
ar
X

iv
:2

20
6.

08
61

6v
1 

 [
st

at
.M

E
] 

 1
7 

Ju
n 

20
22

Dynamical Modeling for non-Gaussian Data

with High-dimensional Sparse Ordinary

Differential Equations

Muye Nanshan, Nan Zhang

School of Data Science, Fudan University
and

Xiaolei Xun
Global Statistics and Data Science, BeiGene

and
Jiguo Cao

Department of Statistics and Actuarial Science, Simon Fraser University

Abstract

Ordinary differential equations (ODE) have been widely used for modeling dy-
namical complex systems. For high-dimensional ODE models where the number of
differential equations is large, it remains challenging to estimate the ODE parame-
ters and to identify the sparse structure of the ODE models. Most existing methods
exploit the least-square based approach and are only applicable to Gaussian obser-
vations. However, as discrete data are ubiquitous in applications, it is of practical
importance to develop dynamic modeling for non-Gaussian observations. New meth-
ods and algorithms are developed for both parameter estimation and sparse structure
identification in high-dimensional linear ODE systems. First, the high-dimensional
generalized profiling method is proposed as a likelihood-based approach with ODE
fidelity and sparsity-inducing regularization, along with efficient computation based
on parameter cascading. Second, two versions of the two-step collocation methods
are extended to the non-Gaussian set-up by incorporating the iteratively reweighted
least squares technique. Simulations show that the profiling procedure has excellent
performance in latent process and derivative fitting and ODE parameter estimation,
while the two-step collocation approach excels in identifying the sparse structure of
the ODE system. The usefulness of the proposed methods is also demonstrated by
analyzing three real datasets from Google trends, stock market sectors, and yeast cell
cycle studies.

Keywords: Dynamic system; Generalized linear model; Ordinary differential equations;
Parameter cascade; Penalized likelihood; Profiled estimation.

1

http://arxiv.org/abs/2206.08616v1


1 Introduction

Ordinary differential equations (ODE) are widely used for complex dynamic system mod-

eling in biology, engineering, econometrics, and other scientific and social applications. For

example, massive gene expression profiles are available with the advancement of second-

generation sequencing technology. Modeling their dynamics using gene regulatory networks

has drawn significant interest from both biomedical and statistical research communities

(Stuart et al., 2003; Yuan and Kendziorski, 2006; Hecker et al., 2009; Polynikis et al., 2009;

Lu et al., 2011; Wu et al., 2014). In computational sociology, public opinion sensing and

trend analysis have emerged from the advent of the big data revolution (Dodds et al., 2011;

Sloan and Morgan, 2015). Massive datasets, such as Google searches or Twitter posts, are

collected daily or even hourly, which enables social scientists to extract interesting temporal

or spatial patterns via dynamic modeling. The main purpose of this article is to propose

new methods and algorithms to estimate the ODE parameters and to identify the sparse

structure for high-dimensional ODE models with non-Gaussian observations.

A general first-order ODE system can be described as

θ′(t) = f(θ(t),β), (1.1)

where the vector θ(t) = (θ1(t), . . . , θp(t))
⊤ collects p processes while θ′(t) is the first-order

derivative of θ(t), function f = (f1, . . . , fp) describes the dependence between processes

and their derivatives, β is the vector of ODE parameters to be estimated. Typically, the

processes are indexed with time t and some initial conditions, for example, θ(0) = θ0, are

assumed for the ODE system (1.1) as well.

In practice, observations from the dynamic system are measured according to the re-

alizations of latent processes θ(t) at discrete time points. Estimation of ODE parame-

ters from noisy data remains a challenging problem (Ramsay et al., 2007; Wu et al., 2014;

Hall and Ma, 2014; Chen et al., 2017; Wu et al., 2019; Dai and Li, 2021). In general, pa-

rameter estimation procedures fall into three categories. The first approach is based on

a data fitting process by nonlinear least squares. Given a set of initial ODE parameters,

the ODE solutions are approximated by numerical methods, for example, the Runge-Kutta

algorithm. Then the ODE parameters are updated with the nonlinear least squares. This
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approach is computationally intensive and can be potentially inaccurate due to iterative

numerical approximations. The second approach is the two-step collocation, where the

basis expansions are exploited to approximate the ODE solutions. Varah (1982) proposed

to fit the processes via data smoothing methods, followed by a second stage of minimizing a

least-square criterion based on the ODE system to estimate the ODE parameters. Because

of its computational advantage, two-step collocation gains much popularity in the develop-

ment of methodology and applications (Liang and Wu, 2008; Lu et al., 2011; Brunel et al.,

2014; Wu et al., 2014; Dattner and Klaassen, 2015) and is further improved by iterative

principal differential analysis (Ramsay, 1996; Poyton et al., 2006). However, the perfor-

mance of two-step procedures relies heavily on the smoothing step, while the amount of

roughness regularization is hard to control. The third approach is the generalized profiling

procedure (Ramsay et al., 2007), which also represents ODE solutions with basis expan-

sion as with two-step collocation methods. The essential difference is the inclusion of an

ODE-induced penalty that controls the fidelity of the processes to the ODE system. The

basis coefficients and ODE parameters are then estimated simultaneously from a penalized

criterion using the parameter cascading algorithm (Cao and Ramsay, 2007). From a the-

oretical perspective, Qi and Zhao (2010) derived an upper bound on the uniform norm of

the difference between the true underlying solutions and their approximations, and proved

the consistency and asymptotic normality of the estimation procedure.

More recently, there has been growing interest in high-dimensional ODE systems where

the number of processes p is large. For instance, the high-dimensional time-course gene

expression data enables biomedical researchers to model the regulatory behaviors via a

large-scale directed graphical network model. Such a task is called network recovery. The

ODE system (1.1) naturally serves for this purpose by relating the dynamics of each process

with all the processes in the system, and a sparse network structure can be further imposed.

Lu et al. (2011) considered the high-dimensional linear ODE for dynamic gene regulatory

network identification and applied the smoothly clipped absolute deviation (Fan and Li,

2001) approach for variable selection. Wu et al. (2014) further relaxed the linear assump-

tion and investigated a sparse additive ODE model using a two-stage procedure coupled

with the adaptive group Lasso technique (Wang and Leng, 2008) to deal with nonlinear
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effects. Chen et al. (2017) proposed an efficient procedure using the integrated form of the

ODE to bypass numerical difficulty in the derivative estimation and adopted the group

Lasso (Yuan and Lin, 2006) for variable selection. Wu et al. (2019) recently developed a

matrix factorization based approach to ultra-high dimensional linear ODE models for pa-

rameter estimation and variable selection. To our best knowledge, existing procedures for

high-dimensional ODE models are two-stage approaches.

Besides, most of the existing work assumes that observations of the ODE system are

contaminated with Gaussian noises. Therefore, least-squares estimation is conveniently

adopted. However, non-Gaussian observations are commonly encountered in real appli-

cations, for example, short read count data from RNA sequencing (Nagalakshmi et al.,

2008), bisulfite sequencing data for DNA methylation analysis (Cokus et al., 2008), and

direction of change in the stock price over time (Huang et al., 2005). The literature on

non-Gaussian data analysis with the ODE system is rare. Miao et al. (2014) developed

a likelihood-based parameter estimation and inference for generalized ODE models. Its

extension to high-dimensional ODE models, however, is still unknown.

Motivated by network recovery tasks for time-course non-Gaussian data, this paper

focuses on the parameter estimation and sparse structure identification for high-dimensional

linear ODE systems with a likelihood-based approach. To facilitate versatile analysis of

non-Gaussian data, we assume the observations follow a distribution from the exponential

family, where θj(t) is known as the canonical parameter in the context of generalized linear

models (McCullagh and Nelder, 1989; Wood, 2017). Assume that t ∈ [0, 1] without loss of

generality. Given a set of discrete time points t1, . . . , tn, denote by yij the measurement

according to the jth latent process θj(t) at time t = ti, j = 1, . . . , p. Then, the conditional

distribution of yij given θj(ti) admits a density function as

f(yij | θj(ti)) = exp

{
yijθj(ti)− b(θj(ti))

a(φ)
+ c(yij, φ)

}
,

where a > 0, b, c are known functions, φ is either known or considered as a nuisance

parameter. Let (y1j, . . . , ynj)
⊤ be the vector of observations from the latent process θj(t),

and correspondingly the canonical parameter vector be (θj(t1), . . . , θj(tn))
⊤. Imposing a

linear structure on the general model (1.1), we investigate in this work the modeling of

the dynamics among latent processes {θj(t) : j = 1, . . . , p} with a high-dimensional linear
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ODE system, that is

θ
′

j(t) = γj0 +

p∑

k=1

γjkθk(t), j = 1, . . . , p. (1.2)

In this article, we develop new methods and algorithms for both parameter estima-

tion and sparse structure identification in high-dimensional linear ODE systems. First, we

propose the high-dimensional generalized profiling method along with a computationally

efficient procedure based on parameter cascading (Ramsay et al., 2007; Cao and Ramsay,

2007). It solves a hierarchical optimization for parameter estimation and variable selec-

tion: an outer optimization concerning the ODE parameters under sparsity regularization

is performed subject to an inner optimization where latent processes expanded with basis

functions are fitted by minimizing a weighted sum of data fitting and ODE fidelity crite-

ria given ODE parameters. In particular, we regularize the structural ODE parameters

based on individual differential equation and mitigate the computational burden for pa-

rameter estimation in the high-dimensional ODE system. Moreover, there are two tuning

parameters involved in our procedure: one controls the balance between data fitting and

ODE fidelity in the inner optimization while the other regularizes the sparsity or model

complexity in the outer optimization. Their interaction may affect the overall convergence

performance of the procedure in a complicated way. Due to the non-convexity nature

of our objective function, we carefully design the tuning and stopping rules according to

the performance of parameter estimation to help escape local minima (Carey and Ramsay,

2021). The global convergence of the proposed algorithm is analyzed. Next, we extend the

two-step collocation methods (Wu et al., 2014; Chen et al., 2017), which are recently pro-

posed for high-dimensional ODE models with Gaussian observations, to the non-Gaussian

set-up. Two versions, corresponding to the vanilla collocation (Varah, 1982) and the graph

reconstruction via additive differential equations (GRADE) (Chen et al., 2017), are devel-

oped under the likelihood-based framework. Efficient computation is feasible by applying

the iteratively reweighted least squares technique (Wood, 2017). Finally, we apply the

proposed methods to simulated and real data sets. In general, the profiling method is more

efficient than two-step collocation methods in estimating the latent processes, their deriva-

tives, and the structural ODE parameters, while one two-step collocation method excels
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in identifying the sparse structure of the ODE system. To sum up, the proposed methods

present a versatile toolbox for parameter estimation and sparse structure identification in

high-dimensional linear ODE systems.

The remainder of the article is organized as follows. Our profiled estimation approach

is developed in Section 2. Detailed computational procedure and its global convergence

are discussed in Section 3. In Section 4, we extend two-step collocation methods to model

non-Gaussian observations. Section 5 compares empirical performance of the proposed

methods. We analyze three real data examples in Section 6 with dynamical modeling

approaches. Section 7 concludes the article and Appendix collects some technical details.

2 High-dimensional Generalized Profiling

This section introduces the proposed approach for simultaneous parameter estimation and

sparse structure identification in a high-dimensional linear ODE model for non-Gaussian

data under the penalized likelihood estimation framework.

Denote by Γ = (γ1, . . . ,γp) the parameter matrix of the ODE model (1.2), where γj =

(γj0, . . . , γjp)
⊤ ∈ R

p+1, for j = 1, . . . , p. These ODE parameters Γ are of primary interest

in order to understand the network structure, called structural parameters hereafter. On

the other hand, the latent processes θj ’s are treated as nuisance parameters. Denote by

yij and θj(ti) the observation and the canonical parameter of the jth latent process at

time ti, respectively. Under the profiling scheme (Ramsay et al., 2007), an intermediate

fit of latent processes θ̂(t; Γ) = (θ̂1(t; Γ), . . . , θ̂p(t; Γ)) minimizes the following penalized

likelihood criterion,

−
1

np

n∑

i=1

p∑

j=1

{yijθj(ti)− b(θj(ti))}+ λθ

p∑

j=1

∫ 1

0

{
θ
′

j(t)− γj0 −

p∑

k=1

γjkθk(t)

}2

dt, (2.1)

where the likelihood part measures fidelity to data, the ODE fidelity part measures the

extent to which latent processes fail to satisfy the ODE system, and the tuning parameter

λθ controls the amount of regularization. Furthermore, with θ̂(t; Γ) plugged in, an estimate

of the structural parameters can be obtained by minimizing a data fitting criterion with
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respect to Γ,

−
1

np

n∑

i=1

p∑

j=1

{yij θ̂j(ti; Γ)− b(θ̂j(ti; Γ))}. (2.2)

The generalized profiling procedure proceed iteratively with a non-decreasing sequence of

λθ under certain rules such that the fitted processes adhere to the ODE. Identifiable issue

and asymptotic behavior of the estimation procedure are studied by Ramsay et al. (2007)

and Qi and Zhao (2010).

Although the generalized profiling method provides a computationally efficient treat-

ment for the challenging ODE parameter estimation, it can only handle relatively small-

scale models (Wu et al., 2019). On the one hand, for a p-dimensional linear ODE system,

we have p2 + p ODE parameters to estimate in (2.2). If we further approximate the latent

process θj(t) by basis expansion c⊤j hj(t), where hj(t) is an mj-dimensional basis vector and

cj is the coefficient vector, then (2.1) becomes

−
1

np

n∑

i=1

p∑

j=1

{
yijc

⊤

j hj(ti)− b(c⊤j hj(ti))
}

+ λθ

p∑

j=1

∫ 1

0

{
c⊤j h

′

j(t)− γj0 −

p∑

k=1

γjkc
⊤
j hk(t)

}2

dt,

and the total number of nuisance parameters
∑p

j=1mj can be huge. Therefore, a di-

rect application of the standard generalized profiling procedure to parameter estimation

for high-dimensional linear ODE is computationally demanding. On the other hand, the

structural parameters obtained from (2.2) indeed infer an interaction network among the

latent processes, in the sense that a nonzero γjk implies that θk(t) has an effect on the

change of θj(t). For better interpretation and to avoid potential over-fitting, it is reason-

able to introduce some sparsity for the structural parameters. For example, the Lasso

and its variants (Tibshirani, 1996; Yuan and Lin, 2006; Zou, 2006), the smoothly clipped

absolute deviation (SCAD) (Fan and Li, 2001) and the minimax concave penalty (MCP)

(Zhang, 2010) have been extensively studied and used to recover probabilistic graphical

structures (Yuan and Lin, 2007; Fan et al., 2009; Voorman et al., 2014).

To address the above computational issues, we first notice that the data fidelity term

in the penalized criterion (2.1) can be decomposed into sums of the likelihood for p in-

dividual processes. Meanwhile, the penalty term, being a squared L2 norm of differential
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equations, does not admit such decomposable property. Therefore, we propose to regularize

the estimate of θj only by the corresponding jth differential equation. Specifically, when

estimating θj given other {θk : k 6= j} at their most recent updates, we obtain θ̂j(t;γj) by

minimizing

Gj(θj ;γj) = −
1

n

n∑

i=1

{yijθj(ti)− b(θj(ti))}+ λθ,j

∫ 1

0

{
θ
′

j(t)− γj0 −

p∑

k=1

γjkθk(t)

}2

dt, (2.3)

for j = 1, . . . , p. For simplicity, we use the same tuning parameter for individual sub-

problems, that is λθ,j = λθ for j = 1, . . . , p. Optimizing Gj involves only p + 1 structural

parameters in the vector γj and hence the computational complexity is greatly reduced.

The benefit of using (2.3) is justified from two aspects. First, it is computationally in-

feasible to estimate a large number of ODE parameters jointly by directly applying the

original generalized profiling criterion (2.1) to the high-dimensional ODE system. Our new

formulation decouples the dependency of θ̂(t; Γ) on the matrix Γ into individual depen-

dencies of θj(t;γj) on the vector γj. Second, from the perspective of penalized estimation,

it improves the estimation for the latent process and the ODE structural parameters by

employing differential equations to regularize data smoothing.

We remark on the potential risk of employing (2.3) instead of (2.1) when estimating

the latent processes. Note that (2.1) aggregates all the differential equations to update the

latent processes altogether such that the estimates will follow the ODE system jointly. In

contrast, our method uses a single differential equation to regularize the estimation of each

latent process. When the tuning parameter λθ increases, the parallel updating procedure

(2.3) over j = 1, . . . , p, is expected to achieve an approximation in a marginal way to

the joint estimation by (2.1). The simulation example introduced in Section S1 of the

Supplementary Material shows that the approximation by (2.3) performs reasonably well,

although the joint method (2.1) has a more accurate estimate for ODE parameters.

Next, to induce sparsity to the structural parameter matrix, we estimate γj by mini-

mizing

Hj(γj) = −
1

n

n∑

i=1

{yij θ̂j(ti;γj)− b(θ̂j(ti;γj))}+ PENλγ,j
(γj), (2.4)

where the penalty function PENλγ,j
(γj) with tuning parameter λγ,j > 0 induces sparsity for

the structural parameter of the jth differential equation. Here we also assume for simplicity
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that λγ,j = λγ for j = 1, . . . , p. If the fitted structural parameter vector γ̂j is zero, then we

say other latent processes have no impact on θj(t). Any zero element in γ̂j implies that the

corresponding process has no influence on θj(t). The amount of sparsity regularization is

typically determined by Bayesian information criterion (BIC) type principles, which have

been adopted in other ODE parameter estimation approaches (Wu et al., 2014; Chen et al.,

2017).

Our new profiling estimation procedure for high-dimensional linear ODE systems con-

sists of two objective functions (2.3) and (2.4), which are referred to as inner and outer

criteria, respectively. Such a multi-criterion optimization problem is challenging due to

non-convexity and non-differentiability. Specifically, we approximate the latent processes

with basis expansion in the inner optimization, and basis coefficients can be solved effi-

ciently with the Newton-Raphson method. However, the dependence of θ̂j(t;γj) on γj is

complicated and in general non-linear, which leads to the non-convexity of Hj . Moreover,

the sparsity-inducing penalty in Hj is non-differentiable at zero, making the Gauss-Newton

scheme adopted by Ramsay et al. (2007) invalid under this scenario.

Recent advances of derivative-free optimization algorithms (Powell, 2006; Zhang et al.,

2010) may provide a viable solution. Nevertheless, they are in spirit joint optimization

algorithms designed for general purpose and are thus not tailored for our specific problem.

In contrast, our profiling procedure enjoys not only estimation efficiency but also algo-

rithmic efficiency due to the use of analytical expressions of derivatives. Computational

details are presented in the next section. In brief, after obtaining an estimate θ̂j(t;γj)

given the structural parameters, we linearize the likelihood component in (2.4) and formu-

late the outer optimization as a parameter estimation problem for a penalized generalized

linear model. Therefore, the structural parameters can be readily updated by the iterative

reweighted least-squares (IRLS). Through an iterative scheme between inner and outer op-

timizations, our profiling procedure provides ODE parameter estimates and latent process

fits and identifies the sparse structure of the ODE model.
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3 Computation

In this section, we provide computational details of our profiling procedure for high-

dimensional linear ODE and analyze its global convergence. Minimizing criteria in (2.3)

and (2.4) are referred as inner and outer optimizations. The structural parameters Γ =

(γ1, . . . ,γp) is of our primary interest, while the latent process fits by the inner optimiza-

tion is regarded as a nuisance parameter. In our profiling scheme, whenever γj changes

by minimizing Hj in the outer, latent process fits are then updated by solving the inner

criterion Gj . Details are provided in Algorithm 1. In addition, two tuning parameters are

involved in the profiling procedure, and their complex interaction affects the overall algo-

rithmic performance because of the non-convexity of the optimization. In the following,

we split the discussion into inner and outer parts. Then we discuss the practical strategy

of tuning parameter selection and the global convergence of the proposed algorithm.

Algorithm 1: High-dimensional linear ODE for non-Gaussian data

Input: Observations {yij : i = 1, . . . , n; j = 1, . . . , p}, initial ODE paramters

Γ(0) = (γ
(0)
1 , . . . ,γ

(0)
p ), and fixed tuning parameters λθ and λγ.

Output: Estimated ODE parameters Γ̂ = (γ̂1, . . . , γ̂p).

repeat

At step s ≥ 1, the current estimate is Γ̂(s) = (γ̂
(s)
1 , . . . , γ̂

(s)
p ).

for 1 ≤ j ≤ p do

Update γj via the profiling procedure.

repeat

1. Given current γ̃j , obtain the basis coefficient estimate c∗j (γ̃j) for

the jth latent process in the inner optimization.

2. Apply basis expansion and update γj via minimizing the penalized

reweighted least squares.

until γ̃j converges, and set γ
(s+1)
j = γ̃j.

end

until Estimated ODE parameter Γ̂ converges.
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3.1 Inner Optimization

The inner procedure aims at finding an accurate estimate for latent processes given the

structural parameter Γ. Similar to the two-step collocation method (Varah, 1982) and the

generalized profiling (Ramsay et al., 2007), we represent latent processes by basis expan-

sion. Suppose hj(t) = (φj1(t), . . . , φjmj
(t)) is a set of basis functions for the jth process

such that θj(t) = c⊤j hj(t). Choices of basis functions include polynomials, truncated power

functions and splines. In our numerical study, we use B-spline due to its numerical stability

and excellent empirical performance. For notation simplicity, we use the same basis h(t)

for all latent processes.

Although critical in optimization, the basis coefficients cj , j = 1, . . . , p, are often not

of direct concern and thus considered as nuisance parameters. Observing that Gj(θj ;γj) is

convex with respect to the basis coefficients cj, we can apply the Newton-Raphson scheme

directly. When the Hessian of Gj(θj;γj) is invertible, we can start with an initial guess of

cj and iteratively obtain

c
(r+1)
j = c

(r)
j −

(
∂2Gj

∂cj∂c⊤j

∣∣∣∣
c
(r)
j

)−1(
∂Gj

∂cj

∣∣∣∣
c
(r)
j

)
, r ≥ 1.

Analytical expressions of the derivatives involved in the above updating rule are given in

A.

3.2 Outer Optimization

The outer optimization is designed for updating γj with a regularized likelihood objective

function (2.4). Denote by c∗j(γj) the optimal basis coefficients for θj(t;γj) obtained from

the inner optimization given the current γj. Observing that the dependence of c∗j (γj) on

γj is implicit and possibly complicated, we propose to linearize the likelihood component

in (2.4) and transform the optimization to finding the maximum likelihood estimate of

a generalized linear model. The solution can then be readily obtained by the iteratively

reweighted least squares (IRLS), see Wood (2017) for more detail.

Let γ̃j be the most recent update of γj . First, we linearize the c∗j(γj) at γ̃j which,

c∗j(γj) ≈ c∗j(γ̃j) +
∂c∗j (γj)

∂γ⊤
j

∣∣∣∣
γ̃j

(γj − γ̃j), (3.1)
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where the derivative ∂c∗j/∂γj is explicitly derived using the implicit function theorem in A.

Hence, θ̂j(t;γj) in its basis expansion form can be approximated by a linear function of γj .

As a result, the outer objective function (2.4) now becomes a penalized likelihood function

of a generalized linear model. Second, we apply the IRLS and update our estimate of γj. Let

θ̃j(t) = θ̂j(t; γ̃j) be latent process fit given the structural parameter γ̃j . Based on the theory

of generalized linear models, the observation Yj according to the latent process θ̃j(t) admits

properties of E(Yj|θ̃j(t)) = b
′

(θ̃j(t)) = µ̃j(t) and var(Yj |θ̃j(t)) = b
′′

(θ̃j(t))a(φ) = ṽj(t)a(φ),

where functions a, b and parameter φ follow from the exponential family specification. Write

ũij = −yij + b
′

(θ̃j(ti)) = −yij + µ̃j(ti) and w̃ij = b
′′

(θ̃j(ti)) = ṽj(ti). The IRLS algorithm

applies a quadratic approximation to the log-likelihood, that is, at θj = θ̃j ,

−yij θ̂j(ti;γj) + b(θ̂j(ti;γj)) ≈
1

2
w̃ij

{
ỹij − θ̂j(ti;γj)

}2

+ Cij ,

where ỹij = θ̃j(ti)− ũij/w̃ij and Cij is independent of θ̃j(ti). In conjunction with the linear

approximation of θj(ti;γj), it amounts to solving a penalized linear least squares to update

the estimate for structural parameter γj. Efficient algorithms are available for different

sparsity penalty choices PEN(·).

3.3 Tuning Parameter Selection

There are two tuning parameters involved in our profiling procedure, which jointly affect

the algorithmic performance. On the one hand, λθ in the inner optimization controls the

amount of regularization regarding the differential equations. We define the aggregated

ODE fidelity criterion as

p∑

j=1

∫ 1

0

{
θ
′

j(t)− γj0 −

p∑

k=1

γjkθk(t)

}2

dt. (3.2)

Small λθ makes optimizing Hj(γj) with respect to γj more robust to initial guesses, but

yields bad approximations to ODE solutions. Large λθ gives rise to a difficult opti-

mization problem where Hj(γj) is usually not convex and can have many local optima

(Ramsay et al., 2007; Qi and Zhao, 2010; Carey and Ramsay, 2021). On the other hand,

λγ in the outer optimization induces a sparse network structure for latent processes with

better interpretation, and existing methods such as information criteria can be adopted for
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tuning. Based on the above discussion, we propose to fix λγ in the outer optimization first,

iteratively select a proper λθ in the inner optimization, and then determine the best λγ

via the Bayesian information criterion. In detail, suppose we choose λγ from a sequence of

candidate values. Then, we initialize λθ with a small value and moderately increase it via

an iterative scheme. At each iteration, θ̂ and Γ̂ are repeatedly estimated for the current

λθ, which are then used as initial values in the fitting procedure with the next larger λθ.

The iterative scheme stops when the estimated ODE parameters converge, and thus λθ is

decided. The change of the estimated ODE parameters should be small when there is only

a moderate increase in λθ. Therefore, with a conservatively increasing sequence of λθ, every

estimated Γ̂ is much likely to be a proper initialization for the next iteration. Details of

the iterative selecting scheme for λθ given a fixed λγ are as follows.

(1) Start with a small positive λ
(0)
θ . Choose ∆(0) as an initial incremental factor.

(2) At the uth iteration where u ≥ 0, obtain the fitted latent processes θ̂(u) and Γ̂(u) via

our profiling procedure, and evaluate the ODE fidelity (3.2) based on the estimates.

(a) If the absolute percentage of change in the ODE fidelity (3.2) is below a threshold

constant, then we update λ
(u+1)
θ = λ

(u)
θ ×∆(u).

(b) Otherwise, we need to downsize the incremental factor, for example, set ∆(u) =

∆(u−1)/2, which ensures that the ODE fidelity (3.2) varies little among iterations.

(3) When the successive ODE parameter estimates are closed enough, we stop iteration;

otherwise, repeat previous steps.

Our iterative tuning strategy treats λθ as a function of λγ . Hence, after λθ is selected

for each fixed λγ from a sequence of candidate values, we can evaluate the following BIC

and choose the best λγ,

BIC(λγ) = −
1

np

n∑

i=1

p∑

j=1

{
yij θ̂j(ti;λγ)− b(θj(ti;λγ))

}
+ k(λ) log(n),

where θ̂j(t;λγ) emphasizes the dependence on λγ, and k(λγ) denotes the number of non-zero

elements in the resultant ODE parameter Γ̂(λγ).
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3.4 Global Convergence

Suppose that the estimated latent process θ̂j(t;γj) from the inner optimization is a smooth

function of γj , where j = 1, . . . , p. LetH(Γ) =
∑p

j=1Hj(γj) be the objective function in the

outer optimization for a given tuning parameter λγ , where Γ = (γ1, . . . ,γp). Algorithm 1

is essentially a block coordinate descent method because it minimizes H(Γ) by iteratively

updating γj. Write Hj(γj) = ℓj(γj) + PENλγ
(γj), where ℓj(γj) is the likelihood term and

PENλγ
(γj) is assumed to be convex. As described in Section 3.2, the outer optimization is

equivalent to updating γj to γj +dj(γj), where the descent direction dj(γj) is the solution

to

min
d

∇ℓj(γj)
⊤d+

1

2
d⊤Qj(γj)d+ PENλγ

(γj + d),

where ∇ℓj(γj) is the gradient of ℓj(γj) and

Qj(γj) =
1

n

n∑

i=1



b′′(θ̂j(ti;γj))

∂θ̂j(ti;γj)

∂γj

(
∂θ̂j(ti;γj)

∂γj

)⊤




is a positive definite matrix approximating the Hessian ∇2ℓj(γj).

We follow Tseng and Yun (2009) to establish the global convergence. Because the

actual value of the Hessian ∇2ℓj(γj) is identical to its expected value under canonical links

(McCullagh and Nelder, 1989), the IRLS method described in Section 3.2 remains the same

when the Hessian is replaced by the expected Hessian. Then it follows from Lemma S1 in

the Supplementary Material that

Hj(γj + dj(γj))−Hj(γj) ≤ −d⊤

j (γj)

[
Qj(γj)−

1

2
E{∇2ℓj(γj)}

]
dj(γj) + o(‖dj(γj)‖

2).

(3.3)

Some algebra yields that

Qj(γj)−
1

2
E{∇2ℓj(γj)} =

1

2
Qj(γj) +

1

2n

n∑

i=1

{
b′(θ∗j (ti))− b′(θ̂j(ti,γj))

} ∂2θ̂j(ti,γj)

∂γj∂γ⊤
j

,

where θ∗j (t) is the true latent process. The above matrix is positive definite because b′(·)

is continuous, provided that θ̂j(ti,γj) is sufficiently close to the truth. It follows from

(3.3) that Hj(γj) decreases along the iterations and will eventually converge because it is

lower-bounded. Moreover, the sequence of descent directions converges to zero due to (3.3).
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According to Theorem 1(e) and Lemma 2 of Tseng and Yun (2009), every cluster point of

the iterative estimates by Algorithm 1 exhibits exact zero descent direction, which implies

it is indeed a stationary point of H(Γ).

Finally, we remark that the above analysis cannot be directly applied to a non-convex

PENλγ
(·) such as the SCAD penalty. However, the non-convex penalty can be numerically

approximated by local linear or quadratic functions (Fan et al., 2020). We would anticipate

a similar convergence result but with more involved technical details, which is not pursued

in this paper.

4 Two-step CollocationMethods for non-Gaussian Data

Collocation methods have been exploited for both parameter estimation and network re-

construction for various ODE models. In this section, we extend the popular two-step col-

location method for high-dimensional linear ODE with non-Gaussian observations. In the

large literature on collocation, Varah (1982); Ramsay et al. (2007); Dattner and Klaassen

(2015), and Wu et al. (2019) consider the linear case while recently the nonparametric

additive structure is investigated by Henderson and Michailidis (2014); Wu et al. (2014)

and Chen et al. (2017). Most existing methods are proposed for Gaussian observations

and adopt the least square loss function for estimation. In the following, we present two

versions of the two-step collocation method for high-dimensional ODE models with non-

Gaussian observations: the vanilla collocation based on Varah (1982) and an extension from

graph reconstruction via additive differential equations (GRADE) by Chen et al. (2017).

The vanilla two-step method first fits smoothing estimates θ̂(t) to the latent processes

with maximum likelihood estimation, and then obtain the structural parameter γ with the

estimated processes and their derivatives plugged in. The procedure solves the following

optimization problems,

γ̂j = argmin
γj0,γj

∫ 1

0

∣∣∣∣∣
dθ̂j(t)

dt
− γj0 −

p∑

k=1

γjkθ̂k(t)

∣∣∣∣∣

2

dt + PENλγ
(γj), (4.1)

with

θ̂j(t) = argmin
θ∈H

−
1

n

n∑

i=1

{yijθ(ti)− b(θ(ti))}, 1 ≤ j ≤ p, (4.2)

15



whereH is a proper reproducing kernel Hilbert space, and the exponential family smoothing

splines can be adopted (Wahba et al., 1995; Gu, 2013; Ma et al., 2017). The performance

of the vanilla two-step collocation method relies on the estimation accuracy of θ̂j(t) and its

derivatives. Although statistical convergence has been established, it is in practice hard to

tune the smoothing procedure to achieve the optimality (Liang and Wu, 2008; Brunel et al.,

2014).

Another extension is based on the GRADE method (Chen et al., 2017). It avoids the

derivative estimation issue in the vanilla collocation method, and instead considers the

ODE fidelity term in its integral form. Similar to the vanilla two-step method, the GRADE

method first obtains the smoothing estimates of latent processes from observations as in

(4.2). Using integrated basis functions Θ̂j(t) =
∫ t

0
θ̂j(t) dt, j = 1, . . . , p, one can express

θ̃j(t) = Cj0 + γj0 t+

p∑

k=1

γjkΘ̂k(t),

according to the integrated differential equations. Finally, we solve the following optimiza-

tion problems to obtain

γ̂j = argmin
Cj0,γj0,γj

1

n

n∑

i=1

{
yij θ̃j(ti)− b(θ̃j(ti))

}
+ PENλγ

(γj). (4.3)

The GRADE method is initially developed for nonparametric additive ODE models and

naturally adapts to the linear case. The use of an integrated form of ODE facilitates in-

vestigating the asymptotic behavior of the estimator and enhancing its robustness to the

smoothing effect in the first step (Dattner and Klaassen, 2015; Chen et al., 2017). Both

the two-step collocation methods proposed in this section involve maximizing the likeli-

hood function for exponential family distributions, which can be efficiently solved with the

iteratively reweighted least squares technique as in Section 3.2.

We compare the two-step collocation methods with the high-dimensional generalized

profiling (HDGP) procedure in Section 5. For process and derivative estimation, since

HDGP balances both the data and ODE fidelities, it usually results in reasonable fits and

more accurate ODE parameter estimates due to the more accurate derivatives. For sparse

structure identification, GRADE achieves the best accuracy, which is consistent with the

motivation of GRADE for network reconstruction (Chen et al., 2017). In summary, HDGP
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is a better choice for process fitting and ODE parameter estimation, while GRADE excels

in sparse structure identification.

5 Simulation Studies

This section compares the empirical performance of three dynamical modeling approaches:

the high-dimensional generalized profiling (HDGP) procedure and the two-step collocation

methods proposed in Section 4, namely the GRADE and the vanilla two-step method,

respectively.

Consider the ODE system studied by Chen et al. (2017) which consists of eight processes

in four pairs, for k = 1, . . . , 4,



θ′2k−1(t) = 2kπ θ2k(t)

θ′2k(t) = 2kπ θ2k−1(t)

, t ∈ [0, 1].

It is clear that the ODE solutions take the form of sine and cosine functions with vary-

ing frequencies, whereas no interaction exists across pairs. For the kth pair, the initial

state is sin(yk) and cos(yk), where yk is sampled from N(0, 1). The latent processes

θ(t) = (θ1(t), . . . , θ8(t))
⊤ described by the above ordinary differential equations are used

to generate observations from Gaussian, Poisson and Bernoulli distributions. Denote by

t1, . . . , tn time points from [0, 1]. For Gaussian distribution, yij is sampled fromN(θj(ti), σ
2)

with known variance σ2, and the sample size n for each process is set to be 100 and 500.

For Poisson distribution, we draw 500 and 1000 samples from Poisson(λj(ti)) where the

intensity process λj(t) = exp{θj(t)}. For Bernoulli distribution, 1500 and 2500 samples

are generated with probability of success pj(t) = exp{θj(t)}/[1 + exp{θj(t)}]. Sample sizes

for Poisson and Bernoulli distributions are larger than Gaussian, as in those cases more

observations are generally required to ensure reasonable estimates according to the theory

of generalized linear model.

We use the smoothing spline fitting as an initialization for the profiling procedure, which

also corresponds to the first stage of two-step collocation methods. The order of B-spline

functions in HDGP is set as 6, and the number of knots is half of that of time points. Both

HDGP and GRADE require numerical integration to evaluate ODE fidelity and integrated
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basis representations, respectively. For sparsity penalty choices, we consider the Lasso

penalty PENλγ
(γj) = λγ‖γj‖1 and the SCAD penalty PENλγ

(γj) =
∑p

k=1 pλγ
(|γjk|), where

the function pλ(·) is defined on [0,∞) as

pλ(u) =





λu, if 0 ≤ u ≤ λ

−(u2 − 2aλu+ λ2)/(a− 1), if λ < u < aλ

(a+ 1)λ2/2 if u ≥ aλ,

and a suggested value for a is 3.7 according to Fan and Li (2001). Algorithmic convergence

is demonstrated when the difference between successive ODE parameter estimates is small

enough. It works well for two-step collocation methods. However, due to the complex

interaction between inner and outer optimizations, HDGP may not yield sparse ODE pa-

rameter estimates at the declaration of convergence. To address this numerical issue, we

manually set ODE parameter estimates below a constant threshold as zero. Based on our

empirical studies, a recommended value for the threshold is the root-mean-square of the

initial estimate Γ̂ multiplied by a factor 0.01.

Simulation results are evaluated using three types of criteria. The first two criteria

concern about process and derivative estimates, which are evaluated by the mean squared

errors (MSE) of θ(t) and θ′(t),

MSE(θ̂(t)) =
1

np

p∑

j=1

n∑

i=1

{
θ̂j(ti)− θj(ti)

}2

,

MSE(θ̂′(t)) =
1

np

p∑

j=1

n∑

i=1

{
θ̂′j(ti)− θ′j(ti)

}2

.

Second, we measure how well the structural parameters are estimated by their root-mean-

square error (RMSE). Third, true positive rate (TPR) and false positive rate (FPR) are

used to quantify how well the sparse structure is identified, where we refer to non-zero

structural parameters as positive cases and otherwise as negative cases.

Table 1 displays the averaged evaluations over 50 repeated experiments using the Lasso

penalty, while the true positive rates are omitted because they are all equal to one for all

three methods. Under each simulation set-up, increasing the number of observations always

leads to reduced errors and tighter confidence intervals in terms of the process fit and the

parameter estimation. For process and derivative fitting, the smoothing splines method,
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Table 1: Performance of HDGP, GRADE and the vanilla two-step method evaluated based

on the process estimates (MSE(θ̂(t))), derivative estimates (MSE(θ̂′(t))), non-zero pa-

rameter estimation (RMSE), and sparse structure estimates (FPR). The 95% confidence

intervals are given in parentheses.

N Method MSE (θ̂(t)) MSE (θ̂′(t)) RMSE (Γ̂) FPR

G
a
u
ss
ia
n

100

HDGP 0.011
(0.0097,0.0124)

3.01

(2.48, 3.53)
0.58

(0.52,0.66)
0.44

(0.43,0.46)

GRADE 0.005

(0.0042,0.0049)
5.23

(4.67, 5.87)
2.97

(2.89,3.05)
0.00

(-,-)

vanilla 0.005

(0.0043,0.0049)
5.23

(4.74, 5.93)
0.62

(0.54,0.72)
0.89

(0.84,0.92)

500

HDGP 0.002
(0.0017,0.0023)

0.48

(0.41, 0.57)
0.28

(0.25,0.30)
0.44

(0.42,0.45)

GRADE 0.001

(0.0010,0.0011)
1.82

(1.75, 1.88)
0.84

(0.82,0.85)
0.01

(0.01,0.02)

vanilla 0.001

(0.0010,0.0011)
1.82

(1.75, 1.88)
0.34

(0.32,0.37)
0.67

(0.64,0.71)

P
o
is
so
n

500

HDGP 0.024
(0.0222,0.0259)

6.24

(5.60, 6.93)
1.70

(1.54,1.91)
0.58

(0.56,0.61)

GRADE 0.024
(0.0232,0.0252)

12.27
(11.66,13.06)

2.03
(1.86,2.19)

0.37

(0.34,0.41)

vanilla 0.024
(0.0232,0.0252)

12.27
(11.63,13.00)

1.86
(1.70,2.07)

0.98
(0.97,0.98)

1000

HDGP 0.011

(0.0105,0.0121)
2.70

(2.43, 2.97)
1.04

(0.94,1.14)
0.57

(0.55,0.59)

GRADE 0.013
(0.0128,0.0141)

8.20
(7.70, 8.73)

1.41
(1.31,1.53)

0.32

(0.28,0.36)

vanilla 0.013
(0.0127,0.0141)

8.20
(7.71, 8.67)

1.18
(1.09,1.29)

0.97
(0.96,0.97)

B
er
n
o
u
ll
i 1500

HDGP 0.031
(0.0260,0.0357)

8.18

(6.74, 9.73)
1.77

(1.48,1.97)
0.54

(0.52,0.58)

GRADE 0.031
(0.0277,0.0333)

15.97
(14.77,16.99)

3.32
(3.01,3.61)

0.24

(0.21,0.28)

vanilla 0.032
(0.0285,0.0376)

22.28
(17.21,32.11)

2.28
(1.70,3.22)

0.94
(0.90,0.96)

2500

HDGP 0.019

(0.0169,0.0216)
5.05

(4.33, 6.03)
1.55

(1.39,1.74)
0.59

(0.55,0.62)

GRADE 0.020
(0.0193,0.0210)

12.71
(11.91,13.67)

2.57
(2.34,2.79)

0.20

(0.16,0.24)

vanilla 0.020
(0.0193,0.0211)

12.71
(11.88,13.69)

1.67
(1.46,1.87)

0.98
(0.97,0.99)
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as the first stage of two-step collocation methods, often produces accurate estimates of

the latent process itself, but is less efficient in the derivative fitting. In contrast, the

inner optimization of HDGP balances the data and ODE fidelities, resulting in reasonable

process fitting and improved derivative fitting. For ODE parameter estimation, HDGP

delivers the smallest error due to the more accurate derivatives. Interestingly, GRADE has

much worse performance than the other two under this criterion. One partial reason is that

GRADE only uses structural parameters in the integrated basis representation (4.3) instead

of the explicit form of differential equations. For sparse structure identification, GRADE

achieves the best accuracy, as it discovers all non-zero structural parameters with the fewest

false positives. It is consistent with the motivation of GRADE for network reconstruction

(Chen et al., 2017). In summary, HDGP is a better choice for process fitting and ODE

parameter estimation, while GRADE excels in sparse structure identification.

We next investigate the effects of different noise levels and choices of sparse penalty.

Under the above Gaussian set-up with 500 observations for each process. The signal-

to-noise ratio (SNR) is defined as the ratio between the sample standard deviation of

{θj(ti)}
n
i=1 and the noise standard deviation σ. We set the signal-to-noise ratio as 3, 10, 30,

and infinity, where the infinite ratio means that no noise is added. Both Lasso and SCAD

penalties are considered. Figure 1 presents the performance evaluations over 50 repeated

experiments. In general, all methods perform better over all criteria when the signal-to-

noise ratio increases. The top row of Figure 1 corresponding to the Lasso penalty provides

the consistent result as in Table 1, which indicates that HDGP has a comparable process fit

and better derivative estimation, especially when the noise level is low. Moreover, HDGP

performs the best for estimating structural parameters, while the vanilla two-step method

also provides satisfactory results. In contrast, even when there is no noise, the bias of ODE

parameter estimates by GRADE is still large and RMSE is almost constant. For sparse

structure identification, GRADE outperforms the other methods under a wide range of

noise levels. HDGP and the vanilla two-step method only have high accuracy when the

signal level is high. The bottom row of Figure 1 displays simulation results when the SCAD

penalty is used for inducing sparsity for the ODE system. Compared with the results with

Lasso, overall performances in process, derivative, and ODE parameter estimations are
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Figure 1: Performance of HDGP (purple solid), GRADE (blue dashed), and the vanilla

two-step method (yellow dotted) for Gaussian observations at different noise levels. The

boxes identify the medians and the quartiles of each criterion for 50 repeated experiments.

Top and bottom rows correspond to Lasso and SCAD penalties, respectively.
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improved mainly due to the unbiasedness property of SCAD penalty (Fan and Li, 2001).

More interestingly, the poor performance of GRADE in ODE parameter estimation is

greatly enhanced, and now it delivers comparable estimation results as the other two. Due

to the oracle property enjoyed by the SCAD penalty (Fan and Li, 2001), we recommend it

for better performance in parameter estimation.

6 Real Data Analysis

6.1 Google Trends Data Analysis

Google Trends provides a publicly accessible online portal to analyze the popularity of

search queries. In this study, we attempt to apply our method to model the interactions

among a number of trending keywords during the recent pandemic of Coronavirus disease

2019 (COVID-19). In Table 2, we list 24 keywords and cluster them into three categories.

The first category consists of five keywords about specific terminologies such as mask and

quarantine. The second category includes not only the countries with the most confirmed

cases as of January 2021, such as the United States, India, and Brazil but also the districts

like Antarctica, which is the last continent to report confirmed cases due to the remoteness

and sparse population. We also include the last category of noise keywords with no apparent

relationship to the pandemic.

Table 2: Three categories of keywords selected for the analysis of Google Trends data.

Category Keyword

COVID-19 related coronavirus, mask, quarantine, vaccine, WHO (5 words)

Countries or districts Africa, Antarctica, Arctic, Australia, Brazil, Canada, China, India, Iran,

Italy, Japan, Russia, the United States (13 words)

Noise words cat, cloud, desert, dog, game, sun (6 words)

The Google Trends data used in our study cover the range from January 20 to Septem-

ber 20 in 2020. The keyword popularity is measured by an integer index calculated by
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normalizing and rounding the keyword count in an unbiased searching requests sample.

We observe that the daily trend indices have several sharp peaks, see Figure 2 for an illus-

trative example. Direct modeling for the mean trends will result in abrupt high values near

the peaks and undersmooth other relatively flat regions. Therefore, it is more appropriate

to assume the indices follow Poisson distributions, and we apply the proposed method to

model the latent processes of intensity parameters with ODEs.

Figure 2: Daily Google Trends indices of keyword Russia and vaccine from January to

September 2020.

To better exhibit different stages of the pandemic, we consider three time periods: from

January 20 to March 19, from March 20 to June 19, and from June 20 to September 20.

For each period, our method is applied to fit the trending processes with a series of sparsity

parameter λγ’s. Figures 3a and 3b display two networks with different sparsity parameters

in the first period (from January to March). Keyword quarantine has the highest degree

in both networks. During the COVID-19 pandemic, quarantines or self-quarantines are

enacted by multiple governmental actors to prevent the rapid spread of the virus. It is

of no surprise to become the top-ranked trending keyword. The other three keywords

in Figure 3a are coronavirus, China and vaccine, which stand for the virus’s name, the

country where the first case was identified, and the immunization method. The top four

keywords represent the major trending focus at the early stage of the pandemic. In Figure
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Figure 3: Recovered networks of the trending keywords during the first period (from Jan-

uary 20 to March 19) with different values of sparsity parameters.

3b, more affected countries such as Australia, Italy, and the United States, are involved

when the sparsity parameter is decreased. In contrast, noise keywords are isolated in both

networks, indicating no connection to the trending topics. More interestingly, we investigate

Table 3: Top four keywords in the recovered networks during three periods. The keyword

of the highest degree is in boldface.

Period Keywords

January 20 – March 19 quarantine, China, coronavirus, vaccine

March 20 – June 19 Italy, China, Iran, Russia

June 20 – September 20 coronavirus, the United States, vaccine, mask

the evolution of network structure for the trending keywords along the progression of the

COVID-19 pandemic. Table 3 lists the top four keywords in three time periods where the

keyword with the highest degree is in boldface. From the first period to the second, the

keyword Italy emerges as the new top word. According to the WHO report, on March

19, Italy overtook China as the country with the most reported deaths, and announced
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Table 4: Companies selected in eight categories for stock price data analysis.

Group Category Companies

1 Information Technology Adobe, Apple, Microsoft, Salesforce, Zoom

2 Electric Vehicle BYD, Kandi, Nio, Tesla, Workhorse

3 Pharmaceutical AbbVie, Eli lilly, Moderna, Novartis, Pfizer

4 Consumer Services & Retail Ascena, J. C. Penney, Kohl’s, Macy’s, Nordstrom

5 Online Retail Shopping Amazon, Best Buy, Target, Walmart, Wayfair

6 Hotels Hilton, Marriott, Wyndham, Wynn, Park

7 Air Transportation Boeing, Airbus, Delta Air Lines, Southwest Airlines,

United Airline

8 Energy Chevron, Conocophillips, Exxon Mobil, Schlumberger,

Valero Energy

the national lockdown in March. Turning to the third period, China and Italy drop out

of the top list. Both countries had successfully slowed down the domestic infections and

reduced daily new cases significantly. As preventive measures including wearing face masks

in public are advised and several promising vaccines are being developed, mask and vaccine

are among the top trending keywords.

6.2 Analysis of Stock Price Change Directions

In the year 2020, the stock market experienced enormous volatility due to the coronavirus

pandemic. Many companies have suffered massive price drops, while others have witnessed

substantial increases. We collect the stock price indices for 40 companies during 251 trad-

ing days spanning from January 1 to December 30, 2020. Our goal in this study is to

characterize the change direction patterns of stock prices, taking into account the dynamic

interactions among the stocks. To this end, the original price indices are coded as binary

data to denote an increase or decrease. We group the companies into eight categories based

on the Global Industry Classification Standard. Details are provided in Table 4.

The high-dimensional ODE system is built up for the latent success probability pro-
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Figure 4: The fitted probability processes of daily price increase for the eight categories.

The red dashed line denotes p = 0.5.

cesses. Our sparsity tuning procedure leads to λγ = 10−2.1 and the fitted model achieves

an ODE fidelity below 10−6. Figure 4 displays the fitted probabilities of a daily stock

price increase for all categories. We notice some interesting results from the result. First,

all categories have the low fitted probabilities around March. It corresponds to the 2020

stock market crash, during which multiple circuit breakers were triggered on fears of the

COVID-19 coronavirus. Since the crash, some sectors recovered and re-entered a bull

market through December. Online retail companies made huge profits as health concerns

changed customers’ shopping habits. Information technology companies benefited from the

growing demands for information services and electronics devices. For example, the shifts

towards remote working had raised the number of Zoom’s daily users to an unprecedented

one. In contrast, sectors like energy, hotels, and air transportation experienced the most

severe hit by the COVID-19 pandemic. Although there were signs of recovery in the fourth

quarter, these industries are still under the tremendous impact of the COVID-19 recession.

6.3 Analysis of Yeast Cell Cycle-regulated Genes

The cell cycle is a fundamental biological process consisting of cell growth, duplication

of genetic information, distribution of chromosomes, and cell division (Cho et al., 1998).

Spellman et al. (1998) analyzed the expression levels of 6,178 yeast genes at 7-minute in-

tervals for 119 minutes. The experiments were carried out in the cell cultures with three

independent synchronization methods. A score was calculated for each gene to indicate
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Figure 5: The recovered network of the yeast cell cycle. Yellow nodes represent genes, and

the green-solid or red-dashed edges indicate potential promotion or suppression effects.

their similarities to those cell-cycle regulated genes already known. Due to missingness

in data, we choose 72 out of 93 genes identified by Spellman et al. (1998) in the alpha

factor-based synchronized experiment, and model the dynamic relationship between the

mean profiles of these 72 genes using an ODE system under Gaussian assumption for gene

expression level. The proposed method is applied to identify the sparse structure of the

gene regulatory network. The result is shown in Figure 5, which excludes 12 isolated genes.

This suggests that although those genes get involved in the cell cycle, their regulated tran-

scriptions are not absolutely required. Among the 60 genes in Figure 5, 116 regulations

(i.e., directed edges) are discovered. The average number of regulations for each gene is

around three, while more than 80% genes have regulations fewer than five. Genes with

high network degrees are identified as central hub nodes. For example, CLN3 (node 1) has

the largest number of regulations in Figure 5. According to the Saccharomyces Genome

Database (Cherry et al., 1998), the encoded protein CLN3p is known as a cell cycle regu-
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lator and promotes the G1/S transition (Nasmyth, 1993). More interestingly, the positive

or negative signs of our estimated structural parameters naturally imply the potential pro-

motion or inhibition between genes, respectively. Our result suggests that CHS1 (node 62)

promotes the expression of POL30 (node 12), which regulates DNA replication in the G1

phase. Meanwhile, it suppresses the expression of FAR1 (node 30), which is a CDC28p

kinase inhibitor functioning in the G2/M transition.

7 Conclusions and Discussion

In this article, we have proposed a new profiling procedure for both parameter estima-

tion and sparse structure identification for high-dimensional linear ODE models with non-

Gaussian observations. Our method involves a hierarchical optimization scheme: the inner

optimization balances the data fitting and ODE fidelity to improve estimation efficiency,

while the outer optimization induces a sparse structure for better model interpretation.

Besides, we extend two-step collocation methods to the non-Gaussian observation setting

and compare them with the proposed profiling procedure via comprehensive studies.

One limitation of our work is that only the linear ODE system is under consideration.

We are aware of the recent development of two-step collocation to sparse additive ODE

systems (Henderson and Michailidis, 2014; Wu et al., 2014; Chen et al., 2017) and a more

general functional ANOVA extension (Dai and Li, 2021). Although our hierarchical opti-

mization is not restricted to the linear ODE, the extension to nonlinear ODE systems is

not straightforward. For instance, a common strategy to handle additive ODE models is

to expand the nonlinear components with basis function. However, due to the profiling

nature, the range of collocation bases for latent processes needs to be controlled within a

compact interval, which may not be easily overcome. Another future research is on the

statistical properties such as uniform bound on the approximations to the true solutions,

asymptotic normality of the estimators. Despite existing theory established for the stan-

dard generalized profiling (Qi and Zhao, 2010), it is still a challenging problem due to high

dimensionality, and we leave the systematic study to future work.
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A Derivatives

We provide the analytical expressions of the derivatives used in the computation (Section

3).

Derivatives of Gj in inner optimization

Write Gj(θj ;γj) in the inner optimization

Gj = −
1

n

n∑

i=1

{yijθj(ti)− b(θj(ti))}+ λθ

∫

T

{
θ′j(t)− γj0 −

p∑

k=1

γjk θk(t)

}2

dt,

then the first derivative is

∂Gj

∂cj
=−

1

n

n∑

i=1

{yijh(ti)− b′(θj(ti))h(ti)}

+ 2λθ

∫

T

{
dθj(t)

dt
− γj0 −

p∑

k=1

γjk θk(t)

}{
dh(t)

dt
− γjj h(t)

}
dt,

and the second derivative is

∂2Gj

∂cj∂c
⊤
j

=
1

n

n∑

i=1

{b′′(θj(ti))h(ti)h(ti)
⊤}

+ 2λθ

∫

T

{
dh(t)

dt
− γjjh(t)

}{
dh(t)

dt
− γjjh(t)

}⊤

dt.

For k = 0,

∂2Gj

∂cj∂γj0
= −2λθ

∫

T

{
dh(t)

dt
− γjjh(t)

}
dt,

for k = 1, . . . , p and k 6= j ,

∂2Gj

∂cj∂γjk
= −2λθ

∫

T

{
dh(t)

dt
− γjjh(t)

}
θk(t) dt,

for k = j,

∂2Gj

∂cj∂γjj
= −2λθ

∫

T

{
dh(t)

dt
− γjjh(t)

}
θj(t) dt

− 2λθ

∫

T

{
dθj(t)

dt
− γj0 −

p∑

k=1

γjkθk(t)

}
h(t) dt.
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Derivative of c∗j in outer optimization

Write c∗j(γj) as c
∗
j for simplicity. Since Gj has zero-gradient at c

∗
j , then

∂Gj

∂cj

∣∣∣∣
c∗
j

= 0.

Taking the derivative with respect to γj on both sides, we have

d

dγ⊤
j

(
∂Gj

∂cj

∣∣∣∣
c∗
j

)
=

∂2Gj

∂cj∂γ⊤
j

∣∣∣∣
c∗
j

+

(
∂2Gj

∂cj∂c⊤j

∣∣∣∣
c∗
j

)
∂c∗j (γj)

∂γ⊤
j

= 0.

Suppose ∂2Gj/(∂cj∂c
⊤
j )|c∗j is non-singular, we have the following expression of the deriva-

tive
∂c∗j (γj)

∂γ⊤
j

= −

(
∂2Gj

∂cj∂c⊤j

∣∣∣∣
c∗
j

)−1(
∂2Gj

∂cj∂γ⊤
j

∣∣∣∣
c∗
j

)
.

Both matrices on the right-hand side have been explicitly derived, the the derivative of c∗j

follows.

SUPPLEMENTARY MATERIALS

Supplementary Material contains additional numerical results.
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