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tensor are stacked into a long vector for computation. These may lead to high computational 

cost and excessive memory utilization, especially for large-scale problems. One could 

consider a one-iteration variant and a subsampling scheme to simplify the algorithm. 

However, computational properties such as the convergence rate need to be carefully 

studied. Second, same-sign co-clusters in a tensor may be identified by directly imposing 

some sign restrictions on loading vectors. For instance, non-negative loading entries in all 

the loading vectors in a layer would lead to a positive co-cluster. However, challenges 

include how to adaptively determine the sign of a loading vector and how to efficiently solve 

the optimization in (4) with sign restrictions. Third, the generalization to incomplete tensor 

data is also of interest and calls for more investigation.
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Appendix

Appendix A. Iteratively Reweighted Penalized Least Squares

In our model fitting algorithm, a critical piece is to fit a generalized linear model (GLM) 

with the canonical link and a sparsity-inducing penalty. In a general setting, let y ∈ ℝn

denote a response vector, X ∈ ℝn × p denote a design matrix and β ∈ ℝp denote a coefficient 

vector. The optimization problem can be formulated as

min
β

− yTXβ − 1Tb(Xβ) + λ‖β‖1, (A.1)

where b(·) is an entrywise convex function corresponding to the data distribution in the 

exponential family and λ is a tuning parameter. The first two terms come from the 

exponential family log likelihood and the last term is a LASSO penalty. In particular, the 

objective function (4) in the main paper is a special case of (A.1).

We note that the objective function in (A.1) is convex. We exploit an iteratively reweighted 

least squares approach to solve (A.1). We first apply a quadratic approximation to the first 

two terms of the objective function in (A.1), and convert it to a weighted least squares term. 

More specifically, let Q(β) = −yT Xβ – 1Tb(Xβ). We have

∂Q(β)
∂β = − XTy + XTb′(Xβ),

∂2Q(β)
∂β∂βT = XTW X,

where W is a diagonal matrix with diagonal values being b″(Xβ). Correspondingly, the 

quadratic approximation of Q(β) at β0 is
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Q(β) ≈ Q(β0) + (β − β0)T ∂Q(β)
∂β ∣β0 + 1

2(β − β0)T ∂2Q(β)
∂β∂βT ∣β0 (β − β0)

∝ ‖W 1 ∕ 2y⋆ − W 1 ∕ 2Xβ‖2,

where y * = Xβ0 + [y – b′(Xβ0)] · [b″(Xβ0)]−1 is a working response vector and · represents 

the Hadamard product.

Given the current estimate β0, the original problem (A.1) is approximated by

min
β

‖W 1 ∕ 2y⋆ − W 1 ∕ 2Xβ‖2 + λ‖β‖1, (A.2)

which is a penalized weighted least squares problem. There are many off-the-shelf methods 

to address this problem [48]. In particular, if the design matrix W1/2X have orthogonal 

columns, which is the case for the optimization (4) in the main paper, the above problem has 

a closed-form solution

β = thres βW LS, 2λdiag (XTWX)−1 ,

where thres(β, λ) is an entrywise soft-thresholding function for β ∈ ℝp and λ ∈ ℝp with each 

entry being thres(βj, λj) = sign(βj) max(∣βj∣ – λj, 0), and βWLS = (XTWX)−1 XTWy* is the 

weighted least squares estimate.

Once obtained, β becomes the current estimate and is used to calculate the weight matrix W 

and the working response y*. Then we solve (A.2) again. All in all, the final solution of 

(A.1) can be obtained by iteratively solving (A.2).

Appendix B. Additional Simulation on Model Misspecification

We conduct additional simulation studies where data are not generated from the proposed 

model. In particular, we consider the following settings

• Setting S1 (continuous matrix with block mean): Following a simulation 

setting in [14], we generate continuous data from the following block model

X =
μa1a μa1a μd1d
μb1b μc1c μe1e

+ E,

where 1. is a matrix of ones with compatible size, μ = (μa, μb, μc, μd, μe)T = (1, 0, 

0.25, −1, 1.25)T is a mean vector, and E contains independent and identically 

distributed (i.i.d.) noise from N(0, 0.1). The data matrix has dimensions 100 × 

100 and 1a has dimensions 40 × 30.

• Setting S2 (count-valued matrix with block mean): Following a simulation 

setting in [23], we generate Poisson count data with the following block-

structured mean parameters
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Λ =
μa1a μc1c μe1e
μb1b μd1d μf1f

,

where μ = (μa, μb, μc, μd, μe, μf)T = 10 * (0.92, 0.17, 0.77, 1.41, 1.66, 1.45)T. The 

dimensions of the blocks are the same as those in Setting S1.

• Setting S3 (count-valued matrix with over-dispersion): Count-valued data are 

generated from a negative binomial distribution where the mean structure is the 

same as in Setting 1 and the dispersion parameter is randomly generated from a 

uniform distribution with support [5, 10] (i.e., moderate to large dispersion).

We compare CORALS with both convex biclustering and consistent biclustering under 

Settings S1 and S2. Since the underlying mean parameters have an exclusive and complete 

block structure, we also measure the performance of different methods with the Rand Index 

(RI) [49]. The index captures the similarity between estimated and true partitions. We use an 

ad hoc partition method for CORALS results, where rows and columns are partitioned by 

the composite signs of the estimated loading vectors. In Setting S3, we compare CORALS 

with SSVD, EPCA, convex biclustering and consistent biclustering. In particular, for 

CORALS and consistent biclustering, we use the Poisson likelihood, which is a misspecified 

distribution for the data.

The results are presented in Tables B.5 and B.6. In Settings S1, convex biclustering has the 

best performance with the smallest Frobenius loss and largest RI. This is not surprising since 

the generative block model in this setting is the probabilistic model for convex biclustering. 

However, the superior performance comes at a price – the fitting time of convex biclustering 

is more than 50 times greater than that of CORALS. In Setting S2, where the generative 

model is from consistent biclustering, it indeed has the best performance followed by convex 

biclustering and CORALS. In both settings, the lesser performance of the proposed method 

indicates that the current form of CORALS and the ad hoc partition method may not be 

suitable for data with a block mean structure. Further investigations are needed to better 

adapt the method to this scenario. In Setting S3, even with a misspecified distribution, 

CORALS is still among the best. It has a significantly lower loss than SSVD and convex 

biclustering, and has the best sensitivity and specificity rates of co-cluster identification. The 

result shows the proposed method is relatively robust against the distribution 

misspecification.

Table B.5.

The comparison of different methods under Settings S1 and S2. The mean and standard 

deviation (in parenthesis) of different criteria are calculated based on 100 simulation runs.

CORALS CvxBC CstBC

Setting S1

Loss 7.172(0.442) 1.128(1.085) 11.323(17.942)

RI 0.918(0.008) 0.956(0.047) 0.933(0.065)

Time (sec) 0.119(0.335) 6.483(0.398) 3.975(0.262)
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CORALS CvxBC CstBC

Setting S2

Loss 12.499(0.475) 8.887(0.907) 0.912(0.342)

RI 0.870(0.003) 0.972(0.051) 1.000(0.000)

Time (sec) 0.171(0.009) 9.488(1.156) 4.021(0.087)

Table B.6.

The comparison of different methods under Setting S3. The mean and standard deviation (in 

parenthesis) of different criteria are calculated based on 100 simulation runs.

CORALS SSVD CvxBC CstBC EPCA

Loss 15.531(1.512) 22.996(1.006) 24.426(0.540) 13.432(1.270) 14.170(0.422)

Sen 0.568(0.207) 0.549(0.183) N/A N/A 1(0)

Spc 0.926(0.041) 0.923(0.042) N/A N/A 0(0)

Time (sec) 0.956(2.685) 0.769(1.311) 5.593(1.290) 0.009(0.004) 3.448(0.823)
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Figure 1. 
Simulation results under Setting 3. The left panel corresponds to the first scenario where co-

clusters in different layers are of equal size; the right panel corresponds to the second 

scenario where co-clusters have different sizes. The medians and median absolute deviations 

(i.e., the error bars) of the estimation losses for CORALS, CP and TTP are evaluated over a 

range SNRs.
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Figure 2. 
NIPS Bag of Words Example. The left panel shows the numbers of papers published at NIPS 

from 1987 to 2015; the right panel contains the loading values correspond to the global 

structure estimated from CORALS.
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Figure 3. 
CAL500 Music Annotation Example. The left panel shows the heat map of the binary 

annotation matrix where rows represent songs and columns represent annotations 

(red=presence; white=absence). The right panel shows the heat map of the identified 

biclusters (red=in a bicluster; white=not in a bicluster). Rows and columns are ordered in the 

same way in both figures for visualization purpose.
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Table 1.

The comparison of different methods under Setting 1. CvxBC and CstBC represent convex biclustering and 

consistent biclustering respectively. The mean and standard deviation (in parenthesis) of different criteria are 

calculated based on 100 simulation runs.

CORALS SSVD CvxBC CstBC EPCA

Loss 9.747(0.496) 13.600(0.945) 19.865(0.229) 10.552(0.256) 10.699(13.130)

Sen 0.980(0.026) 0.907(0.115) N/A N/A 1(0)

Spc 0.825(0.044) 0.846(0.047) N/A N/A 0(0)

Time (sec) 1.987(5.579) 0.941(1.419) 17.802(7.933) 0.009(0.008) 2.269(0.641)
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Table 2.

The comparison of different methods under Setting 2. BinBC and CstBC represent binary biclustering and 

consistent biclustering respectively. The mean and standard deviation (in parenthesis) of different criteria are 

calculated based on 100 simulation runs.

CORALS BinBC CstBC EPCA

Loss 73.673(3.713) 94.056(3.881) 102.570(7.165) 129.714(21.453)

Sen 0.749(0.044) 0.556(0.049) N/A 1(0)

Spc 0.822(0.055) 0.977(0.018) N/A 0(0)

Time (sec) 3.751(10.323) 1.768(5.624) 0.012(0.007) 0.270(0.067)
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Table 3.

The comparison of different methods under Setting 4. The CP method is applied to the log-transformed data. 

The mean and standard deviation (in parenthesis) are calculated based on 100 simulation runs.

CORALS CP Poisson CP GCP

Loss 25.300(18.147) 44.049(10.605) 65.123(0.073) 52.191(1.533)

Sen 0.748(0.360) 1(0) 1(0) 1(0)

Spc 0.933(0.040) 0(0) 0(0) 0(0)

Time (sec) 0.443(0.716) 0.019(0.010) 0.487(0.048) 0.628(0.115)
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Table 4.

GO enrichment analysis of 12 selected genes in the multiple sclerosis example. Enriched biological processes 

are presented along with the counts and p-values from the Fisher’s Exact test. In particular, N = 56 and B = 12 

are the numbers of genes in the whole data and the selected subset, respectively; n and b are the numbers of 

genes associated with the corresponding GO term within N and B.

GO term Description Enrichment Counts (N, B, n, b) p-value

GO:0051607 Defense response to virus (56,12,26,11) 0.014

GO:0045071 Negative regulation of viral genome replication (56,12,9,6) 0.026

GO:0003723 RNA binding (56,12,13,7) 0.040
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