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Abstract

Linear regression with the classical normality assumption for the error distribution
may lead to an undesirable posterior inference of regression coefficients due to the
potential outliers. This paper considers the finite mixture of two components with
thin and heavy tails as the error distribution, which has been routinely employed
in applied statistics. For the heavily-tailed component, we introduce the novel class
of distributions; their densities are log-regularly varying and have heavier tails than
those of Cauchy distribution, yet they are expressed as a scale mixture of normal
distributions and enable the efficient posterior inference by Gibbs sampler. We prove
the robustness to outliers of the posterior distributions under the proposed models
with a minimal set of assumptions, which justifies the use of shrinkage priors with
unbounded densities for the coefficient vector in the presence of outliers. The exten-
sive comparison with the existing methods via simulation study shows the improved
performance of our model in point and interval estimation, as well as its computa-
tional efficiency. Further, we confirm the posterior robustness of our method in the

empirical study with the shrinkage priors for regression coefficients.
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1 Introduction

The robustness to outliers in linear regression models has been well-studied for its
importance, and the research on theory and methodology for robust statistics has been
accumulated in the past years. Yet, the modeling of error distributions in practice to
accommodate outliers has not advanced significantly from Student’s t-distribution.
This is contrary to the situations of modern applied statistics where data are enriched
by massive observations and the more extreme outliers are expected to be observed
and affect the posterior inference. Our research aims to contribute to the development
of novel error distributions for outlier-robustness which we believe are still in demand.

In the full posterior inference, the concept of robustness is not limited to the
point estimation, but targets the whole posterior distributions of parameters of in-
terest. Also known as outlier-proneness or outlier-rejection, the posterior robustness
defines the property of posterior distributions that the difference of posteriors with
and without outliers diminishes as the values of outliers become extreme (O’Hagan,
1979). The series of research on posterior robustness has revealed several variations of
the (sufficient) conditions for error distributions to achieve the robustness, and pro-
vided the specific error distributions that meet such conditions; see the detailed review
by |(O’Hagan and Pericchi| (2012)). The recent studies introduce the concept of regu-
larly varying density functions (Andrade and O’Hagan, 2006}, [2011), which are later
extended to log-regularly varying functions (Desgagné, |2015; [Desgagné and Gagnon,
2019), and provide the robustness conditions for the partial and whole posteriors of
interest to be unaffected by outliers. As an error distribution whose density function
is log-regularly varying, Gagnon et al.|(2019) proposes log-Pareto truncated normal
(LPTN) distribution, which replaces the thin-tails of normal distribution by those of
heavily-tailed log-Pareto distribution. Despite its desirable property of robustness,
the posterior inference for the regression model with the LPTN error distribution is
challenging. The class of LPTN distributions has hyperparameters that are difficult
to tune and/or estimate, such as the truncation points of Gaussian tails. In addition,

several parameters cannot be sampled from their conditional posteriors directly, and



one has to rely on Metropolis-Hastings algorithm. These factors may lead to the
increased computational cost under the LPTN models, which also limits the use of
the LPTN distribution under more general linear models including random effects.

We, in contrast, explore a different class of error distributions that have received
less attention in the methodological literature. Following |Box and Tiao (1968), we
model the error distribution by the finite mixture of two components; one has thinner
tails such as normal distributions, the other is extremely heavily-tailed to accommo-
date potential outliers, and both are centered at zero. While remaining in the general
class of scale mixture of normals (West), 1984)), this simple, intuitive approach to the
modeling of outliers contrasts the literature listed above, where the error is modeled
by a single, continuous distribution. The structure of finite mixture helps controlling
the effect of outliers on the posteriors of parameters of interest, while allowing the
conditional conjugacy for posterior computation. For these practical utilities, the
finite mixture models have been routinely practiced in applied statistics (see, for ex-
ample, (Carter and Kohn|1994] 'West|[1997|, [Frihwirth-Schnatter|2006/(Tak et al.[2019),
and [Silva et al.2020). In this research, we specifically focus on this class of error
distributions in proving the posterior robustness.

For the heavily-tailed distribution that comprises the finite mixture, Student’s ¢-
distribution is still regarded thin-tailed for its outlier sensitivity. We propose the use
of distributions that has been utilized in the robust inference for high-dimensional
count data (Hamura et al., [2019)) for their extremely-heavy tails. This is another
scale mixture of normals by the gamma distribution with the hierarchical structure
on shape parameters, which enables the posterior inference by a simple but efficient
Gibbs sampler. The tails of these distributions are heavier than those of Cauchy
distributions. In fact, the density of the proposed error distribution is log-regularly
varying, as those of other heavily-tailed distributions considered for posterior robust-
ness, including LPTN distributions.

The proposed finite mixture of the thinly-tailed and heavily-tailed distributions is
named the extremely heavily-tailed error (EH) distribution. We prove the posterior

robustness under the linear regression models with the EH distribution. The density



tails of the EH distribution play an important role in the proof of tail robustness; in
fact, the class of error distributions whose density tails are thinner than those of the
EH distribution is unable to attain the posterior robustness. The EH distribution is
too heavily tailed to have finite moments, but the posterior means and variances of
parameters of interest do exist in most situations.

The set of assumptions required for the proof of posterior robustness is minimal.
The assumptions restrict the available priors for the regression coefficients and ob-
servational scale, but do not exclude the use of the unbounded prior densities. The
posterior robustness is valid even for advanced shrinkage priors, e.g., horseshoe priors
(Carvalho et al., 2009, 2010). As a result, the robustness under shrinkage/variable
selection is also in the scope of our research. In the empirical studies, we practice the
posterior inference for the linear regression models with both the horseshoe prior and
the EH distribution for illustration.

The rest of the paper is organized as follows. In Section [2] we introduce the new
error distribution and describe its use in linear regression models, followed by the the-
oretical results on the posterior robustness. The algorithm for posterior computation
is provided in Section [3] with the discussion on its computational efficiency. In Sec-
tion 4] we carry out simulation studies to compare the proposed method with existing
models, including ¢-distribution and the finite mixture of normal and t-distributions.
In Section |5, we illustrate the proposed method using two famous datasets: Boston
housing data and diabetes data. The paper is concluded with further discussions in
Section [6] The R code implementing the proposed method is available at GitHub

repository (https://github.com/sshonosuke/EHE).

2 A new error distribution for robust regression

2.1 FEaxtremely heavy-tailed error distributions

Let y; be a response variable and x; be an associated p-dimensional vector of covari-
ates, for : = 1,...,n. We consider a linear regression model, y; = azgﬁ + og;, where

B is a p-dimensional vector of regression coefficients and ¢ is an unknown scale pa-


https://github.com/sshonosuke/EHE

rameter. The error terms, €1, ..., &y, are directly linked to the posterior robustness;
modeling those errors simply by Gaussian distributions makes the posterior inference
very sensitive to outliers.

To achieve the posterior robustness, we introduce a local scale variable u; and
assume that the error distribution is conditionally Gaussian, as g;|u; ~ N(0,u;).
Under this setting, an outlier is explained solely by the extreme value of the error
term generated by the higher value of the local scale variable. A typical choice of
the distribution of u; is the inverse-gamma distribution, which leads to the marginal
distribution of &; being the t-distribution. However, as shown in |Gagnon et al. (2019)
and our main theorem, this choice does not hold the desirable robustness properties
of the posterior distribution, even when the distribution of ¢; is Cauchy distribution.

As stated in the introduction, the error distribution in this study is not a single
continuous mixture of normals, but the mixture of two components. We introduce
latent binary variable z; and model it by Pr[z; = 1] = 1 — Pr[z; = 0] = s with mixing
probability s € (0,1). If z; = 0, then the error distribution is simply the standard
normal distribution, i.e., €|(u;,z = 0) ~ N(0,1). If z; = 1, then we consider the
scale mixture of normals with latent scale u; as &;|(u;, z; = 1) ~ N(0, u;). The latent
scale follows the newly-introduced, extremely heavily-tailed distribution, u; ~ H(-;7),
where H is the proper probability distribution on (0, c0) with parameter v > 0. The
density function of H-distribution is given by

ol 1
H(u;) = . u> 0. 1
() 1+ u{l+log(l+ u)}tty “ (1)

Preparing two distributions in modeling of the error distribution is based on the
same modeling philosophy of |Box and Tiao| (1968)); the first component generates
non-outlying errors and the second component is supposed to absorb outlying errors.
As the model for the variance of outlying errors, the second component H(-;7) is
extremely heavily-tailed since H(u;v) ~ u~'(logu)~'~7 as u — oo, which is known
as log-regularly varying density (Desgagné, |2015)). This property is inherited to the

marginal distribution of error term &; and plays an important role in the robustness



properties of the posterior distribution.

Under the formulation , the marginal distribution of ¢; is obtained as

fen(ei) = (1 —s)o(;0,1) + s /000 &(g4;0,us) H (ui; y)dusg, (2)

where ¢(g;;0,u) is the normal density with mean zero and variance u. The second
component is the scale mixture of normals, but does not admit any closed-form ex-
pression. To handle with this component in posterior computation, as we see later
in Section (3.1} we utilize the augmentation of H-distribution by a couple of gamma-
distributed state variables. By this augmentation, the posterior inference for this
model is straightforward.

A notable property of the new error distribution is its extremely heavy tails shown

in the following proposition, with the proof left in the Appendix.

Proposition 1. The density (@ satisfies
fen(x) ~ |z~ (log )77

for large |x| if s > 0.

The above proposition shows that the EH distribution directly inherits the heavy
tails of the mixing H-distribution in the second component of the density in . Asa
result, the density of the EH distribution is a family of log-regularly varying functions.
In addition, the tails of the EH density are heavier than those of Cauchy distribution;
fo(x) =~ |z|~2. Based on this observation, we name the new error distribution in
extremely heavily-tailed error (EH) distribution.

The density function in is plotted in Figure (1| for s = 0.05,0.1 and 0.2. It is
observed that the shape of the EH distribution is very similar to one of the standard
normal distribution around the origin, whereas the tails become heavier as the mixture
weight s increases. Figure [2 shows the cumulative distribution functions (CDFs) of
H-distributions and the EH distributions. The tails of the proposed EH distributions

are heavier than those of Cauchy distribution, as seen in the right panel. This fact



is also confirmed via the comparison of CDF's of H- and inverse-gamma distributions
in the left panel. It is the property of the EH density shown in these figures that
leads to the robustness properties for the posterior distribution, which we show in

Theorem [11
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Figure 1: Densities of the proposed error distribution with v = 1 and s €

{0.05,0.1,0.2} and the standard normal error distribution. The intractable integral
of the second component is computed by the Monte Carlo integration.

2.2  Definition of outliers

We first specify the structure of outliers. Our definition is based on |[Desgagné and
Gagnon| (2019). The set of indices for n observations, {1,...,n}, is split into the
two disjoint subsets, I and £, which represent those of the non-outlying and outlying
values, respectively. Note that CUL = {1,...,n}and KNL = 0. Let D = {y1,...,yn}
be the set of the observed data. The set of the non-outlying observations is defined
by D* = {y|i € K}
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Figure 2: Left: Cumulative distribution functions of scale distributions, H (u;~y) for
v € {0.5,1.0,2.0}, and the inverse gamma distribution with shape and scale 0.5.
Right: The empirical cumulative distributions of the EH distributions with v = 1
and s = 0.1,0.5,0.8 computed by the Monte Carlo integration, compared with the
distribution function of Cauchy distribution.

The concept of (non-)outliers is defined by the observed values specified as,

a;, ifi € K,
Yi =
a; +bw, ifiel,

where a; € R, b; # 0 and w > 0. We assume that w is sufficiently large, so that
the value of y; for ¢ € £ becomes extremely large, either positively or negatively. We
define the posterior robustness as the limiting behaviors of the posteriors distributions
of parameters of interest, (3,02), when w tends to infinity. That is, the model is
posterior robust if the two posteriors, one of which is conditioned by the full dataset
D and the other of which is conditioned by the dataset without the outliers D*, are
equivalent when w — oo. To put it in another way, under the posterior robustness,

the outlying values are automatically discarded in posterior inference without the



knowledge on which observations are outlying.

2.8 Robustness for the EH prior

The class of prior distributions for (3, 02) for which we prove the posterior robustness

is, for k=1,...,p,

L /B )
~ = d ~ 3
Bi|o Uﬁﬁ(a and o ~ 7m,(0), (3)
where 31, ..., 8, are conditionally independent given o and w3 and 7, are the proba-

bility density functions on R and (0, c0), respectively. Let p(/3,0|D) be the posterior
distribution of (5, o) under the linear regression model with the EH distribution. Un-
der this prior, the following theorem gives sufficient conditions for the posterior with
the outliers converges to that without the outliers as w — o0o. The proof is left in the

Supplementary Materials.
Theorem 1. Assume that there exists ¢ > 0 such that,
(A.1) |K| > |L] +p, i.e., #non-outliers > #outliers + #predictors.

(A.2) supyer{[t|®ms(t)} < o0

(A.8) The prior moments of o~ *l, a¢=1 and o™ are all finite.

Then the linear regression model with the error distribution in (@ and the prior in

(@ s posterior robust, i.e.,

Jim p(8,01D) = p(B,0|D")

for all (B,0) € RP x (0, 00).

The three assumptions are met in many examples we encounter in practice. As-
sumption (A.1) is the requirement for the number of non-outlying observations to
be sufficiently large. Similar assumptions can be found in the literature (e.g., Theo-

rem 2.1 (ii), Gagnon et al.[2019), but (A.1) is of the simpler form and less restrictive.



In many situations, the number of the non-outlying observations comprises the ma-
jority of the dataset, so that Assumption (A.1) is satisfied.

Assumption (A.2) limits the choice of priors for 3, but still covers the wide class of
probability distributions. For example, this assumption is always satisfied when 75(t)
is bounded and O(1/[t|) as |t| — oo. The examples of such prior include the normal
and t-distributions. Note that, however, (A.2) does not force the prior density 75 to
be bounded, unlike the settings of |Gagnon et al.| (2019)). As an important example,
the horseshoe prior, whose density is unbounded at the origin (Theorem 1, |Carvalho
et al.[2010), satisfies (A.2) for any ¢ € (0,2]. As evident in the example of the
horseshoe prior, Theorem [I| can be a useful device to check the posterior robustness
for the boarder and important class of statistical problems, including the variable
selection by the shrinkage priors.

Assumption (A.3) is the moment conditions for observational scale o. When the
sample size n is large enough and ¢ < 1, then (A.3) is summarized as the existence
of negative moments of . In this case, the inverse-gamma distribution for o2, which

is a typical choice of priors in many applications, satisfies (A.3).

2.4 Tail heaviness for robustness

Theorem [1| proves the posterior robustness for the linear regression models with the
EH distributions, whose density tails are evaluated as fgu(z) ~ |2|~(log |z|) 7177, as
shown in Proposition [[} These extremely heavy tails are, in fact, the necessary con-
dition for the posterior robustness. To clarify the relationship between the posterior
robustness and the tail behavior of the error distributions, we study a wider class of
error distributions which includes the proposed distribution as a special case, defined
by replacing H (u;7) in with

1 1
(14 u) 9 {1+ log(1 + u) 1+’

H(u;7,06) = C(4,7) u >0, (4)

where C'(9,7) is a normalizing constant, and § > 0 is an additional shape parameter.

Like the degree of freedom of ¢-distributions, the shape parameter § is related to
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the decay of the density tail of , that is, H(u;v,b) ~u %' (logu)~'~7. Thus, this
class of distributions covers the error distributions whose density tails are lighter than
those of the proposed EH distribution in , and includes the EH distribution as one
with the heaviest tails under § = 0. Note that the density tails become heavier than
those of Cauchy distribution if § < 1.

It is shown that the choice of hyperparameter that can achieve the posterior
robustness is 6 = 0 (and arbitrary v > 0), i.e., the model considered in Theorem
From this observation, we conclude that the tails of the error distribution that are
heavier than those of Cauchy distributions is essential for posterior robustness. For

details, see the Supplementary Materials.

2.5 FEuxistence of posterior moments

The EH distribution is too heavily tailed to have finite moments. However, the
posterior of (3,02) has finite means and variances in most situations. We verify this

result for the inverse-gamma, prior for o2.

Proposition 2. Consider the linear regression model with the EH distribution in (@
and the prior for (B,0) given in (@ Furthermore, suppose that the prior for o2 is
an inverse-gamma distribution.
(a) If (A.2) holds for some ¢ > 0 and ¢ < n, then E[|fk|°|D] < oo fork =1,...,p.
(b) If d < n, then E[c%|D] < cc.

It is immediate from (a) that the posterior means and variances of coefficients

exist under the horseshoe prior for 3, which is given later in (/).
Corollary 1. If the prior for 3 is horseshoe and n > 2, then E[|Bx|?|y] < co.

The proof is given in the Supplementary Materials. In fact, the existence of
posterior moments of (3, 02) can be discussed for the broad class of error distributions
and priors for (/3,0), not being limited to the linear regression model we particularly

consider in this paper. Proposition [2|is proved with such generality.
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3 Posterior Computation

3.1 Gibbs sampler by augmentation

An important property of the proposed EH distribution is its computational
tractability, that is, we can easily construct a simple Gibbs sampling for posterior
inference. Note that the error distribution contains two unknown parameters, s and
v, and we can adopt conditionally conjugate priors given by s ~ Beta(as, bs) and v ~
Ga(a, by). The conditionally conjugate priors can also be found for main parameters,
B and 02, and we use 3 ~ N(Ag, Bg) and 0% ~ Ga(a,, b,). The multivariate normal
prior for 8 can be replaced with the scale mixture of normals, such as shrinkage priors,
which is discussed later in Section [3.3

To derive the tractable conditional posteriors, we need to keep the likelihood
conditionally Gaussian with latent scale u;. This can be done easily by condition-
ing the set of latent variables (z;,u;). The conditional conjugacy for (3,0?%) follows
immediately from the conditionally Gaussian likelihoods.

The full conditional distributions of the other parameters and latent variables in
the EH distribution are not any well-known distribution. However, we can augment
the model with latent parameters by utilizing the following integral expression of

density H (u;;7),

H(u;vy) = //(0 ; Ga(ug; 1, v;)Ga(v; wi, 1) Ga(wg; v, 1)dvdw;.

Namely, the random variable u; following the density H(u;;~y) admits the mixture
representation: u;|(v;, w;) ~ Ga(l,v;), vi|lw; ~ Ga(w;, 1) and w; ~ Ga(y, 1), which en-
ables us to easily generate samples from the full conditional distribution of (u;|v;, w;)
and (vg, w;|ug).

The introduction of the two latent states, (v;, w;), is useful in deriving the condi-
tional posterior of u;, and the algorithm of Gibbs sampler immediately follows with
latent (v;,w;) as the part of the Markov chain, although (v;, w;) is totally redundant

in posterior sampling of the other parameters. We marginalize (v;, w;) out when sam-
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pling «, s and z;’s from their conditional posteriors. This modification of the original
Gibbs sampler simplifies the sampling procedure, and even facilitates the mixing,
while targeting the same stationary distribution of the original Markov chain (Par-
tially collapsed Gibbs sampler, [van Dyk and Park|2008). The algorithm for posterior

sampling is summarized as follows.

Summary of the posterior sampling

- Sample f from the full conditional distribution N (BA, B), where
B =B;'+0?X'DX, A=B;'Ag+o’X'DY

with D = diag(u; ™, ..., u,*").

r o

- Sample ¢~ 2 from Ga(ag,gg), where
. n
Gy = a5 +1/2, by =by+ Y (yi —alB)’/2u
i=1

- Sample z; from Bernoulli distribution; the probabilities of z; = 0 and z; = 1 are
proportional to (1 — s)¢(ys; 2B, 02) and s¢(y;; ztB, 0u;), respectively.

- The full conditional distributions of s and ~ are given by Beta(as,bs) and
Ga(ﬁy,a), respectively, where a; = as + >, z; and by = by +n — Yoy Zi,

Gy = ay+n and by = by + 3.7 log{1 + log(1 + u;)}.

- For each i, independently, sample (v;, w;) first in a compositional way; sample
w; from Ga(l++,14log(1+w;)) and (v;|w;) as Ga(1+w;, 1+u;). Then, sample
u; from GIG(1/2,2v;, (y; — 2¢B8)?/0?) if 2; = 1 or from Ga(1,v;) if z; = 0.

We finally remark the choice of hyperparameters in the priors for s and . Despite
the EH distribution is log-regularly varying under arbitrary « > 0, the use of a large
value of ~ is not suitable to capture potential outliers since the tail of EH gets lighter
as v increases. Moreover, the use of different values of v would not considerably affect

the posterior result as long as 7 is not large. Hence, instead of using a diffuse prior
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for v, we rather recommend simply using a fixed value. In particular, we adopt v =1
as the default choice, and its sensitivity will be investigated in Section [4l As a more
data-dependent way, we also recommend employing an informative prior that prevent
large values of v by setting, for example, a, = b, = 100, which will be considered
in Section [4] Regarding the mixing proportion s, we adopt as = bs = 1 resulting the

uniform prior for s as a default choice.

3.2 Efficiency in computation

A possible reason that the finite mixture has attracted less attention in the past
research on posterior robustness is, as mentioned in Desgagné and Gagnon (2019),
the increased number of latent state variables introduced by augmentation, and the
concern for the efficiency of posterior computation. It is the same concern seen in
Bayesian variable selection (George and McCulloch) [1993)); the finite mixture model
for the prior on regression coefficients results in the necessity of stochastic search
in the high-dimensional model space, hence causes the slow convergence of Markov
chains and the costly computation. It is clear in the above algorithm, however,
that the use of finite mixture as error distributions is completely different from the
variable selection in terms of the model structure and free from such computational
problem. Unlike the variable selection, the membership of each 7 to either of the
two components in our model is independent of one another, which facilitates the
stochastic search in 2™ possible combination of the model space. This fact also shows
that the sampling of (z;, u;, v;, w;) can be done completely in parallel across i’s, hence
our algorithm is scaled and computational feasible for the dataset with extremely
large n. We continue to discuss the computational efficiency of the finite mixture
approach in Section 4 through the extensive comparison with other models by using

the simulated dataset.

3.8 Robust Bayesian variable selection with shrinkage priors

When the dimension of z; is moderate or large, it is desirable to select a suitable subset

of x; to achieve efficient estimation. This procedure of variable selection would also
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be seriously affected by the possible outliers, by which we may fail to select suitable
subsets of covariates. For a robust Bayesian variable selection procedure, we introduce
shrinkage priors for regression coefficients. Here we rewrite the regression model to
explicitly express an intercept term as y; = a + z!3 + ¢;, and consider a normal prior
a ~ N(0,A,) with fixed hyperparameter A, > 0. For the regression coefficients /3,
we consider a class of independent priors expressed as a scale mixture of normals
given by
p 0o
8) =] /0 B(61:0, 027260 me (€4) i (5)
k=1

where T¢(-) is a mixing distribution, and x* is an unknown global parameter that
controls the strength of the shrinkage effects. Examples of the mixing distribution
7¢(+) includes the exponential distribution leading to the Laplace prior of 3 (Bayesian
Lasso, Park and Casella2008]), and the half-Cauchy distribution for f,i/ ? which results
in the horseshoe prior (Carvalho et all [2009, 2010). The robustness property of
the resulting posterior distributions is guaranteed for those shrinkage priors because
Assumption (A.2) of Theorem |[l|is satisfied.

In terms of posterior computation, the key property is that the conditional distri-
bution of S given & under is a normal distribution, so the sampling algorithm
given in Section [3.1] is still valid with minor modification. Specifically, the sampling
from the full conditional distributions of «, 3, 02 and &, ... ,&p is modified or newly

added as follows:

- Sample a from N(A;'B,, A;'), where
ga:Aa—i—UdZu;l, §a20722u;1(yi—xfﬁ).
i=1 i=1

- Sample 3 from N(ZngtDY/, 02251), where

Y=Y -al,, Ag=A'4+X'DX, with A =72diag(¢y,...,5,).
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- Sample 02 from Ga(ay, b, ), where
aa =as + (n + p)/27 EU = ba + Z(yz - xﬁ/B)Q/Qujl + BtAilﬂ-
i=1

- Sample &, for each k and 72 from their full conditionals. Their densities are pro-

portional to ¢(Bk;0,0272,)me (&) and WTQ(TQ)HﬁZI é(Br; 0,0272&;,), respec-

tively, where 7,2(72) is a prior density for 72.

The full conditional distributions of o and [ are familiar forms thanks to the
normal mixture representation of the EH distribution and the shrinkage priors. The
sampling of &, and 72 depends on the choice of shrinkage priors, but the existing
algorithms in the literature can be directly imported to our method.

In Section [b we adopt the horseshoe prior for regression coefficients with the
EH distribution for the error terms. We here provide the details of sampling algo-
rithm under the horseshoe model. The horseshoe prior assumes that /& ~ C*(0,1)
independently for k = 1,...,pand 7 ~ C*(0,1), where C*(0, 1) is the standard half-
Cauchy distribution with probability density function given by p(z) = 2/m(1+2?) for
x > 0. Note that they admit hierarchical expressions given by x|\ ~ IG(1/2,1/Ag)
and A\, ~ IG(1/2,1/2) for &, and 72|y ~ 1G(1/2,1/v) and v ~ IG(1/2,1/2) for 72.

Then, one can sample from each full conditional distribution as follows:

Sample & from IG(1,1/\; + B£/27'202).

Sample Ag from IG(1,1 4 1/&).

Sample 72 from IG((p + 1)/2,1/v + Y ¥ _, B7/2&k02).

Sample v from IG(1,1+ 1/72).

These sampling steps can be directly incorporated into the Gibbs sampling algorithm

given in Section [3.1]
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3.4 Beyond linear regression

The proposed error distribution can be adopted in more general linear regression

models. As an example, we consider a hierarchical model given by
yi =i+ gibde, i=1,...,n, (6)

where g; is a r-vector of additional covariates and b is a vector of random effects
distributed as b ~ N(0, H(v)) with rxr covariance matrix H (1) parametrized by
1. To absorb potential effects of outliers, we use the EH distribution for €;. The
model structure @ is general enough to represent a wide variety of useful models,
as seen in the later sections. Even under the model @, the robustness properties
for 8 demonstrated in Section [2.3] can be discussed by checking whether the prior for
b satisfies Assumption (A.2). Moreover, the augmentation strategy for the efficient
posterior computation algorithm can still be employed and the full conditional dis-
tribution of b is normal. We adopt a random intercept model for longitudinal data
in our simulation study in Section and a linear regression with spatial effects in

our application in Section [5.1

4 Simulation studies

4.1 Linear regression

We here carry out simulation studies to investigate the performance of the proposed
method together with existing methods. We generated n = 300 observations from

the linear regression model with p = 20 covariates, given by
P
Yi 250+Zﬂkxik+oei, i=1,...,n,
k=1

where By = 0.5, 51 = 84 = 0.3, B7 = B10 = 2, 0 = 0.5 and the other coefficients are set
to 0. Here the vector of covariates (z;1,..., %) was generated from a multivariate

normal distribution with zero mean vector and variance-covariance matrix whose
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(k, £)-entry has (0.2)1F= for k., £ € {1,...,p}. Regarding the contamination structure

of the error term, we adopted the location-shift model (Abraham and Boxl |1978);

gi~(1—-—w)N(0,1) +wN(u, 1), i=1,...,n,

where w is the contamination ratio and g is the location of outliers. We considered
all the combinations of w € {0.05,0.1} and p € {5,10,15,20}, in addition to the case
of no contamination (w = 0), which leads to 9 scenarios in total. Under this setting,
we replicate 500 datasets independently.

For each of the 500 simulation datasets, we applied the following robust regression
methods. The error distributions we consider include with the EH distribution, the
LPTN distribution (Gagnon et al.,2019), and ¢-distribution with v degrees of freedom.
For the hyperparameter v in the EH distribution, we fixed v = 1 (denoted by EH)
and estimated v adaptively (aEH) by assigning Ga(100, 100) prior distribution. For
the LPTN distribution, the tuning parameter p € (2®(1) — 1,1) ~ (0.6827,1) is
specified as p = 0.9 and p = 0.7 (LP1 and LP2, respectively). Regarding the degree
of freedom v in the ¢-distribution, we specifically selected the results of v = 1 (Cauchy
distribution, denoted by C), v = 3 (T3), and an adaptive version (aT) that employs
a discrete uniform prior on v € {1,2,3,4,5,8,10,15,20,30,50}. In addition, the
two-component mixture of the ¢-distribution with » = 1/2 and the standard normal
distributions is considered (MT). We also employed the EH distribution with v =
0.5 and v = 0.2 to assess its sensitivity, t-distribution with » = 2.1, and the MT
distribution with v = 2.1. To save the space, we reported the results of these four
methods in the Supplementary Material. As a standard method, we adopted the
normal distribution as the error distribution (denoted by N) that should perform
best in the absence of outliers. Note that all the error distributions listed here are
“misspecified” for missing the location shift of the error term in the data generating
process. This setting emphasizes that the posterior robustness verified in this research
is valid regardless of the structure of outliers.

The priors for the regression coefficients and observational scale are set as (B ~
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N(0,1000) and 0=2 ~ Ga(1,1) for all the models. To employ the posterior inference,
we generated the posterior samples of (8, 0) by Gibbs sampler under the EH, ¢ and
normal error distributions. For the LPTN distribution, the random-walk Metropolis-
Hastings algorithm was adopted as in |(Gagnon et al. (2019), in which the step sizes
were set to 0.05. For each of the 9 models, we generated 3000 posterior samples after
discarding the first 1000 samples.

Based on the posterior samples, we computed posterior means as well as 95%
credible intervals of §; for k = 1,...,p. The performance of the point and interval
estimation was assessed by square root of mean squared errors (RMSE), coverage
probabilities (CP) and average length (AL) based on the 500 replications of the
simulation, and these values were averaged over f, ..., 8p. In addition, we evaluated
the efficiency of the sampling schemes by computing the average of inefficient factors
(IF) of the posterior samples.

In Table [T} we reported the values of these performance measures in 9 scenarios.
When w = 0 (no outlier), as easily predicted, the normal error distribution provides
the most efficient result in all measures. While the other methods are slightly ineffi-
cient, the proposed method (EH and aEH in the table) performs almost in the same
way as the normal distribution. This is an empirical evidence that the efficiency loss
of the EH distribution is very limited owing to the normal component in the mixture.
In the other robust methods, MSEs are slightly higher than the that of the normal
distribution and CPs are smaller than the nominal level.

In the other scenarios, where outliers are incorporated in the data generating
process, the performance of the normal distribution is significantly lowered, and the
robustness property is highlighted in the performance measures of the other models.
In particular, the EH distribution with fixed v (EH) performs quite stably in both
point and interval estimation. The adaptive version (aEH) also works reasonably well,
and the performance is comparable with EH. The LPTN model with p = 0.9 (LP1)
shows reasonable performance in point estimation, but its CPs tend to be smaller than
the nominal level. The other LPTN model with p = 0.7 (LP2) greatly worsens the

accuracy of point estimation, implying the sensitivity of the choice of hyperparameter
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p to the posteriors. The other models (C, T3, aT and MT) also suffer from the
larger MSE values, especially in the scenarios of large w and u, which emphasizes the
lack of posterior robustness under the ¢-distribution family. In addition, the interval
estimation under the t-distributions depends on the degree-of-freedom parameter, as
seen in the results of Cauchy and t3-distributions where the credible intervals are too
wide and narrow, respectively.

In terms of computational efficiency, it is remarkable that the IF values of the
EH models are small and comparable with those of the ¢-distribution methods, which
shows the efficiency of the proposed Gibbs sampling algorithm. On the other hand,
the IFs of the LPTN models are very large due to the use of Metropolis-Hastings al-
gorithm. To obtain the reliable posterior analysis under the LPTN models, one needs
to increase the number of iterations in the computation by MCMC, or to spend more
effort tuning the step-size parameter. We observed that the performance of LPTNs is
improved under the simpler settings of less covariates (p = 10), but the overall result
of model comparison remains almost the same. See the Supplementary Materials for
this additional experiment. Moreover, we measured the actual computation time of
five methods (EH, LP1, T3, MT and N) under larger sample sizes, which are reported
in the Supplementary Materials.

Finally, we evaluate the predictive performance. We generated m = 20 addi-
tional covariates zj, (j = 1,...,m) from the same multivariate normal distribu-
tion, and then generated true response value y;, based on the linear regression with
g; ~ N(0,1). That is, the predicted response is not contaminated with outliers. Ac-
cordingly, in prediction with the EH and MT distributions, we construct the sampling

model of y;, conditional on z; = 0 as

f(yjx|D,z; =0) = /(ﬁ(yj*;J:Lﬁ,a%ﬂﬁ,aﬂ))dﬂda.

This predictive distribution reflects our belief that the prediction should be consid-
ered only for non-outlying observations. If one believes that the predicted response

might also be outlying, then the model in can be used for prediction, being un-
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conditional on z;, at the cost of inflated predictive uncertainty. To handle with the
outlying predictive values, however, the models for outlier detection should be more
appropriate (e.g.,|Desgagné|2021). For the LPTN and ¢-distributions, it is difficult to
separate non-outliers and outliers in the model. For these models, we used the same
error distributions for prediction. We reported the result of T3 model only; the 95%
predictive intervals of y;, under the LPTN and other ¢ models are extremely wide
due to their heavy tails.

To evaluate the predictive performance, we computed MSE of the posterior pre-
dictive mean and CP and AL of 95% predictive intervals of y;,. These values were
averaged over 500 replications, which are shown in Table First, it can be seen
that the model with the Gaussian errors produces worse point predictions and wider
interval estimates as more and larger outliers are generated, which is clearly due to
the lack of posterior robustness. The other robust methods are equally performa-
tive in terms of point prediction, but they show a great difference in the uncertainty
quantification. The T3 method tends to be too conservative, in the sense that the
predictive intervals are too wide and show the almost 100% coverage. The EH and
MT models have the similar predictive results, while the coverage rates suggest the
potential under-coverage of the MT model. This result shows the importance of
posterior robustness, or the use of error distributions with extremely heavy tails in

estimation, for not only posterior inference but also predictive analysis.

4.2  Random intercept models

Next, we consider simulation studies using the following random intercept model:

p
yjt:ﬁ0+26kxjtk+vj+0-€jta t:17"')T7 j:17"'7m7 (7)
k=1

where v; ~ N (0, 72) is a random effect. This is an example of the general model given
in Section The model of this type is frequently used in longitudinal data analysis
(e.g. [Verbeke, [2009)), where m and T are the numbers of subjects and repeated mea-

surements, respectively, and v; is regarded as a subject-specific effect. Throughout
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Table 1: Average values of RMSEs, CPs, ALs and IFs of the proposed extremely-
heavy tailed distribution with 7 fixed (EH) and estimated (aEH), log-Pareto normal
distribution with p = 0.9 (LP1) and p = 0.7 (LP2), Cauchy distribution (C), ¢-
distribution with 3 degrees of freedom (T3) and estimated degrees of freedom (aT),
two component mixture of normal and t-distribution with 1/2 degrees of freedom
(MT), and normal linear regression (N), based on 500 replications in 9 combinations
of (100w, ). All values except for IFs are multiplied by 100.

EH aEH LP1 LP2 C T3 aT MT N
(0, -) 6.32 632 671 795 784 6.78 6.57 632 6.32
(5, 5) 6.90 693 711 831 795 713 738 6.82 10.67
(10, 5) 8.92 852 89 9.29 835 833 9.72 9.59 15.85
(5, 10) 6.61 6.64 6.88 822 7.83 688 7.19 6.57 18.82
RMSE (10, 10) 705 717 712 834 8.04 743 10.05 7.68 29.68
(5, 15) 6.61 6.65 683 811 7.88 687 7.07 6.58 27.36
(10, 15) 707 715 726 829 804 7.16 10.00 8.01 43.36
(5, 20) 6.54 658 6.76 8.08 7.8 6.79 693 6.51 36.10
(10, 20) 703 711 700 828 798 7.06 10.38 8.05 58.08
(0, -) 949 948 90.2 723 886 932 945 950 948
(5, 5) 94.8 947 919 77.0 895 947 958 947 911
(10, 5) 93.2 932 918 798 90.7 942 946 932 905
(5, 10) 949 949 919 757 904 955 978 948 90.2
CPp (10, 10) 944 941 931 788 913 969 98.0 945 90.3
(5, 15) 94.7 946 915 755 90.2 955 984 949 90.1
(10, 15) 941 937 929 789 913 973 99.0 944 90.1
(5, 20) 949 947 920 772 908 96.1 989 949 904
(10, 20) 944 942 929 784 919 977 995 946 90.5
(0, -) 247 247 232 186 247 247 251 247 247
(5, 5) 26.7 267 261 21.1 261 276 304 264 36.3
(10, 5) 304 299 314 247 282 320 374 30.7 443
(5, 10) 259 26.0 252 202 262 28.0 343 258 59.1
AL (10, 10) 272 274 273 223 279 327 494 277 774
(5, 15) 25.7 257 249 202 261 279 36.2 25.7 839
(10, 15) 270 270 270 222 277 326 589 276 1123
(5, 20) 25.8 258 248 205 262 281 37.7 258 110.2
(10, 20) 26.9 269 265 21.7 279 328 692 274 1493

(0, -) 1.01 1.01 4492 54.00 4.68 2.12 1.86 0.99 0.98

(5, 5) 2.09 241 43.03 53.17 432 197 180 136 0.99

(10, 5) 3.34 426 4052 5195 398 1.8 1.82 196 0.98

(5, 10) 1.98 227 4345 5345 422 1.89 179 1.28 0.98

IF (10, 10) 3.06 3.68 41.72 5264 3.84 170 195 1.68 0.98
(5, 15) 1.96 221 4373 5336 422 188 1.77 128 0.98

(10, 15) 3.06 354 4226 52.74 384 167 204 164 0.98

(5, 20) 1.97 219 4358 5344 423 187 1.7 128 0.98

(10, 20) 3.06 349 4252 5287 3.84 165 215 1.59 0.98
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Table 2: Average values of RMSEs of posterior predictive means and CPs and ALs
of 95% prediction intervals based on the EH method with v = 1, ¢t-distribution with
3 degrees of freedom (T3), two component mixture of normal and ¢-distribution with
1/2 degrees of freedom (MT), and the standard normal linear regression (N), based
on 500 replications in 9 combinations of (100w, ). RMSE and CP are multiplied by

100.
(100w,r) EH T3 MT N
(0,-) 505 50.7 505 505
(5,5)  50.6 50.7 50.5 53.0
(10,5) 51.3 513 517 582
(5,10) 51.6 517 515 61.2
RMSE  (10,10) 50.6 50.8 50.7 78.1
(5,15) 505 50.6 50.5 70.1
(10, 15) 512 51.3 51.2  99.0
(5,20) 512 513 512 853
(10,20) 508 509 522 127.7
0,-) 955 989 956 958
(5,5)  95.7 99.6 950 99.2
(10,5)  96.7 99.9 950 99.9
(5,10) 946 99.4 94.0 100.0
CP  (10,10) 95.6 100.0 94.5 100.0
(5,15) 952 99.7 947 100.0
(10,15) 95.1 100.0 93.9 100.0
(5,20) 946 99.7 942 100.0
(10,20) 952 99.9 942 100.0
0,5 201 264 202 203
(5,5) 206 298 200 297
(10,5) 221 346 214 3.62
(5,10) 2.01 3.02 1.96 4.80
AL (10,10) 2.04 3.64 1.95 6.35
(5,15) 200 3.02 196 6.77
(10, 15)  2.02 3.62 1.94 9.12
(5,20) 199 3.04 195 896
(10,20) 2.01 3.68 2.00 12.14
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this study, we set m = 50, T'= 10 and p = 10. We adopted the same values for 5;’s,
and the same generating process for (zj1,..., %) and €, as those in the previous
simulation study. The scale parameters are set as 72 = (0.5)% and o = 1.

We model the distribution of error €j; in the model by the EH distribution
with latent variables (zj¢,uj¢). The same data augmentation strategy can be used in
the posterior computation for this model, and the full conditional distribution of v;

is given by N(b aj, b ), where

T

1 1< 1 P
b;! =5t Z zﬁ ; =2 > uy (ytj —Bo— ﬁkxjtk)-
Ty =1 k=1

t=1

We use an inverse-gamma prior for 72, namely, 72 ~ IG(ay, b,) with a, = b, = 1, and
the full conditional distribution of 72 is IG(&“U,EW), where a, = a, + m/2 and Ev =
by+> 0t j=17j v?/2. Given the random effect v;, the other parameters and latent variables
can be easily generated from their full conditional distributions in Section 3.1 with the
slight modification by replacing the response variable with y;; — v;. The other error
distributions, such as the normal and ¢-distributions and the finite mixture, can be
implemented in the same way by using its representation of scale mixture of normals.
The only exception is the LPTN distribution; it does not admit representation of scale
mixture of normals and is not directly incorporated into the random intercept model.
In total, we employed six error distributions (EH, aEH, C, aT, MT, N) in this study.
We evaluated the performance of point and interval estimations by posterior means
and 95% credible intervals for the regression coefficients, using RMSE, CP and AL,
as adopted in the previous study. The performance of the six models in predicting
the random effect is also assessed via square root of mean squared prediction errors
(RMSPE) based on 500 replications of the simulations, and these values are averaged
OVET U1, ..., Unm-

We report the results in Table [3] Regarding the regression coefficients, almost the
same tendency as in Tables [1| can be observed, which indicates the usefulness of the
proposed EH method under more structured models than linear regression. It is also

observed that the EH method with estimated v does not necessarily work well, thereby
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our recommendation in this example is simply using the fixed value v = 1. In terms
of RMSPE, the proposed EH method consistently outperforms the other methods.
Specifically, the difference between the EH and MT methods is considerable, which
also suggests the importance of the posterior robustness shown in Theorem [1], i.e.,
the advantage of the proposed error distribution over the conventional finite mixture
approach with ¢-distribution.

Table 3: Average values of RMSEs, CPs, ALs and RMSPEs of the proposed
extremely-heavy tailed distribution with « fixed (EH) and estimated (aEH), Cauchy
distribution (C), ¢-distribution with estimated degrees of freedom (aT), two compo-
nent mixture of normal and t¢-distribution with 1/2 degrees of freedom (MT), and

normal distribution (N) under the random intercept models with 6 combinations of
(100w, p1). All values except for IFs are multiplied by 100.

(100w, 1) EH aEH C aT MT N

(5, ) 591 589 6.86 654 591 10.67

(10, 5) 845 888 7.2 939 852 1751

rvsg 50 10) 561 558 6.84 6.37 5.72 19.40
(10, 10) 586 579 6.78 9.52 6.03 33.74

(5, 15) 547 545 6.65 6.10 5.58 28.23

(10, 15) 586 579 6.84 9.36 5.96 49.80

(5, 5) 94.1 940 81.6 92.6 921 865

(10, 5) 92.9 932 845 904 91.1 85.7

op (5, 10) 951 94.7 823 952 91.9 85.9
(10, 10) 952 952 86.0 953 91.8 86.0

(5, 15) 94.9 94.6 83.6 964 91.9 86.4

(10, 15) 955 954 848 97.3 925 865

(5, 5) 22.0 21.8 184 227 20.3 27.7

(10, 5) 25.8 26.0 19.7 285 231 337

AL (5, 10) 214 21.1 185 257 10.7 447
(10, 10) 23.1 227 19.6 389 21.0 585

(5, 15) 21.3 21.0 185 272 19.7 63.3

(10, 15) 23.0 226 19.6 472 209 85.1

(5, ) 295 294 339 315 350 405

(10, 5) 33.6 332 341 37.1 388 44.2

(5, 10) 28.8 28.8 342 333 33.7 46.9
RMSPE 15, 10 305 29.7 335 409 364 483
(5, 15) 28.8 28.8 340 339 33.6 483

(10, 15) 30.3 295 334 41.8 36.3 49.2
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5 Real data examples

The posterior robustness of the proposed EH distribution is demonstrated via the
analysis of two real datasets: Boston housing data and diabetes data. The goal of
statistical analysis here is the variable selection with p = 29 and p = 64 predictors
in the presence/absence of outliers. Our robustness scheme is a prominent part of
such analysis by allowing the use of unbounded prior densities for strong shrinkage
effect— specifically the horseshoe priors we discussed in Section while protecting
the posteriors from the potential outliers. The former dataset is suspected to be
contaminated with outliers, where the difference of the proposed EH distribution and
the traditional ¢-distribution is emphasized. In contrast, the latter dataset is free
from extreme outliers, and we use this dataset to discuss the possible efficiency loss
caused by the use of EH distributions.

In our examples, we consider robust Bayesian inference using the proposed method
with taking account of variable selection, since the number of covariates is not small
in two cases. Specifically, we employed the horseshoe prior as described in Sec-
tion For comparison, we also applied the standard normal distribution and the
two-component mixture of normal and t-distributions as the error distribution, while
using the horseshoe prior for regression coefficients. In all the methods, we generated

10000 posterior samples after discarding the first 5000 posterior samples as burn-in.

5.1 Boston housing data

We first consider the famous Boston housing dataset (Harrison and Rubinfeld, |1978)).
The response variable is the corrected median value of owner-occupied homes (in
1,000 USD). The covariates in the original datasets consist of 14 continuous-valued
variables about the information of houses, such as per capita crime rate and accessibil-
ity to radial highways, and 1 binary covariate. After standardizing the 14 continuous
covariates, we also create squared values of those, which results in p = 29 covariates
in our models. The sample size is n = 506. The data also contains the longitude and

latitude of house i, denoted by ¢;. To take account of spatial correlation, we consider
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the following model:
yi =B+ g(ti) +ei, i=1,...,m, (8)

where ¢(t;) is a spatial effect as an unknown function of location information ¢;. We as-
sume that g(t;) follows the standard Gaussian process, namely, n = (g(t1),...,9(tn))
and n ~ N(0,k2C(h)), where C(h) is a variance-covariance matrix whose (i, j)-entry
is exp(—||s; — s;||?/2h?) with unknown bandwidth parameter h. The above model can
be seen as the spatially varying intercept model, or the spatially varying coefficient
model (e.g. |Gelfand et al., 2003). Also, this is another example of the general model
in Section with r = n, b = 7, g; is the i-th standard basis, and H(¢)) = k2C(h)
with ¢» = (k, h). Under the EH distribution for ;, the full conditional distribution of
n is given by N(ﬁ;lén, 27;1), where

/Tn =k 2C(h) ' + o 2diag(u; ™, ..., u,™), and En = (Y - XB)/o>.

n

A similar sampling strategy can be used for the two component mixture of a normal
and t-distribution with 1/2 degrees of freedom (denoted by MT), as adopted in the
simulation study in Section 4 We employ the conjugate inverse gamma prior IG(1, 1)
for 72, and a uniform prior, U(0, hys), for h, where hy; is the median of all the
pair-wise distances of the sampling locations. The random-walk Metropolis-Hastings
algorithm can be used for sampling from the full conditional distribution of h.

As the exploratory analysis, we first applied the model with normal error,
g; ~ N(0,02), and computed the standardized residuals by using the posterior mean
of the model parameters to visualize the potential outliers. The computed residuals
are shown in the left panel of Figure 3] Despite the normal error model is sensitive to
outliers, there are still large residuals seen in the figure, which implies the extremity
of the outliers in this dataset. In the proposed error distribution, the existence of
extreme outliers is implied by the posterior of mixture weight s, i.e., the proportion

of the extremely heavy-tailed distribution in the finite mixture. The trace plot of
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posterior samples of mixture weight s under the EH model is presented in the right
panel of Figure Since all the sampled values are bounded away from 0, it sug-
gests that a certain proportion of the heavy-tailed distribution to take account of
the outliers shown in the left panel. As the prior sensitivity analysis, we also ap-
plied more informative priors, Beta(1,5) and Beta(1,9), in addition to the default
prior s ~ Beta(1,1), based on the prior belief that s should be small. However, the
posteriors computed with the three beta priors are almost identical.

The estimated spatial effects, g(t¢;), under the EH and normal models are pre-
sented in Figure[d The EH model produces spatially smoothed estimates, while the
estimates of the normal model are volatile across the sampling area. This finding also
evidences the effect of outliers on the posterior inference for the regression coefficients
or, in this example, the random intercept terms.

The posterior means and 95% credible intervals of the regression coefficients based
on the three methods are shown in Figure [5] It shows that the results of the normal
error model are quite different from those of the MT and EH distributions. The
difference of estimates becomes visually clear especially for the significant covariates—
if we define the significance in the sense that the 95% credible intervals do not contain
zero— as the result of proneness/sensitivity to the representative outliers observed in
Figure|3] The difference between the posteriors of the EH and MT models does exist,
but is not as visually clear as the difference from the normal error model.

Finally, we computed the deviance information criterion (Spiegelhalter et al.,
2002) of the three models. The obtained values were 2628 for the normal error
model, 2339 for the MT error model, and 2325 for the proposed EH error model,

which shows the best fit of the EH error model to the data.

5.2 Diabetes data

We next consider another famous dataset known as Diabetes data (Efron et al., 2004)).
The data contains information of 442 individuals and 10 covariates regarding the
personal information and related medical measures of the individuals. We consider

the same formulation of linear regression model as in [Efron et al.| (2004); the set of
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Figure 3: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed EH distribution (right), obtained form the Boston housing data. The poste-
rior mean and the 95% credible interval of s are 0.160 and (0.087,0.249), respectively.
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Figure 4: Posterior means of the spatial effects based on the EH and the normal (N)
distribution.

predictors consists of the original 10 variables, 45 interactions, and 9 squared values,

which results in p = 64 predictors in the model. For this dataset, the regression
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Figure 5: Posterior means and 95% credible intervals of the regression coefficients in
the normal regression with normal distribution error (N), the proposed EH distribu-
tion, and the tow-component mixture of normal and ¢-distribution with 1/2 degrees
of freedom (MT), applied to the Boston housing data.

models with horseshoe prior and three error distributions (N, EH and MT) adopted
in Section [5.1| are applied.

Similarly to the analysis of Boston housing data, we check the standardized resid-
uals computed under the standard linear regression model, which was presented in
the left panel of Figure[6] Few outliers are confirmed in the dataset as most of resid-
uals are contained in the 99% interval, which strongly supports the standard normal
assumption in this example. The right panel of Figure [6] shows the trace plot of
posterior samples of mixture s under the EH distribution. All the sampled values are
very close to zero, implying that most error terms should be generated from the first
component of the mixture, i.e., the standard normal distribution. In this case, the
heavy-tailed component might be regarded “redundant” for this dataset. The same
sensitivity analysis on the choice of priors for s is done as in the previous section, but
we find no significant change to the results.

To see the possible inefficiency of using the EH models for the dataset without
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outliers, the posterior means and 95% credible intervals of the regression coefficients
are reported in Figure [7] The results of the three models are comparable; the pre-
dictors selected by significance are almost the same under the three models. The
only notable difference is that the credible intervals produced by the t-distribution
model is slightly larger than those of the other two methods. This indicates the loss
of efficiency in using the ¢-distribution method under no outliers, as also confirmed in
the simulation results in Section [4] In contrast, the difference in the credible intervals
of the Gaussian and EH models is hardly visible in the figure. That is, even if no
outlier exists, the efficiency loss in estimation under the EH model is minimal.

We also computed the deviance information criterion of the three models. The
obtained values were 4794 for the normal error model and 4795 for both the MT and

EH error models, which shows the comparable fit of the three models.

—— 95% interval
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0.20
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Figure 6: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed EH distribution (right), obtained form the Diabetes data. The posterior
mean and the 95% credible interval of s are 0.008 and (0.000, 0.032), respectively.
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Figure 7: Posterior means and 95% credible intervals of the regression coefficients
in the normal regression with normal distribution error (N), the proposed EH distri-
bution, and the ¢-distribution (T) with estimated degrees of freedom, applied to the
Diabetes data.
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6 Discussions

While the focus of this research is on the inference for the regression coefficients and
scale parameter, it is also of great interest to employ the predictive analysis based on
the proposed model. Because H-distribution, as well as many log-regularly varying
distributions, is too heavily-tailed to have finite moments, the posterior predictive
moments under the EH models do not exist. It is common in practice to have predic-
tive distributions with no finite moments and it is worth investigating

the predictive properties under the EH models, especially about the impact of the
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heavy tails on the predictive uncertainty.

The proposed method is not limited to the analysis of the linear regression models,
but can be immediately customized for any conditionally Gaussian models, as we
practiced in the analysis of the random intercept model in Section[4.2]and the spatially
varying intercept model in Section Other examples include graphical models and
dynamic linear models, which can be the topics of the promising future research. The
efficient posterior computation algorithm presented in this research can be used for
these highly-structured models as well by utilizing the hierarchical representation of
the proposed error distribution. The similar theoretical robustness properties may
also be confirmed for those models.

Finally, we note that the assumption (A.1) in Theoremmisses the high-dimensional
regression with small sample size (n < p), which means that posterior robustness is
not necessarily achieved in this challenging situation. Therefore, substantial work
will be required to develop the theory and methodology for “robust high-dimensional

regression,” which we left to an interesting future research topic.

Supplementary Material

Proofs of all the propositions and theorems, and additional simulation results are

given in the online supplementary material.
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Supplemental Materials for
“Log-Regularly Varying Scale Mixture of Normals for

Robust Regression”

This Supplementary Material provides proofs of Proposition 2.1, Theorem 2.1,

Proposition 2.2 and Corollary 2.1 and additional simulation results.

S1 Lemmas

In this section, we provide lemmas used in the proofs.

Lemma S1. Let M,v > 0. Then we have

1+log(1+ M)

< 1,o!
1+ log(1 + Mv) < max{lvm

(@)

1+log(1+ M)

b li =1
(%) Ml—r>nool—|—log(1—|—Mv)

Proof. The inequality in part (a) is trivial when v > 1; the left-hand-side is bounded

by 1. For the case of v < 1, first observe that

1+log(l1+ M) /1 a9
T+ log(1+ Mo) exp ( ’ [at log{1 + log(1 + Mt)}} dt)

N —— S—
= ex
PUJ, T+ log(l+ Mt) 1 + Mt

for all v > 0. Then it is immediate from this expression that

1+log(1+M il
+log(1 + M) < exp (/ fdt) =1
1+ log(1+ Mv) o t
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for v < 1. For part (b), we use the same expression to obtain

im 1+log(1+ M)
M—oo 1 +log(1+ M/v)

{1' /1 ! M dt}
= eX 11m
PUaSe ), 1+ log(1 + Mt) 1+ Mt

=1

by the dominated convergence theorem. ]

Lemma S2. For vy > 0 and 6 > 0, let H(u;7,9), u € (0,00), be the proper density

proportional to

1 1

H(w57,0) > g o T gl 7 )

Then we have

-1

. . .
|7 Ne0w 0~ S (5) (4 0)5(5)

as |z| — oo, where

m 1+46 1
l—i—u) {1+ log(1+ u) v

Su) = (

for u € (0,00) and C = [;° w1 (u)du.

Proof. The result follows by (the proof of) part 3 of Theorem 1 of Hamura et al.
(2020). O

Lemma S3. For z € R, let fo(z) = N(z]0,1) and

Jﬂ@=AwNM&wHWWMm

where H(u;y) = H(u;7,6 =0), u € (0,00), is the H-distribution.

(i) For all z € R, we have 0 < fo(2) = fo(|z|) < fo(0) < o0, 0 < fi(2) = fi(]z]) <
f1(0) <00, and 0 < f(2) = f(|z]) < f(0) < oo.
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(i1) fo(r), fi(r), and f(r) are continuous and nonincreasing functions of r forr > 0.
(1) Tniop oo Lfo(2)/ f1 ()} = 0 and sup,ea{fo()/ fi()} < 0.
(iv) There exists Ch > 0 such that for all z # 0, we have

Ch 1
N S L e+ T

(v) There exists Cy > 0 such that for all z € R\ (—1,1), we have

Co 1
)2 L s+ T

(vi) There exists C3 > 0 such that for all z € R, we have

C3
+ 2]

fi(z) < .

(vil) There exists Cy > 0 such that for all §, i € R and all o € (0,00), we have

7 i
(o

il () <pitn (U < oo 1),

Proof. Parts (i) and (ii) are trivial. Since lim,_,o{fo(2)/f1(2)} = f0(0)/f1(0) < o0
by parts (i) and (ii) and since lim,|_,.{fo(2)/f1(2)} = 0 by Lemma part (iii)
follows.

Note that for all z # 0,

fi(z) = /000 N(z]0, u)H (u;y)du

© 1 1 ~ 1
- e F /() du
0 V2mul/? 14 u{l+log(1+u)}tty

o0 1 1
_ / 2] 1wy du
0

V2 ul/z® 1+ |22u {1 4+ log(1 + |2|?u) }1 7

7] 1 /°° 1 o 1/(20) 1 { 1+log(1+|z]?) }Hvdu
V2r {1 +1log(1+ [z2) P Jo  ul/? L+ [22u U1 +log(1 + [2[?u) '
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Then, by part (a) of Lemma [S1| we have

gikd 1 1 1l o 1
fi(z) < V@hT{1_+log(1_%‘ZP)}1+JyLﬂ?/g e VO (max{1,1/u}) " du

< 7 1 1 0o . ,—1/(2u) —1/(2u) .
a \/%M{1+10g(1+|2\2)}1ﬂ/0 { u3/? * ub/2+ } U<

for all z # 0, which prove part (iv). Also, for all z € R\ (—1,1),

fy’Z‘ 1 1 / 1 _1/(2 ) 1 . 1+
> _ - v (m 1.1 v
fi(z) 2 Vor {1 +1log(1+ |z]2) 17 |22 /o ul/z® 1+u( ind1, 1/u}) ™ du

by part (a) of Lemma This proves part (v). It follows from parts (i) and (iv)
that fi(z) < max{2f1(0)/(1 + |2]),2C1/(1 + |2])} for all z € R. Therefore, part
(vi) is obtained. For part (vii), let g,z € R and o € (0,00). Then f1((g — fi)/0) <
fi(1gl=1al)/o) by parts (i) and (ii). Suppose first that |j] < o+|a|. Then |g]f1 (5]
Ii]) /o) < f1(0)(o + |jz]) by part (i). Next, suppose that |g| > o + |ji|. Then, since
9] — [l > 0 and (|| — |a])/o > 1,

)

/ L —yew_ 19091 = |RD) /0 1

1/ L+ {(19] = |aD/o}?u (1 +log[1 + {(|g] — |@])/o }ul)*
/ o1/ L (91— 12D + |al(1g] = |AD

i’z o 1+{(gl = la)/o}?u

L yjeulio®  olil v N e R
<1 1eo® olply, v 1
>~ mA 1/2e O_(u + » )du \/%(O.—i_“”) 0 u3/2€ du < 00.

I

/—\

du

IN

¥ a@

This completes the proof of part (vii). O

Lemma S4. Let m,p € N. Let w = (wy,...,wy,)! € R™. Let Z = (21,...,2m) be
an m X p matriz of observations (such that any set of its p distinct row vectors is
linearly independent). Suppose that m > p. Then there exist R > 0 and 6 > 0 (which

may depend on w and Z) such that

m

1 1
<
15— = ooy
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for all B € RP satisfying |G| > R.

Proof. In this proof, if A is a matrix, we write |A| = \/tr (A*A). Let I = {(ix)}_;|1 <
i1 < -0 <ip <m}. Fori = (ig)i_; €I, let w(i) = (wiy,...,w;,)" and Z(i) =
(Ziry -5 2iy)t. Let R = 1+2maxer | Z(i) " w(i)| > 0and § = miner{1/(2y/p|Z (1))} >
0. Let 8 € RP be such that || > R. Then for all i = (i)}_, € I, we have that
18— Z() w(@)| > 8] — R/2 > |B|/2 and hence that |8] < 2|8 — Z(i) " w(i)| <
20Z(i) | Z(0)B — w(i)| < 2\/]3|Z(i)7 |maX1§kSp|sz,8 — w;, |, which implies that
there exists k = 1,...,p such that §|5] < |szﬁ — w;,|. Therefore, we can choose
distinct indices iV, ..., ¢m=PtY) =1 mso that forall j =1,...,m —p+ 1, we
have §|5] < ]zf(].)ﬂ — w,;»|- Indeed, for j = 2,...,m —p+ 1, given ORIl
we can choose i; < --- < i, from {1,....,m}\ {i) ... iU~D} and then k with
08| < |2f B — wi,| from {1,...,p} and set i) = i Thus, T[], (1 + |w; — 2L8]) >

—p+1 _
TGEP (1w = 2 B1) = (1+6]8J)™ 7+ -

Lemma S5. Let a(-) and (+) be continuous, positive, and integrable functions defined

n (0,00). Suppose that limy_,~ B(u)/a(u) = p € [0,00]. Then

o0

Zlgiolo ; N(z|0,u)p du// N(z]0, w)a(u)du

Proof. We can assume that p < oo; if p = 0o, then we can exchange the definitions
of a(-) and B(-), and this reduces to the case of p = 0. Let v(-) be either «(-) or
B(:). We can also assume without loss of generality that u~'/2a(u) and u='/24(u)

are integrable. To see this, observe that, for any 1 > 0, there exist € > 0 satisfying

Jo N(1]0, u)y(u)du
- fo (110, u)y(u)du

0< <n/2

and, for these n and e, there also exists 6 > 0 such that 0 <1 — e /e < n/2. Hence,

41



for all z > 1, the covariance inequality implies

fo (210, u)y(u)du _
Jo T N(2]0, u)y(u)du

ElX(0,)(Uz)]

E[exp{(22 - 1)/(2Uz)}X(O,€)(Uz)]
[exp{(22 —1)/(2U.)}]

fO (110, u)y(u)du

f N(1]0, u)y(u)du

where X () (z) is the indicator function (x () (7) =1 if x € (0,¢) and 0 otherwise)
and the density of random variable U, is proportional to N(z|0,u)vy(u). Finally, we

have

‘fooo N(z0, u)y(w)e *"du ‘ N(20,u)y(w)du [ N(2]0,u)y(w)(1 - e=/)du
Jo 7 N(2/0, u)y(u)du - N(z]0, u) ( )du S N(2]0,u)y(u)du

fo (110, w)y(u)du L1 e
- fo (110, u)y(u)du

<,

which shows the difference of v(u) and e~%/%~(u) is ignorable in u — co. This result
verifies that, if u~'/?y(u) is not integrable, then we can replace v(u) by e=%/%y(u).

Again, assume p < oo and both u=2a(u) and u~'/28(u) are integrable. Let
M > 0. Then we have

N(z]0, u)y(u)du

‘fooo N(z|0, u)y(u)du

1l <
)y (u)du ) fM+1 N(z]0, w)y(u)du
S e (L
— L /M Joreq w2y (u)du
—0

as z — oo since u~ /2~ (u) is assumed to be integrable on (0, c0). Therefore,

fo 0,u)B(u)d fM (210, u)B(u)du
I N(z](),u a(u)d fM (210, u)a(u)du

(S1)
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as z — o0o. Furthermore, uniformly in z,

‘ (210, ) B(u)du p’ Jor 1B(u)/a(u ) P!N( 10, u)a(u)du
z]O w)o(u)du - fM (2]0, uw)a(u)du

Blu)
< sup |y =)
=0 (S2)

as M — oo by assumption. Combining and gives the desired result. O

S2 Proof of Proposition 2.1

Here we prove Proposition 2.1. We show that

lim fon ()

—A
jz| oo ||t (log |z])~1 =7

for some constant A > 0. Since

N 1
. (10, 1)

ES) =0
el oo [y N(2]0, w)H (u;v)du

by part (iii) of Lemma we can assume s = 1. Then we have for sufficiently large

]

du

fen(z) _ /°° N(z[0,u)H (u;7)
2|~ (log |z]) =17

/°° 1 1 2 /(2u) Y|Z| log |x| I+

TR DS Y P

0 V2mu 1+ull+log(l+w)

_ /oo L 1 1/ { log || }1+7d1}
0 27 /U 1+ 220 L1 +log(1 + 22v) ’
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where the last equality follows by making the change of variables © = xz?v. Now, by

part (a) of Lemma the integrand is bounded by

Lie—l/@v)z{ lOg|IE| 1+10g(1—|—x2) }1+7
V21 /v v U1 +1log(1 + 22) 1 + log(1 + 22v)
,1/(27)) 1 1+ /21+’Y 71/(21})

Ly eV g\ /2 e ~()
< pu—
< o (meste) T g max{Lu )
/2t
Ver

<

(03267 1/(20) | =5/2-7g=1/(20))

where the right-hand side is an integrable function of v € (0,00) which does not

depend on x. By part (b) of Lemma the integrand converges to

1 Lefl/(Qv)l{ lim log |ZL'| 1+ log(l —+ x2) }1+’7 _ ’)//21"!"7073/2671/(2”)
V2r Vv v Ujz|—o0 1 +log(1 + 22) 1 4 log(1 + 22v) Vor

as |z| — oo for each v € (0,00). Thus, by the dominated convergence theorem, we

obtain

T o T -
2| oo || (log [z]) 717 Jy  V2r 217

This complete the proof.

S3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. For z € R, we let

f0<z) = N(Z’()? 1)7

fi(z) = /000 N(z|0, w)H (u;7y)du, and

f(z) = (1 =s)fo(z) + sf1(2).

Proof of Theorem 2.1. By Lemma |S2| and part (iii) of Lemma we have for any
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(8,0) € RP x (0,00) and any i € L,

fei)/o _ filei)/o (1 —s)folei)/ fi(ei) + s
f(yi) filyi) (L= s)folyi)/ fi(yi) + s

—1

as w — 00, where we write £; = (y; — 2!) /0. Therefore, for any (8,0) € RP x (0, c0),

p(D)
[Lice f(yi)

p(ﬂ,O”D) o (D*)Hzeﬁf yz Hf Eq /(7 p(D*)/

p(B,0D*) p(D) Lt fw)

as w — 0o. Now

s = e { T 22 T I 25 o

Then, by Lemma [S6| below and by the dominated convergence theorem,

s R0 E | S TR

k=1

and the result follows. ]

Lemma S6. Under the assumptions of Theorem 2.1, there exists an integrable func-

tion h(B,0) of (B,0) which does not depend on w such that

AL (UL L <o

i€ €L
for all (B,0) € RP x (0,00) for sufficiently large w, where e; = (y; — x'8)/o for
1=1,...,n.
Proof. Let € > 0 be such that

|bi

£ <
4|z ] + -+ |wigp])

for all i € L. For (8,0) € RP x (0,00) and w, let

5.0 = roor{ T 2+(2) H T ZE W L0 e

k=1 €K €L
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where X[_ccop(8) = 1 if B € [~ew, ew]? and = 0 otherwise, and similarly let

(8,9 = mo@ TT r () HIT M T2 )

k=1 1€X ieL

for ko =1,...,p. Then

o T (NI S I < o+ X st

ko=1

(S3)

for all (8,0) € RP x (0,00) and all w.
First, we consider the first term in . For all 8 € RP and w satisfying 8 €

[—ew, ewlP and all i € £, we have

Z| roglew > 1

Y bw a Y
ol = Iy —atp) > il 4. ko — Jod Z|z||ﬂ|>“

Therefore, by parts (i) and (ii) of Lemma [S3]

hi(B,0;w) < Tr(,—(a){ ﬁ i (ik)}{ }“Cl{ H I Iyzl/‘ (20)) /U}X[fsw,sw]lﬁ(ﬂ)

k1 (lwil)

for all (B,0) € RP x (0,00) and w. Furthermore, by parts (iii), (iv), and (v) of Lemma

f( \yz\/ (20)) fillyil/(20)[(1 — s)sup.er{fo(2)/f1(2)} + s]/o
11 f(lyil) g sf1(lvil)

2C 1+ log(1+ |yi]?)
< 2zl
- H (s Cy [1 + log{1 + |yi|?/(20

€L

) {0 5 s))

<Mi(l140)<o0

for all o € (0,00) and w for some Cy,Cy, M7 > 0, where the last inequality follows

since

1+1log(1+7) < 1+ log{1+7/(20)?} + log{1 + (20)?}

1+ log{1 +7/(20)2} = 1+ log{1 + r/(20)2} < 1+4log{1 +(20)°)
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for all » > 0. Thus,

hi(B,0;w) < 770(0){ ﬁ %7‘(’(&> }{@}‘KlMl(l +0)
k=1

o o

for all (8,0) € RP x (0,00) and w, which is an integrable function of (3, 0) since by
assumption the prior mean of ¢~1* is finite and |K| > p > 1.
Next, we consider the second term in . Fix kg = 1,...,p. Let ig = min .

Let, for (8,0) € RP x (0,00) and w,

hopor(B.0) = o) [ La(Z)} sl s,

g g
ke{lv“'vp}\{k()}

and

h2 ko ,2(B, 05 w) = éﬂ<%> ! { H fle) }{ H f(gi)/U}XR\[—aw,ew] (Bro)-

g ’ximko‘ iek\ fio} g el f(yZ)

Then for all (5,0) € RP x (0,00) and w,

hQ,ko (ﬁa 0] W) = h27k‘0,1 (/85 U)hQ,k‘o,Q (/85 o; W) (84)

We have that

| iz = [ { [ harato)ds Ja(s\ su) = mole) (89

for all o € (0,00). On the other hand, by assumption (A.2) and by parts (iii) and (v)
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of Lemma

ho ko 2(B, 05w) < supgegr{|6]°m H fi(e:) }{ H fi(ei /a}

ol- C|ﬁko| | lo,ko ieK\{io} ier Sfl yz

n—1
X {(1 —5) ilelg ;?E ; + 8} XR\[—ew,ew] (Bko)

supper{lf|® ()}{(1_ s)su fo(z) H Al }

up
olmeeCwl |z ko | 2er f1(2)

x [H lyil {1 + log (1 + [y:|? }“7} H f1

Cy's
el 2 ieL

el 0O (1 _ ) D) S}n—l

su
Ul_c&cmio,ko’ L

IN

1€\ {io}

IN

S
2er f1(2)
[Lice{1 +log(1 + |a; + biw|*)} 7
X [ sup ]

/
w: sufficiently large (CQ 3>|£|wc
(w > 1, for example)

fi(ei) yil f1(ei)
{1 “o5I

1€\ {io} €L
M ! o+ |2if]
= 01—0<i€’££0} o+ |yi —x§5|> g o
Mo 1 1 ¢
2 (el 5T ) T

for all (8,0) € RP x (0,00) and w for some Cy', My > 0, where the fourth inequality
follows from parts (vi) and (vii) of Lemma Thus, by Lemma (applied to

[Lico iy {1/ (1 + i — z!8])}) and by assumption (A.1),

wax {1, 1))

hoko2(B, 05 w) {

< sup HzGE(l + |z{Bl) N {1 + (maxi<icn |2])| 8]}
se(fere||fl<ry ier\(ioy (1 + lyi — 2iB1) (1+6|8])IKl=»
(1 t . N L
< sup [Tiec (1 + |zi8)) - (1 w)' | (S6)
setpere|fi<ry Lierfioy (L + [vi — 26]) )

for all (5,0) € RP x (0,00) and w for some R > 0 and § > 0. Hence, combining
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and , we obtain

ho ko (8,03 w) < ha ke 1 (B, 0)%(““‘ {1’ %})

X { sup Hieﬁ((l + |2B]) n (1 n nm1<g<n\azi|>£}

sepere)|fl<ry LLiekgioy (1 + 14 — 276])

for all (8,0) € RP x (0,00) and w, which is an integrable function of (3,0) by

and assumption (A.3). O

S4 Tail heaviness and posterior robustness

We here consider robustness properties for the wider class of error distributions de-
fined by replacing H (u;~y) in Section 2.4 of the main text with H (u;-y,d) given in the
finite mixture (2.2). The density of H(u;~,d), which is given in (2.4) of the main

text, is shown below;

1 1
H(u;7,0) = C((S,’y)(l )T {1+ log(l £ W) u > 0. (S7)

Note that the distribution in reduces to H (u;y) used in the proposed distribution
under § = 0. The parameter ¢ is related to the decay of the density tail of , that
is, H(u;7,b) =~ u 2 (logu)~'~7. Hence, the tail gets heavier as ¢ decreases, and the
EHE distribution, in fact, has the heaviest tail in this class of distributions. We show
later in Theorem [S1| that, among the general class given by , only the proposed
error distribution that is realized by setting § = 0 could attain the exact robustness
property.

To discuss the posterior robustness, we target the unnormalized posterior distri-
bution of (5, 0) given by
n

#5(8,01D) = m(8.0) [ {21 (“=20)), (58)

. g
1

7

where 7(8,0) is a prior density and where for z € R, f(z) = (1 — s)fo(2) + sfi(2)
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and fo(z) = N(2]0,1) as in Section [S3] but now

fi(2) = /0 " N (210, ) H (; 7, ).

If s = 0, the heavily-tailed component disappears and the model is obviously sensi-
tive to outliers, hence suppose s > 0 in the following. Next, we assume that each
outlier goes to infinity at its own specific rate. More precisely, the observed values
of responses are parametrized by w as y; = y;(w), and |y;(w)| — o0 as w — oo for
i € L while y;(w) is constant for i € L = {1,...,n}\ L. The posterior robustness
considered here is defined as the property that the unnormalized posterior conditional

on D approaches that based on D* as w — oc.

Theorem S1. For any compact set K C RP x (0,00), we have

7?5(57 G|D)

| 2k
ooy L1700~

€L
uniformly in (B,0) € K as w — oo. In particular, the unnormalized posterior is

robust if and only if 6 = 0.

We again note that the general error distribution with § = 0 is exactly the pro-
posed EHE distribution, so that the above theorem indicates that the desirable ro-
bustness property is achieved only under the proposed EHE distribution among the
general class of error distributions with the mixing distribution in . The asymp-

2lL19 i obtained for the t-distribution with & degrees of freedom. In

totic ratio o
other words, the posterior robustness cannot be attained by any finite mixture of
t-distributions.

Theorem [S1] shows the uniform convergence on any compact set of the unnormal-
ized posterior density based on with 6 = 0 and all observations to the correspond-
ing one based on non-outlying observations. In order to rigorously prove convergence
in distribution, we have to justify an interchange of limit and integral concerning the

normalizing constant for each model. The set of three assumptions (A.1)-(A.3) in

Theorem 2.1 is an example that justifies such computation.
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Proof of Theorem [S1. The normalized ratio of 75(8,c|D) to 7s(8, o|D*) is

mﬁ,UID /Hf Hf 755/0)/ .

*
’B U‘D €L €L

It is sufficient to show that

f(lyi —aiB)/o) o o
f(wi) e

uniformly in (5,0) € K as w — oo for every i € L. Fix i € L. Let M =

SUD(8,0)c K |ztB] € [0,00). Let o = infgs)ex 0 € (0,00) and T = SUpP(3oyek O €

v

(0,00). Assume without loss of generality that w is sufficiently large so that |y;|
2M + 1.

We first consider the case of s = 1. Then

f(yi —aiB)/o)/o _ fi((yi —2iB)/o)/o
I (i) f1(ys)
1 fo" N((yi — 2iB) /00, u)H (u; 7, §)du

o o NGuI0, ) H (5. 0)du
i B 5 02 @ H (g, — 2B 0ol 8)do
o2y Jo v eV @) H(Jy 2]y, §)dv ’

where the last equality follows by making the change of variables u = (|y; —z!8|/0)?v

in the numerator and by making the change of variables u = |y;|?v in the denominator.
Therefore,
f(wi = #4p)/o)/o _ » ’ _os Jo v 2B H |y, Puly, 6) G (v)dv
f (i) I v‘1/2 “HYEVH (JyilPoly, 0)dv
where

lyi — i8] H((lyi — 2{B[*/o*)v]v, )

G(v i B,0,7, 0, Y, i) —‘ —1’
) =Gl S P )|yl H(lyi|?v]v, 6)
‘ lyi — if] ( 1+ |yil*v >1+5[ 1 +log(1 + |yl *v) }HW B 1’
|yil o + |y — ztBPv 1+ log{1 + (lyi — =!B|?/0?)v}

o1



for v > 0. Note that

lyi — 2if] 7 S S 1+log(1 + |yi|*v) L+
S <
Fite) = il (02 + lyi — x§,6|2v) {1 +log{1 + (Jy: — #182/o?)v} < Fy(v),
where
Fi(v) = il —M{ 1+ |yi|*v }1+5( 1+ log(1 + |yi|?v) )m
il L&+ (|ysl + M)?v 1+log[L + {(lys| + M)?/a?}v]/
Fa(v) = lyil + M{ 1+ |yiv }1+6< 1+ log(1 + |yi|?v) >1+7
il La? 4 (il = Mo S AT+ Tog[L+ {(Juil — M)?/a?}]
Then
G(v) < |Fi(v) = 1] + |[Fa(v) = 1].
Therefore,
MUV
f(yi)
. 625 Ooo U*1/2€*1/(2U)H<'U){‘F1(U) — 1‘ + ‘FQ(’U) — 1‘}d1} (Sg)
B I° v=1/2¢=1/(20) H (v)dv ’
where

= H(yil*v]y,90)
H) = HyPh.6)

The right-hand side of is independent of (/3,0). We have that lim,, o (|F1(v) —

1| + |F2(v) — 1|) = 0 for each v > 0 and that for |y;| > 1,

) ) . - 1+ |yi|2 46 14 log(1 + \yz\2) by
» 1/(2U)H _ /2 1/(2v)
v 2 (v) = (1 + Iyil%) {1 +log(1 + \yi\%)} ‘

< QlH6y=1/2-1-8 max{1, U—(1+7)}e—1/(2v)

~1/2-1-6 ,—1/(2v)

— U as w — o0
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for all v > 0 by Lemma Furthermore,

|F1(v) = 1] + [Fo(v) — 1| <2+ [Fi(v)] + |[F2(v)] < 2{1 + F2(v)}

and, since |y;| > 2M + 1 > M, we have

P ZIES. Y S T VIR S U5 (BT B
T T e (- %) T Toglt + (il - M/77)
1+|yi|2v
2{i + W}1+5( log 1+-{(lyi[-M)? /5 }v] )1+~/
2wl - M) 1+ log[1 + {(|sal — M)2/5%}0]
1+ Jyil*v Lty
<2
<2 1+ {(wil - M)%?}UH

IN
Q

)

140
+ 4) {1 + ’ log

R~ |

where

1+ |y;|*v ‘
1+ {(Jyi| — M)2/5%}v

! 2 max{1,(|yi|—M)2/ (jyilo)?}
= | / i ] < / Lo
(il - M2/ (wif)? 1+ lwal?vt min{1,(|yi|—M)?/(|y:[7)2}
max{1, (|y;| — M)?/(|lys|7)?} — min{1, (Jy;| — M)?/(|yi|o)?}
< : 2 )2
min{1, (|ys| — M)?/(|y:[7)?}
_ |(lyile)? — (Jyil — M)?| (lys|7)? N (lys] — M)?
min{ (|y:[7)2, (|ys| — M)?} — (Jys| — M)? (lysl7)?

) log

< < (25)* + (1/7)>.

Thus, by the dominated convergence theorem, the right-hand side of (S9)) converges
to zero as w — oo.

Next we consider the case of s € (0,1). Then we have

fol(yi — xip) /o)

f(yi —2iB)/o)/o _ fi(lyi —=iB)/0)/o st- S)fl((yi —xi8)/o)
f(yi) fi(yi) R IET)) '
st (1 )fl(yz')

93



Therefore,

f((yi —iB)/o)/o 025‘ 725‘f yi —;B8)/0) /o _1’

f(yi) f(yi)o?
[{’fl y}l—yf)ﬁ)/a) _1‘+1}
fol(yi — iB)/o)
s+ (1—ys)
Fil(y — }B)/o)
x{‘ s+(1ijf”(yi) —1‘+1}—1]

f1(yi)

By the result for s =1,

fillyi — 2iB)/0) /o

(ﬂ,S:)EK fi(yi)o? —l= a2 (ﬁ,sclrl)IéK f1(yi) -0
as w — 00. On the other hand,
L Jollyi —=1B)/o)
‘”“ D = atB)fo) | <| s |+ ol =)o)
s+ (1— )L Tt gl s (= atf)/)
fi(vi) fi(yi)
(S10)

by Lemma the first term on the right side of (S10)) converges to zero as w — 0.
Since fo(z) = fo(|z]) and fi(z) = fi(|z|) are nonincreasing functions of |z| and since

M <lyil/2 < |yil, it follows that

fol(yi —=iB)/o) < Jo ((lyil = M) /o) fo((!yi! —M)/o) [1((lys| — M)/7)
Ay —iB)/o) = fillyil + M) /a) — fil(lyil = M)/7) fi((lysl + M)/a)
< Jo ((ysl = M) /o) fi(lyil/(27))
Alyil = M)/7) filyil /(2/2))
where

lim fol(lyil = M)/7) _ 0
wooo fi((lyil = M)/a)
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Furthermore,

Ayl /(20))  Jo” N(lyil/(29)[0,u) H (u; 7y, 6)du
Ful/(@/2)) ~ [Nl /(2/2)]0, u) H (u; 7, 8)du
o Joo N(lyill0,v)H (v/(25)%; 7, 6)dv
4o [ N(|will0, v) H (v/(2/2)% 7, 6)dv
AT 1426
+(5)

g

as w — oo by Lemma [S5] since

H(v/(20)%7,0)  (1+v/(c/2)* 14971+ log{l +v/(c/2)*}11+7 45\ 2(1+9)
H(v/(g/2)%7,0) { 14 v/(25)2 } [ 14 log{1 +v/(27)%} } - (E)

as v — oo by Lemma Thus, we conclude that

sup — 0

(B,0)eK

‘ f(lyi — =)o) /o 025‘
f(yi)

as w — 00. O]

S5 Posterior Moments of 3 and o2

Here we prove Proposition 2.2, the existence of posterior moments of (3,02). The
proof is given for a slightly generalized model as given below.

Let f(2), z € R, be a symmetric bounded error density. For each k =1,...,p, let
m(0), 0 € R, be a proper prior density and let v, € {0,1}. Let ay,b, > 0. Suppose
that fore=1,...,nand k=1,...,p,

Yi ~ 1f(yi_$fﬂ>, Br ~ i (ii), o ~ 201G(0?|ay, by).

o UVk oY

Proposition S1. Let kg = 1,...,p. Suppose that supyer{|0]°mx,(0)} < oo for 0 <
¢ <n. Then E[|B,||D] < oo
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Proof. We have

P(D)E[| i, || D]

S R RN C B R ED))

k#ko
X |x10’k0’f<y1 —Jﬂfiﬂ) ’xi’m’ [g {;f(yl_gxfﬁ) }:|>d(/37 o)
Y
“ e <2UIG<02'amba>[@%p{Mﬁm a2t

1 n—1
< oD sup [0 (0))] - { 2P EN T g

feR \931,1m|
oo 1 n—1

:/ 201G(02]ag, by )o0 D [sup{|0]°m, (0)}] {S”pzeRn"i(l 2
0 PcR |x1,ko’ g

which is finite since v, (c — 1) < n — 1 by assumption. O
Proposition S2. Suppose that d < n. Then E[c%|D] < oo

Proof. We have

p(D)E[o“|D]

= [y 72 [TT{em ) W [T {37 (2572) oo

RP x ( Ooo) e

(Jyk ) H {sup.cr f(2)}" d(8,0)

om

Bl
—_

P
p

S/Rpx (0,00) d2UIG 2|a0’ U [H{

= / dQUIG(02|aU,bU)Md07

0

which is finite by assumption. O

S6 Additional experiment in simulation study

S6.1  Sensitivity analysis

To evaluate the effect of hyperparameters on the posterior inference, we repeated the

posterior analysis with different choice of hyperparameters. For the shape parameter
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of H-distribution, we additionally considered v = 0.5 and v = 0.2, in addition to
our choice in the main text, v = 1. For the degree-of-freedom parameter of the
single t-distribution and the finite mixture, we considered v = 2.1 as the “heaviest” ¢-
distribution with finite mean and variance. The result of posterior analysis is reported
in Table [51] and [52|in the same style of Table 1 in the main text. It is observed that
the EH methods with two different values of v perform almost in the same way as

the EH method with v = 1.

S6.2  Regression with less predictors

The LPTN models are estimated by the random-walk Metropolis-Hastings algorithm,
which requires many iterations in posterior sampling for convergence. While keeping
the fairness in the number of iterations, we conduct another experiment that favors
the LPTN models by partly eliminating the convergence issue in the LPTN models.
The additional simulation study is based on the same settings in Section 4, except
that the number of predictors is now p = 10.

The results are summarized in Tables[53|and The IF's of the LPTN models are
improved, but still significantly higher than the others. The LPTN model with p = 0.9
improves the accuracy of point and interval estimations and is now competitive with
the proposed models, while the other LPTN model with p = 0.7 still provides interval
estimates with lower coverage probabilities. This result illustrates the difficulty in
tuning the hyperparameters in the class of LPTN distributions, which contrasts the

proposed model with no hyperparameter that is sensitive to the posterior result.

S56.3 Computational time with large sample size

We also measured the actual computation time of the five methods (EH, LP1, T3,
MT and N) under different sample sizes. We considered four scenarios of n, that is,
n € {300, 1200, 2100, 3000}. For each n, synthetic data is generated using the model
with (100w, 1) = (5,10), and 3000 posterior samples are generated for each method.
To assess computation time that takes account of sampling efficiency, we compute

CPT x IF, where CPT is the actual computation time to generate 3000 posterior
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samples and IF is the inefficiency factor. Note that this quantity can be regarded as
computation time to generate 3000 independent posterior samples. The experiment
was performed on a PC with 3.2 GHz 8-Core Intel Xeon W 8 Core Processor with
approximately 32GB RAM. The results are reported in Table It is observed that
the EH and LP1 methods take more computation time than the others, which would
be reasonable price to pay for their posterior robustness. Comparing EH and LP1,
EH is computationally more efficient than LP1.

Table S1: Average values of RMSE and IF of the proposed extremely-heavy tailed (EH) distribution
with v = 0.5 and v = 0.2, and its adaptive version (aEH) with three different priors for ~, t-
distribution (T) with v = 2.1 degrees of freedom and two component mixture of normal and t-

distribution (MT) with v = 2.1 degrees of freedom, based on 500 replications in 9 combinations of
(100w, ) with p = 20. All values are multiplied by 100.

EH EH aEH aEH aEH T MT

(100w, u) =05 =02 Ga(10,100) Ga(l,1) Ga(10,10) v =21 v=2.1

(0, -) 6.32 6.33 6.32 6.34 6.33 7.03 6.33

(5, 5) 6.99 7.23 6.94 7.47 7.14 7.25 6.99

(10, 5) 10.79 1241 9.58 8.64 8.55 8.03 7.96

(5, 10) 6.54 6.53 6.56 6.80 6.74 7.08 6.78

RMSE (10, 10) 6.85 6.81 6.91 7.57 7.44 7.39 7.30
(5, 15) 6.54 6.52 6.56 6.76 6.73 7.08 6.80

(10, 15) 6.87 6.81 6.92 7.36 7.30 7.28 7.19

(5, 20) 6.48 6.46 6.49 6.67 6.64 7.02 6.72

(10, 20) 6.84 6.79 6.89 7.23 7.20 7.21 7.12

(0, -) 0.98 0.98 0.99 1.43 1.07 2.61 1.07

(5, 5) 1.74 1.89 1.79 4.84 3.84 2.42 1.99

(10, 5) 2.75 2.63 2.98 5.30 6.10 2.26 2.11

(5, 10) 1.42 1.26 1.54 3.45 3.06 2.35 1.92

IF (10, 10) 1.87 1.54 2.23 5.29 4.87 2.11 1.97
(5, 15) 1.40 1.25 1.53 3.09 2.81 2.33 1.90

(10, 15) 1.86 1.54 2.19 4.55 4.29 2.09 1.95

(5, 20) 1.40 1.24 1.54 2.90 2.70 2.34 1.91

(10, 20) 1.86 1.55 2.17 4.14 4.00 2.08 1.93

References

[1] Carvalho, C., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for

sparse signals. Biometrika, 97, 465-480.
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Table S2: Average values of CP and AL of the proposed extremely-heavy tailed (EH) distribution
with v = 0.5 and v = 2, and its adaptive version (aEH) with three different priors for ~, ¢-distribution
(T) with v = 2.1 degrees of freedom and two component mixture of normal and ¢-distribution (MT)
with v = 2.1 degrees of freedom, based on 500 replications in 9 combinations of (100w, ©) with p = 20.
All values are multiplied by 100.

EH EH aEH aEH aEH T MT
(100w, ) v=05 =02 Ga(10,100) Ga(1,1) Ga(10,10) v=21 v=21
(0, ) 94.8 948 94.9 94.9 94.9 922 948
(5, 5) 94.8 94.4 94.7 92.8 94.0 93.6 94.6
(10, b) 93.1 92.2 93.4 92.1 91.9 93.7 94.0
(5, 10) 95.0 94.9 95.0 94.4 94.6 94.4 95.3
CP (10, 10) 94.8 94.8 94.7 93.1 93.4 95.7 95.9
(5, 15) 95.1 95.0 94.9 94.2 94.3 94.1 95.1
(10, 15) 94.5 94.6 94.4 93.4 93.4 95.8 96.0
(5, 20) 95.0 95.0 95.0 94.6 94.7 94.7 95.6
(10, 20) 94.7 94.6 94.6 94.0 93.9 96.2 96.5
(0, -) 24.7 24.7 24.7 24.6 24.7 24.7 24.7
(5, 5) 27.0  27.6 26.9 27.1 26.8 270  27.0
(10, 5) 33.6 36.7 31.6 30.6 29.9 30.3 30.3
(5, 10) 25.8 25.7 25.8 26.1 26.0 27.1 27.1
AL (10, 10) 26.9 26.7 27.1 277 27.6 30.3 30.2
(5, 15) 25.6 25.5 25.7 25.8 25.8 27.0 27.0
(10, 15) 26.7 26.5 26.8 27.2 27.1 30.1 30.1
(5, 20) 25.7 25.6 25.7 25.9 25.9 27.2 27.2
(10, 20) 26.7 26.5 26.7 27.0 27.0 30.3 30.3
(0, -) 0.98 0.98 0.99 1.43 1.07 2.61 1.07
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Table S3: Average values of RMSE and IF of the proposed extremely-heavy tailed distribution with
fixed v (EH) and estimated gamma (aEH), log-Pareto normal distribution with p = 0.9 (LP1) and
p = 0.7 (LP2), Cauchy distribution (C), ¢-distribution with 3 degrees of freedom (T3) and estimated
degrees of freedom (T), based on 500 replications in 9 combinations of (100w, 1) with p = 10. All
values are multiplied by 100.

(100w, ) EH akEH LP1 LP2 C T3 T MT N

0, -) 6.18 6.18 641 766 7.71 6.64 642 6.19 6.18

(5, 5) 6.68 6.72 685 807 7.76 701 739 6.60 11.78

(10, 5) 8.14 809 842 867 814 828 10.16 880 18.73

(5, 10) 6.39 644 648 782 7.73 6.72 7.09 634 21.12

RMSE (10, 10) 6.82 695 680 801 7.76 7.21 1028 811 35.68
(5, 15) 6.44 647 655 780 7.72 6.69 693 640 30.92

(10, 15) 6.87 695 6.75 799 7.81 7.02 10.65 7.41 53.56

(5, 20) 6.37 640 646 772 7.72 6.61 674 633 40.57

(10, 20) 6.76 6.85 6.69 802 7.71 6.83 10.58 11.06 70.79

0, -) 1.02 1.02 2799 41.03 432 209 1.84 099 0.98

(5, 5) 225 2.67 2742 39.60 4.06 195 1.83 133 098

(10, 5) 3.72 4.63 2763 3883 3.79 1.8 1.89 2.05 0.98

(5, 10) 216 249 2759 40.12 400 190 1.81 1.28 0.98

IF (10, 10) 3.43 410 2725 39.16 3.71 1.72 203 154 0.98
(5, 15) 217 246 2763 40.04 404 1.8 1.81 1.28 0.98

(10, 15) 3.45 4.00 2737 3940 3.69 1.67 214 159 0.98

(5, 20) 216 241 2773 40.11 4.04 1.87 1.80 126 0.98

(10, 20) 3.45 3.89 2741 39.63 3.66 1.66 222 1.61 0.98
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Table S4: Average values of CP and AL of 95% credible intervals based on the proposed extremely-
heavy tailed distribution with fixed v (EH) and estimated gamma (aEH), log-Pareto normal distri-
bution with p = 0.9 (LP1) and p = 0.7 (LP2), Cauchy distribution (C), ¢-distribution with 3 degrees
of freedom (T3) and estimated degrees of freedom (T), based on 500 replications in 9 combinations
of (100w, p) with p = 10. All values are multiplied by 100.

(100w, ) EH aEH LP1 LP2 C T3 T MT N

(0, -) 944 944 927 848 87.5 92.7 93.7 945 94.7

(5, 5) 944 943 93.2 857 893 943 952 946 87.7

(10, 5) 934 926 925 864 905 932 931 93.7 86.2

(5, 10) 95.0 949 939 858 89.5 953 975 950 86.2

CP (10, 10) 943 938 94.6 86.7 91.2 96.5 975 945 86.0
(5, 15) 94.8 943 934 855 90.1 954 982 94.6 86.2

(10, 15) 942 941 945 86.3 91.1 972 985 94.6 85.7

(5, 20) 94.7 944 94.1 86.0 89.8 95.7 987 950 86.2

(10, 20) 946 943 943 864 91.1 973 993 948 86.2

0, -) 239 239 235 227 238 239 242 239 239

(5, 5) 25.7 257 257 243 252 266 293 253 350

(10, 5) 28.3 282 299 268 271 30.6 364 284 429

(5, 10) 25.0 25.0 251 23.6 252 268 328 249 56.7

AL (10, 10) 26.2 26.3 27.0 251 269 31.1 482 26.5 75.1
(5, 15) 249 249 249 235 253 269 350 249 814

(10, 15) 26.2 26.3 26.7 247 270 314 585 264 109.5

(5, 20) 249 249 248 234 253 269 358 24.8 105.8

(10, 20) 26.0 26.0 264 248 26.8 31.3 66.8 27.3 144.4

Table S5: Computation time (seconds) multiplied by inefficiency factors of the five methods (EH,
LP1, T3, MT and N) under four cases of n.

n

300 1200 2100 3000
EH 17.0 734 1327 198.5
LP1 26.2 101.1 1721 2394

T3 2.5 5.0 8.0 10.9
MT 2.0 4.9 7.9 10.8
N 1.1 2.0 2.9 3.9
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Figure S1: Sample paths (Left) and autocorrelation (Right) of the posterior samples
of B2 and B3 in the EH model applied to a simulated data with p = 20, © = 5 and
w = 0.05.
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