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Abstract:

This paper is concerned with the estimating problem of response quantile with

high dimensional covariates when response is missing at random. Some exist-

ing methods define root-n consistent estimators for the response quantile. But

these methods require correct specifications of both the conditional distribution

of response given covariates and the selection probability function. In this paper,

a debiased method is proposed by solving a convex programming. The estima-

tor obtained by the proposed method is asymptotically normal given a correctly

specified parametric model for the condition distribution function, without the

requirement to specify the selection probability function. Moreover, the proposed

estimator can be asymptotically more efficient than the existing estimators. The

proposed method is evaluated by a simulation study and is illustrated by a real

data example.

Key words and phrases: high dimension, missing at random, marginal response

quantile, optimal weights, selection probability function

http://arxiv.org/abs/2012.05677v3


2

1. Introduction

The estimation and inference problem with missing responses is an impor-

tant topic in statistics and has been studied extensively. It may define a bi-

ased estimator and lead to a loss of efficiency by simply ignoring the subjects

with missing responses. This inspires the development of some approaches,

including the imputation, inverse probability weighting and doubly robust

methods. See, for example, Rosenbaum and Rubin (1983), Hahn (1998),

Hirano et al. (2003), Cao et al. (2009), Rotnitzky et al. (2012), Firpo (2007),

Wang and Qin (2010), Hu et al. (2011) , Zhang et al. (2011), and Markus and Blaise

(2013). Many early literature established asymptotic theory on estimation

and inference problem with missing responses in the classical setting where

the dimension of covariable vector is a constant. However, the asymptotic

results established in the classical setting may not hold in the high dimen-

sional setting when dimension p of the covariable vector diverges with the

sample size n and even possibly is larger than n. With the help of some im-

portant techniques in high dimension, such as the Lasso (Tibshirani (1996)),

adaptive-lasso (Zou (2006)), elastic-net lasso (Zou and Hastie (2005)), there

has been considerable recent developments on estimation and inference

problems when the response is missing at random with high dimensional

covariates.
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There are some important advances for statistical inference on the re-

sponse mean. Farrell (2015) extended the augmented inverse probability

weighting approach in classical setting to high dimensions by incorporat-

ing the regularized penalization to both the outcome regression model and

the selection probability function simultaneously, and proposed an asymp-

totically normal estimator for the response mean. Although the estimator

proposed by Farrell (2015) can be used to make inference on the response

mean, it crucially relies on correct specifications of both the outcome regres-

sion model and the selection probability function. To alleviate the condi-

tions on model specification of unknown functions, Athey et al. (2018) pro-

posed an approximate residual balancing debiasing method and obtained

a
√
n-consistent estimator for the response mean with a correctly speci-

fied linear model on the outcome regression model without the require-

ment to specify the selection probability function. However, it is some-

what unfortunate that the asymptotic normality has not been proved for

the estimator. It should be mentioned that the debiasing techniques are

also used by Javanmard and Montanari (2014), Van de Geer et al. (2014)

andZhang and Zhang (2014)) for estimating regression coefficients.

Another important issue is the estimation of the marginal response

quantile. In this paper, we consider the estimation of the marginal re-
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sponse quantile with response missing at random and high dimensional

covariate vector. There are many researches focusing on quantile regres-

sion (He et al., 2016; Belloni et al., 2019; Pietrosanu et al., 2021; Han et al.,

2019) with low dimensional or high dimensional covariate vector. However,

one can not resort to the conditional quantile regression to obtain an es-

timator for the marginal response quantile directly. To our knowledge,

the only estimator for the marginal response quantile that is shown to be

√
n asymptotically normal is proposed in Belloni et al. (2017). The

√
n-

consistency of the estimator in Belloni et al. (2017) needs that both the

conditional distribution of the response given covariates and the selection

probability function are correctly specified. This motivates us to propose a

new method for estimation of the marginal response quantile. This method

defines an asymptotically normal estimator for the response quantile in the

setting where the condition distribution function is assumed to be a cor-

rectly specified parametric model, without the requirement to specify the

selection probability function. Moreover, the proposed estimator can be

asymptotically more efficient since the asymptotic variance of the proposed

estimator is less than or equal to that in Belloni et al. (2017). This method

consists of the following three steps. First, we assume a single index model

for the conditional distribution of the response given covariates and es-
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tablish a conditional distribution based estimating equation. Second, we

make an adjustment on the equation by adding the difference between the

weighted empirical distribution and the weighted conditional distribution

to the estimating function. Third, we solve the adjusted estimation equa-

tion to obtain the proposed estimator. The weight in the second step is

obtained by solving a convex programming which makes the variance of the

proposed estimator attain minimum and constrains its bias such that it is

√
n-consistent.

The rest of this paper is organized as follows. In Section 2, we develop

a debiased estimating method by solving a convex programming. All as-

sumptions and asymptotic properties are stated in Section 3. Section 4 pro-

vides an equivalent easy-to-implement method for calculating the weights.

Section 5 presents some simulation studies to examine the finite sample

performance of the proposed method. The real data application is reported

in Section 6. Outlines of the proofs of the main theorems are presented in

the Appendix and the technical details are relegated to the supplementary

material.
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2. Methodology

We first introduce some frequently used notations. For positive sequences an

and bn, let bn ≍ an denote limn→∞ a−1
n bn = c for a positive constant c. Let

bn & an denote limn→∞ a−1
n bn ≥ c and bn . an denote limn→∞ a−1

n bn ≤ c.

For a p-dim vector v, we let ‖v‖0 denote the number of non-zero elements

in v, ‖v‖∞ = max{|v1|, · · · , |vp|}, ‖v‖q = (
∑p

i=1 |vi|q)
1/q

for 1 ≤ q < ∞ and

|v| = (|v1|, · · · , |vp|)⊤. For two p-dim vectors u and v, let u⊤v =
∑p

j=1 ujvj

and u⊙ v = (u1v1, · · · , upvp)
⊤. For a matrix A ∈ R

m×n, ‖A‖∞ denotes the

largest absolute value of the elements in A. For a p-dim vector v and a set

S ⊆ {1, · · · , p}, let |S| denote the number of elements in S, vS the vector

in which vSj = vj if j ∈ S, vSj = 0 if j /∈ S, and v−S the vector removing

the elements of v corresponding to the index in S.

Let Y be the response variable and X the p dimension covariable vector.

The population τ−quantile of Y is defined as

q0(τ) ≡ inf{y : FY (y) ≥ τ},

where FY (·) is the distribution function of Y and 0 < τ < 1 is a constant.

For ease of notation, we write q0(τ) to be q0 hereafter. We consider the

case where X is always observed and Y is missing. Let δ denote the bi-

nary missing indicator for Y ; that is, δ = 1 if Y is observed; otherwise,
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δ = 0. Throughout this paper, we assume that the response is missing

at random, that is, P (δ = 1 | Y,X) = P (δ = 1 | X), a commonly used

missing mechanism in literature of statistical inference with missing data

(Rosenbaum and Rubin (1983)). Statistical inference on q0 cannot proceed

without further restrictions when p diverges with n. Hence, we impose the

following structure on the conditional density of response given covariates

fY |X(y | X = x) = f(y, x⊤β) with f being a known function and β a p-dim

model parameter vector. The true unknown parameter vector is denoted

by β0. Although p may be larger than n, it is often true that only ‖β0‖0

among p covariates have nonzero coefficients and ‖β0‖0 is fixed or diverges

much slower than n. The corresponding conditional distribution function

is denoted by h(y, x⊤β) =
∫ y

−∞
f(u, x⊤β)du. Without loss of generality, we

assume that the intercept is zero and all covariates are centered (See, for

example, Section 2.2 in Buhlmann and van de Geer (2011), page 8).

Suppose we have n independent and identically distributed observations

(Xi, δi, Yi) , i = 1, · · · , n,

where some of Yi’s are missing and Xi’s are completely observed. It is noted

that E[h(y,X⊤β0)] = FY (y). A natural way to estimate q0 is to solve

1

n

n
∑

i=1

h(q,X⊤
i β̂) = τ, (2.1)
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where β̂ is given by the following Lasso method with complete case (CC)

analysis

β̂ = argmin
β

−
n
∑

i=1

δi log(f(Yi, X
⊤
i β)) + λ ‖β‖1 (2.2)

and λ ≍
√

log(p)/n. The solution of (2.1) is denoted by q̃. q̃ is typically not

a
√
n-consistent estimator of q0 since β̂ is generally not

√
n-consistent due

to its high dimensionality. Therefore, to define a
√
n-consistent estimator

for q0, we consider a modified estimation equation of (2.1), which is given

as follows

1

n

n
∑

i=1

h(q,X⊤
i β̂) +

∑

{i:δi=1}

wi

{

I [Yi ≤ q]− h(q,Xiβ̂)
}

= τ, (2.3)

where wi for 1 ≤ i ≤ n are data-dependent weights. The exact solution of

(2.3) may not exist due to the non-smoothness of the estimating function.

However, just as discussed in Han et al. (2019) and Zhang et al. (2011),

any value of q that minimizes the absolute value of the difference between

two sides of (2.3) can be taken as our estimate and the practical impact

of this arbitrariness are negligible in large samples. With a given w =

(w1, w2, · · · , wn), an estimator for q0 can be obtained by solving (2.3), which

is denoted by q̂w. If wi for 1 ≤ i ≤ n are taken to be zero, we have

q̂w = q̃, which is not
√
n-consistent. If the selection probability function

π(x) = E [δ | X = x] is specified by a parametric model g(x⊤γ) and then wi
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is taken as the inverse of g(X⊤
i γ̂) with γ̂ obtained by the lasso method, the

resulting estimator is the augmented inverse probability weighted estimator

in Belloni et al. (2017). When only one of fY |X(Y | X = x) and π(x) is

correctly specified, the augmented inverse probability weighted estimator

may not be
√
n-consistent to q0 due to the same reason as q̃, where β̂ and

γ̂ are generally not
√
n-consistent due to high dimension of X . This is

different from the classical case where the dimension of X is a constant.

However, its asymptotic normality is proved when both fY |X(Y | X = x)

and π(x) are correctly specified. Clearly, the weights play a crucial role

for the asymptotic property of the adjusted estimating equation estimator

defined by (2.3). Hence, we propose a debiased method by constructing

optimal weights, which are obtained by solving a convex programming, such

that not only the resulting estimator is asymptotically normal but also its

asymptotic variance attains minimum. This method hence may define an

asymptotically more efficient estimator compared to the existing ones and

avoids the requirement to specify π(x).

This method consists of the following steps:

Step 1 Calculate pilot estimators β̂ and q̃ by solving (2.2) and (2.1), re-

spectively.

Step 2 With pilot estimators β̂ and q̃, construct the debiasing weight ŵ as
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follows

ŵ = argmin
w

∑

{i:δi=1}

w2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂)) (2.4)

s.t.

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)Xi −

∑

{i:δi=1}

wiḣu(q̃, X
⊤
i β̂)Xi

∥

∥

∥

∥

∥

∥

∞

≤ ∆,

(2.5)

∑

{i:δi=1}

wi = 1, (2.6)

where ∆ is a suitable tuning parameter tending to zero.

Step 3 Replace w in (2.3) by ŵ and solve the following modified equation

1

n

n
∑

i=1

h(q,X⊤
i β̂) +

∑

{i:δi=1}

ŵi

{

I [Yi ≤ q]− h(q,Xiβ̂)
}

= τ. (2.7)

The proposed estimator q̂ is the solution of (2.7). The optimization of the

convex programming in Step 2 is to obtain weights such that q̂ is root-n

consistent, and its asymptotic variance attains minimum which is discussed

in the following section.

3. Asymptotic Properties

In order to investigate asymptotic properties of the proposed estimator, we

first list the following conditions.
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(A.1) (i) The parameter spaces Q for q is compact, and q0 is in the interior

of Q.

(ii) Y is a real value continuous random variable with strictly increas-

ing cumulative distribution funtion.

(A.2) infx π(x) > 0.

(A.3) (i) 0 < infx |h(q0, x⊤β0)| ≤ supx |h(q0, x⊤β0)| < 1.

(ii) sup(q,u) |ḣu(q, u)| < ∞, where ḣu(q, u) = ∂h(q, u)/∂u.

(iii) There exists positive constants L1 and L2 such that |ḣu(q1, u1)−

ḣu(q2, u2)| ≤ L1 (|q1 − q2|+ |u1 − u2|) and |f(q1, u1) − f(q2, u2)| ≤

L2 (|q1 − q2|+ |u1 − u2|).

(A.4) (i) max1≤j≤p |Xj| ≤ K almost surely, where K is a positive constant.

(ii) Σ ≡ E[XX⊤] ∈ R
p×p satisfies that Λmax ≤ cmax < ∞ and

Λmin ≥ cmin > 0, where Λmin and Λmax are the smallest and the

largest eigenvalues of Σ respectively, and cmax and cmin are positive

constants.

(A.5) LetD = (X, Y, δ) and ρβ(x, ỹ)= −δlog
(

f(y, x⊤β)
)

with ỹ = (y, δ) be a

loss function which is assumed to be a convex function in β. (i) There

exists positive constants c and cm such that E[ρβ(D) − ρβ0(D)] ≥
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cm‖β − β0‖22 holds for all β with ‖β − β0‖1 ≤ c. (ii) For all β and β̃,

|ρβ(x, ỹ)− ρβ̃(x, ỹ)| ≤ Lρ|x⊤β−x⊤β̃|, where Lρ is a positive constant

not depending on ỹ.

Remark 1. Condition (A.1) is often assumed for quantile estimation, and

(A.1)(ii) ensures the identifiability of q0. See, for example, Firpo (2007),

Han et al. (2019). Condition (A.2) is fundamental in the missing problem,

which means that each individual with the covariates values has positive

probability to be observed. Condition (A.3) puts some requirements on

the data-generating model. (A.3)(i) assumes that P (Y ≤ q0 | X = x) is

bounded away from zero and one. It is reasonable since q0 is the τ -quantile

of Y with 0 < τ < 1. (A.3)(ii) is a boundness assumption on the partial

derivative of h(q, u) and (A.3)(iii) assumes h(q, u) and f(q, u) satisfy Lips-

chitz conditions. Condition (A.4)(i) is a commonly used condition in liter-

ature of high dimensions. See, for example, Assumption A in Van de Geer

(2008), (C3) in Van de Geer et al. (2014), etc. Condition (A.5) (i) and (ii)

are commonly used conditions for the consistency of lasso estimators. See,

for example, Assumption L, B in Van de Geer (2008), margin condition of

Theorem 6.4 and conditions of Theorem 14.5 in Buhlmann and van de Geer

(2011), (A.3) and (A.4) in Van de Geer et al. (2014). Condition (A.5) (i)

holds, for example, when ρβ(x, ỹ) is twice differentiable on β, and the ex-
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pectation of the second derivative is larger than some positive constant.

Define A = (ḣu(q0, X
⊤β0)X⊤, 1)⊤ ∈ R

(p+1)×1 and

η∗ = argmin
η∈R(p+1)

1

4
E

[

η⊤δAA⊤η

h(q0, X⊤β0)(1− h(q0, X⊤β0))

]

−E[A⊤]η. (3.8)

The following theorem states that the proposed method defines an asymp-

totically normal estimator of q0.

Theorem 1. Assume s4 log(p) = o(
√
n) where s = ‖β0‖0 ∨ ‖η∗‖0 and the

smallest eigenvalue of E[AA⊤] is bounded away from zero. Under conditions

(A.1)–(A.5), if λ ≍
√

log(p)/n and ∆ ≍ n−5/16(log(p))1/8, then we have

√
nσ−1(q̂ − q0)

d→ N(0, 1), (3.9)

where σ2 = T−2V , T = E[f(q0, X
⊤
i β

0)] and

V =
1

4
E

[

η∗⊤δAA⊤η∗

h(q0, X⊤β0)(1− h(q0, X⊤β0))

]

+Var
(

h(q0, X
⊤β0)

)

.

The sparsity condition s4 log(p) = o(
√
n) seems somewhat stronger than

that used by Belloni et al. (2017). However, Belloni et al. (2017) need to

specify both fY |X(Y | X = x) and π(x) correctly to prove the asymptotic

normality of the augmented inverse probability weighted estimator, and the

proposed method defines an asymptotically normal estimator without spec-

ifying π(x). In addition, the proposed method can define a more efficient
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estimator than that of Belloni et al. (2017). Next, we show this by ana-

lyzing V and comparing it with the asymptotic variance in Belloni et al.

(2017). For simplicity, denote τ(X) = h(q0, X
⊤β0)(1− h(q0, X

⊤β0)).

Note that η∗ can be explicitly written as follows

η∗ = 2

(

E

[

δAA⊤

τ(X)

])−1

E[A].

Then we have

V = E[A⊤]

(

E

[

δAA⊤

τ(X)

])−1

E[A] + Var
(

h(q0, X
⊤β0)

)

.

Let e(X) = τ(X)−1A and

r∗(X) = e(X)⊤
(

E
[

δτ(X)e(X)e(X)⊤
])−1

E[δτ(X)e(X)π(X)−1]. (3.10)

Then we have

V = E
[

δτ(X)r∗(X)2
]

+Var
(

h(q0, X
⊤β0)

)

.

The asymptotic variance derived by Belloni et al. (2017) is σ2
b = T−2Vb

where

Vb =E
[

δτ(X)r(X)2
]

+Var
(

h(q0, X
⊤β0)

)

and r(X) = π(X)−1. Let F = {f : E[δτ(X)f(X)2] ≤ ∞} and define

the inner product on F by 〈f1, f2〉# = E[δτ(X)f1(X)f2(X)]. Then F is
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a Hilbert space with respect to 〈·, ·〉# and the norm induced by the inner

product satisfies ‖f‖2# = E[δτ(X)f(X)2]. Then we have

V = ‖r∗‖2# +Var
(

h(q0, X
⊤β0)

)

.

and

Vb =‖r‖2# +Var
(

h(q0, X
⊤β0)

)

.

The form of r∗(X) in (3.10) indicates that r∗(X) is the projection of r(X) on

the space spanned by e(X). Hence we have ‖r∗‖2# ≤ ‖r‖2# and σ2 ≤ σ2
b . The

inequality holds if r(X) is not in the space spanned by e(X). Note that Vb is

actually the semiparametric efficiency bound established in (Firpo, 2007).

Compared to Firpo (2007), we make an extra parametric assumption on

fY |X(y | X = x), our results indicate that this parametric assumption may

induce a smaller efficiency bound.

The asymptotic variance of the proposed estimator can be consistently

estimated as follows. Define σ̂2 = (T̂ )−2V̂ , where T̂ = 1
n

∑n
i=1 f(q̃, X

⊤
i β̂)

and V̂ = V̂1 + V̂2 with

V̂1 = n
∑

{i:δi=1}

ŵ2
i h(q̃, X

⊤
i β̂)

{

1− h(q̃, X⊤
i β̂)

}

and

V̂2 =
1

n

n
∑

i=1



h(q̃, X⊤
i β̂)

2 −
{

1

n

n
∑

i=1

h(q̃, X⊤
i β̂)

}2


 .
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Theorem 2. Under conditions of Theorem 1, we have σ̂2 p→ σ2.

The consistent variance estimation σ̂2 depends on ŵ by V̂1 only and

V̂1 is just the objective function in (2.4)–(2.6) with wi replaced by ŵi for

i = 1, 2, ..., n. This makes that the variance estimation and hence the

asymptotic variance attains the minimum. The constraint in (2.5) controls

the bias of the resulting estimator.

4. Derivation of the optimal weights

After establishing the theoretical properties of the proposed estimator, we

next focus on the computation of the weight ŵ. From Step 1 and Step 2

of the proposed method, we need to make concrete choice for the tuning

parameter λ and ∆. We apply the 10-fold cross validation (CV) method

to choose λ. For the selection of tuning parameter ∆, since the asymptotic

normality of q̂ implies E[(q̂− q0)
2] = σ2/n+ r(∆) when q̂ is uniform square

integrate, where r(∆) = o(n−1) is the second-order term of mean square

error of q̂. Hence ∆ affects the second-order term of the mean square error of

the estimator and hence its selection might not be so critical. According to

Theorem 1, we take ∆ = cn−5/16(log(p))1/8, where c is a positive constant.

We set c to be 0.10 which has led to good finite sample performance in

our simulations, and if the optimizing problem is infeasible, update c by
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0.11, 0.12, 0.13, · · · in turn until the constraints (2.5) and (2.6) have feasible

points. Furthermore, to ensure the numerical implementation, we provide

an equivalent easy-to-implement alternative to compute ŵ. According to

Athey et al. (2018), we can establish a 1 : 1 mapping between the optimizing

problem (2.4)–(2.6) and the following optimizing problem

ŵ =argmin
w



(1− ζ̂)
∑

{i:δi=1}

w2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂))

+ζ̂

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)Xi −

∑

{i:δi=1}

wiḣu(q̃, X
⊤
i β̂)Xi

∥

∥

∥

∥

∥

∥

2

∞





s.t.
∑

{i:δi=1}wi = 1,

(4.11)

where

ζ̂ =argmax
ζ∈[0,1)

min
w





∑

{i:δi=1}

w2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂))

+
ζ

(1− ζ)

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)Xi −

∑

{i:δi=1}

wiḣu(q̃, X
⊤
i β̂)Xi

∥

∥

∥

∥

∥

∥

2

∞

− ζ

(1− ζ)
∆2





s.t.
∑

{i:δi=1} wi = 1

(4.12)
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is the solution to the dual problem of (2.4)–(2.6). Note that (4.11) is equal

to

ŵ =argmin
w

min
Γ



(1− ζ̂)
∑

{i:δi=1}

w2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂)) + ζ̂Γ2





s.t.

∥

∥

∥

1
n

∑n
i=1 ḣu(q̃, X

⊤
i β̂)Xi −

∑

{i:δi=1}wiḣu(q̃, X
⊤
i β̂)Xi

∥

∥

∥

∞
≤ Γ,

∑

{i:δi=1}wi = 1,

(4.13)

and the optimizing problem (4.13) is a quadratic programming. Then we

can obtain ŵ by using the solve.QP from the quadprog package.

The calculation of ζ̂ can be achieved by the following three steps.

Step 1 Consider a set of values G = {0, 0.01, · · · , 0.98, 0.99} for ζ and de-

note the l-th value by ζl.

Step 2 For each ζl in G, calculate a weight by (4.13) with ζ̂ replaced by ζl,

and denote the weight by ŵ(ζl).

Step 3 With ŵ(ζl) for all ζl ∈ G, according to (4.12), approximate ζ̂ by

ζ̂ =argmax
ζl∈G





∑

{i:δi=1}

ŵ(ζl)
2
ih(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂))

+
ζl

(1− ζl)

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)Xi −

∑

{i:δi=1}

ŵ(ζl)iḣu(q̃, X
⊤
i β̂)Xi

∥

∥

∥

∥

∥

∥

2

∞

− ζl
(1− ζl)

∆2

]

.
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Then according to (4.11), the solution to the optimizing problem (2.4)–(2.6)

is given by ŵ = ŵ(ζ̂). In contrast to Athey et al. (2018), which simply takes

ζ̂ = 0.5 for every ∆, we provide a data-adaptive and reasonable computing

way to obtain ζ̂.

5. Simulation Study

To evaluate the numerical performance of the proposed method, we con-

ducted a simulation study with the design similar to Tan (2020) and calcu-

lated the augmented inverse probability weighting (AIPW) estimator q̂aipw

due to Belloni et al. (2017) as a comparison. Unless otherwise specified, a

logistic model of δ versus X and a standard normal linear conditional distri-

bution of Y given X were assumed for π(X) and fY |X(y | X), respectively.

Let X = (X1, · · · , Xp), where Xj for j = 1 and 2 was generated from

a uniform distribution U(−5, 5) and Xj for j = 3, · · · , p from a truncated

normal with mean 0, variance 1/2 and truncation constant 5. In addition,

let X† = (X†
1, · · · , X†

p), where X†
j = Xj − X2

j + 2X3
j for j = 1, 2, 3 and 4

and X†
j = Xj for j = 5, · · · , p. Consider the median case (τ = 0.5) under

the following two data-generating processes (DGP):

(DGP1) Generate Y given X from a normal distribution

N(0.25X1 + 0.125X2 + 0.25X3 + 0.125X4, 1)
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and generate δ given X from a Bernoulli distribution with

P (δ = 1 | X) =
exp(1− 0.25X†

1 − 0.125X†
2 − 0.25X†

3 − 0.125X†
4)

1 + exp(1− 0.25X†
1 − 0.125X†

2 − 0.25X†
3 − 0.125X†

4)
.

(DGP2) Generate Y given X as in DGP1 but generate δ given X from a

Bernoulli distribution with

P (δ = 1 | X) =
exp(1− 0.25X1 − 0.125X2 − 0.25X3 − 0.125X4)

1 + exp(1− 0.25X1 − 0.125X2 − 0.25X3 − 0.125X4)
.

Depending on above data generation processes where π(X) involves two

completely different sets of regressors, π(X) is misspecified under DGP1

and correctly specified under DGP2.

For each of the two DGPs, the simulation was conducted based on

1000 replications with sample size of n = 200, 400 and 800 and covariates

number of p =1
4
n, 1

2
n, n and 2n, respectively. From the 1000 simulated

values of q̂aipw and q̂, we computed the Monte Carlo bias (Bias), standard

deviation (SD), root mean square error (RMSE). For nominal confidence

level 1 − α = 0.95, we evaluated the coverage probabilities (CP) of the

confidence intervals. The simulation results are reported in Table 1 and

Table 2 for DGP1 and DGP2, respectively. In addition, we compared the

estimated standard deviation of q̂ (ESD) based on the asymptotic variance

given by theorem 2 with the Monte Carlo standard deviation based on 1000

repetitions, which are reported in Table 3.
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[Insert Table 1, Table 2 and Table 3 about here.]

From Table 1, Table 2 and Table 3, we have the following observations.

(i) In the case where π(X) is misspecified, q̂ outperforms q̂aipw in terms

of Bias, RMSE and CP for all combinations of n and p, especially

when p diverges with n at a relatively large rate. Although q̂aipw has

generally slightly smaller SD than q̂, its Bias is approximately 5 times

as large as that of q̂. In addition, the coverage probability based on of

the AIPW estimator is considerably lower than the nominal level 95%.

On the contrary, the proposed estimator performs well with coverage

probabilities generally closing to 0.95, which is expected. This could

be explained by the fact that the root-n asymptotic normality of q̂aipw

requires that π(X) is correctly specified and the requirement is not

satisfied in this case. The fact also implies that the AIPW method

cannot be used to make statistical inference for q0 in the case where

π(X) is misspecified. On the contrary, the calculation of the proposed

estimator q̂ does not involve π(X) and hence the asymptotic normality

of q̂ is robust to the misspecification of π(X).

(ii) In the case where π(X) is correctly specified, both q̂ and q̂aipw perform

well while the standard deviations of q̂ are generally smaller than those

of q̂aipw, which is in agreement with the asymptotics in theorem 2.
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(iii) The estimated standard deviations are close to the empirical standard

deviations for the proposed estimator q̂.

Overall, our theoretical results are supported by the simulation studies.

Although q̂aipw has comparable performance to q̂ in the case where π(X) is

correctly specified, it is hard to specify a correct model for π(X) in practice.

Hence the proposed method is more trustworthy and hence recommended.

In addition, our simulation results indicate that the proposed estimator

performs fairly well even if this sparsity condition s = o(n1/8(log(p))−1/4)

is violated. This implies that the sparsity condition may be weaken. In

Section S3 of the supplementary material, we weaken the sparsity condition

while maintaining the
√
n consistency via data splitting

6. Real Data Analysis

We provide an application to analyzing a medical dataset collected on 2139

HIV-infected subjects enrolled in AIDS clinical Trial Group Protocol 175

(ACTG 175). The original data were collected by Hammer et al. (1996).

ACTG 175 is a randomized clinical trial where patients are randomized to

four antiretroviral regimens in: zidovudine (ZDV) only, ZDV+didanosine

(ddI), ZDV+zalcitabine (ddC), and ddI only. Following the analysis in

Davidian et al. (2005), we consider two groups: the group with ZDV alone
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(control) and the group with the other three therapies (treatment). The

dataset contains n = 2139 patients, n0 = 532 of whom participated in

the control group and n1 = 1607 of whom participated in the treated group

(treat: 0=control). This study evaluates the treatment effect by the change

in CD4 count from baseline to 96 ± 5 weeks (CD496) which is a measure

of immunologic status. Previous work analyzed the dataset by the average

treatment effect (see, Davidian et al. (2005), Han (2014) and Han et al.

(2019)). Our main interest is the median treatment effect m = m1 − m0,

where m1 and m0 are the median of CD496 | treat = c with c = 1 and 0

respectively.

However, there are 797 subjects whose CD496 are missing (r: 0=miss-

ing) due to dropout from the study. At the baseline and during the follow-

up, 23 covariates (X) correlated with CD496 are obtained. There may

be interactions between covariates X . To employ the proposed method,

we treat the observed covariates and their two-way interactions as a new

covariate vector. Specifically, we denote it by a vector U whose j-th com-

ponent Uj = Xj for 1 ≤ j ≤ 23, and Uj = XlXj−23l+l(l−1)/2 for [23l −

(l − 1)(l − 2)/2] < j ≤ [23(l + 1) − l(l − 1)/2] and l = 1, 2, · · · , 23. The

dimension of U is 299. As analyzed in Section 3, the selection probability

function is unknown and difficult to specify correctly, in which case AIPW
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method performs poorly and cannot be used to make inference, and hence

we apply our method to the real data analysis only here. We consider a

standard normal distribution for CD496 | U, treat = c with c = 0, 1. The

confidence intervals for m1, m0 and m obtained via the proposed method

are reported in Table 4.

[Insert Table 4 about here.]

From Table 4, it can be seen that people who received three newer

treatments had a potential median effect of m̂ = 48 compared with those

who received ZDV alone. Moreover, this effect is significant since the 95%

confidence interval does not contain 0.

Supplementary Materials Supplementary materials are available

online, which contain the lemmas that used in the proofs of Theorem 1 and

Theorem 2, some additional simulation results for Section 5 and further

explorations about the sparsity condition.

Appendix. Proof of Main Results

Appendix contains proofs of Theorem 1 and Theorem 2. Note that constant

c may vary from lines and all of them are positive.
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Proof of Theorem 1. For the simplicity of illustration, let

F̂n (q) ,
1

n

n
∑

i=1

h(q,X⊤
i β̂) +

∑

{i:δi=1}

ŵiξ̂i (q) ,

where ξ̂i (q) = I [Yi ≤ q]−h(q,X⊤
i β̂). An outline of the proof of Theorem 1

is as follows. According to mean value theorem, it follows that

F̂n (q̂)− F̂n (q0) =
1

n

n
∑

i=1

f(q̄, X⊤
i β̂) (q̂ − q0) +

∑

{i:δi=1}

ŵi

{

ξ̂i (q̂)− ξ̂i (q0)
}

,

(6.14)

where q̄ is between q0 and q̂. On the one hand, we show that

1

n

n
∑

i=1

f(q̄, X⊤
i β̂) (q̂ − q0) =

{

E
[

f(q0, X
⊤β0)

]

+ op(1)
}

(q̂ − q0) (6.15)

and

∑

{i:δi=1}

ŵi

{

ξ̂i (q̂)− ξ̂i (q0)
}

= op (|q̂ − q0|) + op
(

n−1/2
)

. (6.16)

On the other hand, we show that

F̂n (q̂)− F̂n (q0) =− 1

n

∑

{i:δi=1}

A⊤
i η

∗ξi (q0)

2h(q0, X
⊤
i β

0)(1− h(q0, X
⊤
i β

0))

−
{

1

n

n
∑

i=1

h(q0, X
⊤
i β

0)− E
[

h(q0, X
⊤β0)

]

}

+ op
(

n−1/2
)

,

(6.17)

where Ai = (ḣu(q0, X
⊤
i β

0)X⊤
i , 1)

⊤ ∈ R
(p+1)×1, ξi(q) = I[Yi ≤ q]−h(q,X⊤

i β
0)

and η∗ is defined in (3.8). (6.15)–(6.17) together with (6.14) implies the fol-
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lowing asymptotic representation

−
{

E[f(q0, X
⊤β0)] + op(1)

}

(q̂ − q0)

=
1

n

∑

{i:δi=1}

A⊤
i η

∗ξi (q0)

2h(q0, X⊤
i β

0)(1− h(q0, X⊤
i β

0))

+

{

1

n

n
∑

i=1

h(q0, X
⊤
i β

0)− E
[

h(q0, X
⊤β0)

]

}

+ op
(

n−1/2
)

.

(6.18)

Then the main result (3.9) in Theorem 1 is proved by the central limit

theorem and Slutsky’s theorem.

(a) First, we prove (6.15). Lemma 1 in the supplementary material

proves that
∥

∥

∥
β̂ − β0

∥

∥

∥

1
= Op

(

∥

∥β0
∥

∥

0

√

log(p)

n

)

. (6.19)

Then we have ‖β̂ − β0‖1 = op(1) by the assumption on ‖β0‖0. If the

consistency of q̂ is proved, (6.15) follows immediately by the law of large

numbers. To prove the consistency of q̂, on the basis of Theorem 5.9 in

Van der Vaart (2000) and Condition (A.1), it suffices to check that

sup
q

∣

∣

∣
F̂n (q)−E

[

h(q,X⊤β0)
]

∣

∣

∣
= op (1) . (6.20)

Let Fn (q) , n−1
∑n

i=1 h(q,X
⊤
i β

0). Then we can write

sup
q

∣

∣

∣
F̂n (q)−E

[

h(q,X⊤
1 β

0)
]

∣

∣

∣

≤ sup
q

∣

∣

∣
F̂n (q)− Fn (q)

∣

∣

∣
+ sup

q

∣

∣

∣
Fn (q)− E

[

h(q,X⊤β0)
]

∣

∣

∣

,Un1 + Un2.

(6.21)
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First, Un2 = op (1) can be proved according to Lemma 2.4 in Newey and McFadden

(1986). Next, we prove Un1 = op(1). By mean value theorem, we have

Un1 ≤ sup
q

∣

∣

∣

1

n

n
∑

i=1

ḣu(q,X
⊤
i β̃)X

⊤
i (β̂ − β0)

∣

∣

∣

+ sup
q

∣

∣

∣

∑

{i:δi=1}

ŵiḣu(q,X
⊤
i β̄)X

⊤
i (β̂ − β0)

∣

∣

∣

+ sup
q

∣

∣

∣

∑

{i:δi=1}

ŵiξi (q)
∣

∣

∣

,Un11 + Un12 + Un13,

(6.22)

where β̃ and β̄ are between β0 and β̂. Then the problem reduces to show

that Un1i = op(1) for i = 1, 2 and 3.

By Conditions (A.3)(ii), (A.4)(i) and (6.19), we have

Un11 ≤ c
∥

∥

∥
β̂ − β0

∥

∥

∥

1
= op(1)

and

Un12 ≤ c
∑

{i:δi=1}

|ŵi|
∥

∥

∥
β̂ − β0

∥

∥

∥

1
= op





∑

{i:δi=1}

|ŵi|



 .

Then Un12 = op(1) is proved if we can show that
∑

{i:δi=1} |ŵi| = Op(1).

Lemma 3 in the supplementary material proves that the constraints (2.5)

and (2.6) can be satisfied with probability tending to 1 by taking wi to be

w̃i = π (Xi)
−1 /

∑

{i:δi=1} π (Xi)
−1. Recalling the definition of ŵ, note that

ŵ not only satisfies the constraints (2.5) and (2.6), but also minimizes the
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objective function in (2.4). Then we have

∑

{i:δi=1}

ŵ2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂)) ≤
∑

{i:δi=1}

w̃2
i h(q̃, X

⊤
i β̂)(1− h(q̃, X⊤

i β̂)).

(6.23)

By Condition (A.2), the right side of (6.23) is Op(n
−1). This together with

Condition (A.3)(i) proves
∑

{i:δi=1} ŵ
2
i = Op(n

−1). Since
(

∑

{i:δi=1} |ŵi|
)2

≤

n
∑

{i:δi=1} ŵ
2
i by Cauchy-Schwartz inequality, it follows that

∑

{i:δi=1} |ŵi| =

Op(1).

By (6.22), it remains to show that Un13 = op(1). By the Lagrange

multiplier method, Lemma 4 in the supplementary material provides an

alternative representation of ŵi as follows

ŵi =
1

2n

Â⊤
i η̂

h(q̃, X⊤
i β̂)(1− h(q̃, X⊤

i β̂))
,

where Âi = (ḣu(q̃, X
⊤
i β̂)X

⊤
i , 1)

⊤ ∈ R
(p+1)×1 and

η̂ = argmin
η∈R(p+1)

1

4n

n
∑

i=1

η⊤δiÂiÂ
⊤
i η

h(q̃, X⊤
i β̂)(1− h(q̃, X⊤

i β̂))
− 1

n

n
∑

i=1

Â⊤
i η +

∥

∥η−(p+1)

∥

∥

1
∆.

Define

w∗
i =

1

2n

A⊤
i η

∗

h(q0, X⊤
i β

0)(1− h(q0, X⊤
i β

0))
(6.24)

for i ∈ {i : δi = 1}. Then we can write

Un13 ≤ sup
q

∣

∣

∣

∑

{i:δi=1}

(ŵi − w∗
i )ξi (q)

∣

∣

∣
+ sup

q

∣

∣

∣

∑

{i:δi=1}

w∗
i ξi (q)

∣

∣

∣

,Jn1 + Jn2.

(6.25)
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According to the restrictions on the sparsity s and the rate of ∆, the condi-

tions of Lemma 6 in the supplementary material is satisfied. Then Lemma

6 shows that

‖ŵ − w∗‖1 = op(1), (6.26)

which implies Jn1 = op(1). By Theorem 37 in Pollard (1984) and Lemma 6

in the supplementary material, we have Jn2 = op(1). These together with

(6.25) prove Un13 = op(1). Then the consistency of q̂ is proved.

(b) Next, we prove (6.16). It is noted that

∣

∣

∣

∑

{i:δi=1}

ŵi

(

ξ̂i (q̂)− ξ̂i (q0)
) ∣

∣

∣
≤
∣

∣

∣

∑

{i:δi=1}

w∗
i

{

ξ̂i (q̂)− ξ̂i (q0)
} ∣

∣

∣

+
∣

∣

∣

∑

{i:δi=1}

(ŵi − w∗
i )
{

ξ̂i (q̂)− ξ̂i (q0)
} ∣

∣

∣

,Rn1 +Rn2.

(6.27)
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By some algebras and mean value theorem, it follows that

|Rn1| ≤
∣

∣

∣

∑

{i:δi=1}

w∗
i {ξi (q̂)− ξi (q0)}

∣

∣

∣

+
∣

∣

∣

∑

{i:δi=1}

w∗
i

{

h(q̂, X⊤
i β̂)− h(q0, X

⊤
i β̂)−

[

h(q̂, X⊤
i β

0)− h(q0, X
⊤
i β

0)
]

} ∣

∣

∣

≤ sup
|q−q0|=O(ιn)

∣

∣

∣

∑

{i:δi=1}

w∗
i {ξi (q)− ξi (q0)}

∣

∣

∣

+
∣

∣

∣

∑

{i:δi=1}

w∗
i

[

f(q̄, X⊤
i β̂)− f(q̆, X⊤

i β
0)
]

(q̂ − q0)
∣

∣

∣

,Rn11 +Rn12,

(6.28)

where q̄ and q̆ are between q0 and q̂. Denote ιn the convergence rate of

q̂. According to the Theorem 37 in Pollard (1984) and Lemma 6 in the

supplementary material, we have

Rn11 = op(n
−1/2 ∨ ιn). (6.29)

By Conditions (A.3)(iii) and (A.4)(i), we have

Rn12 ≤c
∑

{i:δi=1}

|w∗
i |
{

|q̄ − q̆|+ |X⊤
i (β̂ − β0)|

}

|q̂ − q0|

≤c
∑

{i:δi=1}

|w∗
i |
{

|q̄ − q̆|+
∥

∥

∥
β̂ − β0

∥

∥

∥

1

}

|q̂ − q0|.

Similar to the previous result, we can show that
∑

{i:δi=1} |w∗
i | = Op(1).

This together with (6.19) and the consistency of q̂ proves

Rn12 = op(ιn). (6.30)



31

Equations (6.28), (6.29) and (6.30) prove

Rn1 = op(n
−1/2) + op(ιn). (6.31)

By some algebras, it is easy to show that

Rn2 ≤
∣

∣

∣

∑

{i:δi=1}

(ŵi − w∗
i ) {ξi(q̂)− ξi(q0)}

∣

∣

∣

+
∣

∣

∣

∑

{i:δi=1}

{ŵi − w∗
i }
{

h
(

q̂, X⊤
i β̂
)

− h
(

q0, X
⊤
i β̂
)} ∣

∣

∣

+
∣

∣

∣

∑

{i:δi=1}

{ŵi − w∗
i }
{

h
(

q̂, X⊤
i β

0
)

− h
(

q0, X
⊤
i β

0
)}

∣

∣

∣

,Rn21 +Rn22 +Rn23.

(6.32)

By Cauchy-Schwartz inequality, we have

Rn21 ≤







n
∑

{i:δi=1}

(ŵi − w∗
i )

2







1/2
{

1

n

n
∑

i=1

[ξi(q̂)− ξi(q0)]
2

}1/2

≤







n
∑

{i:δi=1}

(ŵi − w∗
i )

2







1/2
{

sup
|q−q0|=O(ιn)

1

n

n
∑

i=1

[ξi(q)− ξi(q0)]
2

}1/2

.

(6.33)
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Notice that

sup
|q−q0|=O(ιn)

1

n

n
∑

i=1

{ξi(q)− ξi(q0)}2

≤ sup
|q−q0|=O(ιn)

{

1

n

n
∑

i=1

{ξi(q)− ξi(q0)}2 − E
[

{ξi(q)− ξi(q0)}2
]

}

+ sup
|q−q0|=O(ιn)

E
[

{ξi(q)− ξi(q0)}2
]

= sup
|q−q0|=O(ιn)

{

1

n

n
∑

i=1

{ξi(q)− ξi(q0)}2 − E
[

{ξi(q)− ξi(q0)}2
]

}

+O(ιn)

=Op(n
−1/2 ∨ ιn)

(6.34)

by Theorem 37 in Pollard (1984). In addition, Lemma 6 in the supplemen-

tary material proves that

n ‖ŵ − w∗‖22 = op(n
−1/2). (6.35)

Equations (6.33), (6.34) and (6.35) imply

Rn21 = op
((

n−1/4
) (

n−1/4 ∨ ι1/2n

))

= op

(

(

n−1/4 ∨ ι1/2n

)2
)

= op(n
−1/2 ∨ ιn).

(6.36)

By mean values theorem and Condition (A.3)(ii), we have

Rn22 ≤c ‖ŵ − w∗‖1 |q̂ − q0|.

This together with (6.26) proves

Rn22 = op(|q̂ − q0|). (6.37)
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Similarly, it can be proved that

Rn23 = op(|q̂ − q0|). (6.38)

Then equations (6.32), (6.36), (6.37) and (6.38) prove

Rn2 = op(n
−1/2) + op(ιn). (6.39)

Relations (6.27), (6.31) and (6.39) together prove (6.16).

(c) Finally, we prove (6.17). Note that F̂n (q̂) = τ = E[h(q0, X
⊤β0)].

Then we have

F̂n (q̂)− F̂n (q0) = E
[

h(q0, X
⊤β0)

]

− F̂n (q0)

=
{

E
[

h(q0, X
⊤β0)

]

− Fn (q0)
}

−
{

F̂n (q0)− Fn (q0)
}

.

(6.40)

By mean value theorem and some algebras, it follows that

F̂n (q0)− Fn (q0)

=





1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)X

⊤
i −

∑

{i:δi=1}

ŵiḣu(q̃, X
⊤
i β̂)X

⊤
i





(

β̂ − β0
)

+
1

n

n
∑

i=1

[

ḣu(q0, X
⊤
i β̃)− ḣu(q̃, X

⊤
i β̂)

]

X⊤
i

(

β̂ − β0
)

−
∑

{i:δi=1}

ŵi

[

ḣu(q0, X
⊤
i β̃)− ḣu(q̃, X

⊤
i β̂)

]

X⊤
i

(

β̂ − β0
)

+
∑

{i:δi=1}

(ŵi − w∗
i ) ξi (q0)

+
∑

{i:δi=1}

w∗
i ξi (q0) ,

5
∑

i=1

Lni,

(6.41)
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where β̃ is between β0 and β̂. Note that

|Ln1| ≤

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)X

⊤
i −

∑

{i:δi=1}

ŵiḣu(q̃, X
⊤
i β̂)X

⊤
i

∥

∥

∥

∥

∥

∥

∞

∥

∥

∥
β̂ − β0

∥

∥

∥

1
.

By the definition of ŵ, we have

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ḣu(q̃, X
⊤
i β̂)X

⊤
i −

∑

{i:δi=1}

ŵiḣu(q̃, X
⊤
i β̂)X

⊤
i

∥

∥

∥

∥

∥

∥

∞

≤ ∆.

This together with (6.19) proves Ln1 = Op

(

∆‖β0‖0
√

log(p)/n
)

. By the

requirements on ∆ and assumptions on ‖β0‖0, we have

Ln1 = op(n
−1/2). (6.42)

By Condition (A.3)(ii), it follows that

|Ln2| ≤c
1

n

n
∑

i=1

{

|q̃ − q0|+
∣

∣X⊤
i

(

β̂ − β0
)

∣

∣

}

∣

∣X⊤
i

(

β̂ − β0
)

∣

∣

≤c|q̃ − q0|
∥

∥

∥
β̂ − β0

∥

∥

∥

1
+ c
∥

∥

∥
β̂ − β0

∥

∥

∥

2

1

and

|Ln3| ≤c
∑

{i:δi=1}

|ŵi|
{

|q̃ − q0|+
∣

∣X⊤
i

(

β̂ − β0
)

∣

∣

}

∣

∣X⊤
i

(

β̂ − β0
)

∣

∣

≤c
∑

{i:δi=1}

|ŵi|
(

|q̃ − q0|
∥

∥

∥
β̂ − β0

∥

∥

∥

1
+
∥

∥

∥
β̂ − β0

∥

∥

∥

2

1

)

.

Lemma 2 in the supplementary material proves that

q̃ − q0 = Op

(
√

‖β0‖0
log(p)

n

)

.
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These together with (6.19) and
∑

{i:δi=1} |ŵi| = Op(1) prove

|Lni| = Op

(

‖β0‖20
log(p)

n

)

= op
(

n−1/2
)

, i = 2, 3. (6.43)

by the assumption on ‖β0‖0. Lemma 7 in the supplementary material proves

that Ln4 = op(n
−1/2). This together with (6.41), (6.42) and (6.43) proves

F̂n (q0)− Fn (q0) =
∑

{i:δi=1}

w∗
i ξi (q0) . (6.44)

Recalling the definition of w∗ in (6.24), relations (6.40) and (6.44) together

prove (6.17).

The proof of Theorem 1 is then completed.

Proof of Theorem 2. We first prove σ̂2 p→ σ2. Denote

V1 =
1

4
E

[

δη∗⊤AA⊤η∗

h(q0, X⊤β0)(1− h(q0, X⊤β0))

]

and V2 = Var(h(q0, X
⊤β0)). On the basis of Slutsky’s theorem, it suffices

to show that V̂1
p→ V1, V̂2

p→ V2 and T̂
p→ T0. Since q̃ − q0 = op(1) and

‖β̂ − β0‖1 = op(1), then |T̂ − T0| = op(1) and |V̂2 − V2| = op(1) are proved

by the law of large numbers. |V̂1−V1| = op(1) is proved by Lemma 8 in the

supplementary material.
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Table 1: Bias, SD, RMSE and CP of relevant estimators based on 1000 repeti-

tions.

Bias SD RMSE CP

q̂aipw q̂ q̂aipw q̂ q̂aipw q̂ q̂aipw q̂

DGP1: π(X) is misspecified

n = 200 p = n
4

-0.241 -0.042 0.177 0.196 0.299 0.201 0.383 0.952

p = n
2

-0.300 -0.065 0.170 0.206 0.345 0.216 0.238 0.941

p = n -0.338 -0.070 0.167 0.212 0.377 0.223 0.165 0.933

p = 2n -0.374 -0.104 0.161 0.197 0.407 0.222 0.119 0.906

n = 400 p = n
4

-0.177 -0.027 0.130 0.155 0.219 0.158 0.401 0.937

p = n
2

-0.218 -0.039 0.124 0.157 0.251 0.162 0.250 0.941

p = n -0.261 -0.048 0.128 0.160 0.290 0.167 0.170 0.941

p = 2n -0.133 -0.023 0.091 0.114 0.161 0.116 0.417 0.941

n = 800 p = n
4

-0.299 -0.075 0.122 0.145 0.323 0.163 0.086 0.924

p = n
2

-0.161 -0.034 0.090 0.119 0.185 0.123 0.253 0.923

p = n -0.192 -0.048 0.089 0.122 0.211 0.131 0.161 0.927

p = 2n -0.215 -0.059 0.084 0.110 0.231 0.124 0.088 0.908
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Table 2: Bias, SD, RMSE and CP of relevant estimators based on 1000 repeti-

tions.

Bias SD RMSE CP

q̂aipw q̂ q̂aipw q̂ q̂aipw q̂ q̂aipw q̂

DGP2: π(X) is correctly specified

n = 200 p = n
4

-0.033 -0.027 0.132 0.130 0.136 0.133 0.927 0.936

p = n
2

-0.028 -0.017 0.139 0.138 0.142 0.139 0.898 0.909

p = n -0.042 -0.025 0.134 0.134 0.141 0.137 0.895 0.920

p = 2n -0.043 -0.023 0.131 0.130 0.138 0.132 0.914 0.931

n = 400 p = n
4

-0.014 -0.012 0.097 0.097 0.098 0.098 0.921 0.911

p = n
2

-0.021 -0.017 0.093 0.092 0.095 0.093 0.920 0.932

p = n -0.022 -0.015 0.098 0.096 0.100 0.098 0.905 0.921

p = 2n -0.031 -0.021 0.094 0.095 0.099 0.097 0.912 0.915

n = 800 p = n
4

-0.012 -0.012 0.069 0.069 0.070 0.070 0.926 0.926

p = n
2

-0.013 -0.013 0.068 0.067 0.069 0.069 0.922 0.921

p = n -0.016 -0.015 0.067 0.067 0.069 0.068 0.930 0.932

p = 2n -0.023 -0.019 0.070 0.069 0.073 0.072 0.894 0.897
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Table 3: Comparison of SD and ESD of the proposed estimator q̂

DGP1 DGP2

SD ESD SD ESD

n = 200 p = n
4

0.196 0.204 0.130 0.123

p = n
2

0.206 0.214 0.138 0.122

p = n 0.212 0.220 0.134 0.121

p = 2n 0.197 0.196 0.130 0.121

n = 400 p = n
2

0.155 0.152 0.097 0.087

p = n
2

0.157 0.155 0.092 0.087

p = n 0.160 0.162 0.096 0.087

p = 2n 0.145 0.145 0.095 0.086

n = 800 p = n
2

0.114 0.115 0.069 0.062

p = n
2

0.119 0.117 0.067 0.062

p = n 0.122 0.123 0.067 0.062

p = 2n 0.110 0.109 0.069 0.062



REFERENCES43

Table 4: Estimates and confidence intervals (CI) of m1, m0 and m

m1 m0 m

Estimate 308 260 48

CI (292.1, 323.9) (241.7, 278.3) (21.6,74.4)
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