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Abstract

Generalized additive models (GAMs) are a well-established statistical tool for
modeling complex nonlinear relationships between covariates and a response assumed
to have a conditional distribution in the exponential family. In this article, P-splines
and the Laplace approximation are coupled for flexible and fast approximate Bayesian
inference in GAMs. The proposed Laplace-P-spline model contributes to the devel-
opment of a new methodology to explore the posterior penalty space by considering a
deterministic grid-based strategy or a Markov chain sampler, depending on the num-
ber of smooth additive terms in the predictor. Our approach has the merit of relying
on closed form analytical expressions for the gradient and Hessian of the approximate
posterior penalty vector, which enables to construct accurate posterior pointwise and
credible set estimators for latent field variables at a relatively low computational
budget even for a large number of smooth additive components. Based upon sim-
ple Gaussian approximations of the conditional latent field posterior, the suggested
methodology enjoys excellent statistical properties. The performance of the Laplace-
P-spline model is confirmed through different simulation scenarios and the method is
illustrated on two real datasets.
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1 Introduction

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986, 1987) extend general-
ized linear models (Nelder and Wedderburn, 1972) by having nonlinear smooth functions of
quantitative covariates entering the linear predictor: they enable to relate in a flexible way
covariates to the mean of a conditional distribution in the exponential family. The mono-
graph of Hastie and Tibshirani (1990) gives a thorough introduction to additive regression
structures and largely contributed to the dissemination of this model class. The textbooks
by Ruppert et al. (2003) and Wood (2017) provide a complete and comprehensive treatment
of GAMs, emphasizing on semiparametric methods and penalized regression splines.

There exists a large variety of regression splines in the literature for modeling the
smooth terms in a GAM, for instance P-splines (Eilers and Marx, 1996), thin plate splines
(Wood, 2003), O’Sullivan penalized splines (Wand and Ormerod, 2008) or adaptive splines
(Krivobokova et al., 2008) to cite the most popular instances. This article focuses exclusively
on P-spline smoothers for two main reasons. First, the penalty matrix can be effortlessly
constructed from basic difference formulas, keeping the penalization scheme simple and the
P-spline approach numerically stable. Second, the attractiveness of P-splines lies in its
rather natural extension to a Bayesian setting (Lang and Brezger, 2004) and from the effi-
ciency of working with sparse bases and penalties for sampling-free approximate Bayesian
inference or Markov chain Monte Carlo (MCMC) methods.

As MCMC techniques can be subject to poor chain convergence and tend to carry
a heavy computational burden, Rue et al. (2009) introduced an approximate Bayesian
methodology based on Laplace approximations termed Integrated Nested Laplace Approx-
imations (INLA), a completely sampling-free framework that delivers accurate and fast
approximations of posterior marginals in structured additive regression models. More re-
cent articles on fast approximate likelihood or Bayesian-based inference include Luts et al.
(2014), Wand (2017) and Hui et al. (2019) among others. Although INLA is a well-tailored
approach for making inference in a variety of statistical models, there is room for further
computational improvements when considering the specific class of GAMs. In particular,
the use of numerical differentiation techniques in INLA to obtain finite difference approxi-
mations to the gradient and Hessian matrix of the posterior penalty vector can be replaced
by their exact analytical expressions, yielding more efficient algorithms for model fitting.
Furthermore, as the computational cost grows exponentially with the dimension of the
penalty vector, in grid-based derivation of the marginal posterior of the regression param-
eters, alternative strategies are required to explore the posterior penalty space when the
number of additive terms is large.

Taken separately, P-splines and INLA have made an impressive impact in the statisti-
cal community and initiated a flourishing literature in diversified domains (see e.g. Eilers
et al., 2015; Rue et al., 2017), yet few references attempted to unify the strength of both
approaches. In the present article, we borrow some ideas from INLA and combine them
with P-splines to design the Laplace-P-spline (LPS) methodology, a novel unified approach
for approximate Bayesian inference in generalized additive models. Our methodology is
free of the numerical differentiation scheme found in INLA, as it relies on closed analyti-
cal expressions for the gradient and Hessian required during computation. It enables not
only to fasten our code, but also offers a clear insight on the equations governing the im-
plementation of the model. Moreover, we exploit this analytical availability to develop
a novel cost-effective grid exploration algorithm to explore the posterior of the hyperpa-
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rameters corresponding, in our specific context, to the penalty parameters controlling the
smoothness of each additive term. The method accounts for possible asymmetries in the
posterior hyperparameter space by applying a moment-matching technique with reference
to the skew-normal family. Finally, in response to the “curse of dimensionality” related to
the increase in computational resources with the hyperparameter dimension, we suggest to
embed a regular MCMC algorithm to explore the hyperparameter posterior instead of the
classic grid exploration when the dimension grows above a certain threshold. The latter
idea of combining Laplace approximations with MCMC methods can be found in Yoon and
Wilson (2011) and more recently in Gómez-Rubio and Rue (2017).

The remainder of the article is outlined as follows. In Section 2 the Bayesian Laplace-
P-spline generalized additive model is formulated and the Laplace approximation to the
conditional posterior of latent field variables is derived. To efficiently explore the approx-
imate marginal posterior of the penalty parameters, we propose a strategy that alternates
between a deterministic grid and an independence Metropolis-Hastings sampler depending
on the number of smooth additive components. The chosen penalty values are then used
to approximate the marginal posterior for latent field variables along with their associated
pointwise credible intervals. A detailed simulation study is presented in Section 3 together
with comparisons against a popular benchmark method. Section 4 illustrates the Laplace-
P-spline model on two real datasets and Section 5 closes the paper with concluding remarks
and sketches future research prospects.

2 The Laplace-P-spline generalized additive model

2.1 Flexible modeling with P-splines

We consider a GAM where the response variable has a distribution belonging to the one-
parameter exponential family yi ∼ EF(γi,κ) characterized by densities of the form:

p(yi; γi,κ) = exp

(
yiγi − s(γi)

κ
+ c(yi,κ)

)
, (1)

where s(·) is a twice continuously differentiable real-valued function and c(·, ·) another
real function, κ > 0 is a known scale or dispersion parameter and γi is the natural or
canonical parameter. Using well-known properties of the score function (McCullagh and
Nelder, 1989), one can show that the mean and variance of the response are E(yi) :=
µi = s′(γi) and Var(yi) = κs′′(γi) respectively. Let D = {(yi,xi, zi)ni=1} be a sample of n
independent observations, where xi = (xi1, . . . , xiq)

T is a vector of continuous covariates
and zi = (zi1, . . . , zip)

T a vector of additional covariates (possibly categorical). The link
function g(·) relates the mean response to the additive predictor as follows:

g(µi) := %i = β0 + β1zi1 + · · ·+ βpzip + f1(xi1) + · · ·+ fq(xiq), i = 1, . . . , n. (2)

In the spirit of the P-spline approach proposed in Eilers and Marx (1996), the unknown
smooth functions fj, j = 1, . . . , q are modeled with rich cubic B-spline bases and a discrete
penalty on neighboring spline coefficients is imposed for controlling the roughness of the
fit. Mathematically:
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fj(xij) =
K∑
k=1

θjkbjk(xij), j = 1, . . . , q, (3)

where for simplicity the same number K of basis functions bjk(·) is assumed for every fj.
The vector of B-spline coefficients associated to function fj is θj = (θj1, . . . , θjK)T , while
the collection of all spline coefficients present in the model is θ = (θT1 , . . . ,θ

T
q )T and the

vector of B-spline functions at xij is written as bj(xij) = (bj1(xij), . . . , bjK(xij))
T . Model

flexibility is compensated by a roughness penalty on finite differences of the coefficients
of contiguous B-splines, θTP(λ)θ, with block diagonal matrix P(λ) expressed compactly
using a Kronecker product:

P(λ) := diag(λ1, . . . , λq)⊗ P =


λ1P 0 . . . 0

0 λ2P . . . 0
... . . .

. . . 0
0 . . . 0 λqP

 ,

where λ = (λ1, . . . , λq)
T is a vector of positive penalty parameters and P = DT

r Dr+εIK is a
penalty matrix resulting from the product of rth order difference matrices Dr of dimension
(K − r) × K to which a diagonal perturbation εIK is added (with ε = 10−6, say), so
that P is full rank. From a Bayesian perspective, Lang and Brezger (2004) suggest to
obtain the roughness penalty by imposing a multivariate Gaussian prior on the spline
amplitudes θ|λ ∼ Ndim(θ)

(
0,P−1(λ)

)
. Furthermore, a Gaussian prior is assumed on the

regression coefficients β = (β0, . . . , βp)
T , more specifically β ∼ Ndim(β)(0, V

−1
β ) with matrix

Vβ = ζIp+1 and small precision (say ζ = 10−5). The latent field of the model is written
as ξ = (βT ,θT )T and includes the regression and spline coefficients with prior distribution

ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλξ
)−1)

and precision matrix:

Qλξ := Qξ(λ) =

(
Vβ 0
0 P(λ)

)
.

Without loss of generality, the covariates zi are centered around their mean value. Let
z̄l = n−1

∑n
i=1 zil, l = 1, . . . , p and write the centered design matrix Z and B-spline matrices

Bj for j = 1, . . . , q as follows:

Z =

1 (z11 − z̄1) . . . (z1p − z̄p)
...

...
...

...
1 (zn1 − z̄1) . . . (znp − z̄p)

 , Bj =

bj1(x1j) . . . bjK(x1j)
...

...
...

bj1(xnj) . . . bjK(xnj)

 .

2.2 Identifiability and priors

To reach an identifiable model, we impose the following centering on the B-spline matrices
B̃j = Bj − (1n1

T
L/L)B̆j, j = 1, . . . , q, where 1n and 1L are column vector of ones of length

n and L respectively and B̆j is a B-spline matrix computed on a fine grid of equidistant
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values on the domain of fj. This identifiability constraint centers the additive functional
components around their average value. To ensure that all spline coefficients can be es-
timated in a unique way, we follow Wood (2017) and fix the Kth element of each spline
vector θj to zero and delete the Kth column in B̃j and difference matrix Dr. Hence B̃j has
K − 1 columns and the latent vector has dimension dim(ξ) = q × (K − 1) + p + 1. This
is to be contrasted with the model setting in INLA, where the latent field dimension grows
with sample size n.

Following Jullion and Lambert (2007), robust priors are specified on the roughness
penalty parameters with a conjugate Gamma family having a hierarchical structure λj|δj ∼
G(ν/2, (νδj)/2), j = 1, . . . , q. An uninformative distribution is imposed on the hyperparam-
eter δj ∼ G(aδ, bδ), j = 1, . . . , q with mean aδ/bδ and variance aδ/b

2
δ . The authors show that

when aδ = bδ are calibrated to a small value (say 10−4), the fitted curves are not sensitive
to the value taken by ν (here ν = 3). The penalty parameters are gathered in the vector
η = (λT , δT )T . Taking into account the identifiability constraint, the additive predictor
in (2) can be expressed compactly as % = Bξ, where B is a side by side configuration of
design matrices, B = [Z : B̃1 : · · · : B̃q] and corresponds to the full design matrix of the
model. The Bayesian model is summarized as follows:

yi|ξ ∼ EF(γi,κ), i = 1, . . . , n,

θ|λ ∼ Ndim(θ)

(
0,P−1(λ)

)
,

ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλξ
)−1)

,

λj|δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q,

δj ∼ G(aδ, bδ), j = 1, . . . , q.

2.3 Approximated conditional latent field posterior

Let us denote by `(ξ;D) = (1/κ)
∑n

i=1 (yiγi − s(γi)) + c, with c :=
∑n

i=1 c(yi,κ) (for
ease of notation) the log-likelihood function following from the set-up described at the
beginning of Section 2.1. From the standard theory of exponential families, we know that
the score vector is given by ∇ξ`(ξ;D) = BTWDg(y − µ), where W := diag(w1, . . . , wn) is

a diagonal matrix with weights on the diagonal defined as wi := (Var(yi)[g
′(µi)]

2)
−1

and
Dg = diag(g′(µ1), . . . , g

′(µn)). Moreover, the observed Fisher information matrix (equal to
the negative Hessian of the log-likelihood) is given by −∇2

ξ`(ξ;D) = BTWB. Using Bayes’
theorem, the conditional posterior of the latent field is proportional to the product of
the likelihood and prior, which can be written as p(ξ|λ,D) ∝ exp

(
`(ξ;D)− (1/2)ξTQλξ ξ

)
.

Using the Newton-Raphson algorithm, we compute the mode ξ̂λ of the conditional posterior
p(ξ|λ,D) and use Laplace’s method to approximate the latter by a normal density denoted
by p̃G(ξ|λ,D). After convergence of the iterative algorithm, we recover a Gaussian centered

around ξ̂λ = (BT W̃B + Qλξ )−1$̃ with variance-covariance matrix equal to the inverse of

the sum of the negative Hessian of the log-likelihood and the precision matrix Qλξ , i.e.

Σ̂λ = (BT W̃B+Qλξ )−1, where W̃ is the weight matrix at convergence and $̃ is the vector at

convergence that results from the sequence$(0),$(1),$(2), . . . , with$(0) := (1/κ)BT
(
y−

µ
(
ξ(0)
))

+ BTW
(
ξ(0)
)
Bξ(0) computed from an initial guess ξ(0) of the latent field vector.

The Laplace approximation p̃G(ξ|λ,D) will be used to approximate the integrand entering
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the computation of the marginal posterior for ξ:

p(ξ|D) =

∫
Rq++

p(ξ|λ,D) p(λ|D) dλ. (4)

Quadrature points to compute (4) will be obtained in the next section using an approxi-
mation of the marginal posterior p(λ|D) for the vector of penalty parameters.

2.4 Marginal posterior of the penalty parameters

An indispensable intermediate step to reach an approximated version for the marginal
posterior of the regression and spline variables ξ is to obtain the marginal posterior of the
vector λ of penalty parameters. In that endeavor, we first derive an approximation of p(η|D)
in the philosophy of Leonard (1982), Tierney and Kadane (1986) and Rue et al. (2009) and
show how δ can be integrated out, resulting in an approximation of the marginal posterior
for the roughness penalty vector λ. The gradient and Hessian of that log posterior are
analytically derived and will prove to be very useful to explore the support of the posterior
distribution of the penalty vector.

2.4.1 Approximation to the marginal posterior of the penalty parameters

The posterior of the hyperparameter vector is given by:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

∝ L(ξ;D)p(ξ|η)p(η)

p(ξ|η,D)

∝

exp (`(ξ;D)) p(ξ|λ)

(
q∏
j=1

p(λj|δj)

)(
q∏
j=1

p(δj)

)
p(ξ|λ,D)

,

where L(ξ;D) is the likelihood function. An approximation p̃(η|D) to the above marginal
posterior of η is obtained by substituting the Laplace approximation to p(ξ|λ,D) (cf.
Section 2.3) and by evaluating the resulting expression at the posterior mode ξ̂λ. Let us
express the natural parameter in the generalized additive model as γi = %i = bTi ξ, with bTi
the row vector corresponding to the ith row of matrix B. Using the previous suggestion
and noting that the determinant of the block diagonal matrix involved in the prior p(ξ|λ)

is given by |Qλξ |
1
2 ∝

∏q
j=1 λ

(K−1)/2
j , we obtain:

p̃(η|D) ∝ exp

(
1

κ

n∑
i=1

[
yib

T
i ξ̂λ − s

(
bTi ξ̂λ

)]
− 1

2
ξ̂
T

λQ
λ
ξ ξ̂λ

)

×

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj
(
bδ +

ν

2
λj

))) ( q∏
j=1

λ
( ν+K−3

2 )
j

)
× |BT W̃B +Qλξ |−

1
2 . (5)
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As Gamma priors have been chosen for the penalty parameters λj and δj, one recognizes
in (5) the conditional conjugacy for δj, as δj|λj,D ∼ G

(
ν
2

+ aδ, bδ + ν
2
λj
)
. Under these

prior specifications, the integration of (5) with respect to δ is tractable and yields the
(approximate) marginal penalty posterior:

p̃(λ|D) =

∫ +∞

0

· · ·
∫ +∞

0

p̃(η|D) dδ1 . . . dδq

∝ |BT W̃B +Qλξ |−
1
2 exp

(
1

κ

n∑
i=1

[
yib

T
i ξ̂λ − s

(
bTi ξ̂λ

)]
− 1

2
ξ̂
T

λQ
λ
ξ ξ̂λ

)

×

(
q∏
j=1

λ
( ν+K−3

2 )
j

)(
q∏
j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
. (6)

Applying a log transform on the penalty parameters vj = log(λj), j = 1, . . . , q and using
the multivariate transformation method on (6), we obtain the following expression for the
(log-) posterior of the log penalty vector:

log p̃(v|D) =̇ −1

2
log |BT W̃B +Qv

ξ |+
ν +K − 1

2

q∑
j=1

vj +
1

κ

n∑
i=1

yib
T
i ξ̂v

− 1

κ

n∑
i=1

s
(
bTi ξ̂v

)
− 1

2
ξ̂
T

vQ
v
ξ ξ̂v −

(ν
2

+ aδ

) q∑
j=1

log
(
bδ +

ν

2
exp(vj)

)
, (7)

where Qv
ξ is the symmetric block diagonal matrix:

Qv
ξ =

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(exp(v1), . . . , exp(vq))⊗ P

)

and ξ̂v :=
(
BT W̃B +Qv

ξ

)−1
$̃. The gradient ∇v log p̃(v|D) and Hessian ∇2

v log p̃(v|D) of

expression (7) can be analytically derived, see Appendix (A1) for full details. These ex-
pressions will turn to be useful to explore the marginal posterior of the penalty parameters.

2.5 Strategy to explore the posterior penalty space

An approximation to the marginal posterior of the latent variables ξ (including the regres-
sion and spline parameters in the generalized additive model) can be obtained by integrating
out the penalty parameters as in (4). Obtaining such a quadrature requires to explore the
posterior of the penalty parameters λ = exp(v).

Two strategies are suggested according to the dimension q of the penalty vector. When
q is small or moderate (say q ≤ 4), a grid strategy is proposed that is sensitive to asymme-
tries in the response surface p̃(v|D), with the skew-normal family of distributions forming
the backbone to handle asymmetry. As the computational cost of constructing a grid grows
with dimension q, we suggest an alternative strategy relying on MCMC to draw a set of
points in the domain of the posterior of the penalty parameters when q is large.
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This hybrid approach alternates between a deterministic grid and a sampling scheme, giving
to the end-user a complete and rapid tool to fit GAMs in a full Bayesian framework even
when the number of smooth functions is large. A preliminary milestone for both strategies
is to find the posterior mode v̂ of log p̃(v|D) as it represents the “center of gravity” around
which the exploration will depart. To this end, a Newton-Raphson algorithm is imple-
mented in which we take advantage of the analytical forms for the gradient and Hessian
of log p̃(v|D) to speed up the computational process. Once v̂ is obtained, we proceed with
posterior exploration.

2.5.1 Grid-strategy with skew-normal match when q is small

An elementary approach to explore p̃(v|D) could rely on a multivariate Gaussian approxima-

tion to the posterior of the log penalty parameters v, i.e. p̃G(v|D) = Ndim(v)

(
v̂,
(
−H∗

)−1)
,

where the covariance matrix is obtained from the Hessian H∗ = ∇2
v log p̃(v̂|D) evaluated at

the mode v̂. However, as already pointed in Martins et al. (2013), the presence of potential
asymmetries would not be captured by a Gaussian approximation. Instead, to efficiently
explore the posterior penalty space, a grid strategy is proposed, which implicitly takes into
account asymmetries by using skew-normal distributions to approximate the conditional
posterior of each penalty parameter through a moment-matching approach.

The skew-normal family was first introduced by Azzalini (1985), see Azzalini (2014) for
more details. In the univariate case, a random variable X has a skew-normal distribution
denoted by X ∼ SN(µ, ς2, ρ) if its probability density function at x ∈ R is:

p(x) =
2

ς
ϕ

(
x− µ
ς

)
Φ

(
ρ

(x− µ)

ς

)
, (8)

where µ ∈ R is a location parameter, ς ∈ R+ a scale parameter and ρ ∈ R a shape parameter
regulating skewness. Also, ϕ(·) and Φ(·) denote the standard Gaussian density function
and its cumulative distribution function respectively, such that setting ρ = 0 yields the
N (µ, ς2) distribution. We suggest to approximate the conditional posterior distribution
of (vj|v̂−j,D) (j = 1, ..., q) with a skew-normal distribution by matching its first three
empirical moments with the theoretical ones for the density in (8), where v̂−j denotes the
vector v̂ without the jth entry. Appendix (A2) shows the derivations to obtain µ∗, ς∗ and ρ∗

in the approximating skew-normal distribution SNj(µ
∗, ς∗2, ρ∗) through moment matching.

Once a skew-normal distribution SNj(µ
∗, ς∗2, ρ∗) has been adjusted to the conditional

p̃(vj|v̂−j,D), we construct an equidistant grid {vjm}Mm=1 of size M from the 2.5th to the
97.5th quantiles of the skew-normal fit denoted by SNj,0.025 and SNj,0.975 respectively. This
process is repeated across all dimensions j = 1, . . . , q and a Cartesian product of the
univariate grids is taken, ending up with a total of M q (multivariate) grid points. Next,
a filtering strategy is implemented to get rid of quadrature points associated to a small
posterior mass. Let us consider the normalized posterior R(v) = p̃(v|D)/p̃(v̂|D) and use
the property that −2 logR(v) is approximately distributed as a chi-square distribution with
dim(v) degrees of freedom denoted by χ2

dim(v). Then, an approximate (1−α) credible region

for v is defined by the set of values in Rdim(v) such that R(v) ≥ exp
(
−.5χ2

dim(v);1−α

)
. As

an illustration, take α = 0.05 and dim(v) = 2. If we decide to concentrate on quadrature
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points in the 95% credible region for v, then the preceding result would suggest to discard
values v in the bivariate grid for which R(v) < exp(−.5χ2

2;0.95) = .05, leaving M̃ grid points.
Figure 1 highlights the skew-normal match and the final grid in an example with q = 2
nonlinear smooth functions in the additive predictor and data generated from a Poisson
response with sample size n = 250.

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

v 1

Target

SN−match

Normal−match

Final grid

−3 −2 −1 0 1

−
1

0
1

2
3

Figure 1: Left: Skew-normal fit (dotted) and naive Gaussian match (dashed) to the condi-
tional p̃(v1|v̂2,D) (gray). The skew-normal fit is closer to the target and captures the lack
of symmetry present in the target. Right: Final grid construction to explore p̃(v|D).

2.5.2 Independence sampling when q is large

When the number of smooth functions q in the additive model is above a certain threshold
(say q > 4), the preceding computational strategy becomes too demanding as the number of
quadrature points (following from the Cartesian product of the grid points for each penalty
parameter exp(vj) (j = 1, . . . , q)) explodes. A cost-effective alternative relies on MCMC
to sample values from the posterior p̃(v|D). More thoroughly, an independence sampler
is implemented using a multivariate Student-t proposal distribution tϑ(v̂, (−H∗)−1) with
density h(v|v̂), degrees of freedom (ϑ = 3, say), a mean set at the posterior mode v̂, and
variance-covariance matrix (ϑ/(ϑ− 2))(−H∗)−1, see Section 2.5.1.

Algorithm 1 summarizes the strategy to explore p̃(v|D). When q ≤ 4, a grid is con-
structed using a Cartesian product of marginal grids delimited by quantiles of approxi-
mating skew-normal densities. Exploration in larger dimensions relies on the independence
Metropolis-Hastings sampler. This algorithm will be used in the next section to approxi-
mate the marginal posterior of the latent field.
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Algorithm 1: Exploration of p̃(v|D)

1: If q ≤ 4 do (Grid strategy, cf. Section 2.5.1)
2: for j = 1, . . . , q do
3: Compute the skew-normal match SNj(µ

∗, ς∗2, ρ∗) to p̃(vj|v̂−j,D).
4: Construct a Cartesian grid {vjm}Mm=1 from SNj,0.025 to SNj,0.975.
5: end for
6: Compute the Cartesian product of the univariate grids C = ×qj=1{vjm}Mm=1.

7: Choose α and keep the M̃ values in C such that R(v) ≥ exp
(
−.5χ2

q;1−α
)
.

8: else do (Independence sampling, cf. Section 2.5.2)
9: Choose an initial value v(0) = v̂.
10: for m = 1, . . . , M̃ do
11: Generate v(prop) ∼ h(v|v̂).

12: Compute the acceptance probability α = min

(
1,

p̃
(
v(prop)|D

)
h
(
v(m−1)|v̂

)
p̃
(
v(m−1)|D

)
h
(
v(prop)|v̂

)).

13: Draw u ∼ U(0, 1).
14: If u ≤ α, set v(m) = v(prop), else set v(m) = v(m−1).
15: end for

2.6 Posterior inference on the latent field

2.6.1 Approximate latent field posterior

Using the Laplace approximation discussed in Section 2.3, the posterior of the latent vector
ξ can be obtained as follows:

p(ξ|D) =

∫
Rq++

p(ξ|λ,D) p(λ|D) dλ

≈
∫
Rq++

p̃G(ξ|λ,D) p̃(λ|D) dλ

≈
∫
Rq
p̃G(ξ| exp(v),D) p̃(v|D) dv, (9)

where the last line follows from the change of variable in log-scale. Using Algorithm 1, we

get a set of quadrature points {v(m)}M̃m=1. Defining:

ωm =
p̃(v(m)|D)∑M̃
m=1 p̃(v

(m)|D)
, m = 1, . . . , M̃ , (10)

when q ≤ 4 and ωm = 1/M̃ otherwise, Equation (9) suggests to approximate p(ξ|D) by:

p̃(ξ|D) =
M̃∑
m=1

ωm Ndim(ξ)

(
ξ̂v(m) , Σ̂v(m)

)
, (11)

where ξ̂v(m) =
(
BT W̃B +Qv(m)

ξ

)−1
$̃ and Σ̂v(m) =

(
BT W̃B +Qv(m)

ξ

)−1
are the condi-
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tional posterior mode and variance-covariance matrix resulting from the iterative Laplace
approximations proposed in Section 2.3. Note that the computational cost of reevaluat-
ing the conditional posterior mode and variance-covariance for each penalty exp(v(m)) in

the grid can be reduced by adding an extra layer of approximation by replacing W̃ in the
Newton-Raphson procedure by its value W̃v̂ at the posterior mode. A point estimate for
the latent vector is given by the posterior mean of (11), which is a mixture of the location

components, i.e. ξ̂ =
∑M̃

m=1 ωm ξ̂v(m) .

2.6.2 Credible intervals for latent elements and additive terms

Approximate pointwise credible intervals for latent elements ξh, h = 1, . . . , dim(ξ) can be
straightforwardly obtained by starting from the finite mixture given in (11). The approx-

imate posterior for the hth latent element is p̃(ξh|D) =
∑M̃

m=1 ωm N1

(
ξ̂h,v(m) , Σ̂hh,v(m)

)
,

where ξ̂h,v(m) is the hth entry of vector ξ̂v(m) and Σ̂hh,v(m) is the hth entry on the diagonal

of matrix Σ̂v(m) . The latter expression can be used to construct a (1−α)× 100% quantile-
based credible interval for ξh. To obtain pointwise set estimates of a smooth function fj,
let {xl}Ll=1 be an equidistant (fine) grid on the domain of fj and ξθj be the subvector of

the latent field corresponding to the spline vector θj = (θj1, . . . , θjK−1)
T . Also, denote by

b̃l the vector of B-splines in the basis evaluated at xl. The function fj at point xl is thus

modeled as fj(xl|ξθj) = b̃Tl ξθj and from (11) the posterior of ξθj is approximated by the
finite mixture:

p̃(ξθj |D) =
M̃∑
m=1

ωm NK−1
(
ξ̂θj ,v(m) , Σ̂θj ,v(m)

)
, (12)

where Σ̂θj ,v(m) is a submatrix of Σ̂v(m) corresponding to the variance-covariance matrix
of ξθj . As fj(xl|ξθj) is a linear combination of the spline vector, a natural candidate to
approximate the posterior p(fj(xl|ξθj)|D) is to use a mixture of univariate normals:

p̃(fj(xl|ξθj)|D) =
M̃∑
m=1

ωm N1

(
b̃Tl ξ̂θj ,v(m) , b̃Tl Σ̂θj ,v(m)b̃l

)
.

A quantile-based credible interval for fj at point xl can easily be computed from the above
(approximate) univariate posterior.

3 Simulations

The performance of the LPS approach (with cubic B-splines and a third order penalty) is
assessed through different simulation scenarios and compared with results obtained using
the gam function from the mgcv package in R (Wood, 2017), a popular and established
toolkit for estimating GAMs. Options of the gam function are carefully chosen so that
the generated results can be meaningfully compared to these obtained using our Laplace-
P-spline approach. In particular, smooth terms are specified with the gam function using
s(x, bs=“ps”, k=K, m=c(2,3)) , where x is the vector of covariate values associated to
the estimated smooth function and ps specifies a P-spline basis. The scalar k is the basis
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dimension, the first entry in m = c(·, ·) refers to the order of the spline basis (with order 2
corresponding to cubic P-splines), while the second entry refers to the order of the difference
penalty. Another chosen option in gam is method = “REML”, requiring an estimation of
the penalty parameters λ by restricted maximum likelihood. It corresponds to an empirical
Bayes approach in the sense that a Bayesian log marginal likelihood is maximized with
respect to λ in a context where penalties come from Gaussian priors on the spline coefficients
(Marra and Wood, 2011; Wood et al., 2013). The optimization method in gam is chosen to
be optimizer=c(“outer”,“newton”) as it provides reliable and stable computations.

3.1 Estimation of the regression parameters in the linear part

The simulation setting entails S = 500 replications of a data set of size n = 300 with three
covariates in the linear part generated independently as zi1 ∼ Bern(0.5), zi2 ∼ N (0, 1) and
zi3 ∼ N (0, 1), for i = 1, . . . , n and coefficients β0 = −1.50, β1 = 0.70, β2 = −0.80, β3 =
0.40. The covariates for the smooth functions are independent draws from the Uniform
distribution on the domain [−1, 1]. The smooth additive terms coincide with the functions:

f1(x1) = −4x61 + 2x21 + cos(2πx1)− 0.1,

f2(x2) = 3x52 + 2 sin(4x2) + 1.5x22 − 0.5,

f3(x3) = sin(3πx3).

The above functions are specified as a linear combination of cubic B-splines with a third
order penalty and K = 15 B-splines in [−1, 1]. The frequentist properties of the Bayesian
estimators are measured by the bias, the empirical standard error (ESE), the root mean
square error (RMSE) and coverage probability (CP) of the 90% and 95% (pointwise) credible
intervals for the linear coefficients. Four scenarios are considered for the response variable,
namely (I) Generation from a Poisson distribution yi ∼ Poisson(µi), with µi = exp(%i) to
illustrate the case of count data, (II) Generation from a Gaussian yi ∼ N (µi, σ

2 = 0.3),
with µi = %i, (III) Generation from a Binomial yi ∼ Bin(15, pi) and (IV) Generation from
a Bernoulli yi ∼ Bern(pi) to illustrate the case of binary responses with success probability
pi = exp(%i)/(1 + exp(%i)) for the Binomial and Bernoulli cases.

Table 1 shows the simulation results and comparisons with the gam function. For all
the considered data types, the Laplace-P-spline approach exhibits nonsignificant biases
and the estimated coverage probabilities are consistent with their nominal level. Also, the
ESE and RMSE show a behavior comparable to what is observed with the gam output.
For the Bernoulli scenario, ESEs are smaller with LPS, but biases are slightly larger than
with gam. The frequentist coverage of credible intervals remain compatible whatever the
method used. A notable feature of the Laplace-P-spline methodology is that it requires
a low computational cost despite being fully Bayesian. In fact, our algorithm (underlying
a fully Bayesian approach) is purely written in R (without any parallelization) and takes
approximately 0.9 seconds per dataset in the above scenario as compared to 0.05 seconds
for the gam function (coding an empirical Bayes approach) for simulations performed on a
machine equipped with an Intel Xeon E-2186M CPU running at a clock speed of 2.90 GHz.
Considering that the gam algorithm is neither fully Bayesian nor entirely written in R (as
most of the script relies on C code which is much faster), the Laplace-P-spline toolkit can
be considered a serious competitor for approximate full Bayesian inference in GAMs when
smooth functions are modeled with P-splines.
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Data Parameters Bias CP90% CP95% ESE RMSE

β1 = 0.70 0.001 ( 0.003) 87.4 (88.2) 94.0 (94.6) 0.122 (0.122) 0.122 (0.121)
Poisson β2 = −0.80 0.006 ( 0.003) 91.0 (90.8) 95.8 (95.6) 0.061 (0.061) 0.062 (0.061)

β3 = 0.40 -0.001 ( 0.000) 90.0 (90.0) 95.8 (96.4) 0.060 (0.060) 0.060 (0.059)

β1 = 0.70 0.001 ( 0.001) 90.6 (90.0) 96.4 (96.4) 0.065 (0.065) 0.065 (0.065)
Normal β2 = −0.80 -0.001 (-0.001) 89.0 (89.4) 94.8 (95.0) 0.033 (0.033) 0.033 (0.033)

β3 = 0.40 0.000 ( 0.000) 89.6 (90.2) 94.8 (95.2) 0.034 (0.034) 0.033 (0.034)

β1 = 0.70 0.004 ( 0.006) 89.8 (90.8) 94.8 (95.0) 0.090 (0.090) 0.090 (0.091)
Binomial β2 = −0.80 0.011 ( 0.008) 88.8 (88.6) 93.6 (94.2) 0.047 (0.048) 0.049 (0.048)

β3 = 0.40 -0.003 (-0.001) 92.6 (92.6) 96.4 (96.8) 0.042 (0.042) 0.042 (0.042)

β1 = 0.70 -0.077 (-0.008) 87.4 (87.8) 93.0 (93.0) 0.320 (0.349) 0.329 (0.349)
Bernoulli β2 = −0.80 0.082 ( 0.005) 87.6 (91.8) 93.0 (96.4) 0.155 (0.175) 0.175 (0.174)

β3 = 0.40 -0.038 ( 0.003) 88.6 (89.8) 93.2 (94.0) 0.159 (0.176) 0.163 (0.176)

Table 1: Simulation results with the LPS method for S = 500 replicates of sample size
n = 300 for different types of response (Poisson, Normal, Binomial and Bernoulli). The
values in parentheses are estimation results from the gam function.

3.2 Estimation of the additive terms fj

The coverage properties of approximate 90% pointwise credible intervals for the additive
terms f1, f2 and f3 are reported in Table 2 for selected values of the covariate on [−1, 1]. An
asterisk superscript is added to the estimated coverage to indicate incompatibility with the
nominal value. Results of the gam function are labeled “MGCV”. In addition to the LPS
approach, Table 2 also highlights the coverage performance of LPSMAP, where each penalty
parameter is replaced by its posterior mode λ̂ = exp(v̂) in our Laplace-P-spline method.
For LPSMAP the uncertainty in the selection of λ is ignored (as in Wood’s approach),
such that the mixture in Equation (12) is omitted and the point estimate of the latent

vector and its associated variance-covariance matrix become ξ̂v̂ =
(
BT W̃B +Qv̂

ξ

)−1
$̃

and Σ̂v̂ =
(
BT W̃B +Qv̂

ξ

)−1
respectively. With LPSMAP, an approximate (1−α)× 100%

credible interval for function fj at point xl is computed from a frequentist perspective,

f̂j(xl)± zα/2
√

b̃Tl Σ̂θj ,v̂b̃l.

As can be seen from Table 2, the LPS and LPSMAP methods perform well in the
Poisson, Normal and Binomial scenarios as estimated frequentist coverage probabilities are
close to the nominal level at almost all selected covariate values. The gam results also show
a similar performance across all scenarios. Comparing LPS and LPSMAP, we observe that
omitting the penalty uncertainty globally translates into a slight decrease in percentage
points for the estimated coverage probability. Yet, the LPSMAP approach still exhibits
close to nominal coverage for all the functions. In terms of computational speed, the
LPSMAP approach is approximately four times faster than the LPS approach and four
times slower than gam (≈ 0.07 seconds vs 0.28 seconds).
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Data f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPS 86.0∗ 89.8 91.6 91.2 88.2 91.4 87.0 88.4 87.6
f1 LPSMAP 85.8∗ 89.2 89.6 90.8 88.2 91.4 86.0∗ 87.6 87.0
f1 MGCV 87.8 91.6 92.0 90.6 90.6 92.0 89.4 92.2 89.0

Poisson f2 LPS 93.2 82.8∗ 89.2 84.4∗ 91.2 89.2 86.2∗ 92.6 87.4
f2 LPSMAP 92.4 81.4∗ 87.4 81.4∗ 90.2 89.0 85.2∗ 92.4 86.8
f2 MGCV 92.6 87.6 90.8 89.8 92.4 91.0 89.8 92.2 89.0
f3 LPS 88.8 87.2 86.0∗ 87.6 90.2 86.0∗ 86.0∗ 89.2 90.6
f3 LPSMAP 88.8 87.2 86.2∗ 87.6 90.2 85.8∗ 86.0∗ 89.4 90.6
f3 MGCV 90.4 88.6 90.8 90.6 91.2 88.4 88.6 91.8 91.0

f1 LPS 90.2 92.8 92.0 91.0 91.6 92.4 92.4 92.6 90.2
f1 LPSMAP 90.0 92.2 91.6 91.0 91.6 92.0 91.6 92.6 89.8
f1 MGCV 90.4 92.8 91.4 91.4 91.8 91.6 92.4 92.0 90.4

Normal f2 LPS 91.6 90.4 91.2 94.8∗ 92.2 93.6∗ 91.2 90.0 89.4
f2 LPSMAP 91.2 89.4 90.0 94.6∗ 91.6 94.0∗ 90.8 90.0 89.2
f2 MGCV 92.0 90.4 90.8 94.4∗ 92.0 93.8∗ 92.0 91.2 89.6
f3 LPS 90.4 92.0 90.6 92.4 90.8 87.4 89.4 92.6 89.6
f3 LPSMAP 90.4 92.2 90.4 92.2 90.6 88.0 89.0 92.4 89.2
f3 MGCV 89.8 92.4 91.8 91.6 90.0 88.8 89.8 92.4 89.6

f1 LPS 88.4 94.0∗ 89.2 93.0 91.0 96.0∗ 91.6 90.8 88.2
f1 LPSMAP 87.6 93.0 87.6 92.8 90.6 96.0∗ 91.4 91.0 88.0
f1 MGCV 88.6 93.8∗ 89.4 93.4∗ 90.6 96.2∗ 93.2 91.4 89.0

Binomial f2 LPS 89.8 92.6 86.8 90.8 93.6∗ 92.8 86.8 92.0 84.2∗

f2 LPSMAP 89.2 91.8 85.4∗ 90.2 93.6∗ 92.2 86.8 91.0 83.8∗

f2 MGCV 90.0 94.4∗ 87.6 92.2 93.8∗ 92.4 90.4 91.6 86.8
f3 LPS 87.8 91.0 87.8 90.6 90.6 86.8 87.4 92.4 90.4
f3 LPSMAP 87.6 90.6 87.2 89.8 90.6 86.6 86.2∗ 92.2 90.0
f3 MGCV 88.6 91.0 89.4 91.8 89.8 89.4 89.4 92.6 90.6

Table 2: Effective frequentist coverages of 90% pointwise credible intervals for the functions
f1, f2, f3 at selected domain points for Poisson, Normal and Binomial data over S = 500
replications of sample size n = 300 for the Laplace-P-spline (LPS), the LPS omitting the
mixture (LPSMAP) and gam (MGCV) methods. An asterisk indicates incompatibility with
the nominal value.

In the Bernoulli setting where the information content for a given sample size is much
smaller than under the other simulation scenarios, all the considered methods exhibit effec-
tive frequentist coverages below the nominal value as illustrated in Table 3 with n = 300. It
corresponds to situations where the estimates of the additive terms provided by LPS(MAP)
or gam can be inaccurate. The pronounced undercoverage in this setting is explained by the
poor information conveyed by a binary random variable that translates into oversmoothing
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of the additive functional components as highlighted in Figure 2. However, as expected,
increasing the sample size in the Bernoulli scenario yields frequentist coverage probabilities
close to their nominal value (cf. Table 3 with n = 2000) both for the LPS(MAP) and gam

methods.
Table 4 reports the effective frequentist coverages of 90%, 95% and 99% pointwise cred-

ible intervals averaged over 200 uniformly distributed values of the covariate on [−1, 1] and
S = 500 dataset replications in the Poisson, Normal and Binomial settings. Again, the LPS
and LPSMAP methodologies display estimated coverages close to their nominal value in
all scenarios. The gam results show similar performance when coverages are averaged over
the covariate support. Note that gam and LPSMAP rely on a similar approach for selecting
the optimal posterior penalty value. Hence, the simulation results presented in this section
suggest that our penalty selection scheme is at least as efficient as what is implemented in
gam for estimating the smooth components in the additive part of the model. The simula-
tion results confirm the attractiveness of the Laplace-P-spline model for pointwise and set
estimation of the regression parameters in the linear part as well as of the smooth additive
components. To enhance the estimation accuracy of our approach in the case of extremely
discrete responses such as, for example, Bernoulli data, a possibility is to improve the ap-
proximation to the conditional posterior p̃G(ξ|λ,D) by correcting for location and skewness
as suggested in Rue et al. (2009). Beyond such extreme binary data configurations, the
simple Laplace approximation underlying LPS and LPSMAP suffices for precise inference.

Data f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPS 85.4∗ 78.0∗ 0.6∗ 35.0∗ 1.4∗ 47.0∗ 1.0∗ 84.0∗ 82.2∗

f1 LPSMAP 86.2∗ 78.2∗ 0.6∗ 25.6∗ 0.6∗ 46.0∗ 0.4∗ 84.6∗ 82.2∗

f1 MGCV 84.8∗ 77.6∗ 42.0∗ 76.4∗ 38.2∗ 77.4∗ 42.0∗ 82.2∗ 85.2∗

Bernoulli f2 LPS 86.8 82.6∗ 62.0∗ 34.4∗ 86.6 52.4∗ 58.6∗ 89.6 73.0∗

(n=300) f2 LPSMAP 83.2∗ 72.8∗ 60.6∗ 26.8∗ 84.2∗ 42.6∗ 58.0∗ 84.8∗ 66.6∗

f2 MGCV 87.8 77.0∗ 84.8∗ 66.0∗ 90.0 72.2∗ 83.8∗ 79.6∗ 83.2∗

f3 LPS 88.0 80.4∗ 2.6∗ 1.2∗ 96.0∗ 1.2∗ 2.2∗ 71.0∗ 77.8∗

f3 LPSMAP 87.6 82.0∗ 2.2∗ 1.2∗ 92.8 1.2∗ 1.8∗ 65.0∗ 62.6∗

f3 MGCV 87.4 84.2∗ 52.0∗ 51.0∗ 90.0 48.8∗ 49.0∗ 83.6∗ 86.8

f1 LPS 90.0 89.8 87.4 94.2∗ 87.4 91.8 87.6 89.8 86.6
f1 LPSMAP 89.4 90.2 87.0 94.0∗ 87.6 92.0 86.8 88.6 86.6
f1 MGCV 89.8 91.2 90.6 93.2 90.8 91.6 90.6 89.2 87.8

Bernoulli f2 LPS 88.8 90.8 87.0 89.8 93.0 90.8 86.6 91.2 86.8
(n=2000) f2 LPSMAP 87.6 90.6 86.2∗ 89.0 92.6 90.6 86.6 90.4 86.6

f2 MGCV 89.2 91.8 88.8 90.6 93.2 91.4 90.0 90.6 91.2
f3 LPS 90.2 88.2 86.0∗ 87.6 93.2 84.8∗ 84.4∗ 89.2 91.2
f3 LPSMAP 90.4 87.8 84.8∗ 87.2 93.0 83.8∗ 83.0∗ 89.2 90.6
f3 MGCV 90.8 88.6 89.6 91.4 92.2 88.6 87.0 90.2 91.2

Table 3: Effective frequentist coverages of 90% pointwise credible intervals for the functions
f1, f2, f3 at selected domain points for Bernoulli data over S = 500 replications of sample
size n = 300 and n = 2000 for the Laplace-P-spline (LPS), the LPS omitting the mixture
(LPSMAP) and gam (MGCV) methods. An asterisk indicates incompatibility with the
nominal value.
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90% 95% 99%

Data Method f1 f2 f3 f1 f2 f3 f1 f2 f3

Poisson LPS 87.6 87.0 89.1 93.0 92.6 94.4 98.0 98.1 98.9
LPSMAP 86.7 85.6 88.7 92.4 91.6 94.0 97.7 97.4 98.7
MGCV 89.8 89.6 90.3 94.4 94.4 95.1 98.8 98.7 99.1

Normal LPS 90.8 91.1 91.0 95.6 95.8 95.8 99.2 99.0 99.3
LPSMAP 90.5 90.7 90.9 95.4 95.4 95.6 99.2 99.0 99.3
MGCV 91.1 91.5 91.2 95.8 95.8 95.8 99.3 99.1 99.3

Binomial LPS 90.2 89.3 90.3 95.0 94.5 95.3 98.8 98.8 99.1
LPSMAP 89.9 88.8 90.1 94.7 94.1 95.1 98.7 98.6 99.1
MGCV 91.2 90.2 90.9 95.4 95.1 95.6 99.0 98.9 99.2

Table 4: Effective frequentist coverages of 90%, 95% and 99% pointwise credible intervals
averaged over 200 uniformly distributed values of the covariate x in [−1, 1] for Poisson,
Normal and Binomial data with S = 500 replications of sample size n = 300 for the Laplace-
P-spline (LPS), the LPS omitting the mixture (LPSMAP) and gam (MGCV) methods.
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Figure 2: Estimation of smooth additive terms (gray curves) for S = 500 dataset replications
of size n = 300 in the Bernoulli scenario with LPS. The dashed line is the pointwise median
of the gray curves and the black curves are the target functions.

3.3 Computational costs

To illustrate the computational behavior of LPS and LPSMAP against sample size for
fixed dimension q = 3, we consider an increasing sequence of sample sizes from n = 200 to
n = 3000 in steps of 200 and for each considered sample size compute the average wall clock
time (elapsed real time) in seconds with the proc.time() function in R over 10 different
samples. In Figure 3 (a) the elapsed time to estimate the GAM model with LPS and
LPSMAP is plotted against sample size to depict the involved computational resources.
Both curves show an exponential increase with sample size. LPSMAP is faster than LPS as
it does not require a grid construction to explore the support of the marginal posterior of
the penalty parameters, but rather fix them at their posterior mode. Figure 3 (b) highlights
the computational time of LPSMAP against sample size n on a log-log scale.
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Figure 3: (a) Real elapsed time in seconds as a function of sample size for LPS and LPSMAP.
(b) Computational time of LPSMAP against sample size on a log-log scale.

3.4 Simulation study with more additive terms.

A large number q of smooth functions in the additive predictor implies an increased com-
putational burden. Algorithm 1 suggests to prefer independence sampling over a grid
construction to explore the marginal posterior of the penalty parameters when q > 4, see
Section 2.5.2 for details. To illustrate how the Laplace-P-spline model performs with a
larger number of smooth functions, we simulate S = 500 datasets of size n = 300 and a
Markov chain sample of size 500 for each replicate with the following additive terms:

f1(x1) = 0.5(2x51 + 3x21 + cos(3πx1)− 1),

f2(x2) = 1.3x52 + sin(4x2) + 0.75x22 − 0.25,

f3(x3) = sin(4πx3),

f4(x4) = exp(−x34) sin(2πx24)− 0.1,

f5(x5) = 0.8x25(x
3
5 + 2 exp(−3x45 + log(2x5 + π)))− 0.65,

f6(x6) = 1.5
(
0.1 sin(2πx6) + 0.2 cos(2πx6) + 0.3 sin2(2πx6)

+0.4 cos3(2πx6) + 0.5 sin3(2πx6)
)
− 0.22.

There are three additional covariates specified as in Section 3.1 with regression coefficients
β0 = −1.20, β1 = 0.50, β2 = −0.40 and β3 = 0.70. The covariates of the smooth func-
tions are drawn independently from the Uniform distribution on the domain [−1, 1]. Each
smooth function is modeled using a linear combination of 15 cubic B-splines associated to
equidistant knots on [−1, 1] and a third order penalty to control smoothness. Two scenar-
ios are considered for the generating process of the response, namely (1) a Gaussian model
yi ∼ N (µi, σ

2 = 0.5) and (2) a Binomial model yi ∼ Bin(20, pi), with pi the success proba-
bility and a logit link function. Table 5 shows the simulation results of the Laplace-P-spline
approach combined with MCMC (cf. Section 2.5.2). The estimation results obtained with
the gam function from the mgcv package are shown in parenthesis.

Estimated biases shown in Table 5 are almost similar for the two different approaches
and nearly equal to zero in the considered data scenarios. In addition, the reported cov-
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erage probabilities are close to their corresponding nominal value and analogous results
appear for the ESE and RMSE with the LPS and mgcv algorithms. Figure 4 illustrates the
estimation results for the six additive smooth terms with the proposed Laplace-P-spline
methodology in the Binomial case.

Data Parameters Bias CP90% CP95% ESE RMSE

β1 = 0.50 0.001 ( 0.001) 87.8 (87.4) 94.0 (94.6) 0.096 (0.095) 0.096 (0.095)
Normal β2 = −0.40 0.003 ( 0.003) 86.8 (87.4) 94.8 (95.0) 0.047 (0.047) 0.047 (0.047)

β3 = 0.70 0.003 ( 0.003) 86.2 (86.8) 93.2 (92.2) 0.049 (0.049) 0.049 (0.049)

β1 = 0.50 -0.007 (-0.003) 89.6 (89.6) 93.4 (94.0) 0.078 (0.078) 0.079 (0.078)
Binomial β2 = −0.40 0.003 ( 0.000) 88.8 (89.6) 94.4 (94.4) 0.041 (0.041) 0.041 (0.041)

β3 = 0.70 -0.009 (-0.003) 87.8 (88.2) 94.2 (95.0) 0.043 (0.043) 0.044 (0.043)

Table 5: Simulation results for S = 500 replicates of sample size n = 300 for Normal and
Binomial data when independence sampling is used to draw samples from p̃(v|D). The
values in parentheses are estimation results from the gam function.

For each graph, there are S = 500 gray curves representing the estimates of the correspond-
ing unknown smooth function (black) entering the additive predictor. The dashed curve
represents the pointwise median of the 500 estimated curves. For each smooth term, the
observed estimates are close to the target, even with highly oscillating functions (e.g. f3
and f6). For function f6, small bumps arising near main curvatures can be better captured
by increasing the number of B-splines in the basis.

Figure 4: Estimation of smooth additive terms f1, . . . , f6 (gray curves) for S = 500 dataset
replications of size n = 300 in the Binomial scenario. The dashed line is the pointwise
median of the gray curves.
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With q = 6, our LPS methodology coupled with MCMC (LPS-MCMC) requires (to build
a chain of length 500) on average 4.70 seconds for a dataset of size n = 300. In Table
6, we provide computation times of the LPS-MCMC algorithm to estimate the GAM for
different dimensions q and sample sizes. As expected the computation time increases with q
and n. Figure 5 gives an overview of the average computational times required to estimate
the GAM with the LPS and LPS-MCMC algorithms for an increasing number of additive
terms. When q ≤ 4 the LPS approach is faster, but in larger dimensions the LPS-MCMC
algorithm (with an independence sample of length 500) requires less computational budget
than the grid construction in LPS.

Dimension Average computation time (in seconds)

n = 300 n = 1000 n = 3000

q = 1 1.86 2.78 7.00
q = 2 2.10 3.46 11.60
q = 3 2.51 4.66 15.09
q = 4 3.04 6.53 21.04
q = 5 3.82 8.83 27.55
q = 6 4.70 11.46 36.08

Table 6: Average computation time (in seconds) of the LPS-MCMC algorithm over S = 20
samples of size n ∈ {300, 1000, 3000} for different dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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Figure 5: Logarithm of the average computation time (in seconds) of LPS (dahsed) and
LPS-MCMC (solid) over S = 20 samples of size n = 300 and dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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4 Applications

4.1 Model for the number of doctor visits

We apply our Laplace-P-spline model in the context of a health-care study on Medicaid
eligibles. The data are from the 1986 Medicaid Consumer Survey sponsored by the Health
Care Financing Administration in the USA. This Medicaid database has first been studied
by Gurmu (1997) in the framework of a semi-parametric hurdle model and later by Sapra
(2013) as an econometric application of generalized additive models using the mgcv package
in R. Our analysis will focus on a sample of n = 485 adults who meet the requirement for
eligibility in the Aid to Families with Dependent Children (AFDC) program. The response
variable is the number of doctor visits (office/clinic and health center) over a period of 120
days. The explanatory variables included in the linear part of the GAM are Children (Total
number of children in the household), Race (0=other; 1=white) and Maritalstatus (0=other;
1=married). The variables modeled in the smooth nonlinear part are taken to be Age, the
household annual Income (in US dollars), a variable measuring the ease of Access to health
services with values in the interval (0=low access; 100=high access) and the first principal
component built from three health-status variables (functional limitations, acute conditions,
chronic conditions) denoted by PC1 with larger positive numbers meaning poorer health.
Descriptive statistics of these variables are detailed in Gurmu (1997). The GAM model
with a Poisson conditional distribution Poisson(µi) (i = 1, ..., n) for the number of doctor
visits can be written as follows:

g(µi) = β0 + β1Childreni + β2Racei + β3Maritalstatusi

+f1(Agei) + f2(Incomei) + f3(Accessi) + f4(PC1i), i = 1, . . . , n,

where g(·) is the log-link and the smooth functions fj are modeled using a linear combination
of 15 cubic B-splines penalized by a third order penalty. The B-spline bases are defined over
the domain [xj,min, xj,max], where xj,min (xj,max) is the minimum (maximum) of the covariate
values on which fj is defined. Given the moderate number of additive terms (q = 4), the
posterior penalty space is explored via the grid strategy of Section 2.5.1.
Table 7 summarizes the estimation results for the parametric linear part of the GAM. The
results highlight a negative and significant relationship between the number of children in
a household and the (mean) number of doctor visits.

Parameters Estimates CI 90% sdpost

β1 (Children) -0.179 [-0.239; -0.122] 0.036
β2 (Race) -0.127 [-0.263; 0.005] 0.081
β3 (Maritalstatus) -0.234 [-0.431; -0.043] 0.118

Table 7: Estimation results for the parametric linear part of the GAM. The second column
is the parameter estimate, the third column gives the associated 90% credible interval and
the last column is the posterior standard deviation.
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The demographic variable Race has a non-significant effect on the the mean response,
while a negative and significant relationship between Maritalstatus and the (mean) number
of doctor visits is observed. Figure 6 displays the estimated smooth functions (solid curves)
and the associated 95% approximate pointwise credible intervals (gray surfaces). As in
Gurmu (1997), we observe a concave relationship between the mean response and Age with
a peak in the average number of visits arising around Age=28. As most of the AFDC
beneficiaries are women the concave pattern of Age may be explained by pregnancy-related
visits during fertile periods and less frequent visits in later periods of life. The socio-
economic variable Income exhibits no significant effect on the mean number of doctor visits
when Income is below Income∗ =10,000 $. Hence an increase in income for poor households
with an annual income below Income∗ is (on average) not reflected by an increase in the
number of doctor visits. However, when the annual income goes above Income∗ individuals
tend to care more about their health and the (average) number of medical visits increases.
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Figure 6: Estimated smooth functions (solid curve) and 95% approximate pointwise credible
intervals (gray surface) for variables Age, Income, Access and PC1.

Furthermore for the variable Access, we observe a strong oscillation of the mean response
around a linear trend in the domain [0, 70], suggesting that for low to moderate health ser-
vice availability, the mean number of doctor visits remains stable. With regard to health-
status variables gathered in PC1 the results are as expected. Indeed, we observe a clear
upward trend, i.e. the average number of medical visits increases with poorer health con-
ditions.

4.2 Nutritional study

In a second application, we implement our methodology to analyze data from a nutritional
epidemiology study. More thoroughly, we are interested in modeling the relationship be-
tween the plasma beta-carotene level and several explanatory variables related to individual
factors and dietary characteristics. Human cells are driven by an important dynamic called

21



the oxidation process, an energy delivery mechanism that is crucial for a proper function-
ing at the cellular level. By-products of the oxidation process are molecules known as free
radicals. An imbalance between free radicals and antioxidant defenses generates oxidative
stress which in turn triggers carcinogenesis. Beta-carotene is an antioxidant acting as a free
radical scavenger and has been shown to prevent various cancer types and other diseases
(Comstock et al., 1992; Rimm et al., 1993 and Zhang et al., 1999).

The dataset provided by Stukel (2008) on plasma beta-carotene levels has n = 314 ob-
servations on 14 variables. Factors influencing beta-carotene plasma concentration levels
have been studied by Nierenberg et al. (1989), who found that beta-carotene level had a
positive relationship with dietary beta-carotene consumption and tends to be larger for
females, whereas a negative relation appeared with current smoker status. The dataset was
also analyzed by Liu et al. (2011) who develop a variable selection procedure to identify
the significant linear components in a semiparametric additive partial linear model. The
Laplace-P-spline model is implemented on the Stukel (2008) data to study the relationship
between the logarithm of beta-carotene plasma level (in ng/ml) and various explanatory
variables retained as significant by the analysis in Liu et al. (2011). The linear part of
the additive model will include the BMI or Quetelet index (weight/height2), the dietary
beta-carotene consumption (Betadiet) (in mg/day), Gender (0=Male; 1=Female), a bi-
nary indicator Smoking status (0=non smoker; 1=current smoker) and the covariates Fiber
and Fat indicating the hectograms of fiber and fat respectively consumed on a daily basis.
The nonlinear part of the model will encompass the variables Age (in years) and the log of
Cholesterol consumption (in mg/day). To summarize, the GAM model with an identity link
is given by yi = log(Betaplasmai) ∼ N (µi, s

2) where s2 = 0.559 is the empirical variance of
the response and the mean is modeled as:

µi = β0 + β1BMIi + β2Betadieti + β3Genderi + β4Smokingi + β5Fiber + β6Fat

+f1(Agei) + f2(log(Cholesteroli)), i = 1, . . . , n.

In Table 8, we report the estimation results of the linear part. All variables are significant,
except Betadiet. There is a negative association between BMI and the mean log plasma
beta-carotene level meaning that for a fixed height, individuals with lower weight tend
to have (on average) higher plasma beta-carotene concentrations. As in Nierenberg et al.
(1989), we find that females and non-smokers tend to have a significantly larger beta-
response level. A possible explanation is that smoke actually deteriorates beta-carotene
molecules through an oxidation process. Finally, fiber consumption increases the mean
plasma beta-carotene level, with the consumption of vegetables on a daily basis helping to
maintain antioxidants at a high level, while a high-fat diet tends to have a negative effect
on the mean response.

Figure 7 highlights the estimated smooth functions for Age and log Cholesterol. For
variable Age the shape of the estimated function is similar to what is observed in Liu et al.
(2011). There is a positive association with the mean response when Age is smaller than
45 years or greater than 65 years. On the other hand, the relation of the mean response to
the log-cholesterol level does not appear significant.
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Parameters Estimates CI 90% sdpost

β1 (BMI ) -0.034 [-0.046; -0.022] 0.007
β2 (Betadiet) 0.047 [-0.009; 0.101] 0.033
β3 (Gender) 0.300 [ 0.076; 0.520] 0.135
β4 (Smoking) -0.301 [-0.515; -0.093] 0.128
β5 (Fiber) 2.396 [ 0.804; 3.938] 0.956
β6 (Fat) -0.245 [-0.493; -0.003] 0.149

Table 8: Estimation results for the parametric linear part of the GAM for the nutritional
study. The second column is the parameter estimate, the third column gives the associated
90% credible interval and the last column is the posterior standard deviation.
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Figure 7: Estimated smooth functions (solid curve) and 95% approximate pointwise credi-
ble intervals (gray surface) for variables Age and log(Cholesterol) of the nutritional study
dataset.

5 Concluding remarks

In this article, we have put forward a new methodology for approximate Bayesian estimation
in Generalized additive models (GAMs) by unifiying P-splines and Laplace approximations.
The Laplace-P-spline model is endowed with closed form expressions for the gradient and
Hessian of the log posterior penalty vector. These analytical forms constitute a valuable
asset for a computationally efficient and precise exploration strategy of the posterior penalty
space that in turn leads to an accurate approximation of the joint posterior latent field
(including the regression and spline parameters in the generalized additive model) even
when the number of smooth functions is large.

Extensive simulation studies show that the algorithms underlying LPS and LPSMAP
exhibit good estimation quality with respect to the considered performance metrics, as
shown for instance by non-significant biases or frequentist coverage probability of credible
intervals appreciably close to their nominal value. Furthermore, our approximate Bayesian
approach has proved to be reliable in terms of estimation performance with respect to
smooth additive terms.
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Finally, even though the Laplace-P-spline approach works from a complete Bayesian
perspective, the computational budget required for inference is relatively low as compared
to existing methods fully relying on MCMC algorithms. A future research challenge will be
to summarize the algorithms in a software package to disseminate the LPS and LPSMAP
approaches. Moreover, it would be interesting to explore the idea to handle models for
spatial data or with additional hierarchy levels.
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6 Appendices

6.1 Appendix A1
This appendix provides in full details the analytical derivations of the gradient and Hessian
associated to the (log-) posterior of the log penalty vector:
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, (13)

where for notational convenience, we define M̃v
ξ :=

(
BT W̃B +Qv

ξ

)−1
.

Gradient associated to the penalty in a GAM

To obtain the gradient of log p̃(v|D), the partial derivatives of the latter quantity with
respect to vj, j = 1, . . . , q are required. The partial derivative of Term I in (13) can be
obtained using Jacobi’s formula:
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Hessian associated to the penalty in a GAM

Diagonal elements

First, we focus on the diagonal entries. The derivative of Term VII is:
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Partial differentiation of Term VIII yields:
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and using intermediate result (15), one obtains for Term VIII:
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ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
$̃.

For Term IX, we have:

∂

∂vj

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
∂

∂vj
Tr
(
bTi M̃v

ξ$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)

∂

∂vj
Tr
(
bTi Υ̃j

v$̃
))

.

Using (14) and intermediate result (15) we have for Term IX:

∂

∂vj

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
(
−bTi Υ̃j

v$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)bTi

(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
$̃

)

= − 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃j

v$̃
)2)

.

The partial derivative of Term X is obtained as follows:

∂

∂vj

(
$̃T Υ̃j

vQ
v
ξM̃v

ξ$̃
)

=
∂

∂vj
Tr
(
$̃T Υ̃j

vQ
v
ξM̃v

ξ$̃
)

=
∂

∂vj
Tr
(
$̃$̃

T Υ̃j
vQ

v
ξM̃v

ξ

)
= Tr

(
$̃$̃

T ∂

∂vj

(
Υ̃j

vQ
v
ξM̃v

ξ

))
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= Tr

(
$̃$̃T

(
∂Υ̃j

v

∂vj
Qv
ξM̃v

ξ + Υ̃j
v

∂Qv
ξ

∂vj
M̃v

ξ + Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vj

))

= Tr

(
$̃$̃

T

((
− 2

(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
Qv
ξM̃v

ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃j

v

))

= Tr

(
$̃

T

(
− 2

(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξ + Υ̃j
vQ

v
ξM̃v

ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃j

v

)
$̃

)
= −2$̃T

(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξ$̃ + $̃T Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v

ξ$̃

−$̃T Υ̃j
vQ

v
ξ Υ̃j

v$̃.

Partial differentiation of Term XI gives us:

∂

∂vj

(
$̃T Υ̃j

v$̃
)

=
∂

∂vj
Tr
(
$̃T Υ̃j

v$̃
)

=
∂

∂vj
Tr
(
$̃$̃T Υ̃j

v

)
= Tr

(
$̃$̃

T ∂Υ̃j
v

∂vj

)

= Tr

(
$̃$̃

T

(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

))
= Tr

(
$̃

T

(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
$̃

)
= −2$̃T

(
M̃v

ξ P̃vj

)2
M̃v

ξ$̃ + $̃T Υ̃j
v$̃.

Finally derivation of Term XII gives us:

∂

∂vj

(
ν
2

+ aδ
)(

1 + 2bδ
ν exp(vj)

) =
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .
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Using the differentiation results for Terms VII-XII, the diagonal elements of the Hessian of
log p̃(v|D) are:

∂2 log p̃(v|D)

∂v2j
=

1

2
Tr

((
M̃v

ξ P̃vj

)2
− M̃v

ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
$̃

− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
$̃ + s′′(bTi M̃v

ξ$̃)
(
bTi Υ̃j

v$̃
)2)

−2$̃T
(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξ$̃ + $̃T Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v

ξ$̃ − $̃
T Υ̃j

vQ
v
ξ Υ̃j

v$̃

+$̃T
(
M̃v

ξ P̃vj

)2
M̃v

ξ$̃ −
1

2
$̃

T Υ̃j
v$̃ −

bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , j = 1, . . . , q.

Off-diagonal elements

Note that for index s 6= j we have for Term VII:

∂

∂vs
Tr
(
M̃v

ξ P̃vj

)
= Tr

(
∂M̃v

ξ

∂vs
P̃vj

)
= −Tr

(
M̃v

ξ P̃vsM̃v
ξ P̃vj

)
.

Let us define Υ̃s
v := M̃v

ξ P̃vsM̃v
ξ and consider the following intermediate result:

∂Υ̃j
v

∂vs
=

∂

∂vs
M̃v

ξ P̃vjM̃v
ξ

=

(
∂M̃v

ξ

∂vs
P̃vjM̃v

ξ + M̃v
ξ

∂P̃vj
∂vs
M̃v

ξ + M̃v
ξ P̃vj

∂M̃v
ξ

∂vs

)
=

(
−M̃v

ξ P̃vsM̃v
ξ P̃vjM̃v

ξ − M̃v
ξ P̃vjM̃v

ξ P̃vsM̃v
ξ

)
= −

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
. (16)

Result (16) can be used to obtain the differentiation of Term VIII:

∂

∂vs

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)
=

∂

∂vs
Tr

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)

=
∂

∂vs

(
1

κ

n∑
i=1

yiTr
(
bTi Υ̃j

v$̃
))

=
1

κ

n∑
i=1

yi
∂

∂vs
Tr
(
$̃bTi Υ̃j

v

)
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=
1

κ

n∑
i=1

yiTr

(
$̃bTi

∂Υ̃j
v

∂vs

)

= − 1

κ

n∑
i=1

yiTr
(
$̃bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

))
= − 1

κ

n∑
i=1

yiTr
(
bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
$̃
)

= − 1

κ

n∑
i=1

yib
T
i

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
$̃.

To derive Term IX, we also use result (16):

∂

∂vs

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
∂

∂vs
Tr
(
bTi M̃v

ξ$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)

∂

∂vs
Tr
(
bTi Υ̃j

v$̃
))

=
1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
(
−bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)

(
−bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
$̃
)

=− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))

.

Partial differentiation of Term X goes as follows:

∂

∂vs

(
$̃

T Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vs
Tr
(
$̃

T Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vs
Tr
(
$̃$̃

T Υ̃j
vQ

v
ξM̃v

ξ

)
= Tr

(
$̃$̃

T ∂

∂vs

(
Υ̃j

vQ
v
ξM̃v

ξ

))
= Tr

(
$̃$̃

T

(
∂Υ̃j

v

∂vs
Qv
ξM̃v

ξ + Υ̃j
v

∂Qv
ξ

∂vs
M̃v

ξ + Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vs
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= Tr

(
$̃$̃T

(
−
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vjΥ̃

s
v

)
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ξ
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v
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ξ
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(
$̃

T

(
−
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vjΥ̃

s
v

)
Qv
ξM̃v

ξ

+Υ̃j
vP̃vsM̃v

ξ − Υ̃j
vQ

v
ξM̃v

ξ P̃vsM̃v
ξ

)
$̃

)
= −$̃T Υ̃s

vP̃vjM̃v
ξQ

v
ξM̃v

ξ$̃ − $̃
TM̃v

ξ P̃vjΥ̃
s
vQ

v
ξM̃v

ξ$̃

+$̃T Υ̃j
vP̃vsM̃v

ξ$̃ − $̃
T Υ̃j

vQ
v
ξ Υ̃s
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Partial differentiation of Term XI gives us:

∂

∂vs

(
$̃T Υ̃j

v$̃
)

=
∂

∂vs
Tr
(
$̃T Υ̃j
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)
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(
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v

)
= Tr
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v

∂vs
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= −Tr

(
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(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vjΥ̃

s
v

))
= −Tr

(
$̃T

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
$̃
)

= −$̃T Υ̃s
vP̃vjM̃v

ξ$̃ −
(
$̃TM̃v

ξ P̃vjΥ̃
s
v$̃
)T

= −$̃T Υ̃s
vP̃vjM̃v

ξ$̃ − $̃
T Υ̃s

vP̃vjM̃v
ξ$̃

= −2$̃T Υ̃s
vP̃vjM̃v

ξ$̃.

Finally, using the above results, the off-diagonal elements s = 1, . . . , q; j = 1, . . . , q and
s 6= j of the Hessian of log p̃(v|D) are:

∂2 log p̃(v|D)

∂vs ∂vj
=

1

2
Tr
(
M̃v

ξ P̃vsM̃v
ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
s
v

)
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− 1

κ
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i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vjΥ̃
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v
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+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))

−$̃T Υ̃s
vP̃vjM̃v

ξQ
v
ξM̃v

ξ$̃ − $̃
TM̃v

ξ P̃vjΥ̃
s
vQ

v
ξM̃v

ξ$̃

+$̃T Υ̃j
vP̃vsM̃v

ξ$̃ − $̃
T Υ̃j

vQ
v
ξ Υ̃s

v$̃ + $̃T Υ̃s
vP̃vjM̃v

ξ$̃.

To summarize, the gradient and Hessian entries of log p̃(v|D) are:

Gradient ∇v log p̃(v|D) entries for j = 1, . . . , q:

∂ log p̃(v|D)

∂vj
= −1

2
Tr
(
M̃v

ξ P̃vj

)
+

(
ν +K − 1

2

)
− 1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

+
1

κ

n∑
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s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃ + $̃T Υ̃j

vQ
v
ξM̃v

ξ$̃

−1

2
$̃T Υ̃j

v$̃ −
(
ν
2

+ aδ
)

1 + 2bδ
ν exp(vj)

.

Hessian ∇2
v log p̃(v|D), diagonal elements j = 1, . . . , q:

∂2 log p̃(v|D)

∂v2j
=
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M̃v

ξ P̃vj

)2
− M̃v

ξ P̃vj

)
+

1

κ

n∑
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T
i

(
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M̃v

ξ − Υ̃j
v
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− 1

κ
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(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
$̃ + s′′(bTi M̃v

ξ$̃)
(
bTi Υ̃j

v$̃
)2)

−2$̃T
(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξ$̃ + $̃T Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v

ξ$̃ − $̃
T Υ̃j

vQ
v
ξ Υ̃j

v$̃

+$̃T
(
M̃v

ξ P̃vj

)2
M̃v

ξ$̃ −
1

2
$̃T Υ̃j

v$̃ −
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .

Hessian ∇2
v log p̃(v|D), off-diagonal elements s = 1, . . . , q; j = 1, . . . , q, j 6= s:

∂2 log p̃(v|D)

∂vs ∂vj
=
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2
Tr
(
M̃v

ξ P̃vsM̃v
ξ P̃vj

)
+

1

κ

n∑
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yib
T
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Υ̃s
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ξ P̃vjΥ̃
s
v

)
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− 1

κ
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(
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+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))

−$̃T Υ̃s
vP̃vjM̃v

ξQ
v
ξM̃v

ξ$̃ − $̃
TM̃v

ξ P̃vjΥ̃
s
vQ

v
ξM̃v

ξ$̃

+$̃T Υ̃j
vP̃vsM̃v

ξ$̃ − $̃
T Υ̃j

vQ
v
ξ Υ̃s

v$̃ + $̃T Υ̃s
vP̃vjM̃v

ξ$̃.

To assess the accuracy of the above gradient and Hessian equations associated to log p̃(v|D),
we have implemented a procedure in R that compares the analytical results with the nu-
merical derivatives of log p̃(v|D) obtained with the grad() and hessian() functions of the
numDeriv package at 50 randomly selected points v ∈ R3 with vj ∼ U(−4, 8), j = 1, 2, 3 and
the response generated from a Poisson distribution. Numerical and analytical derivative
results turn out to be very similar, a clear indication that the derived analytical results are
accurate.

6.2 Appendix A2

In this appendix, we show the derivations related to the skew-normal fit to the conditional
p̃(vj|v̂−j,D). The skew-normal distribution denoted by X ∼ SN(µ, ς2, ρ) has probability
density function:

p(x) =
2

ς
ϕ

(
x− µ
ς

)
Φ

(
ρ

(x− µ)

ς

)
. (17)

The first moment and the second and third central moments of X are given by:

E(X) = µ+ ς

√
2

π
ψ,

E
(
(X − E(X))2

)
= ς2

(
1− 2

π
ψ2

)
,

E
(
(X − E(X))3

)
=

1

2
(4− π) ς3

(
2

π

) 3
2

ψ3,

where ψ = ρ/
√

1 + ρ2 ∈ (−1, 1). These theoretical moments will be matched with the
empirical moments of the the conditional distributions p̃(vj|v̂−j,D), where v̂−j is the vector
v̂ without the jth entry. The empirical moments of the conditionals are computed on an
equidistant grid {vjl}Ll=1 with interval length ∆l and correspond to:

Mj1 =
L∑
l=1

vjl p̃(vjl|v̂−j,D) ∆l,

Mj2 =
L∑
l=1

(vjl −Mj1)
2 p̃(vjl|v̂−j,D) ∆l,

Mj3 =
L∑
l=1

(vjl −Mj1)
3 p̃(vjl|v̂−j,D) ∆l.
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The skew-normal fit to p̃(vj|v̂−j,D) is found by matching the empirical and theoretical
moments, i.e. the following system needs to be solved:

Mj1 = µ+ ς

√
2

π
ψ (18)

Mj2 = ς2
(

1− 2

π
ψ2

)
(19)

Mj3 =
1

2
(4− π) ς3

( 2

π

) 3
2
ψ3. (20)

From (19), we isolate ς:

ς =

√
Mj2(

1− 2
π
ψ2
) > 0. (21)

Plugging (21) in (20) yields:

Mj3 =
1

2
(4− π)

M
3
2
j2(

1− 2
π
ψ2
) 3

2

( 2

π

) 3
2
ψ3

⇔ ψ3(
1− 2

π
ψ2
) 3

2

=
2Mj3π

3
2

(4− π)M
3
2
j22

3
2

⇔ ψ3(
1− 2

π
ψ2
) 3

2

=
Mj3π

3
2

(4− π)
√

2 M
3
2
j2

⇔ ψ(
1− 2

π
ψ2
) 1

2

=
M

1
3
j3π

1
2

(4− π)
1
3 2

1
6 M

1
2
j2

.

Let κ :=M
1
3
j3π

1
2/(4− π)

1
3 2

1
6 M

1
2
j2, so that the above equation becomes:

ψ = κ

(
1− 2

π
ψ2

) 1
2

⇔ ψ2 +
2κ2

π
ψ2 − κ2 = 0

⇔ ψ2

(
1 +

2κ2

π

)
− κ2 = 0.

The discriminant of the above quadratic equation is ∆ = 4
(

1 + 2κ2

π

)
κ2 > 0. Even though

there are two solutions, the only solution retained is the one whose sign is the same as the
sign of the third empirical central moment. Indeed, ifMj3 is negative/positive, ψ∗ (and by
extension ρ∗) should also be negative/positive to capture the negatively/positively skewed
pattern of p̃(vj|v̂−j,D). Hence using the sign(·) function:
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ψ∗ = sign(Mj3)

√
4
(
κ2 + 2κ4

π

)
2 + 4κ2

π

. (22)

So, we have ρ∗ = ψ∗/
√

1− (ψ∗)2 and plugging (22) in (21), we recover:

ς∗ =

√
Mj2(

1− 2
π

(ψ∗)2
) . (23)

Finally, the location parameter is given by:

µ∗ =Mj1 − ς∗
√

2

π
ψ∗. (24)

The skew-normal fit to the conditional p̃(vj|v̂−j,D) is denoted by SNj(µ
∗, ς∗2, ρ∗) and can

be used for the grid construction strategy.
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