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Abstract

Spatial count data models are used to explain and predict the frequency of phenomena such as traffic

accidents in geographically distinct entities such as census tracts or road segments. These models are

typically estimated using Bayesian Markov chain Monte Carlo (MCMC) simulation methods, which,

however, are computationally expensive and do not scale well to large datasets. Variational Bayes

(VB), a method from machine learning, addresses the shortcomings of MCMC by casting Bayesian

estimation as an optimisation problem instead of a simulation problem. Considering all these ad-

vantages of VB, a VB method is derived for posterior inference in negative binomial models with

unobserved parameter heterogeneity and spatial dependence. Pólya-Gamma augmentation is used to

deal with the non-conjugacy of the negative binomial likelihood and an integrated non-factorised

specification of the variational distribution is adopted to capture posterior dependencies. The benefits

of the proposed approach are demonstrated in a Monte Carlo study and an empirical application

on estimating youth pedestrian injury counts in census tracts of New York City. The VB approach

is around 45 to 50 times faster than MCMC on a regular eight-core processor in a simulation and

an empirical study, while offering similar estimation and predictive accuracy. Conditional on the

availability of computational resources, the embarrassingly parallel architecture of the proposed VB

method can be exploited to further accelerate its estimation by up to 20 times.

Keywords: Variational Bayes; spatial count data; negative binomial regression; Pólya-Gamma data

augmentation; accident analysis.



1. Introduction

Spatial count data models are widely used in disciplines such as ecology, epidemiology, geography,

regional science as well as transportation planning and engineering to explain and predict non-negative

integer-valued outcome variables such as species and disease counts, patenting and innovation

activities as well as crime and accident rates in geographically distinct entities such as local government

areas, census tracts or traffic analysis zones (e.g. Acs et al., 2002; Dormann et al., 2007; Glaser, 2017;

Marshall, 1991; Ver Hoef et al., 2018; Wakefield, 2007).

Models of spatial count data typically pivot on Poisson lognormal and negative binomial regressions,

in which the spatial arrangement of the investigated units is explicitly specified. These models generally

consider two types of spatial effects, namely spatial heterogeneity and spatial dependence (Simões and

Natário, 2016). While spatial heterogeneity accounts for the spatially-varying effect of covariates on the

dependent variable, spatial dependence captures the systematic correlation across neighbouring spatial

units. In spatial count data models, unobserved spatial heterogeneity is operationalised through

the inclusion of random link function parameters (Mannering et al., 2016); spatial dependence can

be represented through different variants of autoregressive specifications including the spatial and

conditional autoregressive and matrix exponential spatial specifications (Whittle, 1954; Besag, 1974;

LeSage and Pace, 2007). Ignoring these spatial effects may result in biased parameter estimates

and inaccurate inference due to higher type-I error (Anselin, 2013; Dormann, 2007; Dormann et al.,

2007). However, accounting for spatial heterogeneity and dependence also renders the estimation of

spatial count data models computationally expensive.

Spatial count data models are predominantly estimated using Markov Chain Monte Carlo (MCMC)

methods (Banerjee et al., 2014; Haining and Li, 2020), aside from few exceptions which rely on

maximum likelihood estimation (Castro et al., 2012; Narayanamoorthy et al., 2013). MCMC methods

guarantee asymptotically exact inference, but succumb to three important limitations, namely compu-

tationally intensive estimation, high storage costs for the posterior draws, and difficulties in assessing

convergence (Bansal et al., 2020). Furthermore, state-of-practice Gibbs samplers for spatial count

data models also include Metropolis-Hastings steps to sample from high-dimensional conditional

distributions, since conjugate priors for the parameters of Poisson lognormal and negative binomial

regressions are not known. Sampling via the Metropolis-Hastings algorithm suffers from a variety of

inefficiencies including insufficient exploration of the posterior of interest and serial correlation, if it

is not tuned well (Rossi et al., 2012).

To address the bottlenecks of MCMC in the estimation of spatial econometric models, Bivand

et al. (2014) propose the integrated nested Laplace approximation (INLA) method, under which

the model parameters are first segregated into hyper-parameters and latent variables. Then, a

discrete distribution is specified on the hyper-parameters using a multi-dimensional grid, and the

posterior distribution of the latent variables is approximated via Laplace’s method. This analytical

approximation comes at the cost of the assumption that conditional on the hyper-parameters, the latent

variables are normally distributed. INLA reduces the estimation times of typical spatial econometric

models from hours to minutes, but the conditional normality assumption restricts the flexibility of the

posterior approximation (Han et al., 2013).

In machine learning and computational statistics, variational Bayes (VB) methods have also emerged

as a promising alternative to MCMC for the estimation of complex econometric models (Bansal et al.,

2020; Blei et al., 2017; Braun and McAuliffe, 2010; Jordan et al., 1999; Tan et al., 2013). Whilst
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MCMC treats Bayesian inference as a simulation problem, in which the posterior distribution of

interest is approximated through samples from a Markov chain, VB recasts Bayesian inference into an

optimisation problem, which consists of minimising the probability distance between an approximating

variational distribution and the targeted posterior distribution. Translating Bayesian inference into

an optimisation problem accelerates estimation, admits a straightforward assessment of convergence

and alleviates storage requirements.

VB methods have been introduced for the estimation of non-spatial count data models and of linear

spatial models. Yet, no VB method exists for the estimation of spatial count data models. Several

studies present VB methods for variants of count data models, but none of the proposed approaches

accounts for spatial dependencies between units (Klami, 2015; Luts et al., 2015; Tan et al., 2013;

Zhou et al., 2012). Kabisa et al. (2016), Ren et al. (2011) and Wu (2018) devise VB methods for the

estimation of models with spatial dependence; however, the proposed methods are limited to linear

models with continuous outcome variables.

In this paper, we propose a VB method for the fast estimation of a spatial count data model,

which accommodates both spatial heterogeneity and dependence. To be specific, we consider a

negative binomial (NB) model with random link function parameters and a matrix exponential spatial

specification of spatial dependence (LeSage and Pace, 2007). To address the non-conjugacy of the

NB model, we also adopt the Pólya-Gamma data augmentation (PGDA) technique in the proposed

inference method. PDGA introduces auxiliary latent variables into the models. Conditional on these

variables, the NB likelihood of the observed counts is translated into a heteroskedastic Gaussian

likelihood, which admits closed-form conjugate posterior updates for nearly all model parameters.

Only a few studies employ the PGDA technique in VB estimation (Durante et al., 2019; Klami, 2015;

Park et al., 2016; Wenzel et al., 2019; Zhou et al., 2012).

We first derive a mean-field variational Bayes (MFVB) method, which posits a factorised representa-

tion of the joint variational distributions, for the Pólya-Gamma-augmented spatial NB model. MFVB

is the workhorse approach for the specification of the approximating variational distribution in VB

inference. However, in the current application, the mean-field assumption oversimplifies posterior de-

pendencies and leads to a high bias in the recovery of the spatial model parameters. Alternatively, the

variational distribution can be specified according to the integrated non-factorised variational Bayes

(INFVB; Han et al., 2013) approach, which generalises INLA by relaxing the conditional normality

assumption. Motivated by the superior finite sample properties of INFVB for linear spatial models,

we devise an INFVB method to allow for richer representations of relevant posterior dependencies in

the considered spatial count data model. We benchmark the performance of INFVB against MCMC

using simulated data and real data on youth pedestrian injury counts in New York City. The results

indicate that INFVB is able to emulate the performance of MCMC in terms of posterior recovery

and in-sample predictive accuracy. Furthermore, the embarrassingly parallel nature of the proposed

INFVB algorithm makes INFVB substantially faster than MCMC, which, in turn, suggests that INFVB

is scalable to large datasets of spatial counts.

We organise the remainder of the paper as follows. In the subsequent section, we formulate the

considered spatial negative binomial model, and in Section 3, we derive MCMC and VB estimators for

the model. In Section 4, we benchmark computational efficiency and finite sample properties of the

proposed estimators in a Monte Carlo study. Section 5 further compares VB and MCMC in estimating

youth pedestrian injury counts in the census tracts of New York City. The findings of this empirical
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application corroborate the insights derived from the simulation study. Conclusions and avenues for

future research are presented in Section 6.

2. Model formulation

Let yi denote the non-negative integer-valued outcome variable observed for spatial unit i ∈ {1, . . . , N}.
We assume that yi is drawn from a negative binomial (NB) distribution with probability parameter

pi and shape parameter r. We model pi, using a logit link function, which depends on predictors

Mi with fixed parameters γ, predictors Xi with spatially-varying parameters βi and a spatial random

effect φi . The resulting NB model is succinctly summarised below:

yi ∼ NB(r, pi), i = 1, . . . , N (1)

pi =
exp(ψi)

1+ exp(ψi)
, i = 1, . . . , N (2)

ψi = M>i γ+ X>i βi +φi . i = 1, . . . , N (3)

2.1. Spatial heterogeneity and dependence

To accommodate spatial heterogeneity in the model, i.e. to allow for spatially varying effects of Xi on

yi , we place a multivariate Gaussian prior on βi with mean µ and covariance matrix Σ. Furthermore,

we apply the matrix exponential spatial specification (MESS; LeSage and Pace, 2007) to the random

effect vector φ = (φ1, . . . ,φN )
> to capture spatial dependence between units. MESS is an attractive

representation of spatial error dependence, as it implies a simple likelihood. Alternative specifications

spatial dependence such as the spatial and conditional autoregressive ones, are similar to MESS with

the key difference that MESS assumes an exponential decay instead of a geometric decay of spatial

correlation (see Strauss et al., 2017, for a detailed comparison). The spatial aspects of the considered

model are succinctly restated below:

βi ∼ Normal(µ,Σ), i = 1, . . . , N (4)

Sφ = exp(τW)φ = ε, (5)

ε∼ Normal(0,σ2IN ). (6)

Here, W is a row-normalised spatial weight matrix, τ is the spatial association parameter, ε is a

homoskedastic Gaussian error with scale σ, and IN is an identity matrix of size N × N . exp(τW) is

a matrix of size N × N given by a power series:
∑∞

k=0
τk

k! W k, where W0 is an identity matrix. We

compute this matrix exponential using the Pade approximation (Al-Mohy and Higham, 2010).

2.2. Model likelihood

Suppose that there are Q fixed parameters and K random parameters. Equation 3 can be rewritten in

vector form as follows:

ψ= Mγ+ Xβ +φ, (7)
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where

ψ=







ψ1
...

ψN







N×1

, M =







M>1
...

M>N







N×Q

, X =







X>1 . . . 0
...

. . .
...

0 . . . X>N







N×NK

, β =







β1
...

βN







NK×1

.

Furthermore, note that Ω̃ = S>S
σ2 and det(S) = 1, and thus, det(Ω̃) = (σ2)−N (Wu, 2018). Consequently,

the likelihood of the model is:

P(y |r,γ,µ,Σ,σ2,τ) = P(y |r,ψ)P(ψ|γ,β ,φ)P(φ|σ2,τ)P(β |µ,Σ),

= P(y |r,ψ)P(ψ|γ,β ,σ2,τ)P(β |µ,Σ),
(8)

where

P(y |r,ψ) =
N
∏

i=1

Γ (yi + r)
Γ (r)yi!

exp(ψi)yi

[1+ exp(ψi)]r+yi
,

P(ψ|γ,β ,σ2,τ) = (2πσ2)−
N
2 exp

�

−
[ψ−Mγ− Xβ]>Ω̃[ψ−Mγ− Xβ]

2

�

,

P(β |µ,Σ) = [2πdet(Σ)]−
N
2

N
∏

i=1

exp
�

−
1
2
[βi −µ]>Σ−1[βi −µ]

�

.

(9)

3. Model estimation

3.1. Pólya-Gamma data augmentation

Conjugate priors for the parameters of the NB model are generally unknown. As a consequence, the

conditional distributions of the link function parameters and the shape parameter do not constitute

known distributions, and no closed-form updates for the respective model parameters exist (Klami,

2015; Zhou et al., 2012). To address this issue, Polson et al. (2013) suggest to introduce Pólya-

Gamma-distributed auxiliary variables ωi ∼ PG(yi + r, 0), i ∈ {1, 2, . . . , N} into the model. Using the

identity derived by Polson et al. (2013), P(y |r,ψ) can be written as:

P(y |r,ψ) =
N
∏

i=1

Γ (yi + r)
Γ (r)yi!

2−(r+yi) exp
�

(yi − r)ψi

2

�

Eωi

�

exp

�

−ωiψ
2
i

2

��

. (10)

Furthermore, conditional on the auxiliary variables ω, equation 10 can be restated as:

P(y |ψ, r,ω)∝
N
∏

i=1

exp

�

−
ωi

2

�

ψi −
yi − r
2ωi

�2
�

,

P(y |ψ, r,ω)∝ exp
�

−
1
2
[ψ− Z]>Ω[ψ− Z]

�

,

(11)

where

Z =







y1−r
2ω1
...

yN−r
2ωN







N×1

, Ω=







ω1 . . . 0
...

. . .
...

0 . . . ωN







N×N

,
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Z =ψ+α= Mγ+ Xβ +φ +α, α∼ Normal(0,Ω−1). (12)

The main result of Pólya-Gamma data augmentation is that conditional on r and ω, the likelihood of

the observed counts is converted into a heteroskedastic Gaussian likelihood, which considers Z as

outcome variable. As a consequence, we are able to obtain closed-form updates for the link function

parameters and the shape parameter of the spatial NB model.

3.2. Prior specification and augmented likelihood

Prior distributions on latent variables are succinctly stated below:

µ∼ Normal(ζµ,∆µ), γ∼ Normal(ζγ,∆γ), τ∼ Normal(ζτ,σ2
τ),

σ−2 ∼ Gamma(bσ2 , cσ2), r|h∼ Gamma(r0, h), h∼ Gamma(b0, c0),

{ak}Kk=1 ∼ Gamma (s,ηk) , Σ|a ∼ IW (ρ, B) ,

where ρ = ν + K − 1, a =
�

a1 . . . aK

�>
, B = 2νdiag(a), s = 1

2 and ηk = A−2
k . We specify

Huang’s half-t prior on the covariance matrix of random parameters Σ by introducing a (Huang et al.,

2013). Here {ζµ,∆µ,ζγ,∆γ,ζτ,σ2
τ, bσ2 , cσ2 , r0, b0, c0,ν, {Ak}Kk=1} is a set of hyper-parameters and

Θ =
�

φ,γ,β ,µ, a,Σ,σ2,ω, r, h,τ
	

is a set of latent variables. The joint distribution of latent and

observed variables is:

P(y ,Θ) = P(Z|r,ω,γ,β ,φ)P(φ|σ2,τ)

� N
∏

i=1

P(βi|µ,Σ)

�

P(r|r0, h) . . .

. . . P(h|b0, c0)

� N
∏

i=1

P(ωi|r)

�

P(γ|ζγ,∆γ)P(σ−2|bσ2 , cσ2) . . .

. . . P(τ|ζτ,σ2
τ)P(µ|ζµ,∆µ)

� K
∏

k=1

P(ak|s,ηk)

�

P(Σ|ρ, B).

(13)

Finally, to obtain conjugate posterior updates of the dispersion parameter r, we use a compound

Poisson representation of negative binomial distribution (see Appendix A).

3.3. Markov chain Monte Carlo estimation

MCMC estimation approximates a posterior distribution of interest through simulation of a Markov

chain. In the present application, a Markov chain can be constructed by iteratively sampling from

the conditional distributions of the parameters collected in Θ. As a results of Pólya-Gamma data

augmentation, the conditional distributions of all model parameters, with the exception of the

conditional distribution of the spatial association parameter τ, are conjugate to their prior and belong

to known families of standard parametric distribution. Since the conditional distribution of τ does

not correspond to any recognisable distribution, we adopt the random-walk Metropolis algorithm to

generate samples of it. The resulting Gibbs sampler is presented in Algorithm 1. In the algorithm,

$τ is the step size of the random-walk Metropolis algorithm, which needs to be tuned.
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Initialization:
Set hyper-parameters: {ζµ,∆µ,ζγ,∆γ,ζτ,σ2

τ, bσ2 , cσ2 , r0, b0, c0,ν, {Ak}Kk=1} ;
Initialize latent variables:

�

φ,γ,β ,µ, a,Σ,σ2,ω, r, h,τ
	

;
for 1 to max-iteration sample from
φ|− ∼ Normal

�

(Ω+ Ω̃)−1Ω(Z −Mγ− Xβ), (Ω+ Ω̃)−1
�

;

γ|− ∼ Normal
�

(∆−1
γ +M>ΩM)−1[M>Ω(Z − Xβ −φ) +∆−1

γ ζγ], (∆
−1
γ +M>ΩM)−1

�

;

{βi |−}Ni=1 ∼ Normal
��

�

ωiXiX
>
i

�−1
+Σ

�

�

ωi(Zi −M>
i γ−φi)Xi +Σ−1µ

�

,
�

ωiXiX
>
i

�−1
+Σ

�

;

µ|− ∼ Normal
�

(NΣ−1 +∆−1
µ )
−1
�

Σ−1
∑N

i=1βi +∆−1
µ ζµ

�

, (NΣ−1 +∆−1
µ )
−1
�

;

{ak|−}Kk=1 ∼ Gamma
�

ν+K
2 , 1

A2
k
+ ν

�

Σ−1
�

kk

�

;

Σ|− ∼ IW
�

ν+ N + K − 1, B+
∑N

i=1[βi −µ][βi −µ]>
�

;

σ−2|− ∼ Gamma
�

bσ2 + N
2 , cσ2 + φ>S>Sφ

2

�

;

{ωi |−}Ni=1 ∼ PG(yi + r,ψi) ;

r|− ∼ Gamma
�

r0 +
∑N

i=1 Li , h+
∑N

i=1 ln(1+ exp(ψi))
�

(see details in Appendix A) ;

h|− ∼ Gamma(r0 + b0, r + c0) ;
τ|− (random-walk Metropolis step)

• Propose τ̃= τ+p$τστς, where ς∼ Normal(0, 1);

• Compute ξ= P(τ̃|ζτ,σ2
τ)P(φ|τ̃,σ2)

P(τ|ζτ,σ2
τ)P(φ|τ,σ2) ;

• Draw u∼ Uniform(0,1). If ξ≤ u, accept the proposal, else reject it.

end

Algorithm 1: Gibbs sampler for posterior inference in the spatial negative binomial model

3.4. Variational Bayes estimation

In this section, we propose a variational Bayesian (VB) method to estimate the spatial negative binomial

regression model. The goal of VB is to find a variational distribution q(Θ), which approximates the

posterior distribution of interest, via minimisation of the probability distance between the variational

distribution and the actual posterior distribution (Jordan et al., 1999; Blei et al., 2017). The probability

distance is conveniently measured by Kullback-Leibler (KL) divergence, which is defined as follows:

KL (q(Θ)||P(Θ|y)) =
∫

ln
�

q(Θ)
P(Θ|y)

�

q(Θ)dΘ

= Eq [ln q(Θ)]−Eq [ln P(Θ|y)]

= Eq [ln q(Θ)]−Eq [ln P(Θ, y)] + ln P(y).

(14)

VB aims to minimise the KL divergence, which implies that

q∗(Θ) = arg min
q

KL (q(Θ)||P(Θ|y)) . (15)

However, since ln P(y) has no closed form expression, the KL divergence is not analytically tractable.

Recognising that Eq [ln q(Θ)]−Eq [ln P(Θ, y)] is negative of the evidence lower bound (ELBO), we

rearrange Equation 14 as follows:

ELBO= ln P(y)− KL (q(Θ)||P(Θ|y)) . (16)
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Since the KL divergence is always positive, equation 16 shows that the optimal variational distribution

can be equivalently obtained by maximising the ELBO.

The variational distribution must be selected by the analyst. Its specification determines both the

quality of the posterior approximation as well as the complexity of the optimisation problem (Blei

et al., 2017). In the following subsections, we describe two approaches for the specification of the

variational distribution and suitable methods for ELBO maximisation.

3.4.1. Mean field variational Bayes (MFVB)

MFVB specifies the density of the variational distribution as a product of the component-specific

variational densities:

q(Θ) =
J
∏

j=1

q(Θ j), (17)

where j ∈ {1, . . . , J} are indexes of model parameter blocks. This specification imposes posterior

independence between blocks of model parameters. The optimal variational density of a latent factor

can be obtained using the following expression (Ormerod and Wand, 2010):

q∗(Θ j)∝ exp
�

E−Θ j
[ln P(y ,Θ)]

�

. (18)

If the conditional conjugacy holds for a model parameter, its variational distribution belongs to a

recognisable family and can be easily obtained using the above equation. In case of non-conjugacy, the

optimal variational density q∗(Θ j) of a model parameters can be obtained using quasi-Newton methods,

non-conjugate variational message passing (Knowles and Minka, 2011), stochastic linear regression

(Salimans et al., 2013), or Laplace approximation (see Wang and Blei, 2013, for a comprehensive

review).

In the Pólya-Gamma-augmented spatial NB model, the conditional conjugacy holds for all model

parameters, except for τ. We thus obtain the optimal variational density of τ using non-conjugate

variational message passing, while the optimal variational density of the remaining model parameters

are obtained using equation 18. The results of MFVB indicate that the variational distributions of

all variables, except τ and σ2, closely resemble the posterior estimates of MCMC. This observation

is well aligned with the findings of Wu (2018) in linear spatial models. However, in accordance

with Wu (2018), we also find that τ and σ2 are poorly recovered by MFVB because of the untenable

assumption of posterior independence.

3.4.2. Integrated non-factorised variational Bayes (INFVB)

To address the bottlenecks of MFVB in the estimation of the considered spatial NB model, we propose

INFVB method (Han et al., 2013; Wu, 2018). INFVB decomposes latent variables Θ into two disjoint

subsets {Θc ,Θd} to specify a flexible variational distribution:

qINFVB(Θ) = q(Θc|Θd)q(Θd). (19)

Since direct maximization of ELBO to find optimal variational density q∗INFVB(Θ) is computationally

challenging, a discrete distribution is specified on Θd by discretising its domain using a multi-

dimensional grid. We adopt a two-step procedure to obtain the optimal variational density q∗INFVB(Θ):
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1. For each grid point Θ(g)d ∈ {Θ(1)d , . . . ,Θ(G)d }, we obtain q∗(Θ(g)c |Θ
(g)
d ) and q∗(Θ(g)d ) (up to a

multiplicative constant) using equations 20 and 21, respectively (Han et al., 2013):

q∗
�

Θ(g)c |Θ
(g)
d

�

= arg min
q
�

Θ
(g)
c |Θ

(g)
d

�

Eq

�

ln q
�

Θ(g)c |Θ
(g)
d

��

−Eq

�

ln P
�

y ,Θ(g)c ,Θ(g)d

��

, (20)

q∗
�

Θ
(g)
d

�

∝ exp
�

E
�

ln P
�

y ,Θ(g)c ,Θ(g)d

��

−E
�

ln q∗
�

Θ(g)c |Θ
(g)
d

���

. (21)

2. We then compute optimal variational densities of Θd and Θc using equation 22:

q∗(Θd) =
G
∑

g=1

q∗
�

Θ
(g)
d

�

1
�

Θd = Θ
(g)
d

�

,

q∗(Θc) =
G
∑

g=1

q∗
�

Θ
(g)
d

�

q∗
�

Θ(g)c |Θ
(g)
d

�

,

where q∗
�

Θ
(g)
d

�

=
exp

�

E
�

ln P
�

y ,Θ(g)c ,Θ(g)d

��

−E
�

ln q∗
�

Θ
(g)
c |Θ

(g)
d

���

∑G
e=1 exp

�

E
�

ln P
�

y ,Θ(e)c ,Θ(e)d

��

−E
�

ln q∗
�

Θ(e)c |Θ
(e)
d

��� .

(22)

We highlight three important features of INFVB. First, the optimal density update of Θ(g)c |Θ
(g)
d using

equation 20 results into similar updates as obtained in MFVB (see equation 18). As a consequence,

computation of q∗
�

Θ
(g)
c |Θ

(g)
d

�

is straightforward if conditional conjugacy holds for Θc . Second, the

first step of INFVB includes embarrassingly parallel tasks. The communications overhead of these

tasks is negligible, because the results of each task are only combined once during estimation. These

characteristics make INFVB computationally efficient and scalable for large datasets. Third, if we

consider Θd as a vector of hyper-parameters, INFVB can be viewed as a generalised version of INLA.

Specifically, INFVB relaxes the INLA’s strict assumption on the normality of the conditional distribution

q(Θc|Θd) (see section 2.3 of Han et al., 2013, for a detailed discussion on the superiority of INFVB

over INLA).

3.4.3. INFVB for the spatial negative binomial model

On the basis of the findings of MFVB, we consider Θd = {τ,σ2} and Θc = Θ \ Θd . We specify a

nonparametric distribution onΘd by discretising its domain using a two-dimensional grid and consider

the following product form representation of q(Θc):

q(Θc) = q(φ|λφ ,Λφ)q(γ|λγ,Λγ)q(β |λβ ,Λβ)q(µ|λµ,Λµ)
K
∏

k=1

q(ak|b̃ak
, c̃ak
) . . .

. . . q(Σ|ρ̃, B̃)
N
∏

i=1

q(ωi|b̃ωi
, c̃ωi
)q(h|b̃h, c̃h)q(r)

N
∏

i=1

q(Li).

(23)
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We find that variational distributions of model parameters blocks in Θc belong to known families of

distributions due to conjugacy:

q(φ)∼ Normal(λφ ,Λφ), q(γ)∼ Normal(λγ,Λγ), {q(βi)}Ni=1 ∼ Normal(λβi
,Λβi
),

q(µ)∼ Normal(λµ,Λµ), {q(ak)}Kk=1 ∼ Gamma(b̃ak
, c̃ak
), q(Σ)∼ IW(ρ̃, B̃),

{q(ωi)}Ni=1 ∼ PG(b̃ωi
, c̃ωi
), q(h)∼ Gamma(b̃h, c̃h), q(r)∼ Gamma(b̃r , c̃r),

{q(Li)}Ni=1 =
yi
∑

j=0

R r̃(yi , j)δ j , q(ψ)∼ Normal(λψ,Λψ).

Set hyper-parameters: {ζµ,∆µ,ζγ,∆γ,ζτ,σ2
τ, bσ2 , cσ2 , r0, b0, c0,ν, {Ak}Kk=1} ;

Compute fixed variational parameters: b̃ak
= ν+K

2 ; ρ̃ = ν+ N + K − 1; b̃h = r0 + b0 ;

Specify a two-dimensional grid Θ(g)d ∈ {Θ
(1)
d , . . . ,Θ(G)d } on the domain of Θd = {τ,σ2} ;

Step : 1
for g in 1 to G obtain q∗

�

Θ(g)c |Θ
(g)
d

�

and q∗
�

Θ
(g)
d

�

in parallel

Initialize
n

λ
(g)
φ ,Λ(g)φ ,λ(g)γ ,Λ(g)γ ,

¦

λ
(g)
βi

,Λ(g)βi

©N

i=1
,λ(g)µ ,Λ(g)µ ,

¦

c̃(g)ak

©K

k=1
, B̃(g), c̃(g)h , b̃(g)r , c̃(g)r

o

;

while not converged do

Λ
(g)
φ =

�

E[Ω](g) + Ω̃(g)
�−1

;

λ
(g)
φ = Λ

(g)
φ

�

E
�

{Z∗}(g)
�

−E[Ω(g)]Mλ(g)γ −E[Ω
(g)]Xλ(g)β

�

;

Λ(g)γ =
�

∆−1
γ +M>E

�

Ω(g)
�

M
�−1

;

λ(g)γ = Λ
(g)
γ

�

M>
�

E[{Z∗}(g)]−E
�

Ω(g)
�

Xλ(g)β −E
�

Ω(g)
�

λ
(g)
φ

�

+∆−1
γ ζγ

�

;
¦

Λ
(g)
βi

©N

i=1
=
�

E
�

ω
(g)
i

�

XiX
>
i + ρ̃{B̃

(g)}−1
�−1

;
¦

λ
(g)
βi

©N

i=1
= Λ(g)βi

��

E
�

{Z∗i }
(g)
�

−E
�

ω
(g)
i

�

M>
i λ
(g)
γ −E

�

ω
(g)
i

�

λ
(g)
φi

�

Xi + ρ̃{B̃−1λµ}(g)
�

;

Λ(g)µ =
�

N ρ̃{B̃(g)}−1 +∆−1
µ

�−1
;

λ(g)µ = Λ
(g)
µ

�

�

ρ̃{B̃(g)}−1
�∑N

i=1λ
(g)
βi
+∆−1

µ ζµ
�

;
¦

c̃(g)ak

©K

k=1
=
h

1
A2

k
+ νρ̃

�

{B̃(g)}−1
�

kk

i

;

B̃(g) = 2νdiag
�

b̃a

c̃(g)a

�

+ NΛ(g)µ +
∑N

i=1

�

Λβi
+ [λβi

−λµ][λβi
−λµ]>

�(g)
;

c̃(g)h =
�

b̃r
c̃r

�(g)
+ c0;

b̃(g)r = r0 +
∑N

i=1E(L
(g)
i ) ;

c̃(g)r = b̃h

c̃(g)h

+
∑N

i=1E
�

log
�

1+ exp
�

ψ
(g)
i

���

;

λ
(g)
ψ = Mλ(g)γ + Xλ(g)β +λ

(g)
φ ;

Λ
(g)
ψ = MΛ(g)γ M> + XΛ(g)β X> +Λ(g)φ ;

end

Compute q∗
�

Θ
(g)
d

�

up to a multiplicative constant by inserting expectations computed using

equation 31 (see appendix B.2) into equation 21;
end

Step : 2
Obtain optimal variational densities of Θd and Θc using equation 22;

Algorithm 2: Integrated non-factorized variational Bayes (INFVB) method for the spatial NB
model

We reiterate that a compound Poisson representation of negative binomial distribution is used

to ensure conjugate posterior updates for the dispersion parameter r (see Appendix A for details).
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Accordingly, we adopt the variational distribution used by Zhou et al. (2012) on Li, where δ j is an

indicator. The INFVB method to estimate the spatial count model is summarised in Algorithm 2;

supplementary identities and expressions are presented in Appendix B.1. The expression for the

conditional ELBO, i.e. the negative of the function minimised in equation 20 is presented in Appendix

B.2.

4. Simulation study

To evaluate computational efficiency and finite sample properties of INFVB and MCMC estimators, we

conduct a Monte Carlo study. In this section, we present details of the data generating process (DGP),

followed by performance measures, implementation details and results of the simulation study.

4.1. Data and experimental setup

We generate data according to the following DGP:

βi ∼ Normal(µ,Σ), i = 1, . . . , N

ε∼ Normal(0,σ2IN )],

Sφ = exp(τW)φ = ε,

ψi = M>i γ+ X>i βi +φi , i = 1, . . . , N

pi =
exp(ψi)

1+ exp(ψi)
, i = 1, . . . , N

yi ∼ NB(r, pi). i = 1, . . . , N

We consider eight simulation scenarios defined through combinations of N = {1000,1500}, τ =
{−0.7,0.7}, and σ = {0.2,0.4}. Ten resamples of each simulation scenario are generated, i.e.

we estimate the spatial NB model using MCMC and INFVB on a total of 80 simulated datasets.

For all simulation scenarios, we set µ =
�

0.2 −0.2 0.2
�>

, Σ = diag(σ̃)Ω̃diag(σ̃) with σ̃ =

�

0.141 0.141 0.141
�>

and Ω̃ =







1 0.2 0

0.2 1 0.2

0 0.2 1







>

as well as γ =
�

1.0 0.3 −0.3 0.3
�>

, and

r = 1.5. Furthermore, we let Mi,1 = 1 and Mi,q ∼ Normal(0,1) for q = 2,3,4 as well as X i,k ∼
Normal(0, 1) for k = 1, 2, 3. To construct the row-normalised spatial weights matrix W , we calculate

an 8-nearest neighbour matrix for N points, which are randomly located in a unit square.

4.2. Performance metrics

We evaluate the estimation accuracy of the INFVB and MCMC methods by calculating the mean of the

absolute percent bias (APB) of model parameters across resamples. APB is a normalised measure of

the finite sample bias and is given by APB=
�

�

MPM−True value
True value

�

�× 100, where the mean posterior mean

(MPM) is the average of the posterior mean across resamples. In addition, we also report the standard

deviation of the posterior mean (SDPM) and the mean of posterior standard deviation (MPSD) across

resamples.
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4.3. Implementation and estimation practicalities

We implement the MCMC and INFVB methods for the spatial NB model by writing our own Python

code. To draw from the Pólya-Gamma distribution, we use an existing implementation (Linderman

et al., 2015, 2016a,b) of the sampling techniques proposed by Polson et al. (2013) and Windle et al.

(2014).1

The MCMC sampler is executed with two parallel Markov chains and 40,000 iterations for each

chain, whereby the initial 20,000 iterations are discarded for burn-in. After burn-in, every fifth draw

is retained. The random-walk Metropolis step to generate samples from the conditional distribution

of the spatial association parameter τ is adaptively scaled such that the average acceptance rate is

approximately 44%, which is the recommended acceptance ratio for a uni-dimensional target density

(see Roberts et al., 1997). Convergence of the MCMC simulation is assessed with the help of the

potential scale reduction factor (Gelman et al., 1992).

For INFVB, a two-dimensional search space over {τ,σ} is defined via the Cartesian product of two

uni-dimensional grids. The grid over τ consists of 15 equidistant points in the interval [0,1.4] or

[−1.4, 0] (depending on the true value of τ), while the grid over σ consists of 10 equidistant points

in the interval [0.05, 0.8]. We exploit the embarrassingly parallel computations of the INFVB method

by distributing step 1 of Algorithm 2 over an eight-core processor.

4.4. Results

Before comparing INFVB with MCMC, we demonstrate the accuracy of our analytical derivation and

implementation of the INFVB method. In one resample of one specific simulation scenario, we plot

the evolution of the conditional ELBO (presented in Appendix B.2) over the number of iterations for

ten randomly selected grid points in Figure 1. It can be seen that the conditional ELBOs of the ten

randomly grid points are monotonically increasing over iterations, which illustrates the correctness of

the proposed INFVB estimator.

10
0

10
1

10
2

Iteration

3600

3400

3200

3000

EL
BO

(g
)

Figure 1.: Sequence of conditional ELBOs of ten randomly selected grid points for simulation
scenario τ= −0.7, σ = 0.2, N = 1500

1The estimation code is publicly available at https://github.com/RicoKrueger/infvb_spatial_count.
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Table 1 enumerates the computation times of the MCMC and INFVB estimators for all DGP instances.

INFVB is approximately 50 times faster than MCMC for all instances of the DGP. Considerably low

standard deviations of the estimation time across resamples underscore the robustness of this result.

Further reductions in the estimation time of INFVB could be realised by distributing step 1 of Algorithm

2 over more than eight compute cores.

Next, we present the results of the other performance measures for four out of the eight simulation

scenarios in Tables 2 to 5.2 Similar and considerably low APB values (below 10% for most of the

parameters), and small SDPM values indicate that INFVB and MCMC not only recover the true

parameters quite well but also with an identical precision across all the considered simulation

scenarios. As an exception, the recovery of σ is poor in INFVB and a similar bias is observed for τ in

MCMC. However, both τ and σ are recovered equally well by MCMC and INFVB in the empirical study

(see Figure 4 in the next section). Furthermore, for most model parameters, MPSD is substantially

lower for INFVB than for MCMC. This result corroborates the findings of earlier studies, which suggest

that VB underestimates the posterior uncertainty (Blei et al., 2017; Giordano et al., 2018).

INFVB MCMC

Mean Std. dev. Mean Std. dev.

N = 1000

τ= −0.7; σ = 0.2 9.1 0.2 494.0 17.6

τ= 0.7; σ = 0.2 9.2 0.2 512.8 1.2

τ= −0.7; σ = 0.4 9.4 0.1 525.3 4.1

τ= 0.7; σ = 0.4 9.3 0.1 506.7 1.6

N = 1500

τ= −0.7; σ = 0.2 28.2 0.3 1397.1 14.9

τ= 0.7; σ = 0.2 28.2 0.4 1423.2 6.4

τ= −0.7; σ = 0.4 29.0 0.4 1491.8 10.4

τ= 0.7; σ = 0.4 21.5 1.1 1343.3 8.5

Table 1.: Estimation time in minutes across ten resamples by estimation method and simulation
scenario

2The results for the remaining for simulation scenarios with N = 1000 offer similar insights and are thus included as
supplementary material.
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INFVB MCMC

True MPM SDPM APB MPSD MPM SDPM APB MPSD

γ1 1.000 1.005 0.038 0.5 0.030 1.021 0.037 2.1 0.043

γ2 0.300 0.285 0.040 4.9 0.030 0.291 0.037 2.9 0.043

γ3 -0.300 -0.294 0.028 1.9 0.031 -0.298 0.031 0.8 0.043

γ4 0.300 0.301 0.038 0.4 0.030 0.308 0.043 2.7 0.043

µ1 0.200 0.197 0.021 1.3 0.003 0.202 0.022 1.2 0.026

µ2 -0.200 -0.205 0.037 2.3 0.003 -0.208 0.036 3.9 0.026

µ3 0.200 0.199 0.034 0.4 0.003 0.205 0.037 2.6 0.026

σ̃1 0.141 0.123 0.017 13.0 0.004 0.146 0.064 3.2 0.057

σ̃2 0.141 0.120 0.013 15.4 0.004 0.135 0.053 4.3 0.065

σ̃3 0.141 0.116 0.011 18.1 0.004 0.111 0.044 21.7 0.061

τ -0.700 -0.604 0.110 13.7 0.390 -0.159 0.145 77.3 0.435

σ 0.200 0.119 0.020 40.3 0.046 0.152 0.069 23.8 0.071

r 1.500 1.514 0.053 0.9 0.040 1.477 0.057 1.5 0.083

Note: MPM = mean of posterior mean; SDPM = standard deviation of posterior mean; APB

= absolute percent bias; MPSD = mean of posterior standard deviation. All statistics are

calculated across ten resamples.

Table 2.: Simulation results for τ= −0.7, σ = 0.2, N = 1500

INFVB MCMC

True MPM SDPM APB MPSD MPM SDPM APB MPSD

γ1 1.000 0.986 0.026 1.4 0.030 1.003 0.029 0.3 0.044

γ2 0.300 0.297 0.046 0.9 0.030 0.304 0.048 1.3 0.043

γ3 -0.300 -0.282 0.031 6.0 0.030 -0.287 0.028 4.4 0.043

γ4 0.300 0.279 0.033 7.1 0.030 0.283 0.037 5.7 0.043

µ1 0.200 0.184 0.023 7.8 0.003 0.192 0.023 3.8 0.027

µ2 -0.200 -0.198 0.030 0.8 0.003 -0.202 0.030 1.2 0.027

µ3 0.200 0.202 0.027 0.8 0.003 0.204 0.030 2.2 0.027

σ̃1 0.141 0.122 0.013 13.8 0.004 0.134 0.056 5.6 0.065

σ̃2 0.141 0.129 0.016 8.7 0.004 0.150 0.057 6.2 0.070

σ̃3 0.141 0.118 0.014 16.5 0.004 0.132 0.042 6.9 0.058

τ 0.700 0.633 0.041 9.6 0.421 -0.045 0.150 106.5 0.435

σ 0.200 0.116 0.017 41.8 0.046 0.153 0.052 23.4 0.084

r 1.500 1.531 0.061 2.0 0.039 1.497 0.061 0.2 0.089

Note: For an explanation of the table headers see Table 2.

Table 3.: Simulation results for τ= 0.7, σ = 0.2, N = 1500
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INFVB MCMC

True MPM SDPM APB MPSD MPM SDPM APB MPSD

γ1 1.000 0.979 0.032 2.1 0.031 0.981 0.032 1.9 0.048

γ2 0.300 0.317 0.049 5.6 0.031 0.304 0.050 1.3 0.047

γ3 -0.300 -0.275 0.033 8.3 0.032 -0.299 0.036 0.4 0.047

γ4 0.300 0.299 0.041 0.2 0.031 0.290 0.043 3.5 0.047

µ1 0.200 0.199 0.026 0.7 0.004 0.206 0.028 2.9 0.029

µ2 -0.200 -0.190 0.036 5.0 0.004 -0.196 0.036 1.9 0.028

µ3 0.200 0.203 0.030 1.5 0.004 0.208 0.032 4.0 0.029

σ̃1 0.141 0.127 0.017 10.5 0.008 0.152 0.072 7.4 0.066

σ̃2 0.141 0.126 0.016 10.9 0.008 0.135 0.044 4.4 0.071

σ̃3 0.141 0.126 0.018 10.9 0.007 0.152 0.054 7.5 0.070

τ -0.700 -1.025 0.203 46.4 0.293 -0.635 0.194 9.2 0.250

σ 0.400 0.184 0.033 54.0 0.048 0.359 0.075 10.3 0.073

r 1.500 1.480 0.114 1.3 0.056 1.519 0.118 1.3 0.101

Note: For an explanation of the table headers see Table 2.

Table 4.: Simulation results for τ= −0.7, σ = 0.4, N = 1500

INFVB MCMC

True MPM SDPM APB MPSD MPM SDPM APB MPSD

γ1 1.000 1.024 0.061 2.4 0.032 1.015 0.060 1.5 0.048

γ2 0.300 0.302 0.058 0.8 0.032 0.280 0.053 6.6 0.048

γ3 -0.300 -0.254 0.045 15.4 0.031 -0.283 0.053 5.7 0.048

γ4 0.300 0.313 0.026 4.3 0.032 0.292 0.031 2.7 0.048

µ1 0.200 0.193 0.028 3.3 0.004 0.203 0.037 1.7 0.031

µ2 -0.200 -0.189 0.026 5.6 0.003 -0.193 0.028 3.5 0.029

µ3 0.200 0.205 0.027 2.4 0.003 0.211 0.030 5.6 0.028

σ̃1 0.141 0.133 0.020 5.8 0.008 0.160 0.066 13.3 0.073

σ̃2 0.141 0.128 0.019 9.3 0.007 0.134 0.052 5.0 0.065

σ̃3 0.141 0.123 0.016 13.1 0.007 0.128 0.051 9.5 0.068

τ 0.700 0.717 0.079 2.4 0.419 0.295 0.166 57.8 0.325

σ 0.400 0.163 0.021 59.3 0.056 0.366 0.086 8.5 0.087

r 1.500 1.404 0.089 6.4 0.052 1.482 0.101 1.2 0.102

Note: For an explanation of the table headers see Table 2.

Table 5.: Simulation results for τ= 0.7, σ = 0.4, N = 1500

5. Case study

In this section, we compare the performance of INFVB and MCMC in terms of computational efficiency,

goodness-of-fit, and marginal posterior distributions of model parameters in an empirical application.
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5.1. Data

The data consist of youth pedestrian injury counts in 603 census tracts of the New York City boroughs

Bronx and Manhattan in the period from 2005 to 2014. The considered injury data were originally

compiled by Morris et al. (2019) and contain census tract level information about reported youth

pedestrian injury counts (aggregated across different levels of injury severity), social fragmentation,

traffic volume and private vehicle commute mode shares. The youth pedestrian injury counts are

informed by the number of 5- to 18-year-old pedestrian injured in traffic crashes. Social fragmentation

is measured by a composite index which takes into account the number of vacant housing units,

single-person households, non-owner occupied housing units, and the population having relocated

within the past year. Traffic volume is measured in terms of the maximum annual average daily

traffic in the census tract. For more information about the data compilation and the data sources,

the reader is directed to Morris et al. (2019). We supplement the data collected by Morris et al.

(2019) with information about the employment density (number of workers per km2), the proportion

of households with poverty status and the proportion of the population that identifies as Black or

African-American. The supplementary data were sourced from the 2012–2016 American Community

Survey (US Census Bureau, nd). Summary statistics for the considered data are reported in Table 6.

Figures 2 and 3 visualise the distribution of observed youth pedestrian injury counts across census

tracts. A 5-nearest neighbour matrix for the study area is constructed using the PySAL library (Rey

and Anselin, 2010) for Python.

Variable Mean Std. Min. Max.

Youth pedestrian injury count, 2005-14 9.69 8.35 0.00 44.00

Prop. of households with poverty status, 2012-16 0.24 0.15 0.00 0.57

Prop. of black or African-American alone population, 2012-16 0.24 0.22 0.00 0.91

No. of workers per km2 in 1000, 2012-16 17.96 37.34 0.02 260.40

Social fragmentation index 2.02 2.73 -4.50 18.67

Avg. annual daily traffic (AADT) in 10k, 2015 4.45 4.68 0.21 27.65

Private vehicle commute mode share, 2010-14 0.19 0.15 0.00 0.76

Table 6.: Description of youth pedestrian injury counts and explanatory variables by census
tract (N = 603)
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Figure 2.: Observed youth pedestrian injury counts in the Bronx and Manhattan in 2005-14 by
census tract
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Figure 3.: Histogram of observed youth pedestrian injury counts in the Bronx and Manhattan
in 2005-14 by census tract
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5.2. Goodness of fit

We evaluate the estimation accuracy of the MCMC and INFVB estimators in terms of goodness of

fit to the training data. To this end, we compute three proper scoring rules, namely the log-score,

the Dawid-Sebastiani score and the ranked probability score. In principle, a scoring rule provides

a measurement of the discrepancy between the observed outcome and the estimated predictive

distribution. A scoring rule is said to be proper if the expected score is minimised by the true

predictive distribution (Gneiting and Raftery, 2007; Wei and Held, 2014). The three considered

scoring rules are defined and calculated as follows:

• The log-score (LS; Gneiting and Raftery, 2007; Wei and Held, 2014) corresponds to the negative

pointwise log-likelihood:

LS(yobs,θ ) = − log f (yobs|θ ). (24)

For the NB model, the log-score is given by

LS(yi ,ψi , r) = − ln Γ (yi + r) + ln Γ (r) + ln Γ (yi + 1)− yiψi + (yi + r) ln (1+ exp(ψi)) . (25)

• The Dawid-Sebastiani score (DSS; Dawid and Sebastiani, 1999) is informed by the mean µ and

the variance σ2 of the predictive distribution:

DSS(yobs,µ,σ2) =
(yobs −µ)2

σ2
+ logσ2. (26)

For the NB model, we have µi = exp(ψi)r and σ2
i = (exp(ψi) + exp(2ψi)) r.

• The ranked probability score (RPS; Matheson and Winkler, 1976) depends on the whole

predictive distribution:

RPS(F, yobs) =
∞
∑

t=0

(F(t)− 1{yobs ≤ t})2 , (27)

where F denotes the predictive cumulative distribution function (CDF). 1{yobs ≤ t} is an

indicator which is one if the observed outcome yobs is less than the threshold t and zero

otherwise. Jordan et al. (2019) and Wei and Held (2014) provide expressions for the ranked

probability score of the NB model:

RPS(Fr,pi
, yi) =yi

�

2Fr,pi
(yi)− 1

�

−
rpi

(1− pi)2
�

(1− pi)
�

2Fr+1,pi
(yi − 1)− 1

�

+2F1

�

r + 1,
1
2

;2;−
4pi

(1− pi)2

��

.
(28)

Here, Fr,p(y) =







1− Ip(y + 1, r), y ≥ 0

0 y < 0
is the CDF of the NB distribution; Ix(a, b) represents

the regularised incomplete beta function; 2F1(a, b; c; z) denotes the hypergeometric function.

For simplicity, the definitions presented above pertain to a single observation. In practice, aggregate

scores are computed by summing over all observations in the data. In a Bayesian context, the posterior
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distributions of the scores can be obtained by evaluating the scores at the posterior samples of the

model parameters.

5.3. Results

For the case study, the same estimation practicalities as for the simulation study (see Section 4.3)

apply with the only a minor difference that for INFVB, the grid over τ consists of 16 equidistant

points in the interval [−1.5,0].

Our first finding is that INFVB is substantially faster than MCMC. While the estimation time of

MCMC is 135.9 minutes, the estimation of INFVB is only 2.9 minutes. The computation time of INFVB

can be further decreased by distributing step 1 of Algorithm 2 over more than eight computer cores.

In theory, as many compute cores as there are grid points can be used and the estimation time of

INFVB can be further decreased by a factor of 20. However, it is important to note that the MCMC

simulation cannot be sped further due to the sequential and conditional nature of Gibbs sampling.

The goodness of fit results of the MCMC and INFVB estimators are compared in Table 7. For all

scores, the posterior mean of INFVB is marginally smaller than the respective posterior mean of

MCMC. For example, the posterior mean of the Dawid-Sebastiani score for MCMC is 2762.3, while it

is 2720.2 for INFVB. For all scores, the credible intervals of MCMC are wider than those of INFVB. In

fact, the credible intervals of the INFVB scores are fully contained within the MCMC credible intervals.

In a nutshell, the posterior distributions of the scores indicate that MCMC and INFVB provide the

same level of goodness of fit to the training data, while MCMC estimation carries greater uncertainty

than INFVB estimation. Lower uncertainty in INFVB estimates is as expected and is consistent with

the literature (Blei et al., 2017; Giordano et al., 2018).

MCMC INFVB

Score Mean [2.5%; 97.5%] Mean [2.5%; 97.5%]

LS 1846.3 [1785.2; 1878.1] 1832.5 [1770.8; 1855.7]
DSS 2762.3 [2588.0; 2864.7] 2720.2 [2552.0; 2796.3]
RPS 2159.6 [1953.9; 2275.4] 2102.5 [1858.2; 2192.0]

Table 7.: Goodness of fit to youth pedestrian injury count data by estimation method

Figure 4 shows the marginal posterior approximations inferred by MCMC and INFVB of selected

model parameters. By and large, the posterior approximations produced by the two methods exhibit a

close correspondence. In particular, the posterior approximations of the fixed link function parameters,

the mean and variance terms of the random link function parameters, the spatial error scale σ and

the spatial association parameter τ coincide closely. For the the negative binomial shape parameter r,

the posterior approximations of MCMC and INFVB overlap, but their modes differ.

Furthermore, we contrast the in-sample predictive accuracy of the MCMC and INFVB estimators

by comparing the predicted injury counts for each census tract. Figure 5 shows histograms of the

predicted injury counts for both MCMC and INFVB. It can be seen that the two distributions overlap

closely with each other. In addition, Figure 6 visualises the difference between the youth pedestrian

injury counts predicted by INFVB ( ŷ INFVB) and the corresponding MCMC prediction ( ŷMCMC) for all

census tracts. The differences in predicted youth pedestrian injury counts are generally small relative

to the observed injury counts (see Figure 2).
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Finally, Figure 7 shows histograms of the posterior means of the spatial errors {φ1, . . . ,φN} for

MCMC and INFVB. The figure suggests that MCMC and INFVB perform equally well at recovering the

unobserved spatial dependence.
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Figure 4.: Marginal posterior approximations of MCMC and INFVB for the youth pedestrian
injury count data
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mation method

6. Conclusion

In this paper, we propose and empirically validate a variational Bayes (VB) method for posterior

inference in a negative binomial model with unobserved spatial heterogeneity and dependence. The

proposed VB method relies on Pólya-Gamma data augmentation to deal with the non-conjugacy of

the negative binomial likelihood and an integrated non-factorised specification of the variational

distribution to capture posterior dependencies. We benchmark the proposed VB method against

MCMC using simulated data as well as real data on youth pedestrian injury counts in the census tracts

of the New York City boroughs Bronx and Manhattan. In both applications, the VB approach is around

45 to 50 times faster than MCMC on a regular eight-core processor and emulates the estimation and

predictive accuracy of MCMC. The marginal posterior approximations inferred by the VB approach

and MCMC also resemble each other closely. The sequential and conditional nature of Gibbs sampling

precludes improvement in computational efficiency through parallelisation. By contrast, INFVB can

be further accelerated by a factor of up to 20 by taking full advantage of its embarrassingly parallel

nature. Thus, INFVB is a scalable alternative to MCMC for the estimation of spatial count data models.

There are several ways in which future work can extend the research presented in the current paper.

First, MCMC and VB should be compared on other data sets from other disciplines to collect additional

evidence about the relative advantages of the two methods. A second directions for future work is

to adapt the proposed VB approach to models with spatio-temporal dependencies. Finally, recent

advances in stochastic optimisation could be leveraged to enable the application of the proposed VB

method to online inference problems (Hoffman et al., 2013). Online estimation updates parameters

continually, as new data points arrive, and thus facilitates the processing of very large data sets and

data streams.
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Appendix A Conditional posterior update of r in MCMC

To obtain the conditional posterior distribution of the dispersion parameter r in MCMC, we follow

the strategy adopted by Zhou et al. (2012). We represent the negative-binomial-distributed count

variable as follows:

yi =
Li
∑

i=1

χl i , Li ∼ Poisson(−r ln(1− pi)), χil
iid∼ Logarithmic(pi).

Thus, the conditional posterior update of r is:

P(r|−)∝
N
∏

i=1

P(Li|r, pi)P(r|r0, h),

r|− ∼ Gamma

�

r0 +
N
∑

i=1

Li , h+
N
∑

i=1

ln(1+ exp(ψi))

�

.

(29)

Since the posterior update of r is conditional on L, we also update the conditional posterior of Li

using the following equation:

P(Li = j|−) = R(yi , j) j = {0,1, . . . , yi}, (30)

R(l, m) =

(

1 l = 0; m= 0
F(l,m)rm

∑l
j=1 F(l, j)r j

l 6= 0; m 6= 0,

F(m, j) =











1 m= 1 & j = 1

0 m< j
m−1

m F(m− 1, j) + 1
m F(m− 1, j − 1) 1≤ j ≤ m.

Appendix B Supplementary material for INFVB

B.1 Important expressions and identities

E[Ω] =







E[ω1] . . . 0
...

. . .
...

0 . . . E[ωN ]







N×N

, E[ωi] =

�

yi +
b̃r

c̃r

�

E





tanh
�

ψi
2

�

2ψi



 ,

E(Li) =
yi
∑

j=1

R r̃(yi , j) j, r̃ = exp
�

Ψ(b̃r)− log(c̃r)
�

,

E[Z∗] =







E[Z∗1]
...

E[Z∗N ]







N×1
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y1−
b̃r
c̃r

2
...

yN−
b̃r
c̃r

2











N×1

, Λβ =







Λβ1
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. . .
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NK×NK

,

where Ψ(.) is a digamma function. E [log(1+ exp(ψi))] and E
�

tanh
�

ψi
2

�

2ψi

�

are obtained using Gauss-

Hermite quadrature (Abramowitz and Stegun, 1948).
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B.2 Important expressions to update q∗(Θ(g)d )

E
�

ln q(Θ(g)c |Θ
(g)
d )
�

= −
1
2

ln|Λ(g)
φ
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1
2
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1
2
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2
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(31)

Thus, the conditional ELBO of INFVB for the spatial negative binomial model is obtained by inserting

expressions presented in equation 31 in the following equation:

Conditional ELBO= −Eq

�

ln q
�

Θ(g)c |Θ
(g)
d

��

+Eq

�

ln P
�

y ,Θ(g)c ,Θ(g)d

��

. (32)

The optimal conditional distribution of Θ(g)c is obtained by maximising the conditional ELBO or

equivalently minimising its negative at each grid point (as detailed in equation 20):

q∗
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d
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= arg min
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d
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. (33)
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