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Abstract

Recently, it has been shown that approximations to marginal pos-
terior distributions obtained using a low discrepancy sequence (LDS)
can outperform standard grid-based methods with respect to both ac-
curacy and computational efficiency. This recent method, which we
will refer to as LDS–StM, can also produce good approximations to
multimodal posteriors. However, implementation of LDS–StM into
integrated nested Laplace approximations (INLA), a methodology in
which grid-based methods are used, is challenging. Motivated by this
problem, we propose modifications to LDS–StM that improves the ap-
proximations and make it compatible with INLA, without sacrificing
computational speed. We also present two examples to demonstrate
that LDS–StM with modifications can outperform INLA’s own grid ap-
proximation with respect to speed and accuracy. We also demonstrate
the flexibility of the new approach for the approximation of multimodal
marginals.

1 Introduction

Integrated nested Laplace approximations (INLA) [28], is a methodology de-
veloped specifically for fast approximate Bayesian inference of latent Gaus-
sian models (LGM) [8], a large class of hierarchical Bayesian models. INLA
was developed as a more computationally efficient alternative to more widely
used Markov chain Monte Carlo (MCMC) methods. Initially, INLA used
grid-based methods of marginalisation to compute marginal hyperparame-
ter posterior distributions [22, 28]. Generally, a set of points is laid out in a
grid structure over a relevant integration region. Along with numerical inte-
gration techniques and an interpolant, posterior marginals are constructed.
Grid-based methods have been used in different applications, with several
variants used, see [9, 11, 26, 33]. Grids are known to be computationally
efficient only in very low dimensions, since the number of points increases
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exponentially with dimension.

Computational advancements within INLA have given rise to new algo-
rithms that improve computational efficiency. A set of central composite
design (CCD) points [3] is laid out over the hyperparameter space, and
marginals are computed using an asymmetric Gaussian interpolant. The
CCD strategy requires far less points than grid-based strategies (see [30]
for details of how to compute these points). The numerical integration-free
method (NIFA) [23], a method bypassing numerical integration altogether,
has achieved further computational gains. However, the CCD and NIFA
strategies do have the drawback of only allowing for unimodal approxima-
tions. For details on both of these strategies, see [23]. Recently, a new
method called Bayesian inference using sparse grid quadrature evaluation
(BISQuE) [9] uses sparse grids (see [25]) to explore the hyperparameter
space and estimate marginal posteriors. BISQuE is similar to INLA as a
Bayesian inference framework for hierarchical models, though not necessar-
ily just for latent Gaussian models.

An alternative strategy for hyperparameter exploration and estimation,
developed by the authors of [12], show that a very general grid-based method
can be improved upon by using a low discrepancy sequence (LDS) in the
place of a grid. Using a least squares polynomial as an interpolant, [12]
proved that this LDS-based method of marginalisation (hereafter, referred
to as the standard LDS method, or LDS–StM) improved the computational
efficiency by reducing the number of points needed, whilst also showing con-
vergence to the true marginal. LDS–StM also allowed for the approximation
of multimodal posterior densities.

Although LDS–StM performed better than grid-based methods in a gen-
eral setting, the method itself was not easy to implement within INLA.
Issues arose when choosing the degree of the polynomial. If a higher de-
gree was needed (such as with the approximation of skewed, or multimodal
distributions), the resulting matrices were sometimes ill-conditioned, and
therefore some computation was inaccurate. They also encountered issues
with Runge’s phenomenon [7], where oscillations would form in the tails of
the approximations. This paper seeks to expand on the development of the
LDS–StM method by applying important modifications to the algorithm to
make it more useful in a practical setting. The goal is to fully incorpo-
rate a modified LDS-based method into INLA, specifically, for the accurate
and efficient estimation of hyperparameter posterior marginal distributions
of an LGM. We present the modifications, and two challenging examples
of estimating hyperparameter posterior marginals to demonstrate how this
modified method works, and how it performs relative to INLA’s current
methods (INLA’s grid and NIFA). The methods presented may also be used
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in BISQuE as well, though this will require further investigation.

This paper is organised as follows. First, we give some necessary back-
ground on QMC integration, INLA, and grid-based methods in Section 2.
Section 3 gives an overview of the LDS–StM algorithm, and the modifica-
tions for implementation in INLA. We provide two examples of the perfor-
mance of the new method in Section 4, before giving our concluding remarks
in Section 5.

2 Background

2.1 QMC Integration Rules

In many instances, we wish to compute an integral

If =

∫
D
f(x)dx, (2.1)

where x = (x1, . . . , xs) is s-dimensional, and D is the region of integration,
assumed to be the unit hypercube [0, 1)s. A typical approximation to If in
(2.1) is given by

If ≈
1

N
×

N∑
i=1

f(x(i)). (2.2)

where the points x(i), i = 1, . . . , N are sampled in the region of integration.
One can use a Monte Carlo rule, where the points x(i), i = 1, . . . , N are
sampled randomly, or a QMC rule, where the points are generated deter-
ministically. LDS are a large class of sequences that are generally used in
(2.2) when using a QMC rule. LDS are sequences that hold the property
that, for specific values of N , its finite subsequence x1, . . . , xN has low dis-
crepancy with respect to the Lebesgue measure on the unit hypercube. See
[5, 16, 24] for different examples of low discrepancy sequences and definitions
of discrepancy. It can be shown via discrepancy theory and the Koksma-
Hlawka inequality [18] that for functions with bounded variation (in the
sense of Hardy and Krause), the estimator in (2.2) converges to the true
value faster if the points are generated using an LDS, rather than randomly
sampled. This result also extends to low discrepancy point sets [19], such
as the Korobov lattice which we will introduce shortly. For the purposes of
this paper, we use the term LDS to refer to both low discrepancy sequences,
and low discrepancy point sets.

We define here the two deterministic point sets that we use (see Figure
1). First, we define an s-dimensional n-point grid by

Gn,s =
{(g1

n
, · · · , gs

n

)
, gj = 0, . . . , n− 1, j = 1, . . . , s

}
, (2.3)
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where n is the number of unique abscissa points in each dimension, s is the
dimension of the point set and N = ns is the total number of points. These
point sets are deterministic but do not have low discrepancy. As such, the
convergence rate is slow as the number of points increase exponentially as
dimension increases [24].

The next deterministic point set we define is the Korobov lattice which,
unlike the grid, is an LDS. The s-dimensional Korobov lattice [31] with N
points is given by

KN,s,α =

{
i− 1

N
(1, α, α2, . . . , αs−1) mod 1, i = 1, . . . , N

}
, (2.4)

where α is called the generating constant, and is typically chosen to be an
integer between 1 and N − 1, and relatively prime with N . We use the soft-
ware LatticeBuilder [17], to find “good” generating constants with respect to
a discrepancy measure, for fixed s, N , and constant weights. LatticeBuilder
also finds generating constants for extensible Korobov lattices. Extensible
lattices have the property that the number of points N can increase whilst
retaining existing points and maintaining low discrepancy (see [10] for de-
tails). We denote an extensible Korobov lattice with number of points N ,
dimension s, and generating constant α, by K∗N,s,α.

Figure 1: Point sets: An 8-point grid G8,2 (top left), a Korobov lattice K64,2,37 (top
right), an extensible Korobov lattice K∗32,2,19 (bottom left), and an extensible Korobov
lattice K∗64,2,19 (bottom right) based off the previous lattice. The extra 32 points are
shown as hollow circles.

High dimensional integrals arise naturally in the field of Bayesian in-
ference, where marginal posterior distributions are computed from a joint
posterior distribution. These integrals are also used in other statistical ap-
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plications such as the computation of marginal likelihoods. In general, we
wish to estimate the following integral

fk(uk) =

∫
χ
f(u)du−k, k = 1, . . . , s,

where fk(uk) is the kth marginal function of the variable uk, and u−k is the
variable u excluding the kth component. Taking χ to be some rectangular
region [a, b) where a = (a1, . . . , as) and b = (b1, . . . , bs), we generate a point
set x(i), i = 1, . . . , N in [0, 1)s and use a linear transformation,

u = a+ (b− a)x, (2.5)

so that u(i), i = 1, . . . , N are scaled to the region [a, b). The marginal
function fk(uk) can be approximated by

fk(uk) ≈
∏s
j=1(bj − aj)
bk − ak

× 1

N

N∑
i=1

f(u1,(i), . . . , uk, . . . , us,(i)), (2.6)

where f(u1,(i), . . . , uk, . . . , us,(i)) are the function evaluations keeping the
variable uk fixed. In the context of Bayesian inference, MCMC algorithms
are used to approximate marginal posteriors. However, for some types of
hierarchical models such as LGMs, these sampling methods may not neces-
sarily be computationally efficient [28].

2.2 INLA

INLA is a computational Bayesian inference framework that was proposed
as a computationally efficient alternative to MCMC methods [28]. It is par-
ticularly designed for LGMs, a widely used class of Bayesian hierarchical
model, encompassing basic regression and time series models to complex
spatio-temporal point process models and many others (see [29] for a com-
prehensive list of applications).

Given a data set with nd observations, y = (y1, . . . , ynd), assume that
the response variable yi follows a distribution from the exponential family,
with its conditional mean µi associated with ηi through a link function `,
such that ηi = `(µi). The LGM has the following additive structure

ηi = β0 +

nβ∑
j=1

βjuij +

nf∑
k=1

gk(vik),

where β0 is the intercept, βj are the fixed effects for covariates u, and gk
are the model components, associated with the covariates v. These models
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can be expressed in a generic three-stage hierarchical formulation. For the
first stage, we assume the data y are independent of each other, given η and
hyperparameters θ1, so

y|η,θ1 ∼
nd∏
i=1

π(yi|ηi,θ1).

The second stage specifies η to be a latent Gaussian field with the density
function

η|θ2 ∼ N (0,Q−1(θ2)),

where N is a multivariate Gaussian distribution. In many applications, the
latent Gaussian field has conditional independence properties, translating
to a multivariate Gaussian distribution with sparse precision matrix Q(θ2),
otherwise known as a Gaussian Markov random field (GMRF) [27]. The
final stage is the hyper-prior stage

θ = (θ1,θ2) ∼ π(θ),

where θ has s components.

INLA works by approximating the posterior density of hyperparame-
ters θ|y using a Laplace approximation [32]. A Gaussian approximation
π̃G(η|θ,y) for the posterior for the latent parameters is made, and evalu-
ated at the posterior mode η∗(θ) = argmax

η
π(η|θ,y). Let π̃(θ|y) be the

approximation to the joint hyperparameter density. Then the Laplace ap-
proximation is given by

π̃(θ|y) ∝ π(θ,η|y)

π̃G(η|θ,y)

∣∣∣∣
η=η∗(θ)

. (2.7)

The marginals of the hyperparameters θk, k = 1, . . . , s, are found by explor-
ing and then taking specific points in the hyperparameter space, either in
a grid structure or otherwise, and using numerical integration and an inter-
polant [23, 28]. Those points are reused in the approximation of the latent
parameter marginals πj(ηj |y), j = 1, . . . , nd via the following equation

πj(ηj |y) ≈
N∑
i=1

π̃(ηj |θ(i),y)π̃(θ(i)|y)∆i, (2.8)

where ∆i are the integration weights, π̃ is a Laplace approximation of π,
and θ(i), i = 1, . . . , N are the points generated by the integration rule.

The number of latent parameters INLA can handle is very large, in the
order of 105 [29]. However, to ensure INLA’s computational efficiency, it
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requires that the number of hyperparameters must be small, since those
points are re-used to approximate each latent marginal [23, 28]. INLA loses
much of its speed using a grid strategy for models with five or more hyper-
parameters, as the number of points increases exponentially with s.

During the exploration of the hyperparameter space, an optimisation
algorithm is used to approximate the mode and Hessian. One way to ap-
proximate marginals would be to fit a multivariate Gaussian by matching the
mode and curvature at the mode via the Hessian. However, the marginals
are often skewed so this approximation is often not accurate. Instead a
transformation of the hyperparameter space is performed, which is orthog-
onal and standardised (see [28] for details). Let θ̂ denote the transformed
space. In θ̂, define

π̃(θ̂|y) ∝
s∏

k=1

π̃k(θ̂k|y),

where π̃k(θ̂k|y) is tangent to the marginal π̃k(θk|y). To capture the asym-
metry of π̃(θ̂k|y), INLA assumes the following structure

π̃k(θ̂k|y) ∝


exp

(
− 1

2σ2k+
(θ̂2k − µk)

)
, θ̂k > 0

exp

(
− 1

2σ2k−
(θ̂2k − µk)

)
, θ̂k ≤ 0,

(2.9)

where the variances σ2k+ and σ2k− are approximated assuming each marginal
is “half-Gaussian”, with a different variance either side of the mode. The
NIFA method assumes the structure in (2.9) and then computes σk+, σk−, k =
1, . . . , s without numerical integration (see [23] for details). Whilst these
methods greatly reduce the number of points, the grid is more accurate
overall, since the approximations from the grid do not assume any kind of
unimodal structure.

2.3 Grid-Based Marginalisation Methods

Grid-based methods are relatively simple in concept and straightforward to
implement. A set of grid points is placed in an appropriate integration re-
gion. After evaluating the function at those points, we average out over rows
and columns and fit an interpolant between the function evaluation means.

Let π(θ) be any s-dimensional density that we wish to marginalise. We
drop the dependence on y for notational convenience. Also, let Gn,s =
{g(1), . . . , g(N)} be an equally spaced, s-dimensional n-point grid, as de-
scribed in (2.3). Note that the grid is generally constructed over the unit
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hypercube, so a scaling transformation, given by

T (g) = a+ (b− a)g, (2.10)

where g is a grid point, a and b are the lower and upper vertices of the
integration region, must be performed on the grid points. We denote this
transformed point set by {θ(1), . . . ,θ(N)}. We present a general method for
grid-based marginalisation in Algorithm 1.

Algorithm 1 General grid-based method

1) Optimise π(θ) for mode π∗ and Hessian Hπ

2) Construct an appropriate integration region [a, b)
3) Generate grid points GN,s and transform points to {θ(j)}Nj=1 over [a, b)

and evaluate π(θ(j)) for all j = 1, . . . , N
for k = 1, . . . , s do

4) Orthogonally project points (θ(j), π(θ(j))) for j = 1, . . . , N onto
[ak, bk)

5) For l = 1, . . . , n, where n is the number of abscissa points, compute
pointwise means

π̂(θk,l) =
1

ns−1

n∑
i1=1

· · ·
n∑

is−1=1

π(θ1,(i1), . . . , θk,l, . . . , θs,(is−1)) (2.11)

6) Fit interpolant through pointwise means and normalise for π̃k(θk)

Step 1 can be achieved through any quasi-Newton algorithm, and this is
used to construct an integration region [a, b). Grid points are generated in
the unit hypercube, and transformed to lie within [a, b), and function evalu-
ations are computed. For each coordinate, an orthogonal projection is made
onto each marginal axis [ak, bk) for k = 1, . . . , s. Details of the orthogonal
projection used in Step 4 are provided in the Appendix. At each abscissa
point, the pointwise mean (2.11) is calculated from the ns−1 function eval-
uations that correspond to the abscissa point (Step 5). An interpolant can
then be fitted (such as a cubic spline) and normalised for the grid approxi-
mation to the kth marginal.

Grid-based methods are flexible in the implementation process. Changes
can be made to the general method which can result in similar approxima-
tions with less computational effort. For instance, INLA chooses points by
only generating important points based off some user-defined criteria which
defines the denseness of the grid [28]. Thus it can save on points which im-
proves computational efficiency. The BISQuE [9] method use sparse grids for
approximation to marginal densities, reducing the number of points needed
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for approximation. Methods described in [4] generate grid-like structures,
such as maximal-rank lattice point sets [6], which can better capture the
behaviour of the function, improving both accuracy and computational ef-
ficiency. However, the number of points still increases exponentially with
the dimension, and thus a new approach is required to reduce the number
of points further. We believe that the use of an LDS instead of a grid is one
such approach, since the number of LDS points do not increase exponentially
with dimension.

3 LDS–StM Method and Modifications

First, we give a brief overview of the LDS–StM method before presenting
the modifications. There are two sets of modifications, both of which have
corresponding algorithms, the LDS–QA (LDS with quadratic approxima-
tion), and the LDS–CX (LDS with correction polynomial of degree X). We
present the algorithms and details later this section.

3.1 Standard LDS method (LDS–StM)

The LDS–StM was developed in [12] as a faster alternative to grid-based
methods. In the place of a grid, we instead generate an LDS. Many LDS
sequences would do, but we use a Korobov Lattice as described in (2.4) and
use LatticeBuilder to find appropriate generating constants. Let KN,s,α be
a Korobov lattice with N points in s dimensions, and generating constant
α. Again, we scale the Korobov lattice points generated from the unit hy-
percube to the integration region [a, b) using the scaling transformation in
(2.10). We present LDS–StM in Algorithm 2.

Algorithm 2 LDS–StM Algorithm

1) Optimise π(θ) for mode π∗ and Hessian Hπ

2) Construct an appropriate integration region [a, b)
3) Generate a set of LDS points and transform to {θ(j)}Nj=1 over [a, b)

and evaluate π(θ(j)) for j = 1, . . . , N
for k = 1, . . . , s do

4) Orthogonally project points (θ(j), π(θ(j))) for j = 1, . . . , N onto
[ak, bk)

5) Fit least squares polynomial through the orthogonally projected
points (θk,(j), π(θ(j)))

6) Normalise for π̃k(θk)

Note that in the LDS–StM algorithm, after orthogonal projections of the
points onto the marginal axis in Step 4, we see a scatter of ordinates. These
ordinates correspond to N equally spaced and unique abscissa points along
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the θk-axis, which is a result of a property of LDS known as fully projection
regular (see [18] for more details). Figure 2 shows the orthogonal projections
of the function evaluations onto a single dimension. An interpolant such as
a cubic spline that could be used in the general grid method would not be
appropriate here, as the resulting approximation would be a spline fitted
through each point. Instead, a least squares polynomial is used in Step 5 to
approximate the shape of the marginal, and normalisation of the polynomial
gives the approximation of the marginal π̃k(θk).

The LDS–StM was shown to be more computationally efficient compared
with grid-based methods [12]. Most importantly, convergence theorems were
proved to show that the approximations converged to the true marginal dis-
tribution as the number of points and polynomial degree increased. How-
ever, there were some shortcomings with respect to practical implementa-
tion. There was no reasonable way to choose the degree of the polynomial.
For a regular unimodal, symmetric (or close to) marginal density, numer-
ical experiments indicated that a polynomial of degree eight was found to
be generally sufficient. However, a higher degree polynomial, such as one
required for a skewed or multimodal density, would often encounter Runge
Phenomenon, where oscillations would form in the tails of the polynomial
approximation. Inverted Gramian matrices also tended to be ill-conditioned
after computation. In higher dimensions, LDS–StM saved many function
evaluation points. However, the number of function evaluations were still
too high to be of use for a method such as INLA.

In order to improve INLA using LDS, the LDS–StM method needed to
be modified such that:

1. The degree of the polynomial is not problem dependent.

2. The method will work well on any posterior without customisation.

3. It remains a computationally efficient method after modifications to
achieve 1 and 2.

We now propose two modifications to the LDS–StM method in order to
develop a practical method that can be used in INLA, that satisfies the
three criteria above.

3.2 Initial Modifications - Quadratic Approximation

Partitioning was used in [12] to prove convergence theorems, but not in the
LDS–StM algorithm. We decide to include partitioning to aid in the choice
of polynomial degree, and it also is useful for the next set of modifications
outlined later. For each marginal axis, we construct n partitions. We com-
pute the pointwise mean of each partition (similar to (2.11), but calculated
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Figure 2: Left: Generating a Korobov point set around a joint posterior. Right: Or-
thogonally projected points in one dimension.

at partition intervals rather than unique abscissa points), and fit a polyno-
mial degree of n− 1 through the pointwise means.

The Laplace approximation in (2.7) assumes π(θ|y) is almost Gaussian.
To aid this assumption, INLA uses variance-stabilising transformations to
make each hyperparameter more symmetric [29]. For instance, instead of
approximating precisions, INLA approximates log precisions. Let θk denote
a hyperparameter, and let h be the function corresponding to the reparam-
eterisation, then

h(θk) = θz,k,

where θz,k denotes the reparameterised hyperparameter. Since these trans-
formations make the hyperparameter close to a Gaussian, this implies we
can approximate the marginal using a quadratic polynomial in the log-scale.
This also suggests that we should make a minimum of three partitions along
the parameter axes.

In Algorithm 3, we modify Step 4 in the LDS–StM algorithm to include
partitioning and transformations. We also modify part of Step 5 for changes
to the quadratic polynomial fit. Since we begin with a reparameterisation
of the hyperparameters, Steps 1, 2, and 3 are all performed for the purposes
of approximating the marginals π(θz,k). Approximating π(θk) requires an
inverse transformation from θz,k to θk.

We now discuss the LDS–QA algorithm in more detail. After projection
of the function evaluation coordinates, we partition the kth marginal axis
with n partitions with equal interval lengths. We do not assume that each
partition will have the same number of points (for example, having N = 2x

points and n = 3 partitions will never yield the same number of points in
each partition). However, a Korobov lattice with good generating constant
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Algorithm 3 Quadratic Approximation - LDS–QA

4a) Orthogonally project points (θz,(j), π(θz,(j)) for j = 1, . . . , N onto
[ak, bk)

4b) Create n equally spaced partitions of [ak, bk) (the θz,k axis). The
interval [θz,k,u, θz,k,u+1) for u = 1 . . . , n is the uth partition, denoted
as θz,k,u′ with u′ = 1, . . . , n

4c) Calculate pointwise means for each partition, where the pointwise
mean of the uth partition is given by π̂(θz,k,u′)

5a) Transform pointwise means to log(θz)-scale, and fit a least squares
quadratic polynomial through log(π̂(θz,k,u)), u = 1, . . . , n

5b) Transform polynomial to θz-scale and normalise marginal π̃k(θz,k),
then transform to θ-scale for π̃k(θk)

produces N equally-spaced points when projected onto any marginal axis,
due to the fully projection regular property. Thus, equally spaced partitions
will have a very similar number of points. Let νu denote the number of
points in the uth partition. Obtaining the pointwise means is very similar to
the grid, though the function evaluations do not project onto a single point,
but project onto an interval. The natural abscissa point to take would be to
take the midpoint of the interval which is the one we use in practice. Thus,
the uth abscissa point would be 0.5× (θz,k,u+1 +θz,k,u). The ordinate for the
uth pointwise mean is given by

π̂(θz,k,u′) =
1

νu

νu∑
j=1

π(θz,u′,(j)),

where θz,u′,(j) are the generated points that lie in the uth partition after be-
ing orthogonally projected. Doing this for all u = 1, . . . , n partitions gives
us n pointwise means.

We transform the n pointwise means to the log(θz)-scale, and fit the
quadratic polynomial via least squares. The quadratic polynomial is given
by

π̃k,log(θz,k) = β̃k,0 + β̃k,1θz,k + β̃k,2θ
2
z,k, (3.1)

where π̃k,log(θz,k) is the unnormalised log-approximation to the marginal
posterior πk(θz,k), in which the coefficients β̃ are found through a least
squares approximation, and θz,k ∈ [ak, bk]. The quadratic is then trans-
formed back to the θz-scale and normalised, which gives the approximation
to the reparameterised hyperparameter,

π̃k(θz,k) =
exp(β̃k,0 + β̃k,1θz,k + β̃k,2θ

2
z,k)∫

[ak,bk]
exp(β̃k,0 + β̃k,1θz,k + β̃k,2θ

2
z,k)dθz,k

, (3.2)
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where π̃k(θz,k) is the approximation of the marginal posterior for θz,k. For
the approximation of the actual hyperparameter, an inverse transformation
from θz to θ is required.

3.3 Second Modification - Polynomial Correction

From a practical standpoint, the approximation given in (3.2) is far more
stable than fitting a polynomial of high degree as performed in the LDS–
StM algorithm. However, it is not guaranteed that θz’s are exactly Gaussian.
Thus, the strategy of fitting a quadratic very much constricts us to a Gaus-
sian estimate after transformation. To account for potential discrepancies in
the approximation, we propose another iteration of the algorithm that fits
a polynomial with a correction term that can account for skew and multiple
modes. This can be done with little extra computational effort.

We propose a correction to the quadratic/Gaussian approximation in
(3.1) by analysing residuals, given by the difference between the polynomial
fit and the pointwise means. We name this method the LDS–CX method,
where X describes the degree of the correction polynomial. In practice, we
typically fit a cubic correction polynomial (LDS–C3) to the quadratic in
(3.1), which corrects it for location, scale, and skewness. The process for
the LDS–CX algorithm is decribed in Algorithm 4.

Algorithm 4 LDS-CX Algorithm

5a) Transform pointwise means to log(θz)-scale, and fit a least squares
quadratic polynomial through log(π̂(θz,k,u)), u = 1, . . . , n

5a) (i) Obtain residuals found by the difference between π̃log(θz,k)
evaluated at the uth abscissa point, and its corresponding pointwise
mean

5a) (ii) Fit a least squares polynomial (of degree X) through residuals
5a) (iii) Correct initial quadratic approximation with the polynomial

coefficients

The process changes the LDS–QA algorithm slightly, by adding the poly-
nomial correction process during Step 5a. The correction is summarised in
Algorithm 4. After fitting the quadratic polynomial, instead of using this
to calculate the posterior marginal, we instead calculate the residuals of the
fitted quadratic (the difference between each pointwise mean and the fitted
quadratic). After calculating these, we fit a polynomial through these resid-
uals, and use it to update the quadratic. In practice, we generally fit a least
squares cubic polynomial, given by

PR(θz,k) = β′k,0 + β′k,1θz,k + β′k,2θ
2
z,k + β′k,3θ

3
z,k,
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where θz,k ∈ [ak, bk]. Then, the cubic correction update for the unnormalised
log-approximation to the marginal posterior π(θz,k) is

π̃log,P (θz,k) = (β̃k,0−β′k,0)+(β̃k,1−β′k,1)θz,k+(β̃k,2−β′k,2)θ2z,k+β′k,3θ
3
z,k. (3.3)

From here, Step 5b in Algorithm 3 can be performed to find the final ap-
proximations by using the expression in (3.3), substituting into (3.2), and
performing an inverse transformation.

As stated previously, we use cubic corrections, mainly to account for any
skewness. These approximations almost always outperformed the quadratic
approximations, and were much more stable than using the LDS–StM method.
In practice, we never used polynomial corrections that were of higher degree
than the cubic, with the lone exception being to approximate multimodal
densities. We discuss this further in the next section.

4 Applications and Results

We have proposed modifications to the LDS–StM method, first by fitting a
quadratic as our approximation to the transformed hyperparameters, then
by updating the approximation via analysing residuals and correcting the
quadratic approximation with a higher degree polynomial (typically a cubic)
term. We apply the LDS–QA and LDS–CX method to two examples. The
first example is a case study of a spatial analysis of childhood undernutrition
in Zambia. The second is a spatio-temporal study of low birth weights in
Georgia. Information, details and data for the Zambia example can be found
on the R-INLA website (http://www.r-inla.org) and [22]. Details and links
to the data and materials for the Georgia example can be found in [2].

4.1 Child Undernutririon in Zambia

The Zambia dataset was first introduced by [13]. There, the authors used
spatial factors to analyse undernutrition among children in the 57 districts
(dist) that comprise Zambia. Child undernutrition is measured by the height
of a child relative to their age. A Z-score is used to determine the stunting
of a child, which is defined by

Zi =
AIi −MAI

σ
, i = 1 . . . , 57

where AIi is the ith child’s anthropometric indicator (height relative to age),
MAI and σ are the median and standard deviation of the referenced popula-
tion. We assume the scores are conditionally independent Gaussian random
variables with unknown mean ηi and unknown precision τ1.

14

http://www.r-inla.org


Several factors are considered such as age (age), body mass index (bmi)
of the child’s mother, and several categorical variables including gender, edu-
cation, mothers employment status and locality. This dataset has been used
in [14] as an introduction to BayesX for the analysis of Bayesian semipara-
metric regression using MCMC techniques. It was also used to introduce the
same idea using INLA. In both studies, they considered the model presented
by [13]

η = µ+ zTi γ + bmii × g2(disti) + g3(agei) + g4(disti) + g5(disti). (4.1)

Here, µ is the overall mean, zTi γ represent the several categorical covari-
ates z as having a linear effect. Also, g5(disti) is the spatially unstructured
component that is i.i.d Gaussian distributed with mean 0 and unknown pre-
cision τ5, and g4(disti) is the spatially structured component which varies
smoothly from district to district. This is modelled as an intrinsic Gauss
Markov random field (IGMRF) – a conditional autoregressive (CAR) prior
[1] – with unknown precision τ4. Previous studies believed that age covariate
has a non-linear effect, and that the bmi covariate can be used as a weight
for the IGMRF g2(·). Both of these components have unknown precision τ2
for bmi and τ3 for age.

We will denote the hyperparameters in (4.1) as τ = {τ1, τ2, τ3, τ4, τ5}.
We assign vague Gamma priors for each element in τ . We are interested in
estimating the posterior marginal for each hyperparameter. We will first use
the grid strategy in INLA before using the methods proposed in Algorithm
3 and Algorithm 4. The reparameterisation INLA uses for the precision
hyperparameters (as described in Section 3.2) is a log transformation. Let
θ = {log(τ1), log(τ2), log(τ3), log(τ4), log(τ5)}. To simplify the notation, we
will refer to the components of θ as θk for k = 1, . . . , 5.

For the following results, to get a very precise approximation of the true
posterior marginals, we compute the hyperparameters using a customised
dense grid in INLA, with a total of around 60000 points. This gives a very
good approximation to the true posterior, and we will consider these ap-
proximations as the true marginals for the purposes of comparison.

4.1.1 Initial Results

We apply the steps in the LDS–CX algorithm by updating the quadratic ap-
proximation with the coefficients found by fitting a cubic through the residu-
als. Prior to this, we generate an embedded Korobov Lattice K∗512,5,19. Note
that 512 points is less than 116 times the number of points used by INLA’s
dense grid. For the purposes of this exercise, we use the approximations of
the mode and Hessian found by INLA to generate the integration region (±3
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Figure 3: Process of fitting polynomials for the approximations of hyperparameters of
the Zambia model. Top row: Fitting a quadratic polynomial (dashed line) and cubic
correction (dashed-dotted line) through the pointwise means. Middle row: Approxima-
tion of θ by transforming the polynomials out of the log-scale. The INLA dense grid
approximation (bold line) is compared with the initial approximation (dashed line) and
the cubic correction (dashed-dotted line). Bottom row: Marginal posterior approxima-
tions of τ , showing the cubic correction (dashed-dotted line) providing a more accurate
approximation than the initial quadratic approximation (dashed line).

standard deviations from the mode on each θ-axis). We also use INLA to
manually compute the function evaluations for each point in K∗512,5,19. After
projecting function evaluations onto each axis, we make 15 equally spaced
partitions and find the pointwise means. The log pointwise means and the
initial quadratic polynomial fit through those points are shown in Figure 3
(top row) with the points and bold line respectively.

A cubic polynomial is fitted to the residuals of the initial fit and the
coefficients are used to update the initial fit. The updated fit is shown in
Figure 3 as the dashed-dotted line. The initial fit for θ1 and θ4 are very
good, and as such the cubic correction does not update them. There is a
slight skew to θ2 and θ3 which cannot be captured by the initial fit. How-
ever, the cubic correction captures this skew well. The cubic correction also
updates θ5 slightly, with a small shift in location and skew. The transforma-
tions from the approximations in the log(θ)-scale to θ scale shows how the
initial approximation has shifted towards INLA’s dense grid approximation
in Figure 3 (middle row). It especially highlights how the cubic correction
has approximated the two more heavily skewed posterior marginals θ2 and
θ3. For completeness, we give the results of the inverse transformation from
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θ to τ in Figure 3 (bottom row)).

Figure 4: Results of INLA’s low density grid. Top row: The grid structures in the
dimensions θ1 and θ2 for INLA’s low density grid and INLA’s high density grid. Bottom
row: Comparisons with INLA’s low density grid and the cubic correction. The grid
approximation (dotted line) is poor, despite having roughly five time as many points as
the cubic correction (dashed-dotted line).

4.1.2 Comparisons with INLA Low Density Grid

We give comparisons of the cubic correction with a grid that is less dense
than that given earlier in this section, and has a more comparative number
of points to our Korobov Lattice. We used INLA to generate a grid that has
2655 points, around five times more than that of our Korobov lattice, and
far less dense than that of our earlier grid. Figure 4 (top row) shows both
the low density grid, and high density grid in two dimensions (θ1 and θ2).
Whilst this might not look like much difference, the number of points in-
creases exponentially with dimension. The resulting approximations shown
in Figure 4 (bottom row) show that the less dense grid failed to give ap-
propriate approximations for all posterior marginals and is outperformed by
the cubic correction.

4.1.3 Comparisons with NIFA

NIFA is the current default setting in INLA for the estimation of hyper-
parameters. Though very fast, there is some room for improvement with
respect to accuracy due to the assumed Gaussian structure described in
(2.9). We compare the cubic correction with NIFA in Figure 5, and give
Kullback-Leibler divergence [15] and Hellinger distance [20] results in Table
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1.

Figure 5: Zambia: Comparisons between INLA’s NIFA (dotted line) and the cubic
correction (dashed-dotted line). They are both accurate, though the cubic correction
approximates slightly better for all marginals.

The results in Figure 5 show that there is very little difference between
the NIFA and the cubic correction. However, the Kullback-Leibler diver-
gence and Hellinger distances in Table 1 shows that for all marginals, the
cubic correction did approximate better than NIFA. However, in terms of
computational efficiency (points used), NIFA bypasses the need for points
altogether, thus approximates much faster than the cubic correction. In our
second example, we present why the assumed structure of the NIFA esti-
mate could be a problem, and how a polynomial correction can overcome
this problem which can lead to more accurate approximations.

Table 1: Zambia: Distance measures comparing INLA’s dense grid with both the
NIFA and cubic correction methods. The cubic correction gave the more accurate
approximations for each hyperparameter marginal according to both the Kullback-Leibler
divergence and Hellinger distances, though the differences are very small.

ZAMBIA K-L.Div H.Dist

Parameter NIFA LDS–C3 NIFA LDS–C3

θ1 0.00501 0.00329 0.03961 0.03233
θ2 0.01194 0.00495 0.05664 0.04088
θ3 0.00329 0.00290 0.03058 0.02964
θ4 0.01199 0.00248 0.05797 0.02655
θ5 0.00787 0.00533 0.04953 0.03967
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4.2 Low Birth Weight Counts in Georgia

This example considers the count of new-borns with very low birth weight
(less than 2500gm) in the counties of Georgia, USA. The data was collected
over ten years from 2000-2010, and used to perform spatio-temporal dis-
ease mapping. This particular example has been used by [2] to illustrate
a spatio-temporal Poisson nonparametric approach. This includes interac-
tions between different spatial and temporal components.

Figure 6: INLA’s approximation to the marginal posteriors for each hyperparameter
in the Georgia model. With a very dense grid, the second posterior is shown to be
multimodal.

Our model is a space-time interaction model, which has the form

ηi,t = µ+g1(countyi)+g2(countyi)+g3(yeart)+g4(yeart)+g5(areai×yeart),

where i = 1, . . . , 159 and t = 1, . . . , 11. We have µ as the overall mean,
g1(countyi) as the spatially structured component, modelled as a condi-
tional autoregressive prior with unknown precision τ1, and g2(countyi) as
the spatially unstructured component modelled as i.i.d Gaussian with mean
0 and unknown precision τ2. Our time components are g3(yeart), which
is modelled as a random walk of order two [21] with unknown precision τ3,
and g4(yeart) is the unstructured time effect modelled as i.i.d Gaussian with
mean 0 and precision τ4. We also have an interaction term g5(areai×yeart).
We choose an interaction between the unstructured space and unstructured
time variables, thus placing no spatial or temporal structure on the inter-
action, and so modelling this as i.i.d Gaussian with mean 0, and unknown
precision τ5. Thus we have five hyperparameters τ = {τ1, τ2, τ3, τ4, τ5}.
Similar to the previous example, we estimate the log of the precisions, and
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denote them θk for k = 1, . . . , 5.

Again, we use a customised, dense grid in INLA (over 100000 points)
to compute approximate posteriors that are very accurate. For the purpose
of comparison, we will consider these approximations from the dense grid
as the true marginals. Figure 6 shows the approximations, and captures a
multimodal posterior for τ2. We present the cubic correction first, before
looking at how we can use higher degree polynomials to approximate mul-
timodal posteriors.

Figure 7: Georgia: Initial Approximation (dashed line) and cubic corrections (dashed-
dotted line) for θ, and comparisons with INLA’s dense grid (bold line). The cubic correc-
tion was needed as the initial fits were not very good. However, we cannot approximate
θ2 well, due to the multimodal nature of the hyperparameter.

4.2.1 Initial Results

We take the same approach as we did in the Zambia example by generating
an embedded Korobov Lattice K∗512,5,19, computing the function evaluations
and partitioning making 15 equally spaced partitions for each axis. We fol-
low the processes outlined in the LDS–QA and LDS–C3, by fitting an initial
quadratic polynomial through the pointwise means, finding the residuals,
fitting a cubic polynomial and updating the initial approximation. We dis-
play the approximations for the components of θ in Figure 7. The initial
approximations were not good as some of the components of θ were quite
skewed. However, we see that the cubic correction was able to improve the
approximations. The approximation of θ2 was not accurate due to it being
multimodal in shape.
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4.2.2 Multimodal Hyperparameters - Polynomial Correction

Up until now we have chosen fit a cubic polynomial to the residuals to correct
our initial quadratic approximation for skewness. If a density is unimodal,
this is all that is necessary. However, for special cases such as multimodal
densities, we can fit a higher degree polynomial correction. Since we fit each
hyperparameter independently of the other, this is easily done. We focus
solely on the marginal θ2 and fit both a quartic and quintic correction.

Figure 8: Georgia: The process of approximating τ2 by fitting a cubic correction (top
row), a quartic correction (middle row) and quintic correction (bottom row). Note that the
first column is fitting the initial quadratic approximation (dashed line), and the polynomial
update (dashed-dotted line), whilst the second and third columns are approximating the
θ2 and τ2 respectively. Going to a higher degree polynomial worked well for approximating
the multimodal density.

Figure 8 shows the process of fitting the marginal τ2 using three different
corrections. As shown here and in the initial results, the cubic correction
was unable to capture the multimodal shape. The quartic polynomial has
up to three turning points, so can detect up to two modes. It did not quite
capture both modes. However it was a much better approximation than
the cubic. Finally the quintic correction detected both modes and gave an
accurate approximation.
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Figure 9: Georgia: Comparisons between NIFA (dotted line) and polynomial correction
(dashed-dotted line). Cubic corrections were used for all hyperparameters, except for θ2
which has a quintic correction).

4.2.3 Comparisons with NIFA

We end this section by giving some comparisons with INLA’s NIFA method.
As discussed previously, the speed and accuracy of NIFA is very good. How-
ever, NIFA does assume the marginal is a Gaussian with different standard
deviations on each side, hence only being able to give unimodal approx-
imations. We give visual comparisons in Figure 9, and Kullback-Leibler
divergence and Hellinger distances between INLA’s dense grid (regarded as
the true density) and the approximations in Table 2.

The polynomial correction we use is cubic for all marginals, except for θ2,
for which we use a quintic correction. As expected, for θ2, the NIFA approx-
imated this with a unimodal density. The approximation for θ1 was slightly
off for the NIFA too, with the Kullback-Leibler and Hellinger distance be-
ing much higher than the cubic correction. The other posterior marginals
were well approximated by both methods, and NIFA outperformed the cubic
correction for the marginal θ4.

5 Discussion and Further Work

Because of its fully projection regular property, the number of LDS points
needed to integrate does not increase rapidly with the number of dimensions.
This makes LDS a promising alternative to grid point sets for marginalisa-
tion. The LDS–StM method was presented in [12] to perform marginalisa-
tion of joint densities using LDS point sets. Approximations based on the
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Table 2: Georgia: Distance measures comparing INLA’s dense grid with both the NIFA
and polynomial correction methods. Cubic polynomials were used for all but the second
marginal, which used a quintic. The corrections gave the more accurate approximations
for each hyperparameter except θ4 according to both the Kullback-Leibler divergence and
Hellinger distances.

GEORGIA K-L.Div H.Dist

Parameter NIFA LDS–
CX

NIFA LDS–
CX

θ1 0.30047 0.00923 0.17790 0.04445
θ2 0.25381 0.00601 0.22173 0.04080
θ3 0.01446 0.00250 0.05836 0.02597
θ4 0.00459 0.00671 0.03598 0.04059
θ5 0.02541 0.01550 0.06262 0.05712

LDS–StM method converge to the true marginal, and were shown to be more
computationally efficient than existing grid–based methods of marginalisa-
tion. The motivation for this work was to build upon the LDS–StM method
so it can be implemented within INLA to estimate model hyperparameters.
To do this, we focussed on improving the interpolation process and simpli-
fying the polynomials used. An initial quadratic/Gaussian approximation
is fit to the pointwise means of orthogonally projected function evaluations
(LDS–QA method), and another polynomial is used to correct the initial
approximation (LDS–CX method). In practice, we typically use a cubic cor-
rection polynomial (LDS–C3), but for more complicated marginal shapes, a
higher degree polynomial can be used.

The results for the LDS–CX method are very promising. First, the ap-
proximations are far more stable than LDS–StM methods, since we do not
need to use high degree polynomials in the interpolation process, thus elim-
inating ill-conditioned matrices and Runge’s phenomenon. This makes the
method far more practical than LDS–StM, and useable within INLA. Sec-
ond, the results in Section 4 show that the approximations using LDS–CX
outperform INLA’s grid by several orders of magnitude, with respect to
computational efficiency. In higher dimension, we can obtain as accurate
approximations than INLA’s grids with far less points. Also, for any given
number of points, we can obtain better approximations by using LDS and
our algorithms within INLA, than using INLA’s grid. Lastly, the LDS–CX
method has the potential for estimating multimodal marginals by increasing
the degree of the correction polynomial. This is not possible with INLA’s
NIFA approximation as it assumes the marginal posterior has a unimodal,
“half” Gaussian shape, with different standard deviations either side of the
mode (as shown in Equation (2.9)). Further investigation is needed to de-
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velop a diagnostic which allows the user to detect multimodal marginal
hyperparameters, and determines which correction polynomial to use.

This paper was motivated by the efficient approximation of hyperparam-
eters using LDS. However, there is also the potential for computing efficient
approximations for the latent parameters too. To estimate latent parame-
ters of an LGM, INLA re-uses the points generated via grid (or otherwise) in
the numerical integration process. Given that the dimension of latent fields
are typically large, this will require a lot of computing power if we require
many points to estimate the hyperparameters. Recall from Section 2.1, that
an extensible lattice can be generated to give the user the ability to add
more points without discarding all the old points. We can also take points
away in a similar way without affecting the low discrepancy structure of the
point set (see Figure 1). For example, let K∗2x,s,α be an extensible Korobov
lattice with 2x points in s dimensions. Expressing the pointset as a ma-
trix form, keeping the first row and taking out every second row after will
give K∗2x−1,s,α, and keeping the first row and keeping every fourth row will
give K∗2x−2,s,α, and so on. This subset of points can be used to approximate

latent posterior marginals, as described in (2.8). Recent developments by
the INLA team allow any user-defined pointset for the estimation of latent
parameters. Further work is needed here to test the accuracy and compu-
tational efficiency of latent parameter estimates using LDS and extensible
Korobov lattices.
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Appendix - Orthogonal Projections

Let f(x) be an s dimensional function that is evaluated at N unique points
xN = x(1), . . . ,x(N), where each x(i) ∈ [a, b), i = 1, . . . , N, is an s − tuple
x(i) = (x1,i, . . . , xs,i). These points along with the function evaluations, that
is (x(i), f(x(i))) are (s+ 1)− tuples that can be expressed in matrix form as

Ψ =


x1,1 . . . xs,1 f(x(1))

x1,2 . . . xs,2 f(x(2))
...

. . .
...

...
x1,N . . . xs,N f(x(N))


To estimate the kth marginal fk(xk), we orthogonally project (x(i), f(x(i)))

for i = 1, . . . , N on the kth marginal axis to obtain ψk = PkΨ,

ψk =


xk,1 f(x(1))

xk,2 f(x(2))
...

...
xk,N f(x(N))

 ,
where Pk = Ak(A

>
k Ak)

−1A>k is a projection matrix and Ak has size (s+1)×2,
and is a unit basis vector for R2 with the kth entry in the first column and
the (s + 1)th entry in the second column as one, all the remaining entries
are zeros.

For example, if s = 3 and k = 2 then,

Ψ =


x1,1 x2,1 x3,1 f(x(1))

x2,1 x2,2 x3,2 f(x(2))
...

. . .
...

...
x1,N x2,N x3,N f(x(N))

 , A2 =


0 0
1 0
0 0
0 1

 , P2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


and

P2Ψ =


0 x2,1 0 f(x(1))

0 x2,2 0 f(x(2))
...

...
...

...
0 x2,N 0 f(x(N))

 , ignoring rows with zeros


x2,1 f(x(1))

x2,2 f(x(2))
...

...
x2,N f(x(N))

 = ψ2.
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