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Abstract

Linear regression with the classical normality assumption for the error distribution

may lead to an undesirable posterior inference of regression coefficients due to the

potential outliers. This paper considers the finite mixture of two components with

thin and heavy tails as the error distribution, which has been routinely employed

in applied statistics. For the heavily-tailed component, we introduce the novel class

of distributions; their densities are log-regularly varying and have heavier tails than

those of Cauchy distribution, yet they are expressed as a scale mixture of normal

distributions and enable the efficient posterior inference by Gibbs sampler. We prove

the robustness to outliers of the posterior distributions under the proposed models

with a minimal set of assumptions, which justifies the use of shrinkage priors with

unbounded densities for the coefficient vector in the presence of outliers. The exten-

sive comparison with the existing methods via simulation study shows the improved

performance of our model in point and interval estimation, as well as its computa-

tional efficiency. Further, we confirm the posterior robustness of our method in the

empirical study with the shrinkage priors for regression coefficients.

Key words: Robust statistics; Linear regression; Heavily-tailed distribution; Scale

mixture of normals; Log-regularly varying density; Gibbs sampler.
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1 Introduction

The robustness to outliers in linear regression models has been well-studied for its

importance, and the research on theory and methodology for robust statistics has been

accumulated in the past years. Yet, the modeling of error distributions in practice to

accommodate outliers has not advanced significantly from Student’s t-distribution.

This is contrary to the situations of modern applied statistics where data are enriched

by massive observations and the more extreme outliers are expected to be observed

and affect the posterior inference. Our research aims to contribute to the development

of novel error distributions for outlier-robustness which we believe are still in demand.

In the full posterior inference, the concept of robustness is not limited to the

point estimation, but targets the whole posterior distributions of parameters of in-

terest. Also known as outlier-proneness or outlier-rejection, the posterior robustness

defines the property of posterior distributions that the difference of posteriors with

and without outliers diminishes as the values of outliers become extreme (O’Hagan,

1979). The series of research on posterior robustness has revealed several variations of

the (sufficient) conditions for error distributions to achieve the robustness, and pro-

vided the specific error distributions that meet such conditions; see the detailed review

by O’Hagan and Pericchi (2012). The recent studies introduce the concept of regu-

larly varying density functions (Andrade and O’Hagan, 2006, 2011), which are later

extended to log-regularly varying functions (Desgagné, 2015; Desgagné and Gagnon,

2019), and provide the robustness conditions for the partial and whole posteriors of

interest to be unaffected by outliers. As an error distribution whose density function

is log-regularly varying, Gagnon et al. (2019) proposes log-Pareto truncated normal

(LPTN) distribution, which replaces the thin-tails of normal distribution by those of

heavily-tailed log-Pareto distribution. Despite its desirable property of robustness,

the posterior inference for the regression model with the LPTN error distribution is

challenging. The class of LPTN distributions has hyperparameters that are difficult

to tune and/or estimate, such as the truncation points of Gaussian tails. In addition,

several parameters cannot be sampled from their conditional posteriors directly, and
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one has to rely on Metropolis-Hastings algorithm. These factors may lead to the

increased computational cost under the LPTN models, which also limits the use of

the LPTN distribution under more general linear models including random effects.

We, in contrast, explore a different class of error distributions that have received

less attention in the methodological literature. Following Box and Tiao (1968), we

model the error distribution by the finite mixture of two components; one has thinner

tails such as normal distributions, the other is extremely heavily-tailed to accommo-

date potential outliers, and both are centered at zero. While remaining in the general

class of scale mixture of normals (West, 1984), this simple, intuitive approach to the

modeling of outliers contrasts the literature listed above, where the error is modeled

by a single, continuous distribution. The structure of finite mixture helps controlling

the effect of outliers on the posteriors of parameters of interest, while allowing the

conditional conjugacy for posterior computation. For these practical utilities, the

finite mixture models have been routinely practiced in applied statistics (see, for ex-

ample, Carter and Kohn 1994, West 1997, Frühwirth-Schnatter 2006 Tak et al. 2019,

and Silva et al. 2020). In this research, we specifically focus on this class of error

distributions in proving the posterior robustness.

For the heavily-tailed distribution that comprises the finite mixture, Student’s t-

distribution is still regarded thin-tailed for its outlier sensitivity. We propose the use

of distributions that has been utilized in the robust inference for high-dimensional

count data (Hamura et al., 2019) for their extremely-heavy tails. This is another

scale mixture of normals by the gamma distribution with the hierarchical structure

on shape parameters, which enables the posterior inference by a simple but efficient

Gibbs sampler. The tails of these distributions are heavier than those of Cauchy

distributions. In fact, the density of the proposed error distribution is log-regularly

varying, as those of other heavily-tailed distributions considered for posterior robust-

ness, including LPTN distributions.

The proposed finite mixture of the thinly-tailed and heavily-tailed distributions is

named the extremely heavily-tailed error (EH) distribution. We prove the posterior

robustness under the linear regression models with the EH distribution. The density
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tails of the EH distribution play an important role in the proof of tail robustness; in

fact, the class of error distributions whose density tails are thinner than those of the

EH distribution is unable to attain the posterior robustness. The EH distribution is

too heavily tailed to have finite moments, but the posterior means and variances of

parameters of interest do exist in most situations.

The set of assumptions required for the proof of posterior robustness is minimal.

The assumptions restrict the available priors for the regression coefficients and ob-

servational scale, but do not exclude the use of the unbounded prior densities. The

posterior robustness is valid even for advanced shrinkage priors, e.g., horseshoe priors

(Carvalho et al., 2009, 2010). As a result, the robustness under shrinkage/variable

selection is also in the scope of our research. In the empirical studies, we practice the

posterior inference for the linear regression models with both the horseshoe prior and

the EH distribution for illustration.

The rest of the paper is organized as follows. In Section 2, we introduce the new

error distribution and describe its use in linear regression models, followed by the the-

oretical results on the posterior robustness. The algorithm for posterior computation

is provided in Section 3 with the discussion on its computational efficiency. In Sec-

tion 4, we carry out simulation studies to compare the proposed method with existing

models, including t-distribution and the finite mixture of normal and t-distributions.

In Section 5, we illustrate the proposed method using two famous datasets: Boston

housing data and diabetes data. The paper is concluded with further discussions in

Section 6. The R code implementing the proposed method is available at GitHub

repository (https://github.com/sshonosuke/EHE).

2 A new error distribution for robust regression

2.1 Extremely heavy-tailed error distributions

Let yi be a response variable and xi be an associated p-dimensional vector of covari-

ates, for i = 1, . . . , n. We consider a linear regression model, yi = xtiβ + σεi, where

β is a p-dimensional vector of regression coefficients and σ is an unknown scale pa-
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rameter. The error terms, ε1, . . . , εn, are directly linked to the posterior robustness;

modeling those errors simply by Gaussian distributions makes the posterior inference

very sensitive to outliers.

To achieve the posterior robustness, we introduce a local scale variable ui and

assume that the error distribution is conditionally Gaussian, as εi|ui ∼ N(0, ui).

Under this setting, an outlier is explained solely by the extreme value of the error

term generated by the higher value of the local scale variable. A typical choice of

the distribution of ui is the inverse-gamma distribution, which leads to the marginal

distribution of εi being the t-distribution. However, as shown in Gagnon et al. (2019)

and our main theorem, this choice does not hold the desirable robustness properties

of the posterior distribution, even when the distribution of εi is Cauchy distribution.

As stated in the introduction, the error distribution in this study is not a single

continuous mixture of normals, but the mixture of two components. We introduce

latent binary variable zi and model it by Pr[zi = 1] = 1−Pr[zi = 0] = s with mixing

probability s ∈ (0, 1). If zi = 0, then the error distribution is simply the standard

normal distribution, i.e., εi|(ui, zi = 0) ∼ N(0, 1). If zi = 1, then we consider the

scale mixture of normals with latent scale ui as εi|(ui, zi = 1) ∼ N(0, ui). The latent

scale follows the newly-introduced, extremely heavily-tailed distribution, ui ∼ H(·; γ),

where H is the proper probability distribution on (0,∞) with parameter γ > 0. The

density function of H-distribution is given by

H(u; γ) =
γ

1 + u

1

{1 + log(1 + u)}1+γ
, u > 0. (1)

Preparing two distributions in modeling of the error distribution is based on the

same modeling philosophy of Box and Tiao (1968); the first component generates

non-outlying errors and the second component is supposed to absorb outlying errors.

As the model for the variance of outlying errors, the second component H(·; γ) is

extremely heavily-tailed since H(u; γ) ≈ u−1(log u)−1−γ as u → ∞, which is known

as log-regularly varying density (Desgagné, 2015). This property is inherited to the

marginal distribution of error term εi and plays an important role in the robustness
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properties of the posterior distribution.

Under the formulation (1), the marginal distribution of εi is obtained as

fEH(εi) = (1− s)φ(εi; 0, 1) + s

∫ ∞
0

φ(εi; 0, ui)H(ui; γ)dui, (2)

where φ(εi; 0, u) is the normal density with mean zero and variance u. The second

component is the scale mixture of normals, but does not admit any closed-form ex-

pression. To handle with this component in posterior computation, as we see later

in Section 3.1, we utilize the augmentation of H-distribution by a couple of gamma-

distributed state variables. By this augmentation, the posterior inference for this

model is straightforward.

A notable property of the new error distribution is its extremely heavy tails shown

in the following proposition, with the proof left in the Appendix.

Proposition 1. The density (2) satisfies

fEH(x) ≈ |x|−1(log |x|)−1−γ

for large |x| if s > 0.

The above proposition shows that the EH distribution directly inherits the heavy

tails of the mixing H-distribution in the second component of the density in (2). As a

result, the density of the EH distribution is a family of log-regularly varying functions.

In addition, the tails of the EH density are heavier than those of Cauchy distribution;

fC(x) ≈ |x|−2. Based on this observation, we name the new error distribution in (2)

extremely heavily-tailed error (EH) distribution.

The density function in (2) is plotted in Figure 1 for s = 0.05, 0.1 and 0.2. It is

observed that the shape of the EH distribution is very similar to one of the standard

normal distribution around the origin, whereas the tails become heavier as the mixture

weight s increases. Figure 2 shows the cumulative distribution functions (CDFs) of

H-distributions and the EH distributions. The tails of the proposed EH distributions

are heavier than those of Cauchy distribution, as seen in the right panel. This fact
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is also confirmed via the comparison of CDFs of H- and inverse-gamma distributions

in the left panel. It is the property of the EH density shown in these figures that

leads to the robustness properties for the posterior distribution, which we show in

Theorem 1.
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Figure 1: Densities of the proposed error distribution with γ = 1 and s ∈
{0.05, 0.1, 0.2} and the standard normal error distribution. The intractable integral
of the second component is computed by the Monte Carlo integration.

2.2 Definition of outliers

We first specify the structure of outliers. Our definition is based on Desgagné and

Gagnon (2019). The set of indices for n observations, {1, . . . , n}, is split into the

two disjoint subsets, K and L, which represent those of the non-outlying and outlying

values, respectively. Note that K∪L = {1, . . . , n} and K∩L = ∅. Let D = {y1, . . . , yn}

be the set of the observed data. The set of the non-outlying observations is defined

by D∗ = {yi|i ∈ K}.
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Figure 2: Left: Cumulative distribution functions of scale distributions, H(u; γ) for
γ ∈ {0.5, 1.0, 2.0}, and the inverse gamma distribution with shape and scale 0.5.
Right: The empirical cumulative distributions of the EH distributions with γ = 1
and s = 0.1, 0.5, 0.8 computed by the Monte Carlo integration, compared with the
distribution function of Cauchy distribution.

The concept of (non-)outliers is defined by the observed values specified as,

yi =


ai, if i ∈ K,

ai + biω, if i ∈ L,

where ai ∈ R, bi 6= 0 and ω > 0. We assume that ω is sufficiently large, so that

the value of yi for i ∈ L becomes extremely large, either positively or negatively. We

define the posterior robustness as the limiting behaviors of the posteriors distributions

of parameters of interest, (β, σ2), when ω tends to infinity. That is, the model is

posterior robust if the two posteriors, one of which is conditioned by the full dataset

D and the other of which is conditioned by the dataset without the outliers D∗, are

equivalent when ω → ∞. To put it in another way, under the posterior robustness,

the outlying values are automatically discarded in posterior inference without the
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knowledge on which observations are outlying.

2.3 Robustness for the EH prior

The class of prior distributions for (β, σ2) for which we prove the posterior robustness

is, for k = 1, . . . , p,

βk|σ ∼
1

σ
πβ

(βk
σ

)
and σ ∼ πσ(σ), (3)

where β1, . . . , βp are conditionally independent given σ and πβ and πσ are the proba-

bility density functions on R and (0,∞), respectively. Let p(β, σ|D) be the posterior

distribution of (β, σ) under the linear regression model with the EH distribution. Un-

der this prior, the following theorem gives sufficient conditions for the posterior with

the outliers converges to that without the outliers as ω →∞. The proof is left in the

Supplementary Materials.

Theorem 1. Assume that there exists c > 0 such that,

(A.1) |K| ≥ |L|+ p, i.e., #non-outliers ≥ #outliers + #predictors.

(A.2) supt∈R{|t|cπβ(t)} <∞

(A.3) The prior moments of σ−|K|, σc−1 and σc−n are all finite.

Then the linear regression model with the error distribution in (2) and the prior in

(3) is posterior robust, i.e.,

lim
ω→∞

p(β, σ|D) = p(β, σ|D∗)

for all (β, σ) ∈ Rp × (0,∞).

The three assumptions are met in many examples we encounter in practice. As-

sumption (A.1) is the requirement for the number of non-outlying observations to

be sufficiently large. Similar assumptions can be found in the literature (e.g., Theo-

rem 2.1 (ii), Gagnon et al. 2019), but (A.1) is of the simpler form and less restrictive.
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In many situations, the number of the non-outlying observations comprises the ma-

jority of the dataset, so that Assumption (A.1) is satisfied.

Assumption (A.2) limits the choice of priors for β, but still covers the wide class of

probability distributions. For example, this assumption is always satisfied when πβ(t)

is bounded and O(1/|t|) as |t| → ∞. The examples of such prior include the normal

and t-distributions. Note that, however, (A.2) does not force the prior density πβ to

be bounded, unlike the settings of Gagnon et al. (2019). As an important example,

the horseshoe prior, whose density is unbounded at the origin (Theorem 1, Carvalho

et al. 2010), satisfies (A.2) for any c ∈ (0, 2]. As evident in the example of the

horseshoe prior, Theorem 1 can be a useful device to check the posterior robustness

for the boarder and important class of statistical problems, including the variable

selection by the shrinkage priors.

Assumption (A.3) is the moment conditions for observational scale σ. When the

sample size n is large enough and c ≤ 1, then (A.3) is summarized as the existence

of negative moments of σ. In this case, the inverse-gamma distribution for σ2, which

is a typical choice of priors in many applications, satisfies (A.3).

2.4 Tail heaviness for robustness

Theorem 1 proves the posterior robustness for the linear regression models with the

EH distributions, whose density tails are evaluated as fEH(x) ≈ |x|−1(log |x|)−1−γ , as

shown in Proposition 1. These extremely heavy tails are, in fact, the necessary con-

dition for the posterior robustness. To clarify the relationship between the posterior

robustness and the tail behavior of the error distributions, we study a wider class of

error distributions which includes the proposed distribution as a special case, defined

by replacing H(u; γ) in (2) with

H(u; γ, δ) = C(δ, γ)
1

(1 + u)1+δ

1

{1 + log(1 + u)}1+γ
, u > 0, (4)

where C(δ, γ) is a normalizing constant, and δ ≥ 0 is an additional shape parameter.

Like the degree of freedom of t-distributions, the shape parameter δ is related to
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the decay of the density tail of (4), that is, H(u; γ, b) ≈ u−δ−1(log u)−1−γ . Thus, this

class of distributions covers the error distributions whose density tails are lighter than

those of the proposed EH distribution in (2), and includes the EH distribution as one

with the heaviest tails under δ = 0. Note that the density tails become heavier than

those of Cauchy distribution if δ < 1.

It is shown that the choice of hyperparameter that can achieve the posterior

robustness is δ = 0 (and arbitrary γ > 0), i.e., the model considered in Theorem 1.

From this observation, we conclude that the tails of the error distribution that are

heavier than those of Cauchy distributions is essential for posterior robustness. For

details, see the Supplementary Materials.

2.5 Existence of posterior moments

The EH distribution is too heavily tailed to have finite moments. However, the

posterior of (β, σ2) has finite means and variances in most situations. We verify this

result for the inverse-gamma prior for σ2.

Proposition 2. Consider the linear regression model with the EH distribution in (2)

and the prior for (β, σ) given in (3). Furthermore, suppose that the prior for σ2 is

an inverse-gamma distribution.

(a) If (A.2) holds for some c > 0 and c ≤ n, then E[|βk|c|D] <∞ for k = 1, . . . , p.

(b) If d ≤ n, then E[σd|D] <∞.

It is immediate from (a) that the posterior means and variances of coefficients β

exist under the horseshoe prior for β, which is given later in (5).

Corollary 1. If the prior for β is horseshoe and n ≥ 2, then E[|βk|2|y] <∞.

The proof is given in the Supplementary Materials. In fact, the existence of

posterior moments of (β, σ2) can be discussed for the broad class of error distributions

and priors for (β, σ), not being limited to the linear regression model we particularly

consider in this paper. Proposition 2 is proved with such generality.
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3 Posterior Computation

3.1 Gibbs sampler by augmentation

An important property of the proposed EH distribution (2) is its computational

tractability, that is, we can easily construct a simple Gibbs sampling for posterior

inference. Note that the error distribution contains two unknown parameters, s and

γ, and we can adopt conditionally conjugate priors given by s ∼ Beta(as, bs) and γ ∼

Ga(aγ , bγ). The conditionally conjugate priors can also be found for main parameters,

β and σ2, and we use β ∼ N(Aβ, Bβ) and σ−2 ∼ Ga(aσ, bσ). The multivariate normal

prior for β can be replaced with the scale mixture of normals, such as shrinkage priors,

which is discussed later in Section 3.3.

To derive the tractable conditional posteriors, we need to keep the likelihood

conditionally Gaussian with latent scale ui. This can be done easily by condition-

ing the set of latent variables (zi, ui). The conditional conjugacy for (β, σ2) follows

immediately from the conditionally Gaussian likelihoods.

The full conditional distributions of the other parameters and latent variables in

the EH distribution are not any well-known distribution. However, we can augment

the model with latent parameters by utilizing the following integral expression of

density H(ui; γ),

H(ui; γ) =

∫∫
(0,∞)2

Ga(ui; 1, vi)Ga(vi;wi, 1)Ga(wi; γ, 1)dvidwi.

Namely, the random variable ui following the density H(ui; γ) admits the mixture

representation: ui|(vi, wi) ∼ Ga(1, vi), vi|wi ∼ Ga(wi, 1) and wi ∼ Ga(γ, 1), which en-

ables us to easily generate samples from the full conditional distribution of (ui|vi, wi)

and (vi, wi|ui).

The introduction of the two latent states, (vi, wi), is useful in deriving the condi-

tional posterior of ui, and the algorithm of Gibbs sampler immediately follows with

latent (vi, wi) as the part of the Markov chain, although (vi, wi) is totally redundant

in posterior sampling of the other parameters. We marginalize (vi, wi) out when sam-
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pling γ, s and zi’s from their conditional posteriors. This modification of the original

Gibbs sampler simplifies the sampling procedure, and even facilitates the mixing,

while targeting the same stationary distribution of the original Markov chain (Par-

tially collapsed Gibbs sampler, van Dyk and Park 2008). The algorithm for posterior

sampling is summarized as follows.

Summary of the posterior sampling

- Sample β from the full conditional distribution N(B̃Ã, B̃), where

B̃−1 = B−1
β + σ−2XtDX, Ã = B−1

β Aβ + σ−2XtDY

with D = diag(u−z11 , . . . , u−znn ).

- Sample σ−2 from Ga(ãσ, b̃σ), where

ãσ = aσ + n/2, b̃σ = bσ +
n∑
i=1

(yi − xtiβ)2/2uzii

- Sample zi from Bernoulli distribution; the probabilities of zi = 0 and zi = 1 are

proportional to (1− s)φ(yi;x
t
iβ, σ

2) and sφ(yi;x
t
iβ, σ

2ui), respectively.

- The full conditional distributions of s and γ are given by Beta(ãs, b̃s) and

Ga(ãγ , b̃γ), respectively, where ãs = as +
∑n

i=1 zi and b̃s = bs + n −
∑n

i=1 zi,

ãγ = aγ + n and b̃γ = bγ +
∑n

i=1 log{1 + log(1 + ui)}.

- For each i, independently, sample (vi, wi) first in a compositional way; sample

wi from Ga(1+γ, 1+log(1+ui)) and (vi|wi) as Ga(1+wi, 1+ui). Then, sample

ui from GIG(1/2, 2vi, (yi − xtiβ)2/σ2) if zi = 1 or from Ga(1, vi) if zi = 0.

We finally remark the choice of hyperparameters in the priors for s and γ. Despite

the EH distribution is log-regularly varying under arbitrary γ > 0, the use of a large

value of γ is not suitable to capture potential outliers since the tail of EH gets lighter

as γ increases. Moreover, the use of different values of γ would not considerably affect

the posterior result as long as γ is not large. Hence, instead of using a diffuse prior
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for γ, we rather recommend simply using a fixed value. In particular, we adopt γ = 1

as the default choice, and its sensitivity will be investigated in Section 4. As a more

data-dependent way, we also recommend employing an informative prior that prevent

large values of γ by setting, for example, aγ = bγ = 100, which will be considered

in Section 4 Regarding the mixing proportion s, we adopt as = bs = 1 resulting the

uniform prior for s as a default choice.

3.2 Efficiency in computation

A possible reason that the finite mixture has attracted less attention in the past

research on posterior robustness is, as mentioned in Desgagné and Gagnon (2019),

the increased number of latent state variables introduced by augmentation, and the

concern for the efficiency of posterior computation. It is the same concern seen in

Bayesian variable selection (George and McCulloch, 1993); the finite mixture model

for the prior on regression coefficients results in the necessity of stochastic search

in the high-dimensional model space, hence causes the slow convergence of Markov

chains and the costly computation. It is clear in the above algorithm, however,

that the use of finite mixture as error distributions is completely different from the

variable selection in terms of the model structure and free from such computational

problem. Unlike the variable selection, the membership of each i to either of the

two components in our model is independent of one another, which facilitates the

stochastic search in 2n possible combination of the model space. This fact also shows

that the sampling of (zi, ui, vi, wi) can be done completely in parallel across i’s, hence

our algorithm is scaled and computational feasible for the dataset with extremely

large n. We continue to discuss the computational efficiency of the finite mixture

approach in Section 4 through the extensive comparison with other models by using

the simulated dataset.

3.3 Robust Bayesian variable selection with shrinkage priors

When the dimension of xi is moderate or large, it is desirable to select a suitable subset

of xi to achieve efficient estimation. This procedure of variable selection would also
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be seriously affected by the possible outliers, by which we may fail to select suitable

subsets of covariates. For a robust Bayesian variable selection procedure, we introduce

shrinkage priors for regression coefficients. Here we rewrite the regression model to

explicitly express an intercept term as yi = α+ xtiβ+ εi, and consider a normal prior

α ∼ N(0, Aα) with fixed hyperparameter Aα > 0. For the regression coefficients β,

we consider a class of independent priors expressed as a scale mixture of normals

given by

π(β) =

p∏
k=1

∫ ∞
0

φ(βk; 0, σ2τ2ξk)πξ(ξk)dξk, (5)

where πξ(·) is a mixing distribution, and κ2 is an unknown global parameter that

controls the strength of the shrinkage effects. Examples of the mixing distribution

πξ(·) includes the exponential distribution leading to the Laplace prior of β (Bayesian

Lasso, Park and Casella 2008), and the half-Cauchy distribution for ξ
1/2
k which results

in the horseshoe prior (Carvalho et al., 2009, 2010). The robustness property of

the resulting posterior distributions is guaranteed for those shrinkage priors because

Assumption (A.2) of Theorem 1 is satisfied.

In terms of posterior computation, the key property is that the conditional distri-

bution of βk given ξk under (5) is a normal distribution, so the sampling algorithm

given in Section 3.1 is still valid with minor modification. Specifically, the sampling

from the full conditional distributions of α, β, σ2 and ξ1, . . . , ξp is modified or newly

added as follows:

- Sample α from N(Ã−1
α B̃α, Ã

−1
α ), where

Ãα = Aα + σ−2
n∑
i=1

u−1
i , B̃α = σ−2

n∑
i=1

u−1
i (yi − xtiβ).

- Sample β from N(Ã−1
β XtDỸ , σ2Ã−1

β ), where

Ỹ = Y − α1n, Ãβ = Λ−1 +XtDX, with Λ = τ2diag(ξ1, . . . , ξp).
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- Sample σ−2 from Ga(ãσ, b̃σ), where

ãσ = aσ + (n+ p)/2, b̃σ = bσ +
n∑
i=1

(yi − xtiβ)2/2uzii + βtΛ−1β.

- Sample ξk for each k and τ2 from their full conditionals. Their densities are pro-

portional to φ(βk; 0, σ2τ2ξk)πξ(ξk) and πτ2(τ2)
∏p
k=1 φ(βk; 0, σ2τ2ξk), respec-

tively, where πτ2(τ2) is a prior density for τ2.

The full conditional distributions of α and β are familiar forms thanks to the

normal mixture representation of the EH distribution and the shrinkage priors. The

sampling of ξk and τ2 depends on the choice of shrinkage priors, but the existing

algorithms in the literature can be directly imported to our method.

In Section 5, we adopt the horseshoe prior for regression coefficients with the

EH distribution for the error terms. We here provide the details of sampling algo-

rithm under the horseshoe model. The horseshoe prior assumes that
√
ξk ∼ C+(0, 1)

independently for k = 1, . . . , p and τ ∼ C+(0, 1), where C+(0, 1) is the standard half-

Cauchy distribution with probability density function given by p(x) = 2/π(1+x2) for

x > 0. Note that they admit hierarchical expressions given by ξk|λk ∼ IG(1/2, 1/λk)

and λk ∼ IG(1/2, 1/2) for ξk, and τ2|ν ∼ IG(1/2, 1/ν) and ν ∼ IG(1/2, 1/2) for τ2.

Then, one can sample from each full conditional distribution as follows:

- Sample ξk from IG(1, 1/λk + β2
k/2τ

2σ2).

- Sample λk from IG(1, 1 + 1/ξk).

- Sample τ2 from IG((p+ 1)/2, 1/ν +
∑p

k=1 β
2
k/2ξkσ

2).

- Sample ν from IG(1, 1 + 1/τ2).

These sampling steps can be directly incorporated into the Gibbs sampling algorithm

given in Section 3.1.

16



3.4 Beyond linear regression

The proposed error distribution can be adopted in more general linear regression

models. As an example, we consider a hierarchical model given by

yi = xtiβ + gtib+ εi, i = 1, . . . , n, (6)

where gi is a r-vector of additional covariates and b is a vector of random effects

distributed as b ∼ N(0, H(ψ)) with r×r covariance matrix H(ψ) parametrized by

ψ. To absorb potential effects of outliers, we use the EH distribution for εi. The

model structure (6) is general enough to represent a wide variety of useful models,

as seen in the later sections. Even under the model (6), the robustness properties

for β demonstrated in Section 2.3 can be discussed by checking whether the prior for

b satisfies Assumption (A.2). Moreover, the augmentation strategy for the efficient

posterior computation algorithm can still be employed and the full conditional dis-

tribution of b is normal. We adopt a random intercept model for longitudinal data

in our simulation study in Section 4.2 and a linear regression with spatial effects in

our application in Section 5.1.

4 Simulation studies

4.1 Linear regression

We here carry out simulation studies to investigate the performance of the proposed

method together with existing methods. We generated n = 300 observations from

the linear regression model with p = 20 covariates, given by

yi = β0 +

p∑
k=1

βkxik + σεi, i = 1, . . . , n,

where β0 = 0.5, β1 = β4 = 0.3, β7 = β10 = 2, σ = 0.5 and the other coefficients are set

to 0. Here the vector of covariates (xi1, . . . , xip) was generated from a multivariate

normal distribution with zero mean vector and variance-covariance matrix whose
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(k, `)-entry has (0.2)|k−`| for k, ` ∈ {1, . . . , p}. Regarding the contamination structure

of the error term, we adopted the location-shift model (Abraham and Box, 1978);

εi ∼ (1− ω)N(0, 1) + ωN(µ, 1), i = 1, . . . , n,

where ω is the contamination ratio and µ is the location of outliers. We considered

all the combinations of ω ∈ {0.05, 0.1} and µ ∈ {5, 10, 15, 20}, in addition to the case

of no contamination (ω = 0), which leads to 9 scenarios in total. Under this setting,

we replicate 500 datasets independently.

For each of the 500 simulation datasets, we applied the following robust regression

methods. The error distributions we consider include with the EH distribution, the

LPTN distribution (Gagnon et al., 2019), and t-distribution with ν degrees of freedom.

For the hyperparameter γ in the EH distribution, we fixed γ = 1 (denoted by EH)

and estimated γ adaptively (aEH) by assigning Ga(100, 100) prior distribution. For

the LPTN distribution, the tuning parameter ρ ∈ (2Φ(1) − 1, 1) ≈ (0.6827, 1) is

specified as ρ = 0.9 and ρ = 0.7 (LP1 and LP2, respectively). Regarding the degree

of freedom ν in the t-distribution, we specifically selected the results of ν = 1 (Cauchy

distribution, denoted by C), ν = 3 (T3), and an adaptive version (aT) that employs

a discrete uniform prior on ν ∈ {1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 50}. In addition, the

two-component mixture of the t-distribution with ν = 1/2 and the standard normal

distributions is considered (MT). We also employed the EH distribution with γ =

0.5 and γ = 0.2 to assess its sensitivity, t-distribution with ν = 2.1, and the MT

distribution with ν = 2.1. To save the space, we reported the results of these four

methods in the Supplementary Material. As a standard method, we adopted the

normal distribution as the error distribution (denoted by N) that should perform

best in the absence of outliers. Note that all the error distributions listed here are

“misspecified” for missing the location shift of the error term in the data generating

process. This setting emphasizes that the posterior robustness verified in this research

is valid regardless of the structure of outliers.

The priors for the regression coefficients and observational scale are set as βk ∼
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N(0, 1000) and σ−2 ∼ Ga(1, 1) for all the models. To employ the posterior inference,

we generated the posterior samples of (β, σ) by Gibbs sampler under the EH, t and

normal error distributions. For the LPTN distribution, the random-walk Metropolis-

Hastings algorithm was adopted as in Gagnon et al. (2019), in which the step sizes

were set to 0.05. For each of the 9 models, we generated 3000 posterior samples after

discarding the first 1000 samples.

Based on the posterior samples, we computed posterior means as well as 95%

credible intervals of βk for k = 1, . . . , p. The performance of the point and interval

estimation was assessed by square root of mean squared errors (RMSE), coverage

probabilities (CP) and average length (AL) based on the 500 replications of the

simulation, and these values were averaged over β0, . . . , βp. In addition, we evaluated

the efficiency of the sampling schemes by computing the average of inefficient factors

(IF) of the posterior samples.

In Table 1, we reported the values of these performance measures in 9 scenarios.

When ω = 0 (no outlier), as easily predicted, the normal error distribution provides

the most efficient result in all measures. While the other methods are slightly ineffi-

cient, the proposed method (EH and aEH in the table) performs almost in the same

way as the normal distribution. This is an empirical evidence that the efficiency loss

of the EH distribution is very limited owing to the normal component in the mixture.

In the other robust methods, MSEs are slightly higher than the that of the normal

distribution and CPs are smaller than the nominal level.

In the other scenarios, where outliers are incorporated in the data generating

process, the performance of the normal distribution is significantly lowered, and the

robustness property is highlighted in the performance measures of the other models.

In particular, the EH distribution with fixed γ (EH) performs quite stably in both

point and interval estimation. The adaptive version (aEH) also works reasonably well,

and the performance is comparable with EH. The LPTN model with ρ = 0.9 (LP1)

shows reasonable performance in point estimation, but its CPs tend to be smaller than

the nominal level. The other LPTN model with ρ = 0.7 (LP2) greatly worsens the

accuracy of point estimation, implying the sensitivity of the choice of hyperparameter
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ρ to the posteriors. The other models (C, T3, aT and MT) also suffer from the

larger MSE values, especially in the scenarios of large ω and µ, which emphasizes the

lack of posterior robustness under the t-distribution family. In addition, the interval

estimation under the t-distributions depends on the degree-of-freedom parameter, as

seen in the results of Cauchy and t3-distributions where the credible intervals are too

wide and narrow, respectively.

In terms of computational efficiency, it is remarkable that the IF values of the

EH models are small and comparable with those of the t-distribution methods, which

shows the efficiency of the proposed Gibbs sampling algorithm. On the other hand,

the IFs of the LPTN models are very large due to the use of Metropolis-Hastings al-

gorithm. To obtain the reliable posterior analysis under the LPTN models, one needs

to increase the number of iterations in the computation by MCMC, or to spend more

effort tuning the step-size parameter. We observed that the performance of LPTNs is

improved under the simpler settings of less covariates (p = 10), but the overall result

of model comparison remains almost the same. See the Supplementary Materials for

this additional experiment. Moreover, we measured the actual computation time of

five methods (EH, LP1, T3, MT and N) under larger sample sizes, which are reported

in the Supplementary Materials.

Finally, we evaluate the predictive performance. We generated m = 20 addi-

tional covariates xj∗ (j = 1, . . . ,m) from the same multivariate normal distribu-

tion, and then generated true response value yj∗ based on the linear regression with

εi ∼ N(0, 1). That is, the predicted response is not contaminated with outliers. Ac-

cordingly, in prediction with the EH and MT distributions, we construct the sampling

model of yj∗ conditional on zj = 0 as

f(yj∗|D, zj = 0) =

∫
φ(yj∗;x

t
j∗β, σ

2)π(β, σ|D)dβdσ.

This predictive distribution reflects our belief that the prediction should be consid-

ered only for non-outlying observations. If one believes that the predicted response

might also be outlying, then the model in (2) can be used for prediction, being un-
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conditional on zj , at the cost of inflated predictive uncertainty. To handle with the

outlying predictive values, however, the models for outlier detection should be more

appropriate (e.g., Desgagné 2021). For the LPTN and t-distributions, it is difficult to

separate non-outliers and outliers in the model. For these models, we used the same

error distributions for prediction. We reported the result of T3 model only; the 95%

predictive intervals of yj∗ under the LPTN and other t models are extremely wide

due to their heavy tails.

To evaluate the predictive performance, we computed MSE of the posterior pre-

dictive mean and CP and AL of 95% predictive intervals of yj∗. These values were

averaged over 500 replications, which are shown in Table 2. First, it can be seen

that the model with the Gaussian errors produces worse point predictions and wider

interval estimates as more and larger outliers are generated, which is clearly due to

the lack of posterior robustness. The other robust methods are equally performa-

tive in terms of point prediction, but they show a great difference in the uncertainty

quantification. The T3 method tends to be too conservative, in the sense that the

predictive intervals are too wide and show the almost 100% coverage. The EH and

MT models have the similar predictive results, while the coverage rates suggest the

potential under-coverage of the MT model. This result shows the importance of

posterior robustness, or the use of error distributions with extremely heavy tails in

estimation, for not only posterior inference but also predictive analysis.

4.2 Random intercept models

Next, we consider simulation studies using the following random intercept model:

yjt = β0 +

p∑
k=1

βkxjtk + vj + σεjt, t = 1, . . . , T, j = 1, . . . ,m, (7)

where vj ∼ N(0, τ2
v ) is a random effect. This is an example of the general model given

in Section 3.4. The model of this type is frequently used in longitudinal data analysis

(e.g. Verbeke, 2009), where m and T are the numbers of subjects and repeated mea-

surements, respectively, and vj is regarded as a subject-specific effect. Throughout
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Table 1: Average values of RMSEs, CPs, ALs and IFs of the proposed extremely-
heavy tailed distribution with γ fixed (EH) and estimated (aEH), log-Pareto normal
distribution with ρ = 0.9 (LP1) and ρ = 0.7 (LP2), Cauchy distribution (C), t-
distribution with 3 degrees of freedom (T3) and estimated degrees of freedom (aT),
two component mixture of normal and t-distribution with 1/2 degrees of freedom
(MT), and normal linear regression (N), based on 500 replications in 9 combinations
of (100ω, µ). All values except for IFs are multiplied by 100.

EH aEH LP1 LP2 C T3 aT MT N
(0, –) 6.32 6.32 6.71 7.95 7.84 6.78 6.57 6.32 6.32
(5, 5) 6.90 6.93 7.11 8.31 7.95 7.13 7.38 6.82 10.67
(10, 5) 8.92 8.52 8.96 9.29 8.35 8.33 9.72 9.59 15.85
(5, 10) 6.61 6.64 6.88 8.22 7.83 6.88 7.19 6.57 18.82

RMSE (10, 10) 7.05 7.17 7.12 8.34 8.04 7.43 10.05 7.68 29.68
(5, 15) 6.61 6.65 6.83 8.11 7.88 6.87 7.07 6.58 27.36
(10, 15) 7.07 7.15 7.26 8.29 8.04 7.16 10.00 8.01 43.36
(5, 20) 6.54 6.58 6.76 8.08 7.86 6.79 6.93 6.51 36.10
(10, 20) 7.03 7.11 7.00 8.28 7.98 7.06 10.38 8.05 58.08
(0, –) 94.9 94.8 90.2 72.3 88.6 93.2 94.5 95.0 94.8
(5, 5) 94.8 94.7 91.9 77.0 89.5 94.7 95.8 94.7 91.1
(10, 5) 93.2 93.2 91.8 79.8 90.7 94.2 94.6 93.2 90.5
(5, 10) 94.9 94.9 91.9 75.7 90.4 95.5 97.8 94.8 90.2

CP (10, 10) 94.4 94.1 93.1 78.8 91.3 96.9 98.0 94.5 90.3
(5, 15) 94.7 94.6 91.5 75.5 90.2 95.5 98.4 94.9 90.1
(10, 15) 94.1 93.7 92.9 78.9 91.3 97.3 99.0 94.4 90.1
(5, 20) 94.9 94.7 92.0 77.2 90.8 96.1 98.9 94.9 90.4
(10, 20) 94.4 94.2 92.9 78.4 91.9 97.7 99.5 94.6 90.5
(0, –) 24.7 24.7 23.2 18.6 24.7 24.7 25.1 24.7 24.7
(5, 5) 26.7 26.7 26.1 21.1 26.1 27.6 30.4 26.4 36.3
(10, 5) 30.4 29.9 31.4 24.7 28.2 32.0 37.4 30.7 44.3
(5, 10) 25.9 26.0 25.2 20.2 26.2 28.0 34.3 25.8 59.1

AL (10, 10) 27.2 27.4 27.3 22.3 27.9 32.7 49.4 27.7 77.4
(5, 15) 25.7 25.7 24.9 20.2 26.1 27.9 36.2 25.7 83.9
(10, 15) 27.0 27.0 27.0 22.2 27.7 32.6 58.9 27.6 112.3
(5, 20) 25.8 25.8 24.8 20.5 26.2 28.1 37.7 25.8 110.2
(10, 20) 26.9 26.9 26.5 21.7 27.9 32.8 69.2 27.4 149.3
(0, –) 1.01 1.01 44.92 54.00 4.68 2.12 1.86 0.99 0.98
(5, 5) 2.09 2.41 43.03 53.17 4.32 1.97 1.80 1.36 0.99
(10, 5) 3.34 4.26 40.52 51.95 3.98 1.86 1.82 1.96 0.98
(5, 10) 1.98 2.27 43.45 53.45 4.22 1.89 1.79 1.28 0.98

IF (10, 10) 3.05 3.68 41.72 52.64 3.84 1.70 1.95 1.68 0.98
(5, 15) 1.96 2.21 43.73 53.36 4.22 1.88 1.77 1.28 0.98
(10, 15) 3.05 3.54 42.26 52.74 3.84 1.67 2.04 1.64 0.98
(5, 20) 1.97 2.19 43.58 53.44 4.23 1.87 1.75 1.28 0.98
(10, 20) 3.05 3.49 42.52 52.87 3.84 1.65 2.15 1.59 0.98
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Table 2: Average values of RMSEs of posterior predictive means and CPs and ALs
of 95% prediction intervals based on the EH method with γ = 1, t-distribution with
3 degrees of freedom (T3), two component mixture of normal and t-distribution with
1/2 degrees of freedom (MT), and the standard normal linear regression (N), based
on 500 replications in 9 combinations of (100ω, µ). RMSE and CP are multiplied by
100.

(100ω, µ) EH T3 MT N
(0, –) 50.5 50.7 50.5 50.5
(5, 5) 50.6 50.7 50.5 53.0
(10, 5) 51.3 51.3 51.7 58.2
(5, 10) 51.6 51.7 51.5 61.2

RMSE (10, 10) 50.6 50.8 50.7 78.1
(5, 15) 50.5 50.6 50.5 70.1
(10, 15) 51.2 51.3 51.2 99.0
(5, 20) 51.2 51.3 51.2 85.3
(10, 20) 50.8 50.9 52.2 127.7
(0, –) 95.5 98.9 95.6 95.8
(5, 5) 95.7 99.6 95.0 99.2
(10, 5) 96.7 99.9 95.0 99.9
(5, 10) 94.6 99.4 94.0 100.0

CP (10, 10) 95.6 100.0 94.5 100.0
(5, 15) 95.2 99.7 94.7 100.0
(10, 15) 95.1 100.0 93.9 100.0
(5, 20) 94.6 99.7 94.2 100.0
(10, 20) 95.2 99.9 94.2 100.0
(0, –) 2.01 2.64 2.02 2.03
(5, 5) 2.06 2.98 2.00 2.97
(10, 5) 2.21 3.46 2.14 3.62
(5, 10) 2.01 3.02 1.96 4.80

AL (10, 10) 2.04 3.64 1.95 6.35
(5, 15) 2.00 3.02 1.96 6.77
(10, 15) 2.02 3.62 1.94 9.12
(5, 20) 1.99 3.04 1.95 8.96
(10, 20) 2.01 3.68 2.00 12.14
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this study, we set m = 50, T = 10 and p = 10. We adopted the same values for βk’s,

and the same generating process for (xjt1, . . . , xjtp) and εjt, as those in the previous

simulation study. The scale parameters are set as τ2
v = (0.5)2 and σ = 1.

We model the distribution of error εjt in the model (7) by the EH distribution

with latent variables (zjt, ujt). The same data augmentation strategy can be used in

the posterior computation for this model, and the full conditional distribution of vj

is given by N (̃bj ãj , b̃j), where

b̃−1
j =

1

τ2
v

+
1

σ2

T∑
t=1

1

u
zjt
jt

, ãj =
1

σ2

T∑
t=1

u
−zjt
jt

(
ytj − β0 −

p∑
k=1

βkxjtk

)
.

We use an inverse-gamma prior for τ2
v , namely, τ2

v ∼ IG(av, bv) with av = bv = 1, and

the full conditional distribution of τ2
v is IG(ãv, b̃v), where ãv = av + m/2 and b̃v =

bv+
∑m

j=1 v
2
j /2. Given the random effect vj , the other parameters and latent variables

can be easily generated from their full conditional distributions in Section 3.1 with the

slight modification by replacing the response variable with yjt − vj . The other error

distributions, such as the normal and t-distributions and the finite mixture, can be

implemented in the same way by using its representation of scale mixture of normals.

The only exception is the LPTN distribution; it does not admit representation of scale

mixture of normals and is not directly incorporated into the random intercept model.

In total, we employed six error distributions (EH, aEH, C, aT, MT, N) in this study.

We evaluated the performance of point and interval estimations by posterior means

and 95% credible intervals for the regression coefficients, using RMSE, CP and AL,

as adopted in the previous study. The performance of the six models in predicting

the random effect is also assessed via square root of mean squared prediction errors

(RMSPE) based on 500 replications of the simulations, and these values are averaged

over v1, . . . , vm.

We report the results in Table 3. Regarding the regression coefficients, almost the

same tendency as in Tables 1 can be observed, which indicates the usefulness of the

proposed EH method under more structured models than linear regression. It is also

observed that the EH method with estimated γ does not necessarily work well, thereby
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our recommendation in this example is simply using the fixed value γ = 1. In terms

of RMSPE, the proposed EH method consistently outperforms the other methods.

Specifically, the difference between the EH and MT methods is considerable, which

also suggests the importance of the posterior robustness shown in Theorem 1, i.e.,

the advantage of the proposed error distribution over the conventional finite mixture

approach with t-distribution.

Table 3: Average values of RMSEs, CPs, ALs and RMSPEs of the proposed
extremely-heavy tailed distribution with γ fixed (EH) and estimated (aEH), Cauchy
distribution (C), t-distribution with estimated degrees of freedom (aT), two compo-
nent mixture of normal and t-distribution with 1/2 degrees of freedom (MT), and
normal distribution (N) under the random intercept models with 6 combinations of
(100ω, µ). All values except for IFs are multiplied by 100.

(100ω, µ) EH aEH C aT MT N

RMSE

(5, 5) 5.91 5.89 6.86 6.54 5.91 10.67
(10, 5) 8.45 8.88 7.12 9.39 8.52 17.51
(5, 10) 5.61 5.58 6.84 6.37 5.72 19.40
(10, 10) 5.86 5.79 6.78 9.52 6.03 33.74
(5, 15) 5.47 5.45 6.65 6.10 5.58 28.23
(10, 15) 5.86 5.79 6.84 9.36 5.96 49.80

CP

(5, 5) 94.1 94.0 81.6 92.6 92.1 86.5
(10, 5) 92.9 93.2 84.5 90.4 91.1 85.7
(5, 10) 95.1 94.7 82.3 95.2 91.9 85.9
(10, 10) 95.2 95.2 86.0 95.3 91.8 86.0
(5, 15) 94.9 94.6 83.6 96.4 91.9 86.4
(10, 15) 95.5 95.4 84.8 97.3 92.5 86.5

AL

(5, 5) 22.0 21.8 18.4 22.7 20.3 27.7
(10, 5) 25.8 26.0 19.7 28.5 23.1 33.7
(5, 10) 21.4 21.1 18.5 25.7 19.7 44.7
(10, 10) 23.1 22.7 19.6 38.9 21.0 58.5
(5, 15) 21.3 21.0 18.5 27.2 19.7 63.3
(10, 15) 23.0 22.6 19.6 47.2 20.9 85.1

RMSPE

(5, 5) 29.5 29.4 33.9 31.5 35.0 40.5
(10, 5) 33.6 33.2 34.1 37.1 38.8 44.2
(5, 10) 28.8 28.8 34.2 33.3 33.7 46.9
(10, 10) 30.5 29.7 33.5 40.9 36.4 48.3
(5, 15) 28.8 28.8 34.0 33.9 33.6 48.3
(10, 15) 30.3 29.5 33.4 41.8 36.3 49.2
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5 Real data examples

The posterior robustness of the proposed EH distribution is demonstrated via the

analysis of two real datasets: Boston housing data and diabetes data. The goal of

statistical analysis here is the variable selection with p = 29 and p = 64 predictors

in the presence/absence of outliers. Our robustness scheme is a prominent part of

such analysis by allowing the use of unbounded prior densities for strong shrinkage

effect– specifically the horseshoe priors we discussed in Section 3.3– while protecting

the posteriors from the potential outliers. The former dataset is suspected to be

contaminated with outliers, where the difference of the proposed EH distribution and

the traditional t-distribution is emphasized. In contrast, the latter dataset is free

from extreme outliers, and we use this dataset to discuss the possible efficiency loss

caused by the use of EH distributions.

In our examples, we consider robust Bayesian inference using the proposed method

with taking account of variable selection, since the number of covariates is not small

in two cases. Specifically, we employed the horseshoe prior as described in Sec-

tion 3.3. For comparison, we also applied the standard normal distribution and the

two-component mixture of normal and t-distributions as the error distribution, while

using the horseshoe prior for regression coefficients. In all the methods, we generated

10000 posterior samples after discarding the first 5000 posterior samples as burn-in.

5.1 Boston housing data

We first consider the famous Boston housing dataset (Harrison and Rubinfeld, 1978).

The response variable is the corrected median value of owner-occupied homes (in

1,000 USD). The covariates in the original datasets consist of 14 continuous-valued

variables about the information of houses, such as per capita crime rate and accessibil-

ity to radial highways, and 1 binary covariate. After standardizing the 14 continuous

covariates, we also create squared values of those, which results in p = 29 covariates

in our models. The sample size is n = 506. The data also contains the longitude and

latitude of house i, denoted by ti. To take account of spatial correlation, we consider
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the following model:

yi = xtiβ + g(ti) + εi, i = 1, . . . , n, (8)

where g(ti) is a spatial effect as an unknown function of location information ti. We as-

sume that g(ti) follows the standard Gaussian process, namely, η ≡ (g(t1), . . . , g(tn))

and η ∼ N(0, κ2C(h)), where C(h) is a variance-covariance matrix whose (i, j)-entry

is exp(−‖si−sj‖2/2h2) with unknown bandwidth parameter h. The above model can

be seen as the spatially varying intercept model, or the spatially varying coefficient

model (e.g. Gelfand et al., 2003). Also, this is another example of the general model

in Section 3.4 with r = n, b = η, gi is the i-th standard basis, and H(ψ) = κ2C(h)

with ψ = (κ, h). Under the EH distribution for εi, the full conditional distribution of

η is given by N(Ã−1
η B̃η, Ã

−1
η ), where

Ãη = κ−2C(h)−1 + σ−2diag(u−z11 , . . . , u−znn ), and B̃η = (Y −Xβ)/σ2.

A similar sampling strategy can be used for the two component mixture of a normal

and t-distribution with 1/2 degrees of freedom (denoted by MT), as adopted in the

simulation study in Section 4. We employ the conjugate inverse gamma prior IG(1, 1)

for τ2, and a uniform prior, U(0, hM ), for h, where hM is the median of all the

pair-wise distances of the sampling locations. The random-walk Metropolis-Hastings

algorithm can be used for sampling from the full conditional distribution of h.

As the exploratory analysis, we first applied the model (8) with normal error,

εi ∼ N(0, σ2), and computed the standardized residuals by using the posterior mean

of the model parameters to visualize the potential outliers. The computed residuals

are shown in the left panel of Figure 3. Despite the normal error model is sensitive to

outliers, there are still large residuals seen in the figure, which implies the extremity

of the outliers in this dataset. In the proposed error distribution, the existence of

extreme outliers is implied by the posterior of mixture weight s, i.e., the proportion

of the extremely heavy-tailed distribution in the finite mixture. The trace plot of
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posterior samples of mixture weight s under the EH model is presented in the right

panel of Figure 3. Since all the sampled values are bounded away from 0, it sug-

gests that a certain proportion of the heavy-tailed distribution to take account of

the outliers shown in the left panel. As the prior sensitivity analysis, we also ap-

plied more informative priors, Beta(1, 5) and Beta(1, 9), in addition to the default

prior s ∼ Beta(1, 1), based on the prior belief that s should be small. However, the

posteriors computed with the three beta priors are almost identical.

The estimated spatial effects, g(ti), under the EH and normal models are pre-

sented in Figure 4. The EH model produces spatially smoothed estimates, while the

estimates of the normal model are volatile across the sampling area. This finding also

evidences the effect of outliers on the posterior inference for the regression coefficients

or, in this example, the random intercept terms.

The posterior means and 95% credible intervals of the regression coefficients based

on the three methods are shown in Figure 5. It shows that the results of the normal

error model are quite different from those of the MT and EH distributions. The

difference of estimates becomes visually clear especially for the significant covariates–

if we define the significance in the sense that the 95% credible intervals do not contain

zero– as the result of proneness/sensitivity to the representative outliers observed in

Figure 3. The difference between the posteriors of the EH and MT models does exist,

but is not as visually clear as the difference from the normal error model.

Finally, we computed the deviance information criterion (Spiegelhalter et al.,

2002) of the three models. The obtained values were 2628 for the normal error

model, 2339 for the MT error model, and 2325 for the proposed EH error model,

which shows the best fit of the EH error model to the data.

5.2 Diabetes data

We next consider another famous dataset known as Diabetes data (Efron et al., 2004).

The data contains information of 442 individuals and 10 covariates regarding the

personal information and related medical measures of the individuals. We consider

the same formulation of linear regression model as in Efron et al. (2004); the set of
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Figure 3: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed EH distribution (right), obtained form the Boston housing data. The poste-
rior mean and the 95% credible interval of s are 0.160 and (0.087, 0.249), respectively.
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Figure 4: Posterior means of the spatial effects based on the EH and the normal (N)
distribution.

predictors consists of the original 10 variables, 45 interactions, and 9 squared values,

which results in p = 64 predictors in the model. For this dataset, the regression
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Figure 5: Posterior means and 95% credible intervals of the regression coefficients in
the normal regression with normal distribution error (N), the proposed EH distribu-
tion, and the tow-component mixture of normal and t-distribution with 1/2 degrees
of freedom (MT), applied to the Boston housing data.

models with horseshoe prior and three error distributions (N, EH and MT) adopted

in Section 5.1 are applied.

Similarly to the analysis of Boston housing data, we check the standardized resid-

uals computed under the standard linear regression model, which was presented in

the left panel of Figure 6. Few outliers are confirmed in the dataset as most of resid-

uals are contained in the 99% interval, which strongly supports the standard normal

assumption in this example. The right panel of Figure 6 shows the trace plot of

posterior samples of mixture s under the EH distribution. All the sampled values are

very close to zero, implying that most error terms should be generated from the first

component of the mixture, i.e., the standard normal distribution. In this case, the

heavy-tailed component might be regarded “redundant” for this dataset. The same

sensitivity analysis on the choice of priors for s is done as in the previous section, but

we find no significant change to the results.

To see the possible inefficiency of using the EH models for the dataset without
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outliers, the posterior means and 95% credible intervals of the regression coefficients

are reported in Figure 7. The results of the three models are comparable; the pre-

dictors selected by significance are almost the same under the three models. The

only notable difference is that the credible intervals produced by the t-distribution

model is slightly larger than those of the other two methods. This indicates the loss

of efficiency in using the t-distribution method under no outliers, as also confirmed in

the simulation results in Section 4. In contrast, the difference in the credible intervals

of the Gaussian and EH models is hardly visible in the figure. That is, even if no

outlier exists, the efficiency loss in estimation under the EH model is minimal.

We also computed the deviance information criterion of the three models. The

obtained values were 4794 for the normal error model and 4795 for both the MT and

EH error models, which shows the comparable fit of the three models.
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Figure 6: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed EH distribution (right), obtained form the Diabetes data. The posterior
mean and the 95% credible interval of s are 0.008 and (0.000, 0.032), respectively.
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Figure 7: Posterior means and 95% credible intervals of the regression coefficients
in the normal regression with normal distribution error (N), the proposed EH distri-
bution, and the t-distribution (T) with estimated degrees of freedom, applied to the
Diabetes data.
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6 Discussions

While the focus of this research is on the inference for the regression coefficients and

scale parameter, it is also of great interest to employ the predictive analysis based on

the proposed model. Because H-distribution, as well as many log-regularly varying

distributions, is too heavily-tailed to have finite moments, the posterior predictive

moments under the EH models do not exist. It is common in practice to have predic-

tive distributions with no finite moments (West, 2020) and it is worth investigating

the predictive properties under the EH models, especially about the impact of the
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heavy tails on the predictive uncertainty.

The proposed method is not limited to the analysis of the linear regression models,

but can be immediately customized for any conditionally Gaussian models, as we

practiced in the analysis of the random intercept model in Section 4.2 and the spatially

varying intercept model in Section 5.1. Other examples include graphical models and

dynamic linear models, which can be the topics of the promising future research. The

efficient posterior computation algorithm presented in this research can be used for

these highly-structured models as well by utilizing the hierarchical representation of

the proposed error distribution. The similar theoretical robustness properties may

also be confirmed for those models.

Finally, we note that the assumption (A.1) in Theorem 1 misses the high-dimensional

regression with small sample size (n < p), which means that posterior robustness is

not necessarily achieved in this challenging situation. Therefore, substantial work

will be required to develop the theory and methodology for “robust high-dimensional

regression,” which we left to an interesting future research topic.

Supplementary Material

Proofs of all the propositions and theorems, and additional simulation results are

given in the online supplementary material.
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Supplemental Materials for

“Log-Regularly Varying Scale Mixture of Normals for

Robust Regression”

This Supplementary Material provides proofs of Proposition 2.1, Theorem 2.1,

Proposition 2.2 and Corollary 2.1 and additional simulation results.

S1 Lemmas

In this section, we provide lemmas used in the proofs.

Lemma S1. Let M,v > 0. Then we have

(a)
1 + log(1 +M)

1 + log(1 +Mv)
≤ max{1, v−1},

(b) lim
M→∞

1 + log(1 +M)

1 + log(1 +Mv)
= 1.

Proof. The inequality in part (a) is trivial when v ≥ 1; the left-hand-side is bounded

by 1. For the case of v < 1, first observe that

1 + log(1 +M)

1 + log(1 +Mv)
= exp

(∫ 1

v

[ ∂
∂t

log{1 + log(1 +Mt)}
]
dt
)

= exp
{∫ 1

v

1

1 + log(1 +Mt)

M

1 +Mt
dt
}

for all v > 0. Then it is immediate from this expression that

1 + log(1 +M)

1 + log(1 +Mv)
≤ exp

(∫ 1

v

1

t
dt
)

= v−1
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for v < 1. For part (b), we use the same expression to obtain

lim
M→∞

1 + log(1 +M)

1 + log(1 +M/v)

= exp
{

lim
M→∞

∫ 1

v

1

1 + log(1 +Mt)

M

1 +Mt
dt
}

= 1

by the dominated convergence theorem.

Lemma S2. For γ > 0 and δ ≥ 0, let H(u; γ, δ), u ∈ (0,∞), be the proper density

proportional to

H(u; γ, δ) ∝ 1

(1 + u)1+δ

1

{1 + log(1 + u)}1+γ
.

Then we have

∫ ∞
0

N(z|0, u)H(u; γ, δ)du ∼ C−1

√
2π

(z2

2

)−1/2−δ
Γ
(1

2
+ δ
)
S
(z2

2

)

as |z| → ∞, where

S(u) =
( u

1 + u

)1+δ 1

{1 + log(1 + u)}1+γ

for u ∈ (0,∞) and C =
∫∞

0 u−δ−1S(u)du.

Proof. The result follows by (the proof of) part 3 of Theorem 1 of Hamura et al.

(2020).

Lemma S3. For z ∈ R, let f0(z) = N(z|0, 1) and

f1(z) =

∫ ∞
0

N(z|0, u)H(u; γ)du,

where H(u; γ) = H(u; γ, δ = 0), u ∈ (0,∞), is the H-distribution.

(i) For all z ∈ R, we have 0 < f0(z) = f0(|z|) ≤ f0(0) <∞, 0 < f1(z) = f1(|z|) ≤

f1(0) <∞, and 0 < f(z) = f(|z|) ≤ f(0) <∞.
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(ii) f0(r), f1(r), and f(r) are continuous and nonincreasing functions of r for r ≥ 0.

(iii) lim|z|→∞{f0(z)/f1(z)} = 0 and supz∈R{f0(z)/f1(z)} <∞.

(iv) There exists C1 > 0 such that for all z 6= 0, we have

f1(z) ≤ C1

|z|
1

{1 + log(1 + |z|2)}1+γ
.

(v) There exists C2 > 0 such that for all z ∈ R \ (−1, 1), we have

f1(z) ≥ C2

|z|
1

{1 + log(1 + |z|2)}1+γ
.

(vi) There exists C3 > 0 such that for all z ∈ R, we have

f1(z) ≤ C3

1 + |z|
.

(vii) There exists C4 > 0 such that for all ỹ, µ̃ ∈ R and all σ ∈ (0,∞), we have

|ỹ|f1

( ỹ − µ̃
σ

)
≤ |ỹ|f1

( |ỹ| − |µ̃|
σ

)
≤ C4(σ + |µ̃|).

Proof. Parts (i) and (ii) are trivial. Since limz→0{f0(z)/f1(z)} = f0(0)/f1(0) < ∞

by parts (i) and (ii) and since lim|z|→∞{f0(z)/f1(z)} = 0 by Lemma S2, part (iii)

follows.

Note that for all z 6= 0,

f1(z) =

∫ ∞
0

N(z|0, u)H(u; γ)du

=

∫ ∞
0

1√
2π

1

u1/2
e−z

2/(2u) γ

1 + u

1

{1 + log(1 + u)}1+γ
du

=

∫ ∞
0

|z|√
2π

1

u1/2
e−1/(2u) γ

1 + |z|2u
1

{1 + log(1 + |z|2u)}1+γ
du

=
γ|z|√

2π

1

{1 + log(1 + |z|2)}1+γ

∫ ∞
0

1

u1/2
e−1/(2u) 1

1 + |z|2u

{ 1 + log(1 + |z|2)

1 + log(1 + |z|2u)

}1+γ
du.

39



Then, by part (a) of Lemma S1, we have

f1(z) ≤ γ|z|√
2π

1

{1 + log(1 + |z|2)}1+γ

1

|z|2

∫ ∞
0

1

u3/2
e−1/(2u)(max{1, 1/u})1+γdu

≤ γ√
2π

1

|z|
1

{1 + log(1 + |z|2)}1+γ

∫ ∞
0

{e−1/(2u)

u3/2
+
e−1/(2u)

u5/2+γ

}
du <∞

for all z 6= 0, which prove part (iv). Also, for all z ∈ R \ (−1, 1),

f1(z) ≥ γ|z|√
2π

1

{1 + log(1 + |z|2)}1+γ

1

|z|2

∫ ∞
0

1

u1/2
e−1/(2u) 1

1 + u
(min{1, 1/u})1+γdu

by part (a) of Lemma S1. This proves part (v). It follows from parts (i) and (iv)

that f1(z) ≤ max{2f1(0)/(1 + |z|), 2C1/(1 + |z|)} for all z ∈ R. Therefore, part

(vi) is obtained. For part (vii), let ỹ, µ̃ ∈ R and σ ∈ (0,∞). Then f1((ỹ − µ̃)/σ) ≤

f1((|ỹ|−|µ̃|)/σ) by parts (i) and (ii). Suppose first that |ỹ| ≤ σ+|µ̃|. Then |ỹ|f1((|ỹ|−

|µ̃|)/σ) ≤ f1(0)(σ + |µ̃|) by part (i). Next, suppose that |ỹ| > σ + |µ̃|. Then, since

|ỹ| − |µ̃| ≥ 0 and (|ỹ| − |µ̃|)/σ ≥ 1,

|ỹ|f1

( |ỹ| − |µ̃|
σ

)
=

γ√
2π

∫ ∞
0

1

u1/2
e−1/(2u) |ỹ|(|ỹ| − |µ̃|)/σ

1 + {(|ỹ| − |µ̃|)/σ}2u
1

(1 + log[1 + {(|ỹ| − |µ̃|)/σ}2u])1+γ
du

≤ γ√
2π

∫ ∞
0

1

u1/2
e−1/(2u) 1

σ

(|ỹ| − |µ̃|)2 + |µ̃|(|ỹ| − |µ̃|)
1 + {(|ỹ| − |µ̃|)/σ}2u

du

≤ γ√
2π

∫ ∞
0

1

u1/2
e−1/(2u) 1

σ

(σ2

u
+
σ|µ̃|
u

)
du =

γ√
2π

(σ + |µ̃|)
∫ ∞

0

1

u3/2
e−1/(2u)du <∞.

This completes the proof of part (vii).

Lemma S4. Let m, p ∈ N. Let w = (w1, . . . , wm)t ∈ Rm. Let Z = (z1, . . . , zm)t be

an m × p matrix of observations (such that any set of its p distinct row vectors is

linearly independent). Suppose that m ≥ p. Then there exist R > 0 and δ > 0 (which

may depend on w and Z) such that

m∏
i=1

1

1 + |wi − ztiβ|
≤ 1

(1 + δ|β|)m−p+1
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for all β ∈ Rp satisfying |β| ≥ R.

Proof. In this proof, if A is a matrix, we write |A| =
√

tr (AtA). Let I = {(ik)pk=1|1 ≤

i1 < · · · < ip ≤ m}. For i = (ik)
p
k=1 ∈ I, let w(i) = (wi1 , . . . , wip)t and Z(i) =

(zi1 , . . . , zip)t. LetR = 1+2 maxi∈I |Z(i)−1w(i)| > 0 and δ = mini∈I{1/(2
√
p|Z(i)−1|)} >

0. Let β ∈ Rp be such that |β| ≥ R. Then for all i = (ik)
p
k=1 ∈ I, we have that

|β − Z(i)−1w(i)| ≥ |β| − R/2 ≥ |β|/2 and hence that |β| ≤ 2|β − Z(i)−1w(i)| ≤

2|Z(i)−1||Z(i)β − w(i)| ≤ 2
√
p|Z(i)−1|max1≤k≤p |ztikβ − wik |, which implies that

there exists k = 1, . . . , p such that δ|β| ≤ |ztikβ − wik |. Therefore, we can choose

distinct indices i(1), . . . , i(m−p+1) = 1, . . . ,m so that for all j = 1, . . . ,m − p + 1, we

have δ|β| ≤ |zt
i(j)
β − wi(j) |. Indeed, for j = 2, . . . ,m − p + 1, given i(1), . . . , i(j−1),

we can choose i1 < · · · < ip from {1, . . . ,m} \ {i(1), . . . , i(j−1)} and then k with

δ|β| ≤ |ztikβ − wik | from {1, . . . , p} and set i(j) = ik. Thus,
∏m
i=1(1 + |wi − ztiβ|) ≥∏m−p+1

j=1 (1 + |wi(j) − zti(j)β|) ≥ (1 + δ|β|)m−p+1.

Lemma S5. Let α(·) and β(·) be continuous, positive, and integrable functions defined

on (0,∞). Suppose that limu→∞ β(u)/α(u) = ρ ∈ [0,∞]. Then

lim
z→∞

∫ ∞
0

N(z|0, u)β(u)du
/∫ ∞

0
N(z|0, u)α(u)du = ρ.

Proof. We can assume that ρ < ∞; if ρ = ∞, then we can exchange the definitions

of α(·) and β(·), and this reduces to the case of ρ = 0. Let γ(·) be either α(·) or

β(·). We can also assume without loss of generality that u−1/2α(u) and u−1/2β(u)

are integrable. To see this, observe that, for any η > 0, there exist ε > 0 satisfying

0 ≤
∫ ε

0 N(1|0, u)γ(u)du∫∞
0 N(1|0, u)γ(u)du

< η/2

and, for these η and ε, there also exists δ > 0 such that 0 ≤ 1− e−δ/ε < η/2. Hence,
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for all z ≥ 1, the covariance inequality implies

∫ ε
0 N(z|0, u)γ(u)du∫∞
0 N(z|0, u)γ(u)du

= E[χ(0,ε)(Uz)]

≤
E[exp{(z2 − 1)/(2Uz)}χ(0,ε)(Uz)]

E[exp{(z2 − 1)/(2Uz)}]

=

∫ ε
0 N(1|0, u)γ(u)du∫∞
0 N(1|0, u)γ(u)du

where χ(0,ε)(x) is the indicator function (χ(0,ε)(x) = 1 if x ∈ (0, ε) and 0 otherwise)

and the density of random variable Uz is proportional to N(z|0, u)γ(u). Finally, we

have

∣∣∣∫∞0 N(z|0, u)γ(u)e−δ/udu∫∞
0 N(z|0, u)γ(u)du

− 1
∣∣∣ ≤ ∫ ε

0 N(z|0, u)γ(u)du∫∞
0 N(z|0, u)γ(u)du

+

∫∞
ε N(z|0, u)γ(u)(1− e−δ/u)du∫∞

ε N(z|0, u)γ(u)du

≤
∫ ε

0 N(1|0, u)γ(u)du∫∞
0 N(1|0, u)γ(u)du

+ 1− e−δ/ε

< η,

which shows the difference of γ(u) and e−δ/uγ(u) is ignorable in u→∞. This result

verifies that, if u−1/2γ(u) is not integrable, then we can replace γ(u) by e−δ/uγ(u).

Again, assume ρ < ∞ and both u−1/2α(u) and u−1/2β(u) are integrable. Let

M > 0. Then we have

∣∣∣∫∞0 N(z|0, u)γ(u)du∫∞
M N(z|0, u)γ(u)du

− 1
∣∣∣ ≤ ∫M

0 N(z|0, u)γ(u)du∫∞
M+1 N(z|0, u)γ(u)du

≤
{e1/(M+1)

e1/M

}z2/2 ∫M
0 u−1/2γ(u)du∫∞
M+1 u

−1/2γ(u)du

→ 0

as z →∞ since u−1/2γ(u) is assumed to be integrable on (0,∞). Therefore,

∫∞
0 N(z|0, u)β(u)du∫∞
0 N(z|0, u)α(u)du

≈
∫∞
M N(z|0, u)β(u)du∫∞
M N(z|0, u)α(u)du

(S1)
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as z →∞. Furthermore, uniformly in z,

∣∣∣ ∫∞M N(z|0, u)β(u)du∫∞
M N(z|0, u)α(u)du

− ρ
∣∣∣ ≤ ∫∞M |β(u)/α(u)− ρ|N(z|0, u)α(u)du∫∞

M N(z|0, u)α(u)du

≤ sup
u>M

∣∣∣β(u)

α(u)
− ρ
∣∣∣

→ 0 (S2)

as M →∞ by assumption. Combining (S1) and (S2) gives the desired result.

S2 Proof of Proposition 2.1

Here we prove Proposition 2.1. We show that

lim
|x|→∞

fEH(x)

|x|−1(log |x|)−1−γ = A

for some constant A > 0. Since

lim
|x|→∞

N(x|0, 1)∫∞
0 N(x|0, u)H(u; γ)du

= 0

by part (iii) of Lemma S3, we can assume s = 1. Then we have for sufficiently large

|x|

fEH(x)

|x|−1(log |x|)−1−γ =

∫ ∞
0

N(x|0, u)H(u; γ)

|x|−1(log |x|)−1−γ du

=

∫ ∞
0

1√
2π

1√
u
e−x

2/(2u) γ|x|
1 + u

{ log |x|
1 + log(1 + u)

}1+γ
du

=

∫ ∞
0

1√
2π

1√
v
e−1/(2v) γx2

1 + x2v

{ log |x|
1 + log(1 + x2v)

}1+γ
dv,

43



where the last equality follows by making the change of variables u = x2v. Now, by

part (a) of Lemma S1, the integrand is bounded by

1√
2π

1√
v
e−1/(2v)γ

v

{ log |x|
1 + log(1 + x2)

1 + log(1 + x2)

1 + log(1 + x2v)

}1+γ

≤ γ√
2π

e−1/(2v)

v3/2

(1

2
max{1, v−1}

)1+γ
=
γ/21+γ

√
2π

e−1/(2v)

v3/2
max{1, v−(1+γ)}

≤ γ/21+γ

√
2π
{v−3/2e−1/(2v) + v−5/2−γe−1/(2v)},

where the right-hand side is an integrable function of v ∈ (0,∞) which does not

depend on x. By part (b) of Lemma S1, the integrand converges to

1√
2π

1√
v
e−1/(2v)γ

v

{
lim
|x|→∞

log |x|
1 + log(1 + x2)

1 + log(1 + x2)

1 + log(1 + x2v)

}1+γ
=
γ/21+γ

√
2π

v−3/2e−1/(2v)

as |x| → ∞ for each v ∈ (0,∞). Thus, by the dominated convergence theorem, we

obtain

lim
|x|→∞

fEH(x)

|x|−1(log |x|)−1−γ =

∫ ∞
0

γ/21+γ

√
2π

v−3/2e−1/(2v)dv =
γ

21+γ
.

This complete the proof.

S3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. For z ∈ R, we let

f0(z) = N(z|0, 1),

f1(z) =

∫ ∞
0

N(z|0, u)H(u; γ)du, and

f(z) = (1− s)f0(z) + sf1(z).

Proof of Theorem 2.1. By Lemma S2 and part (iii) of Lemma S3, we have for any
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(β, σ) ∈ Rp × (0,∞) and any i ∈ L,

f(εi)/σ

f(yi)
=
f1(εi)/σ

f1(yi)

(1− s)f0(εi)/f1(εi) + s

(1− s)f0(yi)/f1(yi) + s
→ 1

as ω →∞, where we write εi = (yi−xtiβ)/σ. Therefore, for any (β, σ) ∈ Rp× (0,∞),

p(β, σ|D)

p(β, σ|D∗)
=
p(D∗)

∏
i∈L f(yi)

p(D)

∏
i∈L

f(εi)/σ

f(yi)
∼ p(D∗)/ p(D)∏

i∈L f(yi)

as ω →∞. Now

p(D)∏
i∈L f(yi)

=

∫
Rp×(0,∞)

πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}{∏
i∈L

f(εi)/σ

f(yi)

}
d(β, σ).

Then, by Lemma S6 below and by the dominated convergence theorem,

lim
ω→∞

p(D)∏
i∈L f(yi)

=

∫
Rp×(0,∞)

πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}
d(β, σ) = p(D∗)

and the result follows.

Lemma S6. Under the assumptions of Theorem 2.1, there exists an integrable func-

tion h(β, σ) of (β, σ) which does not depend on ω such that

πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}∏
i∈L

f(εi)/σ

f(yi)
≤ h(β, σ)

for all (β, σ) ∈ Rp × (0,∞) for sufficiently large ω, where εi = (yi − xtiβ)/σ for

i = 1, . . . , n.

Proof. Let ε > 0 be such that

ε <
|bi|

4(|xi,1|+ · · ·+ |xi,p|)

for all i ∈ L. For (β, σ) ∈ Rp × (0,∞) and ω, let

h1(β, σ;ω) = πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}{∏
i∈L

f(εi)/σ

f(yi)

}
χ[−εω,εω]p(β),
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where χ[−εω,εω]p(β) = 1 if β ∈ [−εω, εω]p and = 0 otherwise, and similarly let

h2,k0(β, σ;ω) = πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}{∏
i∈L

f(εi)/σ

f(yi)

}
χR\[−εω,εω](βk0)

for k0 = 1, . . . , p. Then

πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{∏
i∈K

f(εi)

σ

}∏
i∈L

f(εi)/σ

f(yi)
≤ h1(β, σ;ω) +

p∑
k0=1

h2,k0(β, σ;ω)

(S3)

for all (β, σ) ∈ Rp × (0,∞) and all ω.

First, we consider the first term in (S3). For all β ∈ Rp and ω satisfying β ∈

[−εω, εω]p and all i ∈ L, we have

σ|εi| = |yi − xtiβ| ≥
|yi|
2

+
|bi|ω − |ai|

2
−

p∑
k=1

|xi,k||βk| ≥
|yi|
2

+
|bi|ω

4
−

p∑
k=1

|xi,k|εω ≥
|yi|
2

.

Therefore, by parts (i) and (ii) of Lemma S3,

h1(β, σ;ω) ≤ πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{f(0)

σ

}|K|{∏
i∈L

f(|yi|/(2σ))/σ

f(|yi|)

}
χ[−εω,εω]p(β)

for all (β, σ) ∈ Rp×(0,∞) and ω. Furthermore, by parts (iii), (iv), and (v) of Lemma

S3,

∏
i∈L

f(|yi|/(2σ))/σ

f(|yi|)
≤
∏
i∈L

f1(|yi|/(2σ))[(1− s) supz∈R{f0(z)/f1(z)}+ s]/σ

sf1(|yi|)

≤
∏
i∈L

(2

s

C1

C2

[ 1 + log(1 + |yi|2)

1 + log{1 + |yi|2/(2σ)2}

]1+γ{
(1− s) sup

z∈R

f0(z)

f1(z)
+ s
})

≤M1(1 + σ) <∞

for all σ ∈ (0,∞) and ω for some C1, C2,M1 > 0, where the last inequality follows

since

1 + log(1 + r)

1 + log{1 + r/(2σ)2}
≤ 1 + log{1 + r/(2σ)2}+ log{1 + (2σ)2}

1 + log{1 + r/(2σ)2}
≤ 1 + log{1 + (2σ)2}
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for all r ≥ 0. Thus,

h1(β, σ;ω) ≤ πσ(σ)
{ p∏
k=1

1

σ
π
(βk
σ

)}{f(0)

σ

}|K|
M1(1 + σ)

for all (β, σ) ∈ Rp × (0,∞) and ω, which is an integrable function of (β, σ) since by

assumption the prior mean of σ−|K| is finite and |K| ≥ p ≥ 1.

Next, we consider the second term in (S3). Fix k0 = 1, . . . , p. Let i0 = minK.

Let, for (β, σ) ∈ Rp × (0,∞) and ω,

h2,k0,1(β, σ) = πσ(σ)
{ ∏
k∈{1,...,p}\{k0}

1

σ
π
(βk
σ

)} |xi0,k0 |
σ

f(εi0)

and

h2,k0,2(β, σ;ω) =
1

σ
π
(βk0
σ

) 1

|xi0,k0 |

{ ∏
i∈K\{i0}

f(εi)

σ

}{∏
i∈L

f(εi)/σ

f(yi)

}
χR\[−εω,εω](βk0).

Then for all (β, σ) ∈ Rp × (0,∞) and ω,

h2,k0(β, σ;ω) = h2,k0,1(β, σ)h2,k0,2(β, σ;ω). (S4)

We have that

∫
Rp

h2,k0,1(β, σ)dβ =

∫
Rp−1

{∫ ∞
0

h2,k0,1(β, σ)dβk0

}
d(β \ βk0) = πσ(σ) (S5)

for all σ ∈ (0,∞). On the other hand, by assumption (A.2) and by parts (iii) and (v)
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of Lemma S3,

h2,k0,2(β, σ;ω) ≤ supθ∈R{|θ|cπ(θ)}
σ1−c|βk0 |c|xi0,k0 |

{ ∏
i∈K\{i0}

f1(εi)

σ

}{∏
i∈L

f1(εi)/σ

sf1(yi)

}
×
{

(1− s) sup
z∈R

f0(z)

f1(z)
+ s
}n−1

χR\[−εω,εω](βk0)

≤ supθ∈R{|θ|cπ(θ)}
σ1−cεcωc|xi0,k0 |

{
(1− s) sup

z∈R

f0(z)

f1(z)
+ s
}n−1{ ∏

i∈K\{i0}

f1(εi)

σ

}
×
[∏
i∈L

|yi|{1 + log(1 + |yi|2)}1+γ

C2
′s

]∏
i∈L

f1(εi)

σ

≤ supθ∈R{|θ|cπ(θ)}
σ1−cεc|xi0,k0 |

{
(1− s) sup

z∈R

f0(z)

f1(z)
+ s
}n−1

×
[

sup
ω: sufficiently large
(ω ≥ 1, for example)

∏
i∈L{1 + log(1 + |ai + biω|2)}1+γ

(C2
′s)|L|ωc

]

×
{ ∏
i∈K\{i0}

f1(εi)

σ

}∏
i∈L

|yi|f1(εi)

σ

≤ M2

σ1−c

( ∏
i∈K\{i0}

1

σ + |yi − xtiβ|

)∏
i∈L

σ + |xtiβ|
σ

≤ M2

σ1−c

(
max

{
1,

1

σn−1

})( ∏
i∈K\{i0}

1

1 + |yi − xtiβ|

)∏
i∈L

(1 + |xtiβ|)

for all (β, σ) ∈ Rp × (0,∞) and ω for some C2
′,M2 > 0, where the fourth inequality

follows from parts (vi) and (vii) of Lemma S3. Thus, by Lemma S4 (applied to∏
i∈K\{i0}{1/(1 + |yi − xtiβ|)}) and by assumption (A.1),

h2,k0,2(β, σ;ω)/
{ M2

σ1−c

(
max

{
1,

1

σn−1

})}
≤ sup

β∈{β̃∈Rp||β̃|≤R}

∏
i∈L(1 + |xtiβ|)∏

i∈K\{i0}(1 + |yi − xtiβ|)
+
{1 + (max1≤i≤n |xi|)|β|}|L|

(1 + δ|β|)|K|−p

≤ sup
β∈{β̃∈Rp||β̃|≤R}

∏
i∈L(1 + |xtiβ|)∏

i∈K\{i0}(1 + |yi − xtiβ|)
+
(

1 +
max1≤i≤n |xi|

δ

)|L|
(S6)

for all (β, σ) ∈ Rp × (0,∞) and ω for some R > 0 and δ > 0. Hence, combining (S4)
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and (S6), we obtain

h2,k0(β, σ;ω) ≤ h2,k0,1(β, σ)
M2

σ1−c

(
max

{
1,

1

σn−1

})
×
{

sup
β∈{β̃∈Rp||β̃|≤R}

∏
i∈L(1 + |xtiβ|)∏

i∈K\{i0}(1 + |yi − xtiβ|)
+
(

1 +
max1≤i≤n |xi|

δ

)|L|}

for all (β, σ) ∈ Rp × (0,∞) and ω, which is an integrable function of (β, σ) by (S5)

and assumption (A.3).

S4 Tail heaviness and posterior robustness

We here consider robustness properties for the wider class of error distributions de-

fined by replacing H(u; γ) in Section 2.4 of the main text with H(u; γ, δ) given in the

finite mixture (2.2). The density of H(u; γ, δ), which is given in (2.4) of the main

text, is shown below;

H(u; γ, δ) = C(δ, γ)
1

(1 + u)1+δ

1

{1 + log(1 + u)}1+γ
, u > 0. (S7)

Note that the distribution in (S7) reduces to H(u; γ) used in the proposed distribution

under δ = 0. The parameter δ is related to the decay of the density tail of (S7), that

is, H(u; γ, b) ≈ u−δ−1(log u)−1−γ . Hence, the tail gets heavier as δ decreases, and the

EHE distribution, in fact, has the heaviest tail in this class of distributions. We show

later in Theorem S1 that, among the general class given by (S7), only the proposed

error distribution that is realized by setting δ = 0 could attain the exact robustness

property.

To discuss the posterior robustness, we target the unnormalized posterior distri-

bution of (β, σ) given by

π̃δ(β, σ|D) = π(β, σ)

n∏
i=1

{ 1

σ
f
(yi − xtiβ

σ

)}
, (S8)

where π(β, σ) is a prior density and where for z ∈ R, f(z) = (1 − s)f0(z) + sf1(z)
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and f0(z) = N(z|0, 1) as in Section S3, but now

f1(z) =

∫ ∞
0

N(z|0, u)H(u; γ, δ)du.

If s = 0, the heavily-tailed component disappears and the model is obviously sensi-

tive to outliers, hence suppose s > 0 in the following. Next, we assume that each

outlier goes to infinity at its own specific rate. More precisely, the observed values

of responses are parametrized by ω as yi = yi(ω), and |yi(ω)| → ∞ as ω → ∞ for

i ∈ L while yi(ω) is constant for i ∈ K = {1, . . . , n} \ L. The posterior robustness

considered here is defined as the property that the unnormalized posterior conditional

on D approaches that based on D∗ as ω →∞.

Theorem S1. For any compact set K ⊂ Rp × (0,∞), we have

π̃δ(β, σ|D)

π̃δ(β, σ|D∗)
/
∏
i∈L

f(yi)→ σ2|L|δ

uniformly in (β, σ) ∈ K as ω → ∞. In particular, the unnormalized posterior is

robust if and only if δ = 0.

We again note that the general error distribution with δ = 0 is exactly the pro-

posed EHE distribution, so that the above theorem indicates that the desirable ro-

bustness property is achieved only under the proposed EHE distribution among the

general class of error distributions with the mixing distribution in (S7). The asymp-

totic ratio σ2|L|δ is obtained for the t-distribution with δ degrees of freedom. In

other words, the posterior robustness cannot be attained by any finite mixture of

t-distributions.

Theorem S1 shows the uniform convergence on any compact set of the unnormal-

ized posterior density based on (S7) with δ = 0 and all observations to the correspond-

ing one based on non-outlying observations. In order to rigorously prove convergence

in distribution, we have to justify an interchange of limit and integral concerning the

normalizing constant for each model. The set of three assumptions (A.1)-(A.3) in

Theorem 2.1 is an example that justifies such computation.
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Proof of Theorem S1. The normalized ratio of π̃δ(β, σ|D) to π̃δ(β, σ|D∗) is

π̃δ(β, σ|D)

π̃δ(β, σ|D∗)
/
∏
i∈L

f(yi) =
∏
i∈L

f((yi − xtiβ)/σ)/σ

f(yi)
.

It is sufficient to show that

f((yi − xtiβ)/σ)/σ

f(yi)
→ σ2δ

uniformly in (β, σ) ∈ K as ω → ∞ for every i ∈ L. Fix i ∈ L. Let M =

sup(β,σ)∈K |xtiβ| ∈ [0,∞). Let σ = inf(β,σ)∈K σ ∈ (0,∞) and σ = sup(β,σ)∈K σ ∈

(0,∞). Assume without loss of generality that ω is sufficiently large so that |yi| ≥

2M + 1.

We first consider the case of s = 1. Then

f((yi − xtiβ)/σ)/σ

f(yi)
=
f1((yi − xtiβ)/σ)/σ

f1(yi)

=
1

σ

∫∞
0 N((yi − xtiβ)/σ|0, u)H(u; γ, δ)du∫∞

0 N(yi|0, u)H(u; γ, δ)du

=
|yi − xtiβ|
σ2|yi|

∫∞
0 v−1/2e−1/(2v)H((|yi − xtiβ|2/σ2)v|γ, δ)dv∫∞

0 v−1/2e−1/(2v)H(|yi|2v|γ, δ)dv
,

where the last equality follows by making the change of variables u = (|yi−xtiβ|/σ)2v

in the numerator and by making the change of variables u = |yi|2v in the denominator.

Therefore,

∣∣∣f((yi − xtiβ)/σ)/σ

f(yi)
− σ2δ

∣∣∣ ≤ σ2δ

∫∞
0 v−1/2e−1/(2v)H(|yi|2v|γ, δ)G(v)dv∫∞

0 v−1/2e−1/(2v)H(|yi|2v|γ, δ)dv
,

where

G(v) = G(v;β, σ, γ, δ, yi, xi) =
∣∣∣ |yi − xtiβ|
σ2(1+δ)|yi|

H((|yi − xtiβ|2/σ2)v|γ, δ)
H(|yi|2v|γ, δ)

− 1
∣∣∣

=
∣∣∣ |yi − xtiβ||yi|

( 1 + |yi|2v
σ2 + |yi − xtiβ|2v

)1+δ[ 1 + log(1 + |yi|2v)

1 + log{1 + (|yi − xtiβ|2/σ2)v}

]1+γ
− 1
∣∣∣
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for v > 0. Note that

F1(v) ≤ |yi − x
t
iβ|

|yi|

( 1 + |yi|2v
σ2 + |yi − xtiβ|2v

)1+δ[ 1 + log(1 + |yi|2v)

1 + log{1 + (|yi − xtiβ|2/σ2)v}

]1+γ
≤ F2(v),

where

F1(v) =
|yi| −M
|yi|

{ 1 + |yi|2v
σ2 + (|yi|+M)2v

}1+δ( 1 + log(1 + |yi|2v)

1 + log[1 + {(|yi|+M)2/σ2}v]

)1+γ
,

F2(v) =
|yi|+M

|yi|

{ 1 + |yi|2v
σ2 + (|yi| −M)2v

}1+δ( 1 + log(1 + |yi|2v)

1 + log[1 + {(|yi| −M)2/σ2}v]

)1+γ
.

Then

G(v) ≤ |F1(v)− 1|+ |F2(v)− 1|.

Therefore,

∣∣∣f((yi − xtiβ)/σ)/σ

f(yi)
− σ2δ

∣∣∣
≤ σ2δ

∫∞
0 v−1/2e−1/(2v)H̃(v){|F1(v)− 1|+ |F2(v)− 1|}dv∫∞

0 v−1/2e−1/(2v)H̃(v)dv
, (S9)

where

H̃(v) =
H(|yi|2v|γ, δ)
H(|yi|2|γ, δ)

.

The right-hand side of (S9) is independent of (β, σ). We have that limω→∞(|F1(v)−

1|+ |F2(v)− 1|) = 0 for each v > 0 and that for |yi| ≥ 1,

v−1/2e−1/(2v)H̃(v) = v−1/2
( 1 + |yi|2

1 + |yi|2v

)1+δ{ 1 + log(1 + |yi|2)

1 + log(1 + |yi|2v)

}1+γ
e−1/(2v)

≤ 21+δv−1/2−1−δ max{1, v−(1+γ)}e−1/(2v)

→ v−1/2−1−δe−1/(2v) as ω →∞
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for all v > 0 by Lemma S1. Furthermore,

|F1(v)− 1|+ |F2(v)− 1| ≤ 2 + |F1(v)|+ |F2(v)| ≤ 2{1 + F2(v)}

and, since |yi| ≥ 2M + 1 > M , we have

F2(v) =
|yi|+M

|yi|

{ 1 + |yi|2v
σ2 + (|yi| −M)2v

}1+δ( 1 + log(1 + |yi|2v)

1 + log[1 + {(|yi| −M)2/σ2}v]

)1+γ

≤ 2
{ 1

σ2
+

|yi|2

(|yi| −M)2

}1+δ(
1 +

log 1+|yi|2v
1+{(|yi|−M)2/σ2}v]

1 + log[1 + {(|yi| −M)2/σ2}v]

)1+γ

≤ 2
( 1

σ2
+ 4
)1+δ[

1 +
∣∣∣ log

1 + |yi|2v
1 + {(|yi| −M)2/σ2}v

∣∣∣]1+γ
,

where

∣∣∣ log
1 + |yi|2v

1 + {(|yi| −M)2/σ2}v

∣∣∣
=
∣∣∣ ∫ 1

(|yi|−M)2/(|yi|σ)2

|yi|2v
1 + |yi|2vt

dt
∣∣∣ ≤ ∫ max{1,(|yi|−M)2/(|yi|σ)2}

min{1,(|yi|−M)2/(|yi|σ)2}

1

t
dt

≤ max{1, (|yi| −M)2/(|yi|σ)2} −min{1, (|yi| −M)2/(|yi|σ)2}
min{1, (|yi| −M)2/(|yi|σ)2}

=
|(|yi|σ)2 − (|yi| −M)2|

min{(|yi|σ)2, (|yi| −M)2}
≤ (|yi|σ)2

(|yi| −M)2
+

(|yi| −M)2

(|yi|σ)2
≤ (2σ)2 + (1/σ)2.

Thus, by the dominated convergence theorem, the right-hand side of (S9) converges

to zero as ω →∞.

Next we consider the case of s ∈ (0, 1). Then we have

f((yi − xtiβ)/σ)/σ

f(yi)
=
f1((yi − xtiβ)/σ)/σ

f1(yi)

s+ (1− s)f0((yi − xtiβ)/σ)

f1((yi − xtiβ)/σ)

s+ (1− s)f0(yi)

f1(yi)

.
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Therefore,

∣∣∣f((yi − xtiβ)/σ)/σ

f(yi)
− σ2δ

∣∣∣ ≤ σ2δ
∣∣∣f((yi − xtiβ)/σ)/σ

f(yi)σ2δ
− 1
∣∣∣

≤ σ2δ
[{∣∣∣f1((yi − xtiβ)/σ)/σ

f1(yi)σ2δ
− 1
∣∣∣+ 1

}

×
{∣∣∣s+ (1− s)f0((yi − xtiβ)/σ)

f1((yi − xtiβ)/σ)

s+ (1− s)f0(yi)

f1(yi)

− 1
∣∣∣+ 1

}
− 1
]
.

By the result for s = 1,

sup
(β,σ)∈K

∣∣∣f1((yi − xtiβ)/σ)/σ

f1(yi)σ2δ
− 1
∣∣∣ ≤ 1

σ2δ
sup

(β,σ)∈K

∣∣∣f1((yi − xtiβ)/σ)/σ

f1(yi)
− σ2δ

∣∣∣→ 0

as ω →∞. On the other hand,

∣∣∣s+ (1− s)f0((yi − xtiβ)/σ)

f1((yi − xtiβ)/σ)

s+ (1− s)f0(yi)

f1(yi)

− 1
∣∣∣ ≤ ∣∣∣ s

s+ (1− s)f0(yi)

f1(yi)

− 1
∣∣∣+

1− s
s

f0((yi − xtiβ)/σ)

f1((yi − xtiβ)/σ)
.

(S10)

by Lemma S2, the first term on the right side of (S10) converges to zero as ω →∞.

Since f0(z) = f0(|z|) and f1(z) = f1(|z|) are nonincreasing functions of |z| and since

M ≤ |yi|/2 ≤ |yi|, it follows that

f0((yi − xtiβ)/σ)

f1((yi − xtiβ)/σ)
≤ f0((|yi| −M)/σ)

f1((|yi|+M)/σ)
=
f0((|yi| −M)/σ)

f1((|yi| −M)/σ)

f1((|yi| −M)/σ)

f1((|yi|+M)/σ)

≤ f0((|yi| −M)/σ)

f1((|yi| −M)/σ)

f1(|yi|/(2σ))

f1(|yi|/(σ/2))
,

where

lim
ω→∞

f0((|yi| −M)/σ)

f1((|yi| −M)/σ)
= 0.
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Furthermore,

f1(|yi|/(2σ))

f1(|yi|/(σ/2))
=

∫∞
0 N(|yi|/(2σ)|0, u)H(u; γ, δ)du∫∞

0 N(|yi|/(σ/2)|0, u)H(u; γ, δ)du

=
σ

4σ

∫∞
0 N(|yi||0, v)H(v/(2σ)2; γ, δ)dv∫∞

0 N(|yi||0, v)H(v/(σ/2)2; γ, δ)dv

→
(4σ

σ

)1+2δ

as ω →∞ by Lemma S5 since

H(v/(2σ)2; γ, δ)

H(v/(σ/2)2; γ, δ)
=
{1 + v/(σ/2)2

1 + v/(2σ)2

}1+δ[1 + log{1 + v/(σ/2)2}
1 + log{1 + v/(2σ)2}

]1+γ
→
(4σ

σ

)2(1+δ)

as v →∞ by Lemma S1. Thus, we conclude that

sup
(β,σ)∈K

∣∣∣f((yi − xtiβ)/σ)/σ

f(yi)
− σ2δ

∣∣∣→ 0

as ω →∞.

S5 Posterior Moments of β and σ2

Here we prove Proposition 2.2, the existence of posterior moments of (β, σ2). The

proof is given for a slightly generalized model as given below.

Let f(z), z ∈ R, be a symmetric bounded error density. For each k = 1, . . . , p, let

πk(θ), θ ∈ R, be a proper prior density and let νk ∈ {0, 1}. Let aσ, bσ > 0. Suppose

that for i = 1, . . . , n and k = 1, . . . , p,

yi ∼
1

σ
f
(yi − xtiβ

σ

)
, βk ∼

1

σνk
πk

( βk
σνk

)
, σ ∼ 2σIG(σ2|aσ, bσ).

Proposition S1. Let k0 = 1, . . . , p. Suppose that supθ∈R{|θ|cπk0(θ)} < ∞ for 0 <

c ≤ n. Then E[|βk0 |c|D] <∞.
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Proof. We have

p(D)E[|βk0 |c|D]

=

∫
Rp×(0,∞)

(
2σIG(σ2|aσ, bσ)|βk0 |c

1

σνk0
πk0

( βk0
σνk0

)[ ∏
1≤k≤p
k 6=k0

{ 1

σνk
πk

( βk
σνk

)}]

×
|x1,k0 |
σ

f
(y1 − xt1β

σ

) 1

|x1,k0 |

[ n∏
i=2

{ 1

σ
f
(yi − xtiβ

σ

)}])
d(β, σ)

≤
∫
Rp×(0,∞)

(
2σIG(σ2|aσ, bσ)

[ ∏
1≤k≤p
k 6=k0

{ 1

σνk
πk

( βk
σνk

)}] |x1,k0 |
σ

f
(y1 − xt1β

σ

)

× σνk0 (c−1)[sup
θ∈R
{|θ|cπk0(θ)}] 1

|x1,k0 |

{supz∈R f(z)

σ

}n−1)
d(β, σ)

=

∫ ∞
0

2σIG(σ2|aσ, bσ)σνk0 (c−1)[sup
θ∈R
{|θ|cπk0(θ)}] 1

|x1,k0 |
{supz∈R f(z)}n−1

σn−1
dσ,

which is finite since νk0(c− 1) ≤ n− 1 by assumption.

Proposition S2. Suppose that d ≤ n. Then E[σd|D] <∞.

Proof. We have

p(D)E[σd|D]

=

∫
Rp×(0,∞)

σd2σIG(σ2|aσ, bσ)
[ p∏
k=1

{ 1

σνk
πk

( βk
σνk

)}][ n∏
i=1

{ 1

σ
f
(yi − xtiβ

σ

)}]
d(β, σ)

≤
∫
Rp×(0,∞)

σd2σIG(σ2|aσ, bσ)
[ p∏
k=1

{ 1

σνk
πk

( βk
σνk

)}]{supz∈R f(z)}n

σn
d(β, σ)

=

∫ ∞
0

σd2σIG(σ2|aσ, bσ)
{supz∈R f(z)}n

σn
dσ,

which is finite by assumption.

S6 Additional experiment in simulation study

S6.1 Sensitivity analysis

To evaluate the effect of hyperparameters on the posterior inference, we repeated the

posterior analysis with different choice of hyperparameters. For the shape parameter
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of H-distribution, we additionally considered γ = 0.5 and γ = 0.2, in addition to

our choice in the main text, γ = 1. For the degree-of-freedom parameter of the

single t-distribution and the finite mixture, we considered ν = 2.1 as the “heaviest” t-

distribution with finite mean and variance. The result of posterior analysis is reported

in Table S1 and S2 in the same style of Table 1 in the main text. It is observed that

the EH methods with two different values of γ perform almost in the same way as

the EH method with γ = 1.

S6.2 Regression with less predictors

The LPTN models are estimated by the random-walk Metropolis-Hastings algorithm,

which requires many iterations in posterior sampling for convergence. While keeping

the fairness in the number of iterations, we conduct another experiment that favors

the LPTN models by partly eliminating the convergence issue in the LPTN models.

The additional simulation study is based on the same settings in Section 4, except

that the number of predictors is now p = 10.

The results are summarized in Tables S3 and S4. The IFs of the LPTN models are

improved, but still significantly higher than the others. The LPTN model with ρ = 0.9

improves the accuracy of point and interval estimations and is now competitive with

the proposed models, while the other LPTN model with ρ = 0.7 still provides interval

estimates with lower coverage probabilities. This result illustrates the difficulty in

tuning the hyperparameters in the class of LPTN distributions, which contrasts the

proposed model with no hyperparameter that is sensitive to the posterior result.

S6.3 Computational time with large sample size

We also measured the actual computation time of the five methods (EH, LP1, T3,

MT and N) under different sample sizes. We considered four scenarios of n, that is,

n ∈ {300, 1200, 2100, 3000}. For each n, synthetic data is generated using the model

with (100ω, µ) = (5, 10), and 3000 posterior samples are generated for each method.

To assess computation time that takes account of sampling efficiency, we compute

CPT × IF, where CPT is the actual computation time to generate 3000 posterior
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samples and IF is the inefficiency factor. Note that this quantity can be regarded as

computation time to generate 3000 independent posterior samples. The experiment

was performed on a PC with 3.2 GHz 8-Core Intel Xeon W 8 Core Processor with

approximately 32GB RAM. The results are reported in Table S5. It is observed that

the EH and LP1 methods take more computation time than the others, which would

be reasonable price to pay for their posterior robustness. Comparing EH and LP1,

EH is computationally more efficient than LP1.

Table S1: Average values of RMSE and IF of the proposed extremely-heavy tailed (EH) distribution
with γ = 0.5 and γ = 0.2, and its adaptive version (aEH) with three different priors for γ, t-
distribution (T) with ν = 2.1 degrees of freedom and two component mixture of normal and t-
distribution (MT) with ν = 2.1 degrees of freedom, based on 500 replications in 9 combinations of
(100ω, µ) with p = 20. All values are multiplied by 100.

EH EH aEH aEH aEH T MT
(100ω, µ) γ = 0.5 γ = 0.2 Ga(10, 100) Ga(1, 1) Ga(10, 10) ν = 2.1 ν = 2.1

(0, –) 6.32 6.33 6.32 6.34 6.33 7.03 6.33
(5, 5) 6.99 7.23 6.94 7.47 7.14 7.25 6.99
(10, 5) 10.79 12.41 9.58 8.64 8.55 8.03 7.96
(5, 10) 6.54 6.53 6.56 6.80 6.74 7.08 6.78

RMSE (10, 10) 6.85 6.81 6.91 7.57 7.44 7.39 7.30
(5, 15) 6.54 6.52 6.56 6.76 6.73 7.08 6.80
(10, 15) 6.87 6.81 6.92 7.36 7.30 7.28 7.19
(5, 20) 6.48 6.46 6.49 6.67 6.64 7.02 6.72
(10, 20) 6.84 6.79 6.89 7.23 7.20 7.21 7.12

(0, –) 0.98 0.98 0.99 1.43 1.07 2.61 1.07
(5, 5) 1.74 1.89 1.79 4.84 3.84 2.42 1.99
(10, 5) 2.75 2.63 2.98 5.30 6.10 2.26 2.11
(5, 10) 1.42 1.26 1.54 3.45 3.06 2.35 1.92

IF (10, 10) 1.87 1.54 2.23 5.29 4.87 2.11 1.97
(5, 15) 1.40 1.25 1.53 3.09 2.81 2.33 1.90
(10, 15) 1.86 1.54 2.19 4.55 4.29 2.09 1.95
(5, 20) 1.40 1.24 1.54 2.90 2.70 2.34 1.91
(10, 20) 1.86 1.55 2.17 4.14 4.00 2.08 1.93

References

[1] Carvalho, C., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for

sparse signals. Biometrika, 97, 465–480.
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Table S2: Average values of CP and AL of the proposed extremely-heavy tailed (EH) distribution
with γ = 0.5 and γ = 2, and its adaptive version (aEH) with three different priors for γ, t-distribution
(T) with ν = 2.1 degrees of freedom and two component mixture of normal and t-distribution (MT)
with ν = 2.1 degrees of freedom, based on 500 replications in 9 combinations of (100ω, µ) with p = 20.
All values are multiplied by 100.

EH EH aEH aEH aEH T MT
(100ω, µ) γ = 0.5 γ = 0.2 Ga(10, 100) Ga(1, 1) Ga(10, 10) ν = 2.1 ν = 2.1

(0, –) 94.8 94.8 94.9 94.9 94.9 92.2 94.8
(5, 5) 94.8 94.4 94.7 92.8 94.0 93.6 94.6
(10, 5) 93.1 92.2 93.4 92.1 91.9 93.7 94.0
(5, 10) 95.0 94.9 95.0 94.4 94.6 94.4 95.3

CP (10, 10) 94.8 94.8 94.7 93.1 93.4 95.7 95.9
(5, 15) 95.1 95.0 94.9 94.2 94.3 94.1 95.1
(10, 15) 94.5 94.6 94.4 93.4 93.4 95.8 96.0
(5, 20) 95.0 95.0 95.0 94.6 94.7 94.7 95.6
(10, 20) 94.7 94.6 94.6 94.0 93.9 96.2 96.5

(0, –) 24.7 24.7 24.7 24.6 24.7 24.7 24.7
(5, 5) 27.0 27.6 26.9 27.1 26.8 27.0 27.0
(10, 5) 33.6 36.7 31.6 30.6 29.9 30.3 30.3
(5, 10) 25.8 25.7 25.8 26.1 26.0 27.1 27.1

AL (10, 10) 26.9 26.7 27.1 27.7 27.6 30.3 30.2
(5, 15) 25.6 25.5 25.7 25.8 25.8 27.0 27.0
(10, 15) 26.7 26.5 26.8 27.2 27.1 30.1 30.1
(5, 20) 25.7 25.6 25.7 25.9 25.9 27.2 27.2
(10, 20) 26.7 26.5 26.7 27.0 27.0 30.3 30.3
(0, –) 0.98 0.98 0.99 1.43 1.07 2.61 1.07
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Table S3: Average values of RMSE and IF of the proposed extremely-heavy tailed distribution with
fixed γ (EH) and estimated gamma (aEH), log-Pareto normal distribution with ρ = 0.9 (LP1) and
ρ = 0.7 (LP2), Cauchy distribution (C), t-distribution with 3 degrees of freedom (T3) and estimated
degrees of freedom (T), based on 500 replications in 9 combinations of (100ω, µ) with p = 10. All
values are multiplied by 100.

(100ω, µ) EH aEH LP1 LP2 C T3 T MT N

(0, –) 6.18 6.18 6.41 7.66 7.71 6.64 6.42 6.19 6.18
(5, 5) 6.68 6.72 6.85 8.07 7.76 7.01 7.39 6.60 11.78
(10, 5) 8.14 8.09 8.42 8.67 8.14 8.28 10.16 8.80 18.73
(5, 10) 6.39 6.44 6.48 7.82 7.73 6.72 7.09 6.34 21.12

RMSE (10, 10) 6.82 6.95 6.80 8.01 7.76 7.21 10.28 8.11 35.68
(5, 15) 6.44 6.47 6.55 7.80 7.72 6.69 6.93 6.40 30.92
(10, 15) 6.87 6.95 6.75 7.99 7.81 7.02 10.65 7.41 53.56
(5, 20) 6.37 6.40 6.46 7.72 7.72 6.61 6.74 6.33 40.57
(10, 20) 6.76 6.85 6.69 8.02 7.71 6.83 10.58 11.06 70.79

(0, –) 1.02 1.02 27.99 41.03 4.32 2.09 1.84 0.99 0.98
(5, 5) 2.25 2.67 27.42 39.60 4.05 1.95 1.83 1.33 0.98
(10, 5) 3.72 4.63 27.63 38.83 3.79 1.85 1.89 2.05 0.98
(5, 10) 2.16 2.49 27.59 40.12 4.00 1.90 1.81 1.28 0.98

IF (10, 10) 3.43 4.10 27.25 39.16 3.71 1.72 2.03 1.54 0.98
(5, 15) 2.17 2.46 27.63 40.04 4.04 1.88 1.81 1.28 0.98
(10, 15) 3.45 4.00 27.37 39.40 3.69 1.67 2.14 1.59 0.98
(5, 20) 2.16 2.41 27.73 40.11 4.04 1.87 1.80 1.26 0.98
(10, 20) 3.45 3.89 27.41 39.63 3.66 1.66 2.22 1.61 0.98
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Table S4: Average values of CP and AL of 95% credible intervals based on the proposed extremely-
heavy tailed distribution with fixed γ (EH) and estimated gamma (aEH), log-Pareto normal distri-
bution with ρ = 0.9 (LP1) and ρ = 0.7 (LP2), Cauchy distribution (C), t-distribution with 3 degrees
of freedom (T3) and estimated degrees of freedom (T), based on 500 replications in 9 combinations
of (100ω, µ) with p = 10. All values are multiplied by 100.

(100ω, µ) EH aEH LP1 LP2 C T3 T MT N

(0, –) 94.4 94.4 92.7 84.8 87.5 92.7 93.7 94.5 94.7
(5, 5) 94.4 94.3 93.2 85.7 89.3 94.3 95.2 94.6 87.7
(10, 5) 93.4 92.6 92.5 86.4 90.5 93.2 93.1 93.7 86.2
(5, 10) 95.0 94.9 93.9 85.8 89.5 95.3 97.5 95.0 86.2

CP (10, 10) 94.3 93.8 94.6 86.7 91.2 96.5 97.5 94.5 86.0
(5, 15) 94.8 94.3 93.4 85.5 90.1 95.4 98.2 94.6 86.2
(10, 15) 94.2 94.1 94.5 86.3 91.1 97.2 98.5 94.6 85.7
(5, 20) 94.7 94.4 94.1 86.0 89.8 95.7 98.7 95.0 86.2
(10, 20) 94.6 94.3 94.3 86.4 91.1 97.3 99.3 94.8 86.2

(0, –) 23.9 23.9 23.5 22.7 23.8 23.9 24.2 23.9 23.9
(5, 5) 25.7 25.7 25.7 24.3 25.2 26.6 29.3 25.3 35.0
(10, 5) 28.3 28.2 29.9 26.8 27.1 30.6 36.4 28.4 42.9
(5, 10) 25.0 25.0 25.1 23.6 25.2 26.8 32.8 24.9 56.7

AL (10, 10) 26.2 26.3 27.0 25.1 26.9 31.1 48.2 26.5 75.1
(5, 15) 24.9 24.9 24.9 23.5 25.3 26.9 35.0 24.9 81.4
(10, 15) 26.2 26.3 26.7 24.7 27.0 31.4 58.5 26.4 109.5
(5, 20) 24.9 24.9 24.8 23.4 25.3 26.9 35.8 24.8 105.8
(10, 20) 26.0 26.0 26.4 24.8 26.8 31.3 66.8 27.3 144.4

Table S5: Computation time (seconds) multiplied by inefficiency factors of the five methods (EH,
LP1, T3, MT and N) under four cases of n.

n
300 1200 2100 3000

EH 17.0 73.4 132.7 198.5
LP1 26.2 101.1 172.1 239.4
T3 2.5 5.0 8.0 10.9
MT 2.0 4.9 7.9 10.8
N 1.1 2.0 2.9 3.9
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Figure S1: Sample paths (Left) and autocorrelation (Right) of the posterior samples
of β2 and β3 in the EH model applied to a simulated data with p = 20, µ = 5 and
ω = 0.05.
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