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Abstract

Exact null distributions of goodness-of-fit test statistics are generally challenging to obtain
in tractable forms. Practitioners are therefore usually obliged to rely on asymptotic null distri-
butions or Monte Carlo methods, either in the form of a lookup table or carried out on demand,
to apply a goodness-of-fit test. There exist simple and useful transformations of several classic
goodness-of-fit test statistics that stabilize their exact-n critical values for varying sample sizes
n. However, detail on the accuracy of these and subsequent transformations in yielding exact
p-values, or even deep understanding on the derivation of several transformations, is still scarce
nowadays. The latter stabilization approach is explained and automated to (i) expand its scope
of applicability and (ii) yield upper-tail exact p-values, as opposed to exact critical values for
fixed significance levels. Improvements on the stabilization accuracy of the exact null distribu-
tions of the Kolmogorov–Smirnov, Cramér–von Mises, Anderson–Darling, Kuiper, and Watson
test statistics are shown. In addition, a parameter-dependent exact-n stabilization for several
novel statistics for testing uniformity on the hypersphere of arbitrary dimension is provided. A
data application in astronomy illustrates the benefits of the advocated stabilization for quickly
analyzing small-to-moderate sequentially-measured samples.

Keywords: Exact distribution; Goodness-of-fit; p-value; Stabilization; Uniformity.

1 Introduction

The classical one-sample goodness-of-fit problem is concerned with testing the null hypothesis in
which the cumulative distribution function (cdf) F of an independent and identically distributed
(iid) random sample X1, . . . , Xn equals a certain prescribed cdf F0. The most popular class of
goodness-of-fit statistics for testing H0 : F = F0 is arguably that based on Fn, the empirical
cumulative distribution function (ecdf) of X1, . . . , Xn. Ecdf-based test statistics confront Fn against
F0, their best-known representatives being the Kolmogorov–Smirnov (Dn), Cramér–von Mises (W 2

n),
and Anderson–Darling (A2

n) statistics, all of them generating omnibus tests of H0 against H1 :
F ̸= F0. When F0 is continuous, testing H0 reduces to testing whether the iid sample U1, . . . , Un,
Ui := F0(Xi), i = 1, . . . , n, is distributed as Unif(0, 1), the continuous uniform distribution on (0, 1).
Hence, tests of uniformity, despite their a priori limited applicability, provide powerful approaches
to most of the goodness-of-fit problems concerned with fully-specified null hypotheses. In particular,
the above ecdf-based statistics have the attractive property of being distribution-free, i.e., their exact
null distributions do not depend on F0.

Both ecdf-based tests and uniformity tests have been exported to deal with data naturally arising
in supports different from R or subsets thereof. This is the case of directional data, that is, data
supported on the unit hypersphere Sp−1 := {x ∈ Rp : ∥x∥ = 1}, p ≥ 2, which commonly occurs
in the form of circular (p = 2) or spherical (p = 3) data. The analysis of directional data faces
specific challenges due to the non-Euclideanity of the support; see Mardia and Jupp (1999) for a
book-length treatment of tailored statistical methods and Pewsey and García-Portugués (2021) for a
review of recent advances. In particular, tests of uniformity on Sp−1 must be invariant under arbitrary
rotations of the data coordinates, as these do not alter the uniform/non-uniform nature of the data.
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While a sizable number of tests of uniformity on Sp−1 exist (see a review in García-Portugués
and Verdebout (2018)), perhaps the two most known omnibus tests are those of Kuiper (1960) and
Watson (1961) on S1: their statistics, Vn and U2

n, can be regarded as the rotation-invariant versions of
the Kolmogorov–Smirnov and Cramér–von Mises tests of uniformity, respectively. Moving beyond S1
has proven a challenging task for ecdf-based tests up to relatively recent years, with Cuesta-Albertos
et al. (2009) using a Kolmogorov–Smirnov test on random projections data and García-Portugués
et al. (2020) proposing a class of projected-ecdf statistics that extends Watson (1961)’s test to
Sp−1 (see Section 3.1). As in the classical setting, tests of uniformity on Sp−1 allow for testing
the goodness-of-fit of more general distributions: in S1, this is a straightforward application of the
probability integral transform in the angles space [−π, π); the case Sp−1, p ≥ 3, is remarkably more
complex and has been recently put forward in Jupp and Kume (2020).

Statistic Exact distribution approximations

Dn
Massey (1950, 1951)∗,†, Birnbaum (1952)‡, Maag and Dicaire (1971)§, Marsaglia et al.
(2003)‡, Brown and Harvey (2007)†,††, Facchinetti (2009)††

W 2
n

Marshall (1958)††, Pearson and Stephens (1962)¶,‡‡, Tiku (1965)‡, Stephens and Maag
(1968)‡,¶,‡‡, Knott (1974)∗∗, Csörgö and Faraway (1996)‡

Vn Stephens (1965)∗, Maag and Dicaire (1971)§, Durbin (1973); Arsham (1988)††

U2
n Pearson and Stephens (1962)¶,‡‡, Tiku (1965)‡, Quesenberry and Miller Jr (1977)‡‡

A2
n Lewis (1961)‡‡, Marsaglia and Marsaglia (2004)∥

Table 1: Summary of existing specific approaches for approximating exact distributions of several goodness-
of-fit test statistics. The approximations rely of the following main techniques: difference equations∗, recursive
formulae†, truncated approximations‡, asymptotic expansions§, approximation of distribution moments¶, cor-
rection factors∥, characteristic function approximation∗∗, direct formulae††, and Monte Carlo simulations‡‡.

Historically, applications of goodness-of-fit tests were somehow hampered due to the absence
of exact distribution theory for finite sample sizes. Statisticians focused on giving extensive ta-
bles of critical values for each statistic’s exact distribution and, alternatively, approximating exact
distributions of remarkable statistics. Table 1 lists the approximations available for the exact dis-
tributions of Dn, W 2

n , Vn, U2
n, and A2

n, as well as the main techniques behind them. Although
these specific approximations are highly accurate, the complexity of their expressions, and the lack
of straightforward applicability to other statistics beyond the ones they were designed for, have not
displaced the customary use of Monte Carlo simulations, asymptotic distributions, or even lookup
tables when emitting general test decisions. In order to reduce the size of lookup tables, Stephens
(1970) transformed several statistics Tn (among others, Dn, Vn, W 2

n , and U2
n) into T ∗

n in such a way
that the upper tails of T ∗

n remain roughly constant on n. Comparing T ∗
n (and not Tn) with certain

fixed asymptotic critical values for Tn gives a more accurate test calibration for small-to-moderate
n’s. This approach also allowed finding finite-sample approximations in a wider set of goodness-of-
fit problems: Stephens (1974, 1977, 1979) and D’Agostino and Stephens (1986) derived analogous
transformations for Dn, Vn, W 2

n , U2
n, and A2

n when testing the goodness-of-fit of normal, exponen-
tial, logistic, and extreme value distributions. Other authors, such as Dufour and Maag (1978),
found modifications for Dn to use with truncated or censored samples, and Crown (2000) applied
this method to an A2

n-related statistic for testing normal and exponential distributions. Hegazy
and Green (1975) found transformations for new test statistics by fitting a functional relationship
between the critical values and the sample size, introducing the first explicit use of a regression
view to stabilize test statistics and offering insight into Stephens’ original work. Pettitt (1977) also
applied this regression approach to A2

n for normality tests. Johannes and Rasche (1980) proposed an
improved modification for Durbin (1969)’s C statistic, finding a specific transformation for each sig-
nificance level; these approximations give more accurate results for a wider set of significance levels,
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yet at the expense of tabulating a higher number of transformations. More recently, using several
regressions for different significance levels too, Marks (1998, 2007) found transformations for Dn to
test for Erlang distributions, while Heo et al. (2013) did the same for A2

n with several extreme value
distributions. As Table 2 shows, Stephens’ transformations are present in nowadays’ R software for
goodness-of-fit testing, which also implements some of the statistic-specific approaches from Table 1.

Methodology R package Statistics and references

Exact
distributions

goftest
W 2

n (Csörgö and Faraway, 1996), A2
n (Marsaglia and Marsaglia,

2004)
stats Dn (Marsaglia et al., 2003)

Transformation-
based

circular Vn, U2
n (Stephens, 1970)

sphunif Dn, W 2
n , Vn, U2

n (Stephens, 1970)
EnvStats Dn, W 2

n , A2
n (D’Agostino and Stephens, 1986)

Table 2: R packages implementing different approximation methods to compute exact p-values of goodness-
of-fit tests: circular (Agostinelli and Lund, 2017), sphunif (García-Portugués and Verdebout, 2021),
EnvStats (Millard, 2013), goftest (Faraway et al., 2019), and stats (R Core Team, 2021).

In this paper we build on Stephens’ transformations to expand and automate them. First, we
present a data-driven procedure to achieve a better stabilization, with respect to the sample size n,
of the exact null distribution of a generic test statistic Tn of interest, for a wider range of signifi-
cance levels α (i.e., upper α-quantiles of Tn). Specifically, new modifications for the (one-sample)
Kolmogorov–Smirnov, Cramér–von Mises, Kuiper, and Watson test statistics are derived and shown
to extend the scope of applicability of previous approaches. To the best of our knowledge, we also
provide the first instance of such a stabilization for the Anderson–Darling test statistic. Second,
we provide a method to approximate upper-tail exact p-values for the tests constructed from sta-
bilized statistics. Through an extensive simulation study, we show a significant improvement in
the precision of the stabilization of the exact critical values of Tn for several sample sizes, as well
as a competitive computational cost when compared with statistic-specific methods for evaluating
exact null distributions. We also show large improvements, both in precision and computational effi-
ciency, over the use of Monte Carlo simulation, arguably the most popular test calibration approach
nowadays. Third, we develop an extension of our stabilization procedure to deal with several recent
test statistics for assessing uniformity on Sp−1, p ≥ 2, and which hence have dimension-dependent
distributions. In particular, we stabilize the exact null distribution of a novel Anderson–Darling test
statistic for circular data. Finally, the introduced stabilization methodology allows us to perform
tests in batches of small-to-moderate samples in an accurate and fast manner that does not require
Monte Carlo simulation. This is illustrated in an astronomical dataset comprised of the longitudes
at which sunspots appear, which exhibits a suspected temporal mix of uniform and non-uniform
patterns.

The rest of the paper is organized as follows. Section 2 introduces Stephens’ approach (Section
2.1) and our proposed extension (Section 2.2), together with simulation studies and a comparison
between several modifications (Section 2.3). Section 3 briefly introduces the projected-ecdf statistics
for testing uniformity on the hypersphere (Section 3.1), develops the parameter-dependent transfor-
mations to achieve their stabilization (Section 3.2), and analyzes the empirical performance of these
transformations (Section 3.3). Section 4 gives an application of the modified statistics in astron-
omy. A final discussion of the obtained results concludes the paper in Section 5. Further analyses
and empirical results are included in the Supplementary Material (SM). All the code and data are
available at https://github.com/afernandezdemarcos/approxstats.
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2 Stabilization of ecdf statistics

2.1 On Stephens’ stabilization

Stephens (1970) stabilization aims to transform a statistic Tn into T ∗
n through a function of n,

so that the upper α-quantiles of T ∗
n are well approximated by the upper α-quantiles of T∞, the

random variable distributed as the asymptotic null distribution of Tn, for small-to-moderate sample
sizes. The transformation can be interpreted as a two-step stabilization. First, in the quantile ratios
stabilization, Tn is modified to the statistic Tα0-s

n so that the ratios of Tα0-s
n ’s upper α-quantiles with

respect to a certain reference upper α0-quantile are roughly constant as a function of n. Second, in
the asymptotic stabilization, Tα0-s

n is transformed into T ∗
n so that the upper α-quantiles of T ∗

n are
approximately equal to the asymptotic upper α-quantiles for small-to-asymptotic sample sizes. For
the sake of brevity, and since we are concerned only with upper-tail tests, henceforth we will use
“α-quantile” as a replacement for “upper α-quantile”.

The ratios involved in the first step are Tn;α/Tn;α0 , where Tn;α is the α-quantile of the distribution
for sample size n, i.e., P [Tn ≥ Tn;α] = α. Obviously, these ratios do not have to be constant for all n,
as Figure 1 shows for W 2

n . The quantile ratios stabilization step searches for a transformed statistic,
Tα0-s
n , whose quantile ratios Tα0-s

n;α /Tα0-s
n;α0

do not depend on n. In other words, the desideratum is
that these quantile ratios, for any sample size n, equal the asymptotic quantile ratios T∞;α/T∞;α0 ,
where T∞;α is the asymptotic α-quantile. One way to find such transformation is by setting Tα0-s

n :=
Tn − p(n) for a certain function p : N → R such that it verifies limn→∞ p(n) = 0 and the second
equality below, for all n and α:

Tα0-s
n;α

Tα0-s
n;α0

=
Tn;α − p(n)

Tn;α0 − p(n)
= lim

n→∞

Tn;α − p(n)

Tn;α0 − p(n)
=

T∞;α

T∞;α0

=: k∞;α. (1)

Hence, p is such that

p(n) =
Tn;α − k∞;α · Tn;α0

1− k∞;α
,

which clearly depends on α. Stephens fitted p (see the end of this section) for a specific value of
α, at the expense of accuracy for other significance levels. Upon this step, the quantile ratios of
Tα0-s
n are roughly constant for all n, as Figure 1 shows for W 2

n . This first step can be omitted for
statistics with quantile ratios that are already roughly stable, as it is remarkably the case of Dn and
Vn (Stephens, 1970, Section 5). In this case, p ≈ 0.

The asymptotic stabilization step aims to transform the already modified statistic, Tα0-s
n , into T ∗

n

so that the α-quantiles of this latter statistic are well approximated by the asymptotic α-quantiles
of the original statistic Tn. For that goal, g : N → R is defined as g(n) := T∞;α/T

α0-s
n;α . Owing to

(1), in principle this function does not depend on the significance level α, only on α0:

T∞;α

Tα0-s
n;α

=
T∞;α0

Tα0-s
n;α0

, (2)

which holds for any value of α. However, when p and g are fitted in practice, (2) will approximately
hold for a certain set of α values, as those shown in Figure 1. The function g is estimated from the
ratio between T∞;α/T

α0-s
n;α for a particular value α1 (possibly different from α0), which could result

in a loss of accuracy for other quantiles.
The final modified form of Tn is

T ∗
n = Tα0-s

n · g(n) = (Tn − p(n)) · g(n), (3)

where we highlight that in practice the functions p and g have to be estimated beforehand. Once
these fits are readily available, the main benefit of (3) is the simplicity of its use, which only
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requires evaluating a simple n-dependent transformation of Tn. The fits of p and g were originally
handcrafted on a case-by-case basis (even “found by trial”, Stephens, 1970, Section 5), or were heavily
influenced by Stephens’ functional forms, which pose significant limitations in terms of automation
and flexibility. Moreover, the approximation error to the exact quantiles of Tn that is obtained
is, first, dependent on α1 and, second, significant for α-quantiles different from α1. An additional
downside of (3) is the initial stabilization step, which increases the complexity and tuning required
(selection of α0), and is a source of uncertainty for the final approximation. In order to overcome
these problems, we present in the next section an enhanced stabilization approach that improves the
accuracy of exact α-quantiles while retaining the simplicity of the transformation.

0 50 100 150 200

1.
4

1.
6

1.
8

2.
0

n

Q
ua

nt
ile

 r
at

io

α
0.05
0.02
0.01

(a) W 2
n;α/W

2
n;0.10

0 50 100 150 200

1.
00

1.
05

1.
10

1.
15

n

Q
ua

nt
ile

 r
at

io

α
0.10
0.05
0.02
0.01

(b) W 2
∞;α/W

2
n;α

0 50 100 150 200

1.
4

1.
6

1.
8

2.
0

n

Q
ua

nt
ile

 r
at

io

α
0.05
0.02
0.01

(c) W 2,0.10-s
n;α /W 2,0.10-s

n;0.10

0 50 100 150 200

1.
00

1.
05

1.
10

1.
15

n

Q
ua

nt
ile

 r
at

io

α
0.10
0.05
0.02
0.01

(d) W 2
∞;α/W

2,0.10-s
n;α

Figure 1: Quantile ratios of the Cramér–von Mises statistic W 2
n (leftmost two figures) and its ratio-stabilized

statistic W 2,0.10-s
n (rightmost two figures).

2.2 (n, α)-stabilization

Our stabilization consists of a single-step transformation of the original statistic Tn into T ∗
n(α) by

a function that depends on the sample size n and the significance level α at which the test is to
be performed, so that the exact α-quantile of T ∗

n(α) is closely approximated by the α-quantile of
T∞. Additionally to its improved accuracy and simplicity, an advantage of our modification is
that it compresses extensive lookup tables: critical values do not need to be available for different
significance levels because α is already included within the transformation.

The ratios T∞;α/Tn;α, shown in Figure 1 for W 2
n , can be directly modeled as a function g :

N× (0, 1)→ R of (n, α), hence condensing the two steps from Section 2.1 into one. To that aim, we
define g as the function satisfying

α = P [Tn ≥ Tn;α] = P [Tn ≥ T∞;α/g(n, α)] , (4)

for all (n, α), and our transformed statistic (for the α significance level) as

T ∗
n(α) := Tn · g(n, α).

It is very convenient to reexpress g, as defined in (4), as

T∞;α

Tn;α
= g(n, α) + ε, (5)

where ε = 0 if (4) is perfectly satisfied for all (n, α). Indeed, Equation (5) casts the stabilization prob-
lem as an error-free fixed-design regression problem with predictors (n, α), response Y := T∞;α/Tn;α,
and unknown regression function g. Casting Stephens’ stabilizations as a regression problem was
early introduced in Hegazy and Green (1975), Pettitt (1977), and Johannes and Rasche (1980).
Yet these works focus on using the sample size as the unique predictor, for isolated α-quantiles, an
approach that has been later applied in Marks (1998, 2007) and Heo et al. (2013).
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We introduce now a sufficiently flexible parametric specification for g in (5) that allows its
effective estimation in practice. We resort to a linear model featuring negative powers of the sample
size n and significance level α as predictors, as well as the corresponding interaction effects between
them. Precisely, we consider the following saturated model:

g(n, α) = 1 +
β1√
n
+

β2
n

+
β3√
nα

+
β4√
nα

+
β5

n
√
α
+

β6
nα

. (6)

The fixed intercept and negative powers of n were included to guarantee that limn→∞ g(n, α) = 1,
thus in accordance with limn→∞ T∞;α/Tn;α = 1. Powers of n−1/2 resemble the sample size factors
in the terms of an Edgeworth series. The powers of α−l/2, l = 1, 2, were experimentally found
to be an appropriate specification for capturing the interactions with n. The appropriateness of
the model specification (6) is exhaustively investigated in A in the SM. Upon available samples
of the form {(nj , αj , Yj)}Jj=1, Yj := T∞;αj/Tnj ;αj , model (6) is estimated through weighted least
squares, using the weight wj := n

−1/2
j 1{0<αj≤0.25} for the j-th observation to give heavier weight

to the approximation error on lower sample sizes. The indicator in wj reflects our interest in only
stabilizing the upper tail of the test statistic Tn, hence disregarding those quantiles associated with
non-rejections of the test based on Tn. B in the SM provides more detail on the selection of the
weight function among several alternatives.

The data required for fitting (6) is to be produced under the (fairly realistic nowadays) as-
sumption that it is feasible to simulate a large number of statistics Tn under the null hypothesis
and for varying sample sizes. Specifically, we have carried out the following simulation for the test
statistics Dn, W 2

n , Vn, U2
n, and A2

n. We produced M = 107 Monte Carlo random samples for Tn,
for each of the sample sizes n in the set N := {5, . . . , 100, 102, . . . , 200, 204, . . . , 300, 308, . . . , 404,
420, . . . , 500}. We then condensed these statistics as the quantiles {Tnj ;αj : nj ∈ N , αj ∈ A}, for
A := {a/A : a = 1, . . . , A}, A = 103. The asymptotic α-quantiles {T∞;αj : αj ∈ A} were computed
from the statistics’ asymptotic null distributions, as those were readily available in the literature.
The generated sample is therefore {(nj , αj , Yj)}Jj=1, J = #N×A. Clearly, this is a computationally-
intensive process, although it only needs to be done once per kind of test statistic. The procedure
is analogous for other one-sample test statistics that are feasible to simulate under the simple null
hypothesis at hand. If the limiting distribution is not available or tractable, a sufficiently large
sample size n could be used to approximate T∞;α by Tn;α by Monte Carlo.

Using the sample {(nj , αj , Yj)}Jj=1, we advocate the use of stepwise regression for performing
model selection within (6). Specifically, we performed a forward-backward search for minimizing
the Bayesian Information Criterion (BIC) on the space of models contained in (6). The search was
initiated with the model featuring only the predictors used in Stephens’ modifications, i.e., n−1/2 and
n−1. To attain simpler models than the BIC-optimal one, a final step was implemented to iteratively
drop one-by-one the predictors that contributed the least to the adjusted R2 of the resulting model.
The threshold was established to keep only three final terms (for simplicity), the predictors removed
decreasing less than 0.15% the R2

adj which, averaged across the five statistics, was larger than 0.96.
The resulting modified forms for Dn, W 2

n , Vn, U2
n, and A2

n are collected in Table 3. All of the
transformations have three correcting terms, one dependent on n and the other two related to n and
α, (n

√
α)−1 being common to the five statistics. Interestingly, the same correction terms are present

within the groups of supremum- and quadratic-norm statistics, as well as in the pairs of linear and
circular variants. These forms are valid for n ≥ 5, which anecdotally gives a minor improvement
over Stephens’ forms, valid for n ≥ 8. The steps to use them with the upper-tail test for H0 that is
based on Tn and that is carried out at the significance level α are as follows:

(i) Compute the test statistic Tn using its original form.

(ii) Calculate the corresponding modified test statistic, T ∗
n(α), in Table 3.

(iii) Retrieve an asymptotic critical value T∞;α in Table 3. If T ∗
n(α) > T∞;α, rejectH0 at significance

level α.
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Tn T ∗
n(α) T∞;0.15 T∞;0.1 T∞;0.05 T∞;0.025 T∞;0.01

Dn Dn

(
1 + 0.1575√

n
+ 0.0192

n
√
α
− 0.0051√

nα

)
1.1380 1.2239 1.3581 1.4803 1.6277

W 2
n W 2

n

(
1− 0.1651

n + 0.0749
n
√
α
− 0.0014

nα

)
0.2841 0.3473 0.4613 0.5806 0.7435

Vn Vn

(
1 + 0.2330√

n
+ 0.0276

n
√
α
− 0.0068√

nα

)
1.5370 1.6196 1.7473 1.8625 2.0010

U2
n U2

n

(
1− 0.1505

n + 0.0917
n
√
α
− 0.0018

nα

)
0.1313 0.1518 0.1869 0.2220 0.2685

A2
n A2

n

(
1 + 0.0360

n − 0.0234
n
√
α

+ 0.0006
nα

)
1.6212 1.9331 2.4922 3.0775 3.8784

Table 3: Modified statistics for sample size n and significance level α. Modified forms are valid for n ≥ 5
and 0 < α ≤ 0.25. H0 is rejected at significance level α if T ∗

n(α) > T∞;α.

The transformed statistics can also be used to obtain approximations to exact p-values, provided
the asymptotic quantiles T∞ := {T∞;αj : αj ∈ A} have been precomputed. This is done in two
steps. First, p-value bounds [α1, α2] are obtained from the grid A such that T ∗

n(α1) ≤ T∞;α1 and
T ∗
n(α2) > T∞;α2 . Once these discrete bounds for p-value are available, a linear interpolation is

applied to define t∞(α) := T∞;α1 + (T∞;α2 − T∞;α1)(α−α1)/(α2−α1) for α ∈ [α1, α2] and then the
root α∗ ∈ [α1, α2] of

T ∗
n(α

∗) = t∞(α∗) (7)

is obtained by Newton–Raphson (NR). The approximate p-value is then set to α∗. If α1 ≥ αmax,
αmax = 0.25 being the maximum element in A for which the transformation has been estimated,
p-value = αmax is returned. Algorithm 1 summarizes this process.

Algorithm 1 p-value approximation using the (n, α)-modification

1: function pvalue_approx(Tn, n, T∞, A)
2: for j from 1 to #A do
3: Tmod,α ← T ∗

n(Tn, n,A [j])
4: if Tmod,α > T∞ [j] then
5: if j = 1 then
6: (α1, α2)← (A [j] ,A [j + 1])
7: (T∞;α2

, T∞;α1
)← (T∞ [j] , T∞ [j + 1])

8: else
9: (α1, α2)← (A [j − 1] ,A [j])

10: (T∞;α2 , T∞;α1)← (T∞ [j − 1] , T∞ [j])

11: α∗ ← NR(T ∗
n(Tn, n, α)− t∞(α, T∞, α1, α2))

12: return α∗

13: return 0.25

When there is no α1 in A such that T ∗
n(α1) ≤ T∞;α1 , the p-value is set as the nonnegative

extrapolation of the root in (7), with α1 and α2 being the two lowest elements in A.

2.3 Simulation study

For the test statistics Dn, Vn, W 2
n , U2

n, and A2
n, we evaluate next the divergence of the exact-n critical

values under H0 from their corresponding approximations given by: (a) Stephens’ modified forms;
(b) the particular approximation methods from Table 2; (c) Monte Carlo approximation with 104

trials; and (d) our proposed transformations. Figure 2 displays the relative errors for the rejection
proportions generated by approximated critical values based on methods (a)–(d). These relative
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(e) A2
n

Figure 2: Relative error (in %) |α − α̃|/α between the significance level α and α̃, the empirical rejection
rate using an approximated exact-n critical value, averaged across different sample sizes n. The legend in
Figure 2a details the approximation methods considered and applies to the rest of the panels, with different
specific methods in Figures 2c and 2e. The gray shaded area corresponds to the 95% confidence interval
of the relative error when α̃ is produced by the exact-n critical value estimated by M = 107 Monte Carlo
samples.
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errors are defined as |α − α̃|/α, where α is the significance level and α̃ is the empirical rejection
rate obtained with M = 107 Monte Carlo samples when using an α-critical value computed by
each approximation method. The M = 107 Monte Carlo samples under H0 were drawn for each
of the sample sizes n in Ntest := {5, . . . , 10, 20, . . . , 50, 100, 200, 300}. The sample quantiles for
the significance levels in Atest := {a/100 : a = 1, . . . , 25} were computed for each sample size and
statistic. For the critical value approximations (a) and (d), critical values were computed by applying
the corresponding inverse transformation from Table 8 to the asymptotic α-critical value T∞;α.
Obtaining the critical values in (b) is straightforward using the functions stats:::C_pKolmogorov2x
(R Core Team, 2021) for Dn, and goftest::pCvM and goftest::pAD (Faraway et al., 2019) for W 2

n

and A2
n, respectively. For the critical value approximation based on (c), the (random) relative error

for each critical value was averaged over 103 simulations to give an estimate of the average Monte
Carlo relative error. Each panel in Figure 2 shows the relative error along Atest averaged for three
sets of sample sizes: 5 ≤ n < 10, 10 ≤ n < 100, and n ≥ 100.

Along Atest, the average relative errors of our stabilizations are 0.5%, 0.3%, 0.5%, 0.3%, and
0.7% for Dn, W 2

n , U2
n, A2

n, and Vn, respectively. The relative errors remain fairly stable for every
significance value in Atest without significant differences between the sets of sample sizes analyzed.
Compared to Stephens’ stabilizations, our relative error is lower by a factor of ×2, ×12, ×2, ×3, and
×4 on average, respectively. The largest improvements are achieved for α ̸= 0.05, since Stephens’
stabilizations were tuned for α = 0.05, and for sample sizes n ≤ 100. This behavior is more obvious
in W 2

n and U2
n, which are the statistics that, in Stephens’ approach, use an additional prior step for

stabilizing the quantile ratios. When compared to the Monte Carlo approximation with 104 samples,
our relative error is lower for every significance level and sample size tested, and improves by ×5,
×10, ×5, ×9, and ×4 on average, respectively. As expected, the approximation methods that are
specifically designed for each test statistic achieve the lowest relative errors.

Table 4 presents a comparison of the running times between our p-value approximation (Algo-
rithm 1) and the already implemented p-value approximation methods for Dn, W 2

n , and A2
n described

in Table 2. Our method is shown to be ×3.8, ×5.4, and ×4.8 faster than Marsaglia et al. (2003),
Csörgö and Faraway (1996), and Marsaglia and Marsaglia (2004), respectively. These methods are
already implemented in C++, except for Csörgö and Faraway (1996) which is in R. Hence, C++
and R versions implementing Algorithm 1 were developed for each statistic to allow a fair compari-
son. In addition, Table 5 compares the running times between the p-value approximation based on
Algorithm 1 and a Monte Carlo p-value approximation based on 104 trials, which shows that our
method is ×75 · 104, ×58 · 104, and ×93 · 104 faster. Monte Carlo approximation was implemented
in R code with calls to C++-coded statistics (the most time-consuming part), and the C++ version
of Algorithm 1 was used. All comparisons were carried out using microbenchmark package (Mers-
mann, 2019). In order to compute the median running time of each function for a given sample
size n and significance level α, 103 evaluations of the compiled functions were run after 10 warm-up
runs using the same machine, a regular desktop computer with a 3.6GHz processor. In all cases,
the computation of the original statistic Tn was excluded from the timings. R and C++ integration
was done with the Rcpp package (Eddelbuettel and François, 2011).

The empirical results show that our stabilized statistics give more accurate results than those
by Stephens, while still retaining the simplicity of the latter. When it comes to the Monte Carlo
approximation (with 104 trials), relative errors on the empirical rejection rates are lowered by a
factor that varies from ×4 to ×10, depending on the statistic. In addition, Table 5 shows how our
stabilization algorithm outperforms Monte Carlo execution times. Part of these improvements could
be attributed to the R-C++ mix, as opposed to pure C++. Yet, given the massive difference in
timing orders, we regard this effect as second-order. Arguably, for Dn, W 2

n , and A2
n, the tailored

approximation methods are to be preferred due to their better accuracy. Even in these highly-
competitive settings, our stabilizations still offer comparative advantages, as Figure 2 shows that
their average relative error is < 0.7%, sufficing for most practical applications, while Table 4 shows
an improvement of ×5 in running times with respect to specific methods.
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α
n

5 6 7 8 9 10 20 30 40 50

Dn: Marsaglia et al. (2003) vs. Algorithm 1

0.01 2.48 2.56 3.04 2.96 3.00 3.23 7.09 10.74 17.08 23.38
0.02 2.28 2.28 2.40 2.75 2.80 2.85 4.80 9.62 12.04 17.39
0.05 1.61 1.97 1.90 1.87 1.90 2.29 3.06 5.94 7.29 10.50
0.10 1.22 1.21 1.44 1.43 1.48 1.49 2.24 3.33 4.17 6.05
0.15 1.02 0.96 0.98 1.13 1.15 1.19 1.42 2.74 3.45 3.67
0.25 0.68 0.71 0.70 0.71 0.70 0.81 1.04 1.48 1.82 2.64

W 2
n : Csörgö and Faraway (1996) vs. Algorithm 1

0.01 10.43 10.40 10.17 10.12 10.03 10.00 10.60 10.68 10.66 11.82
0.02 8.69 8.47 8.42 8.47 8.73 8.75 8.92 9.06 8.85 8.99
0.05 5.54 5.53 5.61 5.57 5.56 5.58 5.67 5.68 5.64 5.68
0.10 3.46 3.50 3.48 3.46 3.45 3.48 3.50 3.48 3.48 3.49
0.15 2.50 2.48 2.49 2.54 2.48 2.55 2.57 2.50 2.51 2.52
0.25 1.62 1.62 1.63 1.59 1.59 1.64 1.61 1.61 1.65 1.64

A2
n: Marsaglia and Marsaglia (2004) vs. Algorithm 1

0.01 6.66 6.28 6.23 6.14 6.20 6.42 6.29 6.18 6.29 6.43
0.02 6.00 6.52 5.91 6.18 6.13 6.22 5.91 6.26 6.14 6.60
0.05 5.12 5.24 5.72 5.74 5.36 6.04 5.24 5.23 5.44 5.44
0.10 4.26 4.39 4.35 4.26 4.26 4.81 4.35 4.52 4.36 4.32
0.15 3.70 3.62 3.64 3.78 3.64 3.65 3.78 3.75 3.72 3.74
0.25 2.87 3.19 2.79 2.85 3.10 3.02 2.83 2.85 2.98 2.87

Table 4: Running time ratios between specific p-value approximation methods and our p-value approximation
method (Algorithm 1). Ratios are computed for the median running times of 103 evaluations, for each pair
(n, α). The averages of the median running times of Algorithm 1 are 3.65µs, 225µs (for R version, 4.5µs for
C++ version), and 3µs for Dn, W 2

n , and A2
n, respectively.

α
n

5 6 7 8 9 10 20 30 40 50

Dn: Monte Carlo vs. Algorithm 1

0.05 14 16 19 23 16 28 69 118 182 261

W 2
n : Monte Carlo vs. Algorithm 1

0.05 10 12 14 13 17 21 51 94 146 203

A2
n: Monte Carlo vs. Algorithm 1

0.05 15 19 22 26 32 33 80 150 227 325

Table 5: Running time ratios, in scale ×104, between a p-value Monte Carlo approximation based on 104

trials and our p-value approximation method (Algorithm 1). Ratios are computed for the median running
times of 103 evaluations, for each pair (n, α). The averages of the median running times for the Monte Carlo
approximation are 2.34s, 2.35s, and 2.35s for Dn, W 2

n , and A2
n, respectively.

3 Stabilization of parameter-dependent statistics

This section gives an extension of the (n, α)-transformations introduced in Section 2.2 that is de-
signed to stabilize the exact distributions of statistics that depend on a (known) parameter. Instances
of the transformation are given for testing uniformity on Sp−1, p ≥ 2 being the statistic parameter.
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3.1 Projected-ecdf test statistics

García-Portugués et al. (2020) proposed a class of test statistics to evaluate the null hypothesis of
uniformity of an iid sample X1, . . . ,Xn on Sp−1. Projected-ecdf statistics compute the weighted
quadratic discrepancy between Fn,γ , the ecdf of γ ′X1, . . . ,γ

′Xn for γ ∈ Sp−1, and Fp, the cdf of the
random variable γ ′X when X ∼ Unif(Sp−1). The weighted quadratic discrepancies are integrated
over all possible directions γ ∈ Sp−1, a convenient specification of the projected-ecdf statistics being

Pw
n,p := n

∫
Sp−1

[ ∫ 1

−1
(Fn,γ(x)− Fp(x))

2w(Fp(x)) dFp(x)

]
dγ,

where w : [0, 1] → R is a certain weight function and the cdf Fp is that of the random variable T ,
with T 2 ∼ Beta(1/2, (p− 1)/2).

The weights w ≡ 1 and w(u) = 1/(u(1− u)) result in the Projected Cramér–von Mises statistic,
PCvM
n,p , and the Projected Anderson–Darling statistic, PAD

n,p , respectively. The test based on PCvM
n,p

happens to be an extension of the Watson test to Sp−1, p ≥ 2, since PCvM
n,2 = U2

n/2. Moreover, the
test based on PCvM

n,3 is equivalent to the chordal-based test on S2 by Bakshaev (2010), whose statistic
for p ≥ 2 is

Nn,p := nEH0 [∥X1 −X2∥]−
1

n

n∑
i,j=1

∥Xi −Xj∥.

The statistic PAD
n,p represents the first instance of the Anderson–Darling statistic in the context of

directional data. Particularly, PAD
n,2 can be regarded as the circular variant of A2

n, just as U2
n is the

circular variant of W 2
n . Asymptotic distributions and computational formulae for PCvM

n,p and PAD
n,p

are provided in García-Portugués et al. (2020), while the sphunif R package (García-Portugués and
Verdebout, 2021) provides implementations for PCvM

n,p , PAD
n,p , and Nn,p, for all p ≥ 2.

3.2 Stabilization of projected-ecdf statistics

Let Tn,p be a statistic depending on p ∈ N. From expression (4), the ratios T∞,p;α/Tn,p;α can be
modeled as a function g : N×N× (0, 1)→ R of (n, p, α). Hence, the modified version of the statistic
Tn,p is defined as

T ∗
n,p(α) := Tn,p · g(n, p, α).

As in expression (5), the stabilization of Tn,p can be approached as a regression problem, now with
predictors (n, p, α), response Y := T∞,p;α/Tn,p;α, and unknown regression function g.

The connection between PCvM
n,2 and U2

n implies the stabilized form of PCvM
n,2 to have the same

set of predictors based on (n, α) as the Watson statistic already presented in Table 3: R :=
{1/n, 1/(n

√
α), 1/(nα)}. An additional reflection suggests the adequacy of choosing R for stabi-

lizing PCvM
n,p , also when p ≥ 3, due to its appearance in all the transformations for quadratic-ecdf

statistics in Table 3 and the quadratic nature of PCvM
n,p . For different particular values of p ≥ 2, it

was noted that, if regression models were fitted to the ratios PCvM
∞,p;α/P

CvM
n,p;α, the coefficients fitted

for each predictor r ∈ R could be modeled as a smooth function of p denoted as qr : N → R.
Unsurprisingly, given its similarity to PCvM

n,p , the same considerations also hold for PAD
n,p . Moreover,

the statistic Nn,p can also be stabilized through R and qr, a fact explained by the closeness between
PCvM
n,p and Nn,p when p ̸= 3 and its equivalence when p = 3. Empirical investigations suggested the

following saturated model for qr, for each r ∈ R:

qr(p) =
βr,1√
p
+

βr,2
p

.
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Thus, the resulting saturated model for g is set as

g(n, p, α) = 1 + q1/n(p) ·
1

n
+ q1/(nα)(p) ·

1

nα
+ q1/(n

√
α)(p) ·

1

n
√
α
. (8)

Once training samples of the form {(nj , αj , pj , Yj)}Jj=1, Yj := T∞,pj ;αj/Tnj ,pj ;αj , are available,
model (8) is estimated following the same methodology described in Section 2.2. For each of the
three test statistics PCvM

n,p , PAD
n,p , and Nn,p, we obtained M = 107 Monte Carlo random samples

for each sample size n in N := {5, . . . , 100, 102, . . . , 200, 204, . . . , 300, 308, . . . , 404, 420, . . . , 500} and
for each dimension p in P := {2, . . . , 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 151, 201, 251, 301}. We then
summarized these statistics as the quantiles {Tnj ,pj ;αj : nj ∈ N , pj ∈ P, αj ∈ A} for A := {a/A :
a = 1, . . . , A}, A = 103. The asymptotic α-quantiles T∞,p;α were approximated through T500,p;α

due to the accuracy limitations on inverting the asymptotic cdfs of the three statistics for large
dimensions. Table 6 lists the approximated T∞,p;α for the first ten dimensions.

p

Critical
value α 2 3 4 5 6 7 8 9 10 11

PCvM
∞,p;α

0.10 0.3035 0.2768 0.2606 0.2500 0.2421 0.2361 0.2312 0.2272 0.2239 0.2210

0.05 0.3735 0.3288 0.3027 0.2858 0.2735 0.2641 0.2568 0.2508 0.2458 0.2416

0.01 0.5358 0.4461 0.3960 0.3638 0.3413 0.3244 0.3115 0.3008 0.2922 0.2849

PAD
∞,p;α

0.10 1.6871 1.5604 1.4816 1.4279 1.3883 1.3576 1.3327 1.3124 1.2957 1.2809

0.05 2.0293 1.8214 1.6951 1.6106 1.5494 1.5023 1.4651 1.4347 1.4092 1.3875

0.01 2.8197 2.4096 2.1679 2.0090 1.8969 1.8126 1.7471 1.6931 1.6493 1.6121

N∞,p;α

0.10 2.4034 2.2141 2.1003 2.0231 1.9673 1.9238 1.8887 1.8601 1.8367 1.8158

0.05 2.9906 2.6305 2.4320 2.3034 2.2119 2.1423 2.0879 2.0437 2.0067 1.9752

0.01 4.3495 3.5687 3.1669 2.9136 2.7402 2.6112 2.5124 2.4314 2.3661 2.3108

Table 6: Asymptotic critical values for modified uniformity statistics with dimension p, sample size n, and
significance level α.

Tn,p
Tn,p

(
1 + q1/n · 1n + q1/(nα) · 1

nα + q1/(n
√
α) · 1

n
√
α

)
q1/n q1/(nα) q1/(n

√
α)

PCvM
n,p

0.1130√
p −

0.5415
p − 0.0031√

p
0.1438√

p

PAD
n,p

0.0978√
p −

0.3596
p − 0.0025√

p
0.1126√

p

Nn,p
0.1189√

p −
0.5838

p − 0.0030√
p

0.1210√
p + 0.0385

p

Table 7: Modified uniformity statistics for dimension p, sample size n, and significance level α. Modified
forms are valid for 2 ≤ p ≤ 300, n ≥ 5, and α ≤ 0.25. H0 is rejected at significance level α if T ∗

n,p(α) > T∞,p;α,
where T∞,p;α is given in Table 6 for p = 2, . . . , 11.

The resulting modified forms for PCvM
n,p , PAD

n,p , and Nn,p are presented in Table 7, where each
fitted qr is shown for each predictor r ∈ R. An algorithm similar to Algorithm 1 for computing an
approximated p-value has been implemented for these statistics, with the only difference being that
the modified statistic function in lines 3 and 11 is the corresponding dimension-dependent version
which also includes the parameter p as an input.
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3.3 Simulation study

In the same manner as in Section 2.3, the empirical stabilization of the modified forms of the
projected-ecdf statistics is investigated (Figure 3) in terms of the relative error between the sig-
nificance level and the empirical rejection rate of the T ∗

n,p(α)-test for sample sizes n ∈ Ntest and
dimensions p ∈ Ptest, where Ntest was defined in Section 2.3 and Ptest := {2, . . . , 11, 21, 51, 101, 151,
201, 301}. As for most non-heavily studied test statistics, Monte Carlo is the only method readily
available to approximate the exact-n p-values of PCvM

n,p , PAD
n,p , and Nn,p. Figure 3 shows an average

improvement of our stabilizations’ accuracy over Monte Carlo approximations (using 104 trials) of
×3, ×4, and ×4, for each of the three statistics, respectively. We point out the steadiness of our
relative errors regardless of the significance level and the dimension p (except for α = 0.01, which
increases for large p’s), which on average are 1.3%, 0.9%, and 1% respectively. In almost all circum-
stances, our relative errors are largely below those obtained by Monte Carlo (except for α = 0.25
when p > 10 in PCvM

n,p and Nn,p).
We conclude this section by summarizing in Table 8 a comparison of the modified forms found by

Stephens (1970) and our results, for each of the classical ecdf-based statistics, and their corresponding
versions for circular data, along with the circular particularizations of the projected-ecdf statistics.
We emphasize the simplicity of the formulae in both approaches, with the Mean Relative Error
(MRE) being reduced for the second by ×2 for Dn and U2

n, by ×9 for W 2
n , and by ×4 for A2

n and
Vn. The stabilizations for the projected-ecdf statistics are such MRE < 0.9% for the circular case,
which aligns with the results specifically attained for U2

n and PAD
n,2 , and supports the convenience of

the extension proposed in this section for the (n, α)-stabilization.

Tn Stephens’ T ∗
n MRE T ∗

n(α) MRE

Dn Dn

(
1 + 0.12√

n
+ 0.11

n

)
1.44% Dn

(
1 + 0.1575√

n
+ 0.0192

n
√
α
− 0.0051√

nα

)
0.63%

W 2
n

(
W 2

n − 0.4
n + 0.6

n2

) (
1 + 1

n

)
3.28% W 2

n

(
1− 0.1651

n + 0.0749
n
√
α
− 0.0014

nα

)
0.36%

A2
n A2

n (∗) 1.42% A2
n

(
1 + 0.0360

n − 0.0234
n
√
α

+ 0.0006
nα

)
0.38%

Vn Vn

(
1 + 0.155√

n
+ 0.24

n

)
3.40% Vn

(
1 + 0.2330√

n
+ 0.0276

n
√
α
− 0.0068√

nα

)
0.85%

U2
n ≡ PCvM

n,2

(
U2
n − 0.1

n + 0.1
n2

) (
1 + 0.8

n

)
1.62% U2

n

(
1− 0.1505

n + 0.0917
n
√
α
− 0.0018

nα

)
0.63%

− − PCvM
n,2

(
1− 0.1908

n + 0.1017
n
√
α
− 0.0022

nα

)
0.88%

PAD
n,2 (†) − − PAD

n,2

(
1− 0.0751

n + 0.0692
n
√
α
− 0.0014

nα

)
0.74%

− − PAD
n,2

(
1− 0.1106

n + 0.0796
n
√
α
− 0.0018

nα

)
0.83%

Table 8: Modified forms of ecdf-based statistics for sample size n and significance level α. MRE refers to
the Mean Relative Error between the expected rejection proportion and the approximated proportion for
each pair of (n, α) with n ∈ Ntest and α ∈ {0.25, 0.2, 0.15, 0.1, 0.05, 0.02, 0.01}. The T ∗

n(α) forms are valid
for n ≥ 5 and α ≤ 0.25. (∗) Stephens (1974) states the best modification for Anderson–Darling statistic
for n ≥ 5 is its asymptotic distribution. (†) Both the modified form estimated for p = 2 (top row) and the
(n, p, α)-modification particularized for p = 2 (bottom row) are given for PCvM

n,2 and PAD
n,2 .
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(b) PAD
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(c) Nn,p

Figure 3: Relative error (in %) |α− α̃|/α between the significance level α and α̃, the empirical rejection rate
using an approximated exact-n critical value, averaged over 5 ≤ n ≤ 300. For the Monte Carlo approximation
method, a regression fit is shown for each significance level α to show no trend on the error with respect to
p. The legend in Figure 3a details the approximation methods considered and significance levels, and applies
to the rest of the panels.

4 Detecting temporal longitudinal non-uniformity in sunspots

The Sun’s magnetic field presents periodic behavioral patterns of about 11 years. During this period,
the magnetic field is pulled around the Sun’s surface as the solar plasma rotates. Near the equator
this pull is stronger due to the Sun’s differential rotation (equatorial latitudes rotate faster than
poles), causing the field to wrap in a spiral-like shape until its polarity is eventually reversed and the
wrapping restarts, indicating the beginning of a new solar cycle (see, e.g., Babcock, 1961). Sunspots
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are created by high-intensity magnetic loops emerging from the Sun’s interior convection zone to the
surface, producing darker, cooler regions on the Sun’s photosphere. Through their lifespans, which
can last from hours to days, they experience continuous changes in shape, area, and location. The
total number of active sunspots varies throughout the cycle, showing the maximum activity during
the middle years (see Figure 4). Sunspots appear in a marked rotationally symmetric fashion: they
are mainly distributed in latitudinal belts that are initially situated at ±30◦ and that decay to the
equator as the solar cycle advances (a phenomenon known as the Spörer’s law).

Sunspots also appear to cluster in active longitudes. Non-uniform patterns may appear by pre-
ferred zones of occurrence where sunspots had originated previously, as early described by Babcock
(1961, pages 574 and 581). The existence of active longitudes was also suggested in Bogart (1982)
upon inspection of the significant autocorrelation of daily sunspot numbers. Since daily sunspot
numbers have no positional information, such analysis shows either there is one active longitude
band or there are two active longitude bands separated by 180◦, as Berdyugina and Usoskin (2003)
concluded in both hemispheres, observing the alternation of major solar activity between both lon-
gitudes in about 1.5 to 3 years. This is known as the flip-flop phenomenon (Elstner and Korhonen,
2005).

Analyzing the presence of solar active longitudes requires knowledge from the Carrington period
(or solar rotation period). It corresponds to the mean synodic rotation period of sunspots, which is
about 27.275 days. Differential rotation causes the migration of active longitudes in the Carrington
reference frame, causing a lag of 2.5 Carrington rotations per solar cycle that blurs the longitudinal
pattern if more than one solar cycle is analyzed at once (Berdyugina and Usoskin, 2003). In order to
ensure the adequate detection of active longitudes, a sequential analysis of data limited to a certain
number of Carrington rotations, from 3–7 (Bogart, 1982; de Toma et al., 2000) to 10–15 (Pelt et al.,
2010), is preferable.

The data we analyze is based on the Debrecen Photoheliographic Data (DPD) sunspot catalog
(Baranyi et al., 2016; Győri et al., 2016). It contains observations of sunspots locations since 1974
and is a continuation of the Greenwich Photoheliographic Results (GPR) catalog, which spanned
1872–1976. The dataset sunspots_births, available in the R package rotasym (García-Portugués
et al., 2021), accounts just for the first-ever observation (referred to as “birth” henceforth) of a group
of sunspots.

In our analysis, summarized in Figure 4, we first applied the PAD
n,2 -based uniformity test sequen-

tially to the longitudes of sunspot births —which include a total of 6195, 4551, and 5373 observations
for the 21st, 22nd, and 23rd cycle, respectively— within a rolling window whose size is 10-Carrington
rotations (approximately, nine months). The corresponding p-values were computed using Algorithm
1 for northern (blue), southern (red), and both (black) hemispheres. In addition, the p-value was
also computed by Monte Carlo with 5 × 103 samples, in order to compare the running times be-
tween the two methods. Our method runs in an average of 1.6 s per solar cycle, while Monte Carlo
completes it in 1600 s per solar cycle. In order to account for dependency between sequential tests,
Benjamini and Yekutieli (2001)’s FDR correction was applied to the p-values obtained with the test
based on PAD

n,2 . These corrected p-values are shown in the top row of Figure 4. Second, circular-linear
kernel density estimation (García-Portugués et al., 2013) of sunspot births for northern (middle-top
figure) and southern (middle-bottom) hemispheres allowed us to compute several level sets, repre-
sented as contour lines labeled as “100p%”. Each of these sets is the smallest set containing 1 − p
of the probability of the estimated density function. Hence, darker sets represent higher-density
zones of sunspot births, both through time and longitude. Third, a scatter plot of sunspot births
is shown in the bottom figures, along with the circular Nadaraya–Watson (Di Marzio et al., 2012)
regression for northern (blue), southern (red), and both (black) hemispheres. The Nadaraya–Watson
regression gives a moving circular mean of the longitudes of sunspot births through time. Both den-
sity and regression kernel estimates use “rule-of-thumb” bandwidths for normal (Silverman, 1986)
and von Mises–Fisher (García-Portugués, 2013) distributions, given the similarity of marginal dis-
tributions with these respective distributions and the marked undersmoothing that resulted from
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cross-validation bandwidths.
We draw the following conclusions from the analysis:

(i) In general, the two hemispheres seem to have different behavioral patterns, both in terms of
longitudinal non-uniformities and sunspots activity level, along solar cycles. During the 21st
cycle, the northern hemisphere presents 33% of the tests rejected at significance level α = 0.05.
In cycles 22 and 23, the southern hemisphere presents more non-uniform periods (9% and 10%
of the tests are rejected for α = 0.05, respectively) than the northern hemisphere (5% and 3%
are rejected, respectively).

(ii) Non-uniformity periods are intermittent during the lifetime of the solar cycle, without a clear
association with the intensity of the sunspots appearance. The length and quantity of non-
uniformity periods differ between solar cycles.

(iii) Sunspots seem to appear in preferred zones of occurrence. Highest density sets, together with
Nadaraya–Watson regressions, show consistent patterns of activity within certain longitudinal
zones. In particular, periods in which uniformity is rejected at significance level α = 0.05, the
northern sunspot births seem to cluster around 0◦ (1982, 1990, 2000), 135◦ (1983–1984), and
180◦ (1977–1978, 1979–1980), while the southern hemisphere sunspot births cluster around
−135◦ (1991, 2004, 2008). However, non-uniformity periods are too few to claim the existence
of active longitudes.

(iv) The flip-flop phenomenon between 180◦ active longitudes is not obvious throughout all the
cycles. Although longitudes 0 and 180◦ seem to accumulate more sunspots in the northern
hemisphere, the alternation between supplementary longitudes is not a clear, fixed-duration
pattern.

5 Discussion

We have presented a general, automated approach to construct simple yet effective approximations
for the upper tail of the exact-n null distribution of numerous goodness-of-fit statistics. The simu-
lation results demonstrate that these approximations are accurate enough for practical applications
of several upper-tail tests, even when these depend on a varying (yet known) parameter.

Although state-of-the-art statistic-specific algorithms like those of Marsaglia et al. (2003), Csörgö
and Faraway (1996), and Marsaglia and Marsaglia (2004) provide arbitrarily accurate upper-tail p-
values for the Dn, W 2

n , and A2
n statistics, respectively, our p-value approximation method offers

significant computational improvements, has a reasonable precision (mean relative errors below
1%), and, most importantly, can be applied to a wide range of statistics. Compared to the general
and omnipresent p-value approximation by M Monte Carlo trials, our method presents two key
advantages: (i) more accurate results (at least, when M = 104); and (ii) faster running times by
several orders of magnitude. This computational expediency makes the stabilized statistic especially
convenient for sequential tests, as illustrated in the data application.

The (n, α)-stabilization significantly extends the scope of applicability of stabilizations like those
of Stephens (1970). The stabilization focuses only on the upper tail of Tn, as this is usually the most
useful in practice. However, stabilizations for the lower tail can be analogously derived. Obtaining
modifications that stabilize the whole distribution, while still retaining simplicity, would offer the
advantage of having approximated p-values that are roughly uniformly distributed under the null
hypothesis. This task is left for future research.
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Supplementary material for “Data-driven stabilizations of
goodness-of-fit tests”

Alberto Fernández-de-Marcos1,2 and Eduardo García-Portugués1

Abstract

This supplementary material is divided into two sections. Appendix A contains an analysis
of regression metrics for different polynomial forms of (6) in Section 2.2. Appendix B presents
an analysis of different weight functions for the regression in Section 2.2.

A Selection of (n, α)-model form

In order to choose and justify the final form of model (6), an analysis of different models is presented
in Tables 9 and 10. The explored model specifications are

gλ,µ(n, α) := 1 + {βl,mn−l/2α−m/2}λ,µl=1,m=0, (9)

where λ, µ ∈ N are to be tuned. With this notation, the model considered in (6) in Section 2.2 is
g2,2.

Table 9 shows a comparative study of the performance of gλ,2(n, α) for λ = 2, . . . , 5, in order to
determine the optimal power of n predictors, while keeping the α-predictors unchanged. Conversely,
Table 10 shows the performance of models g2,µ(n, α) where µ = 2, . . . , 5 to analyze the effect of
α, while not varying the n-predictors. In both tables the same main model-selection procedure
applied in Section 2.2 is carried out: forward-backward model selection is run from Stephens’ set
of predictors, using weighted least squares with weights wj = n

−1/2
j 1{0<αj≤0.25}, and with extended

scope given by (9) (interactions are included). The last dropping step is excluded from the analysis.
Table 9 shows that, when increasing λ the BIC decreases marginally. The standard deviation of

the residuals σ̂ only decreases in the sixth decimal, while the R2
adj remains almost constant for Dn,

and W 2
n . Moreover, the multicollinearity present in the model increases by an order of magnitude

per unit increment in λ, with high values of MVIF. In the case of A2
n, the BIC-optimal model equals

that with λ = 2 — including more powers of n does not improve it.
Regarding the influence of the powers of α, Table 10 shows similar patterns to those in Table 9

for the three statistics Dn, W 2
n , and A2

n. For Dn and W 2
n , when including more powers of α, the

BIC and σ̂ decrease marginally, and R2
adj increases marginally. In exchange, the multicollinearity

increases by an order of magnitude per unit increment in µ, also attaining high values of MVIF. For
A2

n the situation is somehow different: from µ = 2 to µ = 4 there is a significant increase in R2
adj,

yet at expenses of a ×100 increase in MVIF and a more convoluted model.
From the analyzed test statistics, the final form of the saturated model is chosen to be g2,2(n, α)

due to the general small increase in the goodness-of-fit metrics for more complex models and the
increment in multicollinearity when increasing λ and µ. Importantly, the choice of g2,2(n, α) allows
having a single generic approach for any statistic and provides parsimonious stabilizing transforma-
tions.
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Tn λ σ̂ BIC R2
adj MVIF predMVIF

Dn

2 7.57 · 10−4 −397236 0.9993 1 · 102 n−1/2α−1/2

3 7.50 · 10−4 −398020 0.9993 4 · 103 n−1α−1/2

4 7.48 · 10−4 −398184 0.9993 1 · 105 n−3/2α−1/2

5 7.48 · 10−4 −398212 0.9993 3 · 105 n−2

W 2
n

2 9.06 · 10−4 −369813 0.9835 1 · 102 n−1/2α−1/2

3 8.84 · 10−4 −371092 0.9841 8 · 102 n−1α−1/2

4 8.83 · 10−4 −371112 0.9841 7 · 103 n−3/2

5 8.83 · 10−4 −371119 0.9841 2 · 105 n−2

A2
n

2 8.11 · 10−4 −376072 0.8722 2 · 101 n−1α−1/2

3 8.11 · 10−4 −376072 0.8722 2 · 101 n−1α−1/2

4 8.11 · 10−4 −376072 0.8722 2 · 101 n−1α−1/2

5 8.11 · 10−4 −376072 0.8722 2 · 101 n−1α−1/2

Table 9: BIC-optimal gλ,2(n, α) for statistics Dn, W 2
n , and A2

n, obtained from weighted least squares and
forward-backward model selection with scope (9) and λ = 2, . . . , 5. The following goodness-of-fit measures
are presented for each selected model: standard deviation σ̂ of the residuals of upper-tail observations (i.e.,
{ε̂j | αj ≤ 0.25}Jj=1), BIC, and R2

adj. In addition, the MVIF and predMVIF, the predictor that takes the
maximum variance inflation factor, inform on the multicollinearity of the selected model.

Tn µ σ̂ BIC R2
adj MVIF predMVIF

Dn

2 7.57 · 10−4 −397236 0.9993 1 · 102 n−1/2α−1/2

3 5.22 · 10−4 −421343 0.9996 2 · 103 n−1/2α−1

4 3.68 · 10−4 −444816 0.9998 5 · 104 n−1/2α−3/2

5 2.83 · 10−4 −462192 0.9999 2 · 106 n−1α−2

W 2
n

2 9.06 · 10−4 −369813 0.9835 1 · 102 n−1/2α−1/2

3 5.85 · 10−4 −411594 0.9949 2 · 103 n−1/2α−1

4 5.13 · 10−4 −427884 0.9968 5 · 104 n−1α−3/2

5 4.94 · 10−4 −433359 0.9972 4 · 105 n−1α−2

A2
n

2 8.11 · 10−4 −376072 0.8722 2 · 101 n−1α−1/2

3 5.99 · 10−4 −403690 0.9414 2 · 103 n−1/2α−1

4 4.67 · 10−4 −430707 0.9726 7 · 103 n−1α−3/2

5 4.15 · 10−4 −447192 0.9828 3 · 105 n−1α−2

Table 10: BIC-optimal g2,µ(n, α) for statistics Dn, W 2
n , and A2

n, obtained from weighted least squares and
forward-backward model selection with scope (9) and µ = 2, . . . , 5. The table entries are analogous to those
of Table 9.

B Selection of the weight function

Model (6) is estimated through weighted least squares using the samples {(nj , αj , Yj)}Jj=1, Yj :=

T∞;αj/Tnj ;αj . The weights considered in Section 2.2 are wj := n
−1/2
j 1{0<αj≤0.25}. The term n

−1/2
j

gives heavier weight to the approximation error on lower sample sizes, while the indicator 1{0<αj≤0.25}
reflects the interest in prioritizing the stabilization of the upper tail of the test statistic Tn, where
accuracy on the determination of exact-n quantiles is crucial for a precise test decision in the standard
significance levels.

The effect of adding other factors to the weights is investigated in this section. First, instead of
considering a hard thresholding by 1{0<αj≤0.25}, the factor α

−1/2
j can be introduced to place more

weight on the upper quantiles while still incorporating the remaining quantiles. Second, in order to
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mitigate the heteroscedasticity of the observations, the asymptotic variance of Yj ,

AVar[Yj ] =
T 2
∞;αj

αj (1− αj)

M · T 4
nj ;αj

·
(
fn(Tnj ;αj )

)2 , (10)

where M is the number of Monte Carlo samples and fn is the density of Tn, can be incorporated
to give more weight to ratios with smaller variances. Expression (10) is obtained with the delta
method from the standard errors of sample quantiles (see, e.g., Serfling, 1980, Section 2.3.3). The
evaluation of fn can be done by differentiating a monotone spline interpolation of its cdf based on
the saved quantiles {Tnj ;αj : nj ∈ N , αj ∈ A} (see Section 2.2).

Different combinations of the previous factors shape the following candidates for weight functions:

• w1,j(αj , Yj) := 1{0<αj≤0.25}.

• w2,j(nj , αj) := n
−1/2
j 1{0<αj≤0.25}.

• w3,j(αj , Yj) := AVar−1/2[Yj ]1{0<αj≤0.25}.

• w4,j(nj , αj , Yj) := n
−1/2
j AVar−1/2[Yj ]1{0<αj≤0.25}.

• w5,j(αj , Yj) := AVar−1/2[Yj ].

• w6,j(nj , αj , Yj) := n
−1/2
j AVar−1/2[Yj ].

• w7,j(nj , αj) := (nj · αj)
−1/2.

The following analysis compares the results of the weighted least squares regression on model
(6) with weights computed by wk,j , k = 1, . . . , 7, according to the methodology described in Section
2.2, except for the last dropping step. The standard deviation of the residuals for the statistics Dn,
W 2

n , and A2
n is presented from two perspectives: Table 11 shows the residuals based on the αj value,

while in Table 12 the residuals are divided according to the sample size nj . In addition, Table 13
shows the residuals depending on nj only for upper-tail observations.

First, we analyze weights w1, w2, w3, and w4, all of which have the factor 1{0<αj≤0.25} in common.
As expected, they present the lowest errors for the upper tail α ≤ 0.25. Despite presenting higher
residual deviation for α > 0.25, the errors differ only by about ×2 with respect to w5 and w6 in
average (Table 11). More importantly, w1 and w2 produce the smallest residuals for all sample sizes
in the upper tail, w2 exhibiting slightly smaller values for small sample sizes, n ∈ [5, 10) (Table 13).

Second, w5 and w6 factor in the asymptotic variance, showing both similar results. In particular,
they attain the lowest errors for α > 0.25 (Table 11) and small-to-moderate sample sizes (Table 12).
However, the standard deviation of upper-tail residuals is one order of magnitude higher than w1,
w2, w3, and w4 (Table 11).

Finally, w7 weights observations by α
−1/2
j . Its behavior is similar to w5 and w6 for α > 0.25 and

all sample sizes. Yet, errors in the upper tail are lower, but still about ×3 higher than w1 and w2.
From the previous observations, the final weight function chosen to fit model (6) is w2 due to

two main reasons: (i) the significant difference of errors for α ≤ 0.25 against w5, w6, and w7; and
(ii) the lower residual deviation in the upper tail for small sample sizes when compared to w1, w3,
and w4.
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wk Tn
Standard deviation

α ∈ (0, 0.25] α ∈ (0.25, 0.5] α ∈ (0.5, 0.75] α ∈ (0.75, 1)

w1

Dn 7.55 · 10−4 1.66 · 10−3 3.11 · 10−3 7.24 · 10−3

W 2
n 9.03 · 10−4 1.90 · 10−3 4.08 · 10−3 1.01 · 10−2

A2
n 8.11 · 10−4 1.50 · 10−3 2.13 · 10−3 2.76 · 10−3

w2

Dn 7.57 · 10−4 1.67 · 10−3 3.13 · 10−3 7.25 · 10−3

W 2
n 9.06 · 10−4 1.90 · 10−3 4.07 · 10−3 1.01 · 10−2

A2
n 8.11 · 10−4 1.50 · 10−3 2.13 · 10−3 2.76 · 10−3

w3

Dn 8.03 · 10−4 1.60 · 10−3 3.05 · 10−3 7.18 · 10−3

W 2
n 9.43 · 10−4 1.71 · 10−3 3.83 · 10−3 9.84 · 10−3

A2
n 8.53 · 10−4 1.30 · 10−3 1.88 · 10−3 2.69 · 10−3

w4

Dn 8.10 · 10−4 1.61 · 10−3 3.06 · 10−3 7.19 · 10−3

W 2
n 9.46 · 10−4 1.71 · 10−3 3.83 · 10−3 9.83 · 10−3

A2
n 8.54 · 10−4 1.30 · 10−3 1.87 · 10−3 2.69 · 10−3

w5

Dn 6.26 · 10−3 1.27 · 10−3 1.24 · 10−3 5.07 · 10−3

W 2
n 4.45 · 10−3 2.07 · 10−3 1.17 · 10−3 5.79 · 10−3

A2
n 1.47 · 10−3 3.73 · 10−4 6.42 · 10−4 2.73 · 10−3

w6

Dn 6.27 · 10−3 1.27 · 10−3 1.24 · 10−3 5.08 · 10−3

W 2
n 4.45 · 10−3 2.05 · 10−3 1.16 · 10−3 5.80 · 10−3

A2
n 1.48 · 10−3 3.73 · 10−4 6.46 · 10−4 2.73 · 10−3

w7

Dn 2.52 · 10−3 1.28 · 10−3 1.55 · 10−3 5.66 · 10−3

W 2
n 2.42 · 10−3 1.39 · 10−3 1.24 · 10−3 7.21 · 10−3

A2
n 1.15 · 10−3 6.36 · 10−4 1.14 · 10−3 2.61 · 10−3

Table 11: Standard deviation of residuals {ε̂j}Jj=1 of the weighted least squares regression of (6) with
weights {wk,j}Jj=1, k = 1, . . . , 7, for statistics Dn, W 2

n , and A2
n. Residuals are presented in four blocks, each

one considering the residuals of the observations whose α value lies within the interval in the column header.
Bold highlights the best-performing weight per statistic and α-block.
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wk Tn
Standard deviation

n ∈ [5, 10) n ∈ [10, 100) n ∈ [100, 300)

w1

Dn 1.28 · 10−2 7.25 · 10−3 4.11 · 10−3

W 2
n 1.96 · 10−2 4.54 · 10−3 8.21 · 10−4

A2
n 7.40 · 10−3 1.43 · 10−3 4.19 · 10−4

w2

Dn 1.28 · 10−2 7.24 · 10−3 4.10 · 10−3

W 2
n 1.96 · 10−2 4.55 · 10−3 8.37 · 10−4

A2
n 7.40 · 10−3 1.43 · 10−3 4.19 · 10−4

w3

Dn 1.26 · 10−2 7.13 · 10−3 4.03 · 10−3

W 2
n 1.92 · 10−2 4.41 · 10−3 8.03 · 10−4

A2
n 7.19 · 10−3 1.32 · 10−3 4.07 · 10−4

w4

Dn 1.27 · 10−2 7.12 · 10−3 4.02 · 10−3

W 2
n 1.92 · 10−2 4.41 · 10−3 8.17 · 10−4

A2
n 7.19 · 10−3 1.32 · 10−3 4.07 · 10−4

w5

Dn 1.07 · 10−2 5.84 · 10−3 3.44 · 10−3

W 2
n 1.66 · 10−2 3.34 · 10−3 7.35 · 10−4

A2
n 7.08 · 10−3 1.12 · 10−3 3.91 · 10−4

w6

Dn 1.07 · 10−2 5.84 · 10−3 3.44 · 10−3

W 2
n 1.66 · 10−2 3.35 · 10−3 7.39 · 10−4

A2
n 7.07 · 10−3 1.12 · 10−3 3.95 · 10−4

w7

Dn 1.13 · 10−2 6.23 · 10−3 3.64 · 10−3

W 2
n 1.76 · 10−2 3.59 · 10−3 7.75 · 10−4

A2
n 7.13 · 10−3 1.16 · 10−3 3.91 · 10−4

Table 12: Standard deviation of residuals {ε̂j}Jj=1 of the weighted least squares regression of (6) with weights
{wk,j}Jj=1, k = 1, . . . , 7, for statistics Dn, W 2

n , and A2
n. The results are divided into three blocks, each one

considering the residuals of the observations whose n value lies within the interval in the column header.
Bold highlights the best-performing weight per statistic and n-block.
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wk Tn
Standard deviation

n ∈ [5, 10) n ∈ [10, 100) n ∈ [100, 300)

w1

Dn 1.21 · 10−3 8.21 · 10−4 5.23 · 10−4

W 2
n 3.03 · 10−3 7.93 · 10−4 5.09 · 10−4

A2
n 2.84 · 10−3 6.96 · 10−4 4.41 · 10−4

w2

Dn 1.19 · 10−3 8.22 · 10−4 5.29 · 10−4

W 2
n 3.01 · 10−3 7.98 · 10−4 5.25 · 10−4

A2
n 2.84 · 10−3 6.96 · 10−4 4.41 · 10−4

w3

Dn 1.26 · 10−3 8.71 · 10−4 5.67 · 10−4

W 2
n 3.19 · 10−3 8.32 · 10−4 5.11 · 10−4

A2
n 3.02 · 10−3 7.33 · 10−4 4.42 · 10−4

w4

Dn 1.23 · 10−3 8.80 · 10−4 5.80 · 10−4

W 2
n 3.17 · 10−3 8.35 · 10−4 5.26 · 10−4

A2
n 3.02 · 10−3 7.33 · 10−4 4.43 · 10−4

w5

Dn 1.18 · 10−2 6.74 · 10−3 4.05 · 10−3

W 2
n 1.78 · 10−2 3.63 · 10−3 7.71 · 10−4

A2
n 5.24 · 10−3 1.26 · 10−3 5.15 · 10−4

w6

Dn 1.17 · 10−2 6.76 · 10−3 4.07 · 10−3

W 2
n 1.79 · 10−2 3.63 · 10−3 7.77 · 10−4

A2
n 5.19 · 10−3 1.27 · 10−3 5.27 · 10−4

w7

Dn 4.34 · 10−3 2.54 · 10−3 1.47 · 10−3

W 2
n 6.30 · 10−3 1.76 · 10−3 5.32 · 10−4

A2
n 3.18 · 10−3 8.83 · 10−4 4.41 · 10−4

Table 13: Standard deviation of upper-tail residuals {ε̂j | αj ≤ 0.25}Jj=1 of the weighted least squares
regression of (6) with weights {wk,j}Jj=1, k = 1, . . . , 7, for statistics Dn, W 2

n , and A2
n. Residuals are presented

in three blocks, each one considering the residuals of the observations whose n value lies within the interval
in the column header. Bold highlights the best-performing weight per statistic and n-block.
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