
Improved Confidence Regions in Meta-analysis

of Diagnostic Test Accuracy

Tsubasa Ito1 and Shonosuke Sugasawa2

1M&D Data Science Center, Tokyo Medical and Dental University

2Center for Spatial Information Science, The University of Tokyo

Abstract

Meta-analyses of diagnostic test accuracy (DTA) studies have been gathering at-

tention in research in clinical epidemiology and health technology development, and

bivariate random-effects model is becoming a standard tool. However, standard in-

ference methods usually underestimate statistical errors and possibly provide highly

overconfident results under realistic situations since they ignore the variability in the

estimation of variance parameters. To overcome the difficulty, a new improved infer-

ence method, namely, an accurate confidence region for the meta-analysis of DTA,

by asymptotically expanding the coverage probability of the standard confidence re-

gion. The advantage of the proposed confidence region is that it holds a relatively

simple expression and does not require any repeated calculations such as Bootstrap

or Monte Carlo methods to compute the region, thereby the proposed method can be

easily carried out in practical applications. The effectiveness of the proposed method

is demonstrated through simulation studies and an application to meta-analysis of

screening test accuracy for alcohol problems.

Key words: Asymptotic expansion; Bias correction; Confidence region; random-

effects model
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1 Introduction

Evidence synthesis methods have been gathering attention in diagnostic test ac-

curacy (DTA) studies in clinical epidemiology and health technology development

(Leeflang et al., 2008). In this meta-analysis, the summary statistics in each study

are two primary correlated outcomes of diagnostic, sensitivity and false positive rate

(1− specificity), and we are typically interested in summary receiver operating char-

acteristic curve. Moreover, DTA from different sources for studies are generally het-

erogeneous due to various factors, which should be adequately addressed to avoid

underestimation of statistical errors and misleading conclusions (Higgins and Green,

2011). Due to the potential correlations between two summary measures and po-

tential heterogeneity, the bivariate random-effects models is adopted as the standard

method for the meta-analysis (Reitsma et al., 2005; Harbord et al., 2007).

In the bivariate random-effects meta-analyses, standard inference methods depend

on large sample approximations for the number of studies synthesized, for example

the extended DerSimonian-Laird methods (Chen et al., 2012; Jackson et al., 2010,

2013) and restricted maximum likelihood (REML) estimation (Reitsma et al., 2005;

Jackson et al., 2011), but the numbers of trials are often moderate or small in prac-

tice. In this situation, validity of the inference methods can be violated, which may

lead over-confidence results, that is, coverage probabilities of the confidence regions

or intervals cannot retain their nominal confidence levels and also the type-I error

probabilities of the corresponding tests can be inflated. Such problem with random-

effects models was well recognized in the context of both univariate and multivariate

meta-analysis, even when the models are completely specified (Veroniki et al., 2019).

Recently, several refined methods have been proposed to improve confidence intervals

in multivariate meta-analysis. For example, Noma et al. (2018) developed improved

confidence intervals in network meta-analysis using Bartlett-type corrections, and

Noma et al. (2020) and Sugasawa and Noma (2020) developed a unified method for

computing accurate confidence intervals and regions in general random-effects meta-

analysis. However, these methods require computationally very intensive methods
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based on Monte Carlo or Bootstrap methods. Also these methods considered con-

fidence intervals or regions by inverting statistical hypothesis tests, thereby feasible

ways to construct confidence regions are not necessarily obvious. On the other hand,

there are a few analytical approaches to improve the standard approaches. Noma

(2011) and Guolo (2012) considered higher order likelihood inference in the univariate

meta-analysis, which cannot be directly applicable to more complicated multivariate

meta-analysis. As more general approaches, Zucker et al. (2000) proposed an im-

proved likelihood test in general linear mixed models through asymptotic expansions

of the (restricted) maximum likelihood estimators, but the results include tedious

algebraic expressions and are not useful in practice.

In this paper, we propose an improved confidence region for the bivariate random-

effects meta-analysis for DTA, which does not require any repeated calculation meth-

ods and has relatively simple analytical expressions, thereby the proposed method

could be easily employed in practical applications. The key mathematical tool is

the distributional properties between the ordinary least squares estimator and resid-

uals, and define a class of estimators of variance parameters in random-effects mod-

els. Then, we find a relatively simple formula for asymptotic approximation of the

coverage probability of the crude Wald-type confidence intervals and regions, and

construct a second order accurate confidence region. We carry out extensive simula-

tion studies to compare the performance of the proposed confidence region with that

of the standard REML method, and demonstrate that the proposed method shows

quite reasonable empirical coverage than REML while the computational cost in both

methods are almost identical. We also demonstrate the proposed method through an

application to meta-analysis of screening test accuracy for alcohol problems.

This paper is set out as follows. In Section 2, we describe the proposed confi-

dence region under bivariate random-effects models. In Section 3, we numerically

demonstrate the proposed confidence region together with existing methods through

extensive simulation studies and an application with real dataset. We conclude with a

short discussion in Section 4. R code implementing the proposed method is available

at GitHub repository (https://github.com/sshonosuke/CCR-BMA).
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2 Improved Confidence Regions in Meta-analysis for Diagnostic Test

Accuracy

2.1 Bivariate random-effects models and confidence region

There has been increasing interest in systematic reviews and meta-analyses of data

from diagnostic accuracy studies. For this purpose, a bivariate random-effect model

(Reitsma et al., 2005; Harbord et al., 2007) is widely used. Following Reitsma et al.

(2005), we define µAi and µBi as the logit-transformed true sensitivity and specificity,

respectively, in the ith study. Let yAi and yBi be the observed logit-transformed sen-

sitivity and specificity, and sAi and sBi are associated standard errors. The bivariate

model assumes that µi = (µAi, µBi)
t and yi = (yAi, yBi)

t follow bivariate normal

distributions:

yi|µi ∼ N2(µi, Si), µi ∼ N2(β,Σ), i = 1, . . . , n, (1)

where β = (βA, βB)t is a vector of the average logit-transformed sensitivity and speci-

ficity, and Si = diag(sAi, sBi). Note that there is no correlation between yAi and yBi

given µi since sensitivity and specificity are calculated based on individuals identified

as positive and negative, respectively. Here Σ is unstructured, so that it allows cor-

relation between µAi and µBi. Let y = (yt1, . . . , y
t
n)t ∈ R2n, X = (X1, . . . , Xn)t

with Xi = I2 and S = diag(S1, . . . , Sn). Then, the model (1) is equivalent to

y ∼ N(Xβ, In ⊗ Σ + S).

Our primary interest is a confidence region of β. Hence, the variance-covariance

matrix Σ is a nuisance parameter. These parameters are typically estimated via

(restricted) maximum likelihood methods based on the model assumption (1). For

summarizing the results of the meta-analysis, we typically employ confidence region

of β rather than separate confidence intervals since sensitivity and specificity could

be highly correlated. Reitsma et al. (2005) suggested the 100(1 − α)% confidence
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region for β as the interior points of the ellipse defined as

{
β : (β̂(Σ̂)− β)tV (Σ̂)−1(β̂(Σ̂)− β) ≤ χ2

2(α)
}
, (2)

where β̂(Σ) is the generalized least squares estimator of β and Σ̂ is the restricted

maximum likelihood estimator of Σ, V (Σ) = {Xt(In ⊗ Σ + S)X}−1 is the variance-

covariance matrix of β̂, Σ̂ is the restricted maximum likelihood estimator and χ2
2(α)

is the upper 100α% point of the χ2 distribution with 2 degrees of freedom. The joint

confidence region (2) is approximately valid, that is, the coverage error converges to

1−α as the number of studies n goes to infinity. However, when n is not sufficiently

large, the coverage error is not negligible, and the region (2) would under-cover the

true β.

2.2 Improved confidence region

In this work, we derive an improved confidence region whose coverage error is o(n−1),

which has higher order accuracy than the standard confidence region (2). The main

idea is to derive an approximation formula of the coverage probabilities of the confi-

dence region of the form (2) with a certain class of estimators for Σ, and derive an

improved confidence region in an analytical form.

We consider a class of estimators Σ̂(y) satisfying the following conditions:

(C1) Σ̂ is an even function of y and translation invariant, that is, Σ̂(y) = Σ̂(−y), and

Σ̂(y + c) = Σ̂(y) for any c ∈ R2n.

(C2) Σ̂ is
√
n-consistent and Σ̂ is second-order unbiased, namely Σ̂− Σ = O(n−1/2)

and E[Σ̂] = Σ + o(n−1).

(C3) Σ̂ is a function of Py with P = I2n −X(XtX)−1Xt.

The first condition (C1) is typically satisfied by typical estimators including (re-

stricted) maximum likelihood estimator and moment-based estimators. The
√
n-

consistency in (C2) is also a standard condition, but second order unbiasedness of ψ̂

is not always satisfied. For example, the maximum likelihood (ML) estimator does
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not necessarily hold the property. The condition (C3) requires that the estimator

should be function of residuals based on ordinary least squares estimator of β, which

is a key assumption in constructing the proposed confidence region. The condition

(C3) enables us to get a relatively simple form of the corrected confidence region.

Note that the typical estimators (e.g. REML) does not satisfy the condition (C3).

As a specific estimator satisfying all the above conditions, we employ the following

moment-based estimator:

Σ̂0 =
1

n

n∑
i=1

{
(yi −Xiβ̂

OLS)(yi −Xiβ̂
OLS)t − Si

}
,

where β̂OLS = (XtX)−1Xty is the ordinary least squares estimator. Since this

estimator is not second-order unbiased, let Σ̂ be a bias corrected version, that is,

Σ̂ = Σ̂0 − Bias
Σ̂0

(Σ̂) with Bias
Σ̂0

(Σ) = −n−2
∑n

i=1(Σ + Si), which satisfies all the

conditions (C1)∼(C3). We also note that given the estimator of Σ, the parameter β

can be estimated via the generalized least squares estimator given by

β̂(Σ) = {Xt(In ⊗ Σ + S)−1X}Xt(In ⊗ Σ + S)−1y.

In order to improve the coverage accuracy of the confidence region (2), we consider

a class of confidence regions of the form

{
β : (β̂(Σ̂)− β)tV (Σ̂)−1(β̂(Σ̂)− β) ≤ x(1 + h(Σ̂))

}
, (3)

where h(·) is a function with order O(n−1). When h(Σ) = 0 and x = χ2
2(α), the

confidence region (3) reduces to (2), thereby the function h can be regarded as an

adjustment function to achieve reasonable coverage properties. If Σ̂ satisfies the

conditions (C1)∼(C3), the approximation formula of coverage probability of the con-

fidence region (3) can be obtained in a relatively simple form, as summarized in the

following theorem.

Theorem 1. Suppose that Σ̂ satisfies the conditions (C1)∼(C3), and h ≡ h(Σ) is a
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function with order O(n−1). Then, it follows that

P
{

(β̂(Σ̂)− β)tV (Σ̂)−1(β̂(Σ̂)− β) ≤ x(1 + h)
}

= Fk(x) + hxfk(x) +

(
B1

4
− B2

2
+ 2B3

)
fk+2(x)

−
(
B1

4
+
B2

2

)
fk+4(x) +O(n−3/2),

where Fk(·) and fk(·) are the cumulative distribution and density function of the chi-

squared distribution with degrees of freedom k, respectively, and B1, B2 and B3 are

O(n−1) quantities given by

B1 = E
[
tr(K(Σ̂,Σ))2

]
, B2 = tr

(
E[K(Σ̂,Σ)2]

)
, B3 = tr

(
E[K(Σ̂,Σ)]

)
, (4)

with K(Σ̂,Σ) =
{
V (Σ̂)− V (Σ)

}
V (Σ)−1.

From Theorem 1, It turned out that the coverage probability of the confidence

region (3) is a simple functional of the djustment function h(·). Hence, to achieve

higher accuracy of the confidence region, it suffices to choose h(·) such that

hxfk(x) +

(
B1

4
− B2

2
+ 2B3

)
fk+2(x)−

(
B1

4
+
B2

2

)
fk+4(x) = 0.

Since fk+2(x)/fk(x) = x/k and fk+4(x)/fk(x) = x2/k(k+2), the solution with respect

to h is given by

h(Σ) =
1

k

(
B1

4
− B2

2
+ 2B3

)
− x

k(k + 2)

(
B1

4
+
B2

2

)
. (5)

We also note that h(Σ̂) = h(Σ) + op(n
−1) since h(·) = O(n−1). Then, the confidence

region given in (3) with h(·) given in (5) holds the second-order accuracy as shown

in the following theorem.

Theorem 2. Let CCIα be the confided region of the form (3) with h(·) given in (5).

Then, it follows that P (β ∈ CCIα) = 1− α+ o(n−1).
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It is notable that the derived confidence region has analytical expressions, so that

it does not require any computationally intensive methods such as bootstrap and

Monte Carlo integration as used in Sugasawa and Noma (2020) and Noma et al.

(2020). For practical implementation, we need to obtain the expressions of B1, B2

and B3 given in (4). We here provide approximation formulas. we can obtain B∗` , ` =

1, 2, 3 which satisfy B∗` = B` + o(n−1), where

B∗1 =
2

n2

n∑
i=1

n∑
j=1

n∑
k=1

tr
(
V UjikV Ukij

)
,

B∗2 =
1

n2

n∑
i=1

tr
(
V

n∑
j=1

U2
jij

)
+

1

n2

n∑
i=1

n∑
j=1

n∑
k=1

tr2
(
V Uijk

)
,

B∗3 =B2 −
1

n2

n∑
i=1

n∑
j=1

tr
(
V UijiDjD

−1
i

)
− 1

n2

n∑
i=1

n∑
j=1

tr
(
D−1
i Dj

)
tr
(
V Uiji

)
,

(6)

for Uijk = D−1
i DjD

−1
k and Di = Σ + Si. The detailed derivation is given in the

Supplementary Material. Note that using B∗` instead of B` in the derived confidence

region does not change the coverage accuracy shown in Theorem 2 since the difference

between B∗` and B` is only o(n−1).

3 Numerical Studies

3.1 Simulation study

We carried out extensive simulation studies to assess the finite sample performance of

the proposed confidence region (3) together with the approximate confidence region

(2) by Reitsma et al. (2005). In this study, we do not consider possible competitors

by Noma et al. (2020); Sugasawa and Noma (2020) due to two reasons; the coverage

performance has been already confirmed in their papers, and calculation of sizes of

their confidence regions are so intensive that it is not feasible to repeatedly calculate

them in our simulation study. Hence, the following simulation study is supposed to

compare the performance of the proposed and standard methods, both of which have
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almost the same computational time.

In the model (1), we set β = (0, 0) and Σ11 = Σ22 = τ2 and Σ12 = Σ21 = τ2ρ. We

considered 8 scenarios of the between study variances τ2 ∈ {0.1, 0.2, . . . , 0.8} and 5

scenarios of the between study correlations ρ ∈ {0, 0.2, . . . , 0.8}. Following, Jackson

and Riley (2014), for each simulation, two within-study variances sAi and sBi were

simulated from a scaled chi-squared distribution with 1 degree of freedom, multiplied

by 0.25, and truncated to lie within the interval [0.009, 0.6], so the expected values of

the variance is 0.20. We changed the number of studies n over 8,16 and 24, and set the

nominal level α to 0.05. Based on 1000 replications, we evaluated empirical coverage

probabilities of 95% confidence regions of the true parameters vector β obtained from

the proposed corrected (CCR) method as well as the standard naive (NCR) method.

For simplicity, we evaluated coverage rates assessing rejection rates of the test of null

hypothesis for the true parameters. Since areas of the corrected confidence region

is approximately 1 + h(Σ̂) times larger than those of naive ones, we also computed

median values of h(Σ̂) among 1000 replications. To see the degree of heterogeneity

depending on n and τ2, we computed heterogeneity measure given by I2 = τ2/(Q+τ2)

with Q = (n − 1)
∑n

i=1wi/{(
∑n

i=1wi)
2 −

∑n
i=1w

2
i } and wi = s−1

Ai in each iteration,

which were averaged over 1000 replications. Note that I2 ∈ (0, 1) and lager value of

I2 indicates more significant heterogeneity in the data.

The averaged values of I2 are reported in Table 1, which indicates that our simu-

lation scenarios contain a wide range of heterogeneity. The obtained coverage prob-

abilities and the median values of h(Σ̂) are shown in Figures 1 and 2, respectively.

From Figure 1, it is observed that the simulated coverage probabilities of the standard

NCR seriously smaller than the nominal level (95%), especially in the case with the

small number of studies (n = 8), possibly because of the naive approximation in (2).

On the other hand, the proposed CCR provides considerably better performance than

NCR as the coverage probabilities are relatively close to the nominal level. Although

the coverage probability of CCR tend to be larger than the nominal level when τ is

small and/or ρ is large, such a conservative property would be much more desirable

than the over-confident property that NCR shows. From Figure 2, we can see that
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the area of CCR is much larger than that of NCR since CCR takes account of ad-

ditional variability due to the estimation of the variance-covariance matrix, so it is

quite reasonable that h(Σ̂) decreases as n increases. Moreover, we can also observe

that the areas of CCR decreases as τ2 increases and increases as ρ increases, which

are consistent to the results of the overage probabilities shown in Figure 1.

Table 1: Averaged values of the heterogeneity measure I2(%) based on 1000 replica-
tions.

τ2

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

8 27.2 63.4 75.1 81.4 85.0 87.2 89.1 90.8
16 49.0 74.9 83.1 87.4 89.7 91.6 92.7 93.7
24 56.2 78.0 85.4 88.9 91.2 92.7 93.7 94.6

3.2 Example: screening test accuracy for alcohol problems

Here we provide a re-analysis of the dataset given in Kriston et al. (2008), includ-

ing n = 14 studies regarding a short screening test for alcohol problems. Following

Reitsma et al. (2005), we used logit-transformed values of sensitivity and specificity,

denoted by yAi and yBi, respectively, and associated standard errors sAi and sBi.

For the bivariate summary data, we first fitted the bivariate models (1) using the

restricted maximum likelihood method and found that ρ̂ = 0.854, and the hetero-

geneity measure I2 for sensitivity and specificity are respectively given by 94.8% and

98.9%, so there seems notable heterogeneity in the data. We then computed 95%

CRs of β based on NCR (2) given in Reitsma et al. (2005) and the proposed CCR.

Following Reitsma et al. (2005), the obtained two CRs of β were transformed to the

scale (logit(βA), 1− logit(βB)), where logit(βA) and 1− logit(βB) are the sensitivity

and false positive rate, respectively. The obtained two CRs are presented in Figure

3 with a plot of the observed data, summary points β̂, and the summary receiver

operating curve. The approximate CR is smaller than the proposed CR, which may

indicate that the approximation method underestimates the variability of estimating

nuisance variance parameters. In Figure 3, we also reported the confidence region
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Figure 1: The coverage probabilities of the proposed CCR and NCR based on 1000
replications under various combinations of τ2, ρ and n.
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Figure 2: The median values of h(Σ̂) in the proposed CCR based on 1000 replications
under various combinations of τ2, ρ and n. Note that h(Σ̂) = 0 means that the area
of CCR is the same as that of NCR.

based on Sugasawa and Noma (2020) using Monte Carlo simulation to compute ac-

curate p-values of likelihood ratio statistics. The two regions based on the proposed

method and Sugasawa and Noma (2020) are slightly different but both are clearly

wider than the naive confidence region. On the other hand, the computation time of

the proposed method was less than 1 second while the inference method by Sugasawa

and Noma (2020) took more than 12 hours, where the program was run on a PC with

a 3 GHz 8-Core Intel Xeon E5 8 Core Processor with approximately 16GB RAM.

4 Discussion

In this paper, we presented an improved confidence region for random effects meta-

analysis for diagnostic test accuracy without using repeated calculations such as

Monte Carlo or Bootstrap methods. The proposed confidence region has relatively

simple form and they are shown to have second order accurate coverage probability

while the standard inference methods (e.g. REML) have significant coverage errors.

In simulation studies, we demonstrated that possible under-coverage properties of

the standard methods under the small number of studies to be synthesized while the

proposed method provides reasonable coverage properties.

A possible limitation of the proposed method might be that the coverage accuracy

still depends on the number of studies. On the other hand, inference methods that

does not rely on large sample approximation have been recently proposed (e.g. Noma
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Figure 3: The approximate and corrected CRs and summary receiver operating char-
acteristics (SROC) curve.

et al., 2020; Sugasawa and Noma, 2020), which are computationally intensive, so they

would not be necessarily practical. Then, the proposed method would be regarded

as a reasonable compromise between methods with exact empirical coverage and

computational efficiency.
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This supplementary material provides the proofs and the detailed derivations of

Theorem 1, Theorem 2, equation (6). In what follows, we denote Σn = In ⊗ Σ and

write β̂(Σ) as β̃, β̂(Σ̂) as β̂, Σn(ψ) as Σn, V (Σ) as V and V (Σ̂) as V̂ , for notational

simplicity.

S1 Key lemmas

We first introduce lemmas which play important roles in the proof of Theorems 1.

The first lemma is used for deriving the conditional distribution of β̂.

Lemma S1. Under the conditions (C1)-(C3) given in the main document, β̃ is in-

dependent of Py for P = In −X(XtX)−1Xt. Also, β̂ − β̃ is a function of Py, and

independent of β̃.

Proof. Let ε̃ = y−Xβ, which is distributed as N(0,Σn+S). Since β̃−β = V Xt(Σn+

S)−1ε̃, it holds that

E[Py(β̃ − β)t]V −1 = PE[ε̃ε̃t](Σn + S)−1X = PX = 0.

Since V is a full-rank matrix, we have E[Py(β̃−β)t] = 0, that is the covariance of Py

and β̃ is 0, which implies that β̃ is independent of Py from the normality assumption.

Now, we write β̃ as β̃(Σ, y) and β̂ as β̂(Σ̂(y), y). Since β̃(Σ, y + XT ) = β̃(Σ, y) + T

and β̂(Σ̂(y +XT ), y +XT ) = β̂(Σ̂(y), y) + T from (C3), we have

β̂(Σ̂(y +XT ), y +XT )− β̃(Σ, y +XT ) = β̂(Σ̂(y), y)− β̃(Σ, y),

1



which implies that β̂ − β̃ is invariance with respect to the translation y → y + XT .

Moreover, Py is maximal invariant with respect to the translation y → y+XT since

P (y+XT ) = Py and Py1 = Py2 implies that y1 = y2+XT ′ for T ′ = (XtX)−1Xt(y1−

y2). Then, β̂ − β̃ is a function of Py from Theorem 2 in Berger (1985), p.403.

In the next lemma, we show the first order bias of the plug-in estimator V̂ is

approximately the same as the negative covariance of β̂ − β̃.

Lemma S2. Under the conditions (C1)-(C3), it holds that

E[V̂ ]− V = −E[(β̂ − β̃)(β̂ − β̃)t] +O(n−5/2).

Proof. We will show the Lemma by directly comparing both sides of the equation in

the Lemma. Noting that V = {Xt(Σn+S)X}−1 and A−1−B−1 = −A−1(A−B)B−1

for some non-singular matrices A and B, we have

V̂ − V =− V̂ Xt{(Σ̂n + S)−1 − (Σn + S)−1}XV

=V̂ Xt(Σ̂n + S)−1(Σ̂n − Σn)(Σn + S)−1XV

=V Xt(Σ̂n + S)−1(Σ̂n − Σn)(Σn + S)−1XV

+ (V̂ − V )Xt(Σ̂n + S)−1(Σ̂n − Σn)(Σn + S)−1XV

≡I1 + I2.

Since V = O(n−1) and V̂ − V = Op(n
−1/2) from the condition (C2), we have

I1 = V Xt(Σn + S)−1(Σ̂n − Σn)(Σn + S)−1XV

− V Xt(Σn + S)−1(Σ̂n − Σn)(Σn + S)−1(Σ̂n − Σn)(Σn + S)−1XV

+Op(n
−5/2),
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and

I2 =V Xt(Σn + S)−1(Σ̂n − Σn)(Σn + S)−1XVXt

× (Σn + S)−1(Σ̂n − Σn)(Σn + S)−1XV +Op(n
−5/2).

Then, for R = Xt(Σn + S)−1 we have

E[V̂ − V ]

=E[V R(Σ̂n − Σn)RtV + V R(Σ̂n − Σn)RtV R(Σ̂n − Σn)RtV

− V R(Σ̂n − Σn)(Σn + S)−1(Σ̂n − Σn)RtV ] +O(n−5/2)

=E[V R(Σ̂n − Σn)RtV R(Σ̂n − Σn)RtV

− V R(Σ̂n − Σn)(Σn + S)−1(Σ̂n − Σn)RtV ] +O(n−5/2),

(S1)

where the last equality holds since Σ̂ is a second-order unbiased estimator of Σ.

Next, we evaluate the first term of the right side of the equation in the Lemma.

We can write β̂ − β̃ as

β̂ − β̃ =(V̂ − V )Xt(Σ̂n + S)−1(y −Xβ)

+ V Xt{(Σ̂n + S)−1 − (Σn + S)−1}(y −Xβ)

=J1 + J2.

In order to approximate the covariance of β̂− β̃ up to the order O(n−5/2), we expand

J1 and J2 as

J1 =V R(Σ̂n − Σn)RtV Xt(Σn + S)−1(y −Xβ) +Op(n
−1),

J2 =− V R(Σ̂n − Σn)(Σn + S)−1(y −Xβ) +Op(n
−1).
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The straightforward calculation shows that

E[J1J
t
1] = E[V R(Σ̂n − Σn)RtV R(Σ̂n − Σn)RtV ] +O(n−5/2),

E[J2J
t
2] = E[V R(Σ̂n − Σn)(Σn + S)−1(Σ̂n − Σn)RtV ] +O(n−5/2),

E[J1J
t
2] = E[J2J

t
1] = −E[V R(Σ̂n − Σn)RtV R(Σ̂n − Σn)RtV ] +O(n−5/2),

thereby we have

−E[(β̂ − β̃)(β̂ − β̃)t]

=E[V R(Σ̂n − Σn)RtV R(Σ̂n − Σn)}RtV ]

− E[V R(Σ̂n − Σn)(Σn + S)−1(Σ̂n − ΣN )RtV ] +O(n−5/2),

which has the same expression as (S1).

S2 Proof of Theorem 1

From Lemma S1, the conditional distribution of β̂ − β given Py is N2(β̂ − β̃, V ).

Let w = V −1/2{(β̂ − β) − (β̂ − β̃)}. It is noted that V̂ − V = Op(n
−3/2). Then,

the conditional distribution of w given Py is w ∼ Nk(0, Ik), and the Mahalanobis’

distance is approximated via Taylor series expansion as

(β̂ − β)tV̂ −1(β̂ − β)

=wtV 1/2V̂ −1V 1/2w + 2(β̂ − β)tV̂ −1V 1/2w + (β̂ − β)tV −1(β̂ − β̃)

=wt
[
Ik − V −1/2(V̂ − V )V −1/2 + V −1/2(V̂ − V )V −1(V̂ − V )V −1/2

]
w

+ 2(β̂ − β̃)tV̂ −1V 1/2w + (β̂ − β̃)tV̂ −1(β̂ − β̃) +Op(n
−3/2)

=wt(Ik −G1)w + 2gt2w + g3 +Op(n
−3/2), (S2)
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where

G1 =V −1/2(V̂ − V )V −1/2 − V −1/2(V̂ − V )V −1(V̂ − V )V −1/2,

g2 =V 1/2V̂ −1(β̂ − β̃),

g3 =(β̂ − β̃)tV̂ −1(β̂ − β̃).

From (S2), the characteristic function ϕ(t) = E[exp{it(β̂ − β)tV̂ −1(β̂ − β)}] is ap-

proximated as

ϕ(t) =E exp
(
it{wt(Ik −G1)w + 2gt2w + g3}

)
+O(n−3/2)

=E
[
eitw

tw
{

1 + it{−wtG1w + 2gt2w + g3}

− t2

2
{−wtG1w + 2gt2w + g3}2

}]
+O(n−3/2)

=E
[
eitw

tw
{

1 + it{−wtG1w + 2gt2w + g3}

− t2

2
{(wtG1w)2 + 4wtg2g

t
2w − 4wtG1wg

t
2w}

}]
+O(n−3/2),

because G1 = Op(n
−1/2), g2 = Op(n

−1/2) and g3 = Op(n
−1). From the law of iterated

expectations and the conditional normality of w, the above equation reduces to

ϕ(t) =E
[
eitw

tw
{

1 + it{−wtG1w + g3}

− t2

2
{(wtG1w)2 + 4wtg2g

t
2w}

}]
+O(n−3/2).

For some deterministic matrix A and w ∼ Nk(0, Ik), it holds that

E
[
eitw

twwtAw
]

=(2π)−k/2
∫

exp
(
− (1− 2it)wtw

2

)
wtAwdw

=(1− 2it)−k/2−1tr(A),

E
[
eitw

tw(wtAw)2
]

=(2π)−k/2
∫

exp
(
− (1− 2it)wtw

2

)
(wtAw)2dw

=(1− 2it)−k/2−2(tr2(A) + 2tr(A2)).
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Using these equalities, from the law of iterated expectations, we have

ϕ(t) =(1− 2it)−k/2
[
1 + it

{
− (1− 2it)−1tr(E[G1]) + E[g3]

}
+

(it)2

2

{
(1− 2it)−2{E[tr2(G1)] + 2tr(E[G2

1])}

+ (1− 2it)−14tr(E[g2g
t
2])
}]

+O(n−3/2).

For notational simplicity, let J = E[tr2(G1)] + 2tr(E[G2
1]). Let s = (1 − 2it)−1, or

it = (s− 1)/(2s). Then, (1− 2it)k/2ϕ(t)− 1 can be written as

it
{
− (1− 2it)−1tr(E[G1]) + E[g3]

}
+

(it)2

2

{
(1− 2it)−2J + (1− 2it)−14E[gt2g2]

}
=

1

2s

{
E[gt2g2]− E[g3]

}
+
{1

2
tr(E[G1]) +

1

2
E[g3] +

J

8
− E[gt2g2]

}
+
{
− 1

2
tr(E[G1])− J

4
+

1

2
E[gt2g2]

}
s+

J

8
s2

(S3)

We shall evaluate the moments in (S3). First, G1 can be expressed as

G1 =V −1/2(V̂ − V )V −1/2 − V −1/2(V̂ − V )V −1(V̂ − V )V −1/2, (S4)

thereby it holds that

tr(E[G1]) = tr(E[K])− tr(E[K2]), (S5)

for K = V −1/2(V̂ −V )V −1/2. Noting that the first term in (S4) is Op(n
−1/2) and the

second term is O(n−1), we can expand G2
1 and tr2(G1) as

G2
1 = V −1/2(V̂ − V )V −1(V̂ − V )V −1/2 +Op(n

−3/2),

tr2(G1) = tr2(V −1/2(V̂ − V )V −1/2) +Op(n
−3/2),

which lead to E[G2
1] = E[K2] + O(n−3/2) and E[tr2(G1)] = E[tr2(K)] + O(n−3/2).

Thus,

J = E[tr2(K)] + 2tr(E[K2]) +O(n−3/2). (S6)
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It can be also observed that

gt2g2 = (β̂ − β̃)tV̂ −1V V̂ −1(β̂ − β̃) = (β̂ − β̃)tV −1(β̂ − β̃) +Op(n
−3/2),

g3 = (β̂ − β̃)tV̂ −1(β̂ − β̃) = (β̂ − β̃)tV −1(β̂ − β̃) +Op(n
−3/2).

Then, from Lemma S2 we have

E[gt2g2] = E[g3] = −tr(E[K]) +O(n−3/2). (S7)

Combining (S5), (S6) and (S7), we can see that the characteristic function of

(β̂ − β̃)tV̂ −1(β̂ − β̃) can be written as

ϕ(t) =(1− 2it)−k/2{1 +B1/8−B2/4 +B3 + (−B1/4−B3)s+ (B1/8 +B2/4)s2}

+O(n−3/2),

for B1, B2 and B3 are defined in the main document. From the fact that the char-

acteristic function of the chi-squared distribution with degrees of freedom k + 2h is

given by (1− 2it)−k/2−h = (1− 2it)−k/2sh, it follows that the asymptotic expansion

of the cumulative distribution function of (β̂ − β)tV̂ −1(β̂ − β) is

Fk(x) + (B1/8−B2/4 +B3)Fk(x)

+ (−B1/4−B3)Fk+2(x) + (B1/8 +B2/4)Fk+4(x) +O(n−3/2),

where Fk(x) is the cumulative distribution function of the chi-squared distribution

with degrees of freedom k. Note that Fk+r−2(x)−Fk+r(x) = 2fk+r(x), where fk(x) is

the density function of the chi-squared distribution with degrees of freedom k. Then,

it holds that

P ((β̂ − β)tV̂ −1(β̂ − β) ≤ x)

=Fk(x) + 2

(
B1

8
− B2

4
+B3

)
fk+2(x)−

(
B1

4
+
B2

2

)
fk+4(x) +O(n−3/2),

7



thereby, for a function h = h(Σ) with order O(n−1), we have

P{(β̂ − β)tV̂ −1(β̂ − β) ≤ x(1 + h)}

=Fk(x) + hxfk(x) +

(
B1

4
− B2

2
+ 2B3

)
fk+2(x)−

(
B1

4
+
B2

2

)
fk+4(x) +O(n−3/2),

which completes the proof.

S3 Derivation of the equation (6)

We write functions given in Section 2 as functions of Σ since the unknown parameter

is Σ in this example. For V = (
∑n

i=1D
−1
i )−1 and Di = Σ+Si, V̂ −V can be expanded

as

V̂ − V = V
{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i

}
V +Op(n

−2).

Since the first term on the right side of the above equation is of order Op(n
−3/2), we

only need to consider this term to derive the expressions given in (6).

At first, we evaluate B∗1 . It is noted that we have

V −1/2(V̂ − V )V −1/2

=
1

n

n∑
j=1

V 1/2
{ n∑
i=1

D−1
i D

1/2
j {uju

t
j − Ip}D

1/2
j D−1

i

}
V 1/2 +Op(n

−1),

where uj are independently distributed as the standard normal distribution. Then,

we have

B∗1 = E
[
tr2
{
V −1/2(V̂ − V )V −1/2

}]
=

1

n2

n∑
i=1

n∑
j=1

n∑
k=1

E
[
tr
{
V D−1

j D
1/2
i {uiu

t
i − Ip}(Σ + Si)

1/2D−1
j

}
× tr

{
V D−1

k D
1/2
i {uiu

t
i − Ip}(Σ + Si)

1/2D−1
k

}]
=

2

n2

n∑
i=1

n∑
j=1

n∑
k=1

tr
[
D

1/2
i D−1

j V D−1
j D

1/2
i D

1/2
i D−1

k V D−1
k D

1/2
i

]
. (S8)
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Next, we evaluate B∗2 . It is noted that we have

(V̂ − V )V −1(V̂ − V )V −1

=V
{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i

}
V
{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i

}
+Op(n

−3/2)

and that Σ̂− Σ can be written as

Σ̂− Σ =
1

n

n∑
i=1

{(yi − β)(yi − β)t − Σ− Si}+Op(n
−1).

Then, for ui for i = 1, . . . , n which are independently distributed as the multivariate

standard normal distribution, it holds that for `,m = 1, . . . , n,

E
[
(Σ̂− Σ)D−1

` V D−1
m (Σ̂− Σ)

]
=

1

n2

n∑
i=1

n∑
j=1

D
1/2
i E

[
(uiu

t
i − Ip)(Σ + Si)

1/2D−1
` V D−1

m D
1/2
j (uju

t
j − Ip)

]
D

1/2
j

=
1

n2

n∑
i=1

D
1/2
i E

[
(uiu

t
i − Ip)(Σ + Si)

1/2D−1
` V (Σ)D−1

m D
1/2
i (uiui − Ip)

]
D

1/2
i

=
1

n2

n∑
i=1

D
1/2
i (Li`m + tr(Li`m)Ip)D

1/2
i

for Li`m = D
1/2
i D−1

` V D−1
m D

1/2
i . Then, we have

B∗2 =E[tr({(V̂ − V )V −1}2)]

=
1

n2

n∑
i,`,m=1

tr
(
D−1
` D

1/2
i Li`mD

1/2
i D−1

m V
)

+
1

n2

n∑
i,`,m=1

tr(Li`m)tr
(
D−1
` DiD

−1
m V

)
=

1

n2

n∑
i=1

tr
{
V

n∑
j=1

(
D−1
j DiD

−1
j

)2}
+

1

n2

n∑
i,`,m=1

tr2
(
D−1
i DjD

−1
k V (Σ)

)
.

(S9)
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Finally, we evaluate B∗3 . From the equation (S1), for V = (
∑n

i=1D
−1
i )−1 we have

E[K] =E
[
V 1/2

{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i

}
V
{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i

}
V 1/2

− V 1/2
{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i (Σ̂− Σ)D−1
i

}
V 1/2

]
+O(n−3/2).

The trace of the first term in the above equation is exactly the same with B∗2 and is

given in (S9). To evaluate the second term, it is noted that

E
[ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i (Σ̂− Σ)D−1
i

]
=

1

n2

n∑
i=1

n∑
j=1

D−1
i DjD

−1
i DjD

−1
i +

1

n2

n∑
i=1

n∑
j=1

tr(D−1
i Dj)D

−1
i DjD

−1
i .

Then, the trace of the second term in the above equation is given by

−tr
(

E
[
V 1/2

{ n∑
i=1

D−1
i (Σ̂− Σ)D−1

i (Σ̂− Σ)D−1
i

}
V 1/2

])
=− 1

n2

n∑
i=1

n∑
j=1

tr
(
V D−1

i DjD
−1
i DjD

−1
i

)
− 1

n2

n∑
i=1

n∑
j=1

tr
(
D−1
i Dj

)
tr
(
V D−1

i DjD
−1
i

)
.

(S10)

Equation (S8), (S9) and (S10) lead to the expression given in (4) in the main docu-

ment.
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