
Available online at www.sciencedirect.com

ces 31 (2009) 192–208
www.elsevier.com/locate/csi
Computer Standards & Interfa
Secure and efficient group key management with shared key derivation

Jen-Chiun Lin a,⁎, Kuo-Hsuan Huang a, Feipei Lai a,b,c, Hung-Chang Lee d

a Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC
c Grad. Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC

d Department of Information Management, Tamkang University, Taipei, Taiwan, ROC

Received 24 April 2007; received in revised form 13 November 2007; accepted 18 November 2007
Available online 3 December 2007
Abstract

In many network applications, including distant learning, audio webcasting, video streaming, and online gaming, often a source has to send
data to many receivers. IP multicasts and application-layer multicasts provide efficient and scalable one-to-many or many-to-many
communications. A common secret key, the group key, shared by multiple users can be used to secure the information transmitted in the multicast
communication channel. In this paper, a new group key management protocol is proposed to reduce the communication and computation overhead
of group key rekeying caused by membership changes. With shared key derivation, new keys derivable by members themselves do not have to be
encrypted or delivered by the server, and the performance of synchronous and asynchronous rekeying operations, including single join, single
leave, and batch update, is thus improved. The proposed protocol is shown to be secure and immune to collusion attacks, and it outperforms the
other comparable protocols from our analysis and simulation. The protocol is particularly efficient with binary key trees and asynchronous
rekeying, and it can be tuned to meet different rekeying delay or key size requirements.
© 2007 Elsevier B.V. All rights reserved.
Keywords: Secure group communication; Group key management; Key tree; Shared key derivation
1. Introduction

More and more network applications are based on group
communications model [27,39,40], where a message originated
from a member will be delivered to the whole group. Typical
group applications include distant learning, audio webcasting,
video streaming, collaborative work, online gaming, and so on.
Group communications can take advantages of multicast
services, which provide more efficient, best-effort message
delivery from a sender to multiple receivers. In the Internet,
Internet Protocol (IP) multicast protocols, such as DVMRP [17]
and PIM [18,19], have been widely used. Recently, application-
layer multicasts [14] have emerged as an alternative to IP
multicast protocols. Application-layer multicast protocols do
not reply on IP-multicast-enabled routers, but on computers
running the applications, and are suitable for peer-to-peer or
⁎ Corresponding author. Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, ROC.

E-mail address: jenchiunlin@ntu.edu.tw (J.-C. Lin).

0920-5489/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.csi.2007.11.005
wireless ad hoc networks. Security issues become more
important as these applications and protocols become more
mature. In this paper, we propose a new protocol to efficiently
manage a shared group key among group members. The key can
be used to encrypt transmitted data, or other session keys for
group communication confidentiality.

The proposed keymanagement protocol relies on a centralized
key server that coordinates protocol runs to distribute the group
key to group members securely. The server is responsible to
update the group key when members join or leave the group [30].
A secure group key management protocol has to ensure that not
only any user not belonging to the group cannot get the group
keys, but also, for any member, it is computationally infeasible to
derive group keys used before its participation, which means
backward key secrecy, and after its departure, which means
forward key secrecy. If group key secrecy is provided, group
communication secrecy can be provided, since all transmitted
data are protected by the group key.

Key trees [44], or hierarchical key structures, are widely used
to realize efficient group key management. These configurations

mailto:
http://dx.doi.org/10.1016/j.csi.2007.11.005

193J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
provide a scalable way to manage a group key for a large amount
of users. While the group membership changes, usually due to
users participation or members departure, the key server is able to
update the group key with computation and communication costs
logarithmically proportional to the group size. It has a huge
advantage over the simple key distribution center solution. For a
group of N members, the key server needs extra O(N) storage for
all auxiliary keys of the key tree, and each member only has to
store additional O(log N) auxiliary keys. The storage overhead is
acceptable in most circumstances.

Yang and Lam [47] have shown that, when there is only one
key server, the amortized cost of a rekey operation of a group key
management protocol basing solely on encryption cannot be done
in less than Ω(log N) encryptions for a group of N members. The
lower bound of the total number of encryptions implies that key
tree is an ideal hierarchical structure for centralized group key
management, since it can achieve near optimal performance for
group key rekeying. To further reduce the communication and
computation costs of a rekey operation without resorting to a new
kind of key hierarchy, besides encryption and random key
generation, new cryptographic techniques should be used by the
protocol to improve the rekeying performance.

In this paper, a group key management protocol based on
shared key derivation, SKD, is proposed to reduce the
communication and computation overhead of centralized secure
group communication systems with key trees. With shared key
derivation, the server does not have to encrypt and transmit new
keys to members who have enough information to derive the
keys on their own. The protocol can handle synchronous and
asynchronous rekeying operations, and a new k-node insertion
algorithm is designed to further optimize the key tree in batch
update operations. The rest of this section give a brief overview
of related researches on group key management protocols.
Section 2 explains key trees and rekeying operations. Section 3
gives a detailed description of protocol SKD. In Sections 4 and
5, the performance of the protocol and several comparable ones
is analyzed and simulated. Practical issues and tradeoffs are
discussed in Section 6.

1.1. Related work

Centralized protocols are widely used to manage the group
key of a group with a server, which handles requests from all
members, and is responsible for all rekeying. The server can
choose a specialized cryptographic algorithm, such as [46], or it
can use hierarchical structures with symmetric ciphers to share
the group key securely. Wong et al. [44] proposed key graphs
where keys are arranged into a hierarchy, and the key server
maintains all the keys.

The key tree is particularly attractive since each member only
holds the keys along the path, and the joining and leaving
operations only affect the keys along the path. A similar
hierarchical arrangement is also used by LKH [12]. The cen-
tralized tree key management model of VersaKey framework
by Waldvogel et al. [41] also uses binary key trees to manage
group keys. Keystone [45] uses forward error correction (FEC)
to provide reliable group key delivery.
Li et al. [26] gave a detailed discussion about batch rekeying
for LKH. To optimize the performance of rekeying multicast,
Yang and Li designed a R-BFS algorithm to take advantage of
the cluster property of keys in multicast packets, and improve
the performance of FEC multicast transmission [48]. In [50], a
protocol supporting efficient packet encoding scheme was
proposed, and parity packets are added to provide proactive
error correction.

Key tree balancing can be used to improve the performance
of tree-based group key management protocol. Moyer et al. [31]
proposed techniques to keep a centralized binary key tree
balanced. They can either use a modified leaf deletion operation
or a periodic rebalancing approach. Snoeyink et al. [37] showed
that an optimal key distribution tree for a centralized key server
with simple private key encryption is a special case of 2–3 tree.
Goshi and Ladner [11] also proposed algorithms to height-
balance or weight-balance the 2–3 key trees. Ng et al. [32]
proposed merging algorithms to balance key trees.

Sherman and McGrew [2,36] proposed one-way function
trees for efficient key generation. Their work is subject to a
particular kind of collusion attack [13], and an improvement is
done by Ku in [22]. ELK [34] uses key derivations based on
pseudo-random functions, and the authors also implement
recovery mechanisms in their algorithms.

The distributed schemes are often based on the two-party
Diffie-Hellman (2DH) key agreement protocol or its extensions.
Kim et al. [21] propose a tree based group Diffie-Hellman
protocol (TGDH). Distributed group key management protocol
proposed in [28] also uses an extended form of Diffie-Hellman
algorithm. Application class awareness is introduced in [20] for
contributory group key management schemes. Yu, Sun, and Liu
[49] proposed a method that utilizes empty positions in key
trees to optimize the performance of contributory key trees.

Iolus [30] divides the group to subgroups to avoid 1-affect-n
and 1-does-not-equal-n problems occurring in the single group
key schemes, such as LKH. The dual encryption protocol
proposed by Dondeti et al. uses hierarchical subgroups to
achieve scalability [7]. Mykil [15] divides a multicast group to
areas, and there is a controller in every area. A controller runs
LKH to manage the area key for all members in its area. SAKM
[3] also makes the multicast group a hierarchy of subgroups.
Subgroup merge and split mechanisms are provided, so that
subgroups can form cluster dynamically to get the best
performance.

2. Key tree and group key rekeying

We overview the basic concepts of group key management,
key tree [44], and rekeying operations of centralized secure
group communication systems.

2.1. Key tree

A key tree is a hierarchical arrangement of a set of keys.
Nodes of a key tree are called k-nodes. Auxiliary keys are
assigned to internal k-nodes, and individual keys to external k-
nodes. Each external k-node is associated with a unique u-node,

194 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
which represents a particular member in the group. An
individual key is only shared by the server and the correspond-
ing member, and an auxiliary key is shared by members that
belong to the subtree rooted at the k-node of the auxiliary key.
An individual key is established at the time a member joins the
group, and it remains valid until the member leaves. On the
other hand, auxiliary keys are frequently updated and sent to
members to keep group communication secrecy. The root k-
node stores the group key, which is a special auxiliary key
shared by all members.

The requests of join and leave operations have to be
authenticated by the server to ensure that they are coming
from the user herself. To authenticate leave requests is simpler,
since the leaving member can use the individual key to produce a
message authentication code, MAC [35], of its leave request.
The server receives the leave requests with correct MACs can
be sure it is sent by the owners of the individual keys. To
authenticate join requests, the server and each user must have
pre-established knowledge about each other. One widely used
approach is public-key authentication [35], and the server can
verify the signatures of users whose public-key certificates are
trusted. ID-based authentication systems [5,16] can also be
employed. The advantage of ID-based systems is that registered
users use their identifiers as their public keys, and hence no
public-key certificates have to be maintained and distributed.
Password authentications [4,23] are suitable for systems that
require users to enter passwords to login. The server can also
put the individual keys of registered users in temper-resistant
devices, such as Smart Card [25,43], which can help users
perform the authentication operations. In the rest of the paper,
we assume that all requests are authenticated, and put emphasis
on how the keys can be efficiently and securely shared by
members.

Fig. 1 shows typical key trees and the effects of join operations
and leave operations. In the key tree, auxiliary keys are stored in
internal k-nodes, and individual keys are stored in external k-nodes.
In Sections 2 and 3, the key stored in k-node xi,j is usually denoted
by ki,j, where i is the level of the k-node in the key tree, and j is the
index of the k-node relative to the leftmost k-node in the same level.
Fig. 1. Key tress (a) before u9 joins (after u9 le
The level number i and index number j are used to better explain
protocols, algorithms, and examples in the paper. In practice,
servers do not label the k-nodes this way. For example, binary
numbers can be used to encode the positions of k-nodes in a binary
key tree. When k-nodes are external, they store individual keys of
members. An individual key stored in xi,j can also be denoted by
km, if the k-node is associated with member um. The group key kg
can also be represented as k1,1. In the figure, it is clear that to
securely encrypt the new group key and send it to all members, the
server only has to update the additional auxiliary keys on the path of
the join or leave member. Therefore, key tree provides a scalable
way to manage the group key for large dynamic groups.

2.2. Synchronous rekeying and asynchronous rekeying

Ideally, the server has to generate and send new keys to all
members in response to every join or leave request immediately.
The scheme is called synchronous rekeying, since the server
updates the group key for every request without any delay. With
asynchronous rekeying, the server only has to update the group
key in a period of time, the rekeying interval, and it can handle
multiple join and leave requests in the interval. Asynchronous
rekeying can take advantage of the possible overlap of new keys
for multiple requests, and thus has less communication and
computation overhead.

In [26], Li et al. suggested that running asynchronous
rekeying can alleviate the out-of-sync problem the synchronous
rekeying scheme suffers. The out-of-sync problem between
keys and data arises when a member receives a data encrypted
by an old group key, or receives a data encrypted by a new
group key that has not been received yet. With asynchronous
rekeying, the server can make the rekeying interval long
enough, so that all members will receive the rekeying message
before the server performs the next rekeying operation. A
member then only has to store at most one additional old group
key. The drawback of asynchronous rekeying is that it will
enlarge the vulnerability window, which is the period of time
from the key server receiving a join or leave request to all
members receiving the corresponding rekeying message.
aves) (b) after u9 joins (before u9 leaves).

195J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
3. Shared key derivation (SKD) protocol

In this section, we show how existing cryptographic
functions can be used as key derivation functions. Rekeying
operations of the proposed shared key derivation protocol,
SKD, are explained in detail.

3.1. Key derivation function

Key derivation function f(·) is used by the server and group
members to generate new key values based on old keys, which are
called the derivation keys. The basic idea behind shared key
derivation is that, if a new key can be computed by users
themselves, it does not have to be encrypted and sent by the
server. Therefore, shared key derivation can effectively reduce the
communication and computation overhead of rekeying. A good
key derivation function should have the following two criteria.

Criterion 1. [One-way]

Given derivation key k, it is easy to compute f(k), but given f
(k), it is computationally infeasible to compute k.

Criterion 2. [Pseudo-randomness]

Given keys k1, k2,..., kn, if it is computationally infeasible to
compute derivation key k, then it is computationally infeasible
to compute f(k).

The derivation function should be one-way, so that the values
of the derivation keys will not be computed. It should also act
like a pseudo-random number generator, so that the new key
values are unpredictable without knowing the derivation keys.
To avoid producing repetitive key values with the same
derivation key k, a non-zero salt value K can be used to compute

f kPKð Þ;
whereK should be chosen so that it is computationally infeasible
to deduce k from it. The security analysis of SKD is shown in the
Appendix, and we proceed to show that hash functions, pseudo-
random number generators, and one-way trapdoor functions can
be used by key derivation. All these functions produce pseudo-
random results which are indistinguishable and unpredictable
from their inputs, so we focus on the discussion of selecting
appropriate functions to satisfy Criterion 1.

3.1.1. Hash function
SHA-1 [8] and SHA-256 [9] are commonly-used secure hash

functions which output 160-bit and 256-bit digests, respec-
tively. For instance, we can use either one of

f xð ÞuSHAQ1 xð Þ mod 2128;

f xð ÞuSHAQ256 xð Þ mod 2128

to derive 128-bit auxiliary keys. Recent research [42] has shown
that collisions of SHA-1 can be found in reasonable time.
However, we believe that SHA-1 is secure enough for SKD for
two reasons. First, up to now, there is still no literature of how to
find the pre-image x given SHA-1(x) under some specific
constraints. In other words, it is still an open problem whether
we can find an 128-bit x′ given SHA-1(x), it is also not known
how many such x′ can be found. Second, the last 32 bits of the
output of SHA-1(x) is not known if 128-bit keys are used, which
will increase the uncertainty of finding x. To be conservative,
we can choose the more computational intensive SHA-256,
whose collisions are still computationally infeasible to be found.

3.1.2. Pseudo-random number generator
The ANSI X9.17 [35] random number generator is a widely

adopted secure pseudo-random number generating function.
The kernel of the function can use any kind of symmetric block
cipher, such as AES [10]. Given pseudo-random number
generator PRNG(·), we can construct the key derivation function
with AES

f xð ÞuPRNG AES½ � xð Þ;

where x is used as the seed feeding the generator. This function is
one-way because, given f(x), finding x means the symmetric
encryption algorithm, AES, has to be broken.

3.1.3. One-way trapdoor function
One-way trapdoor functions, which are used extensively in

public-key cryptosystems, basing on hard mathematical pro-
blems, can also be used to construct the key derivation function.
The discrete logarithm problem [35] is one good candidate.
Given a large prime p and a generator g over GF[p], the 128-bit
key derivation function can be

f xð Þu gx mod pð Þ mod 2128:

When we choose a 512-bit prime, it is computationally
infeasible to compute the exponent given f(x). One drawback of
these trapdoor functions is that they are considerably slower
than hash functions or symmetric encryption functions.

3.2. Synchronous rekeying operations

The synchronous rekeying scheme supports single join
operation and single leave operation. The server updates keys
according to the join or leave request of a member, and does
not process another request before it finishes the rekeying
operation. In the rest of the section, a key tree (or subtree) whose
root k-node is xi,j is denoted by yi,j, and key ki,j of xi,j is also
called the key of yi,j. The notation [k′]k denotes the cipher text
generated by encrypting key k′ with key k, and it is used
throughout the paper.

3.2.1. Single join operation
Each time a new member wishes to join the group, she sends a

join request to the server. After receiving the request, the server
verifies it, authenticates the identity of the new user, randomly
generates a new individual key for the member, and sends it via a
secure channel. The server then assigns a new u-node to represent
the new member, and creates a new k-node to hold the new

196 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
individual key. The k-node is inserted in the end of one of the
shortest paths of the key tree.

After the new k-node is inserted into the key tree, all auxiliary
keys of the internal k-nodes on the path from the k-node of the new
member to the root must be updated. Fig. 2 shows how these new
keys are computed when a new user u joins. Assume that xh,ph, the
root of subtree yh,ph, is the last internal k-node on the join path.
When xh,ph is not full, the new external k-node, x′h+1,ph + 1

, which
represents u, will be placed under it (Fig. 2(a)). If the last
k-node is full, then a new internal k-node, x′h + 1,ph + 1

, which
replaces the position of old k-node x′h+2,sh + 2

, is created to be the
parent of x′h+2,sh + 2

and the new external k-node, x′h+2,ph + 2
, which

represents u (Fig. 2(b)), where x′h+2,sh + 2
=xh+1,sh + 1

is a child
external k-node of xh,ph. In both scenarios, the new auxiliary key of
k-nodes x′i,pi, 1≤i≤h, can be computed by

k Vi;pi ¼ f ki;pi
� �

;

where ki,pi is the derivation key. In scenario (b), the auxiliary key of
the newly created internal k-node x′h+1,ph + 1

can be computed by

k Vhþ1;phþ1 ¼ f khþ2;shþ2Pkg
� �

;

where kh+2,sh + 2
=kh+1,sh + 1

is the derivation key. The salt value
kg=k1,1 is to ensure that the derived key is different even the same
derivation key is used, since kgwill be different each time. Since old
members who own old derivation keys are able to derive
corresponding new auxiliary keys, the server only has to notify
them the information of the join path, and does not have to send the
new keys to them. Since u does not know any auxiliary key on the
join path, the server encrypts these new keys and sends them to u
via multicast or unicast channels.

We use Fig. 1 to explain the join operation, where the server
handles the join request of new member u9. In the example, a new
k-node x′3,9 is created to hold u9's individual key k9. Auxiliary keys
of k-nodes x′1,1 and x′2,3 on the path are to be updated. According
to Fig. 2(a), new key values are k′1,1=f(k1,1) and k′2,3=f(k2,3).
Fig. 2. Shared key derivation fo
After the new keys are computed, the server continues to send the
rekeying data to group members. The server only has to send the
information about the position of the new k-node of the new
member to notify all old members about the updated path. The
server only encrypts the new keys for the newmember who cannot
derive the keys:

sYu9 : k V1;1
� �

k V2;3
jj k V2;3
� �

k9
:

3.2.2. Single leave operation
When a member wishes to leave the group, she sends a leave

request to the server and then leaves. After receiving the
request, the server has to verify it to ensure that it really comes
from the member. If the verification passes, the server can
continue to finish the leave operation. A member is also
possible to be expelled from the group by the server because of
network failure, member's misbehavior, or other reasons. The
server then removes the u-node of the member and the k-node
associated with the member from the key tree.

After the k-node of the leave member is removed from the
key tree, all auxiliary keys on the path from the position of the
removed k-node to the root have to be updated. Fig. 3 shows the
shared key derivation method used in this operation when user
u leaves. Assume that xh,ph, the root of subtree yh,ph, is the last
internal k-node on the leave path. After the removal of the external
k-node, xh+1,ph + 1

, of u, if xh,ph has more than two children, the old
external node xh,ph will become x′h,ph (Fig. 3(a)); otherwise, xh,ph
will be replaced by the root k-node of the remaining child subtree
yh+1,sh + 1

and becomes x′h,ph (Fig. 3(b)). In scenario (b), no key
derivation is needed and k′h,ph=k′h+1,sh + 1

. The new auxiliary key of
xi,pi, either 1≤ i≤h−1 in scenario (a) or 1≤ i≤h in scenario (b),
can be computed by

k Vi;pi ¼ f kiþ1;siþ1Pki;pi
� �

;

where ki+1,si + 1
is the derivation key. The old auxiliary key ki,pi is

used as a salt value, and this will not cause security problem,
r the single join operation.

197J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
because only members knowing ki+1,si + 1
have enough informa-

tion to compute the corresponding new auxiliary key. This
derivation will only benefit members in the subtree yi+1,si + 1

, and
how to select the subtrees depends on the policy of the server.
After all new keys are computed, they are encrypted and sent to all
members through multicast channels.

We use Fig. 1 to demonstrate how the server handles the
leave request of member u9. After u9 left the group, the
associated k-node x3,9 is no longer needed and is removed. The
auxiliary keys of k-nodes x′1,1 and x′2,3 have to be updated.
Suppose the keys of k-nodes x2,1 and x2,3 are chosen by the
server to derive k′1,1 and k′2,3, respectively, it follows that
k V1;1 ¼ f k2;1Pk1;1

� �
and k V2;3 ¼ f k7Pk2;3

� �
, where k1,1 and k2,3

are salt values. Unlike the join operation, not all old members
can derive the new keys, and the server has to encrypt and send
these keys to members who cannot compute them:

sYu4 � u6 : k V1;1
� �

k2;2

sYu7 : k V1;1
� �

k V2;3
sYu8 : k V1;1

� �
k V2;3

jj k V2;3
� �

k8

:

3.3. Asynchronous rekeying operations

Three operations, the join operation, the leave operation, and
the batch update operation are supported. Among them only the
batch update operation actually updates the group key. During
the rekeying interval, the server queues all join and leave
requests. In the end of the interval, the server updates the key
tree with respect to all the requests, and performs a batch update
operation to send new keys to all group members.

3.3.1. Join operation
This operation is similar to the single join operation, except

that there is no key updates. The server verifies the join request
is authentic, generates a new individual key, and securely sends
Fig. 3. Shared key derivation fo
it to the new member. The member is then queued to wait for the
rekeying message by the next batch update operation. Since the
member will not get the latest group key until the next batch
update operation, the data transmitted during the waiting time
cannot be decrypted. This waiting time can be shortened with
techniques discussed in Section 6.

3.3.2. Leave operation
The conditions to trigger a leave operation are similar to

those of a single leave operation. If the leave member is not a
new member just joining the group in the same interval, the
request is queued, and will be processed in the next batch update
operation. Otherwise, the server ignores both the join and the
leave requests of the member in the interval. This buffering
effect of asynchronous rekeying will improve the performance
of the system, since requests from members staying only short-
term will be filtered out.

3.3.3. Batch update operation
In this operation, the server processes all queued join and

leave requests in the interval, generates new keys, and sends
them to group members. The server first removes all the u-
nodes of leave members and the k-nodes containing their
individual keys. Meanwhile, all k-nodes on the leave paths are
marked LEAVE. If there are new members, their k-nodes are
inserted in the end of one of the shortest paths chosen by the
algorithm in Fig. 4. During the insertion process, all the old k-
nodes on the join path are marked JOIN, and the newly-created
internal k-nodes marked NEW. It should be noted that these
flags are not mutually exclusive. For instance, if a k-node is
marked JOIN and LEAVE, its new auxiliary key will be used by
old and new members.

To compute the new auxiliary keys of the marked internal
k-nodes, the server traverses the key tree bottom-up, and applies
the key derivation algorithm shown in Fig. 5. The key derivation
r the single leave operation.

Fig. 4. Path selection algorithm.

198 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
algorithm of the batch update operation is a generalization of the
derivation methods of the single join operation and the single
leave operation. The derivation method of Fig. 5(a) is analogous
to that of Fig. 3(a), where xi,pi is on the paths of leaving members,
the one of Fig. 5(b) to that of Fig. 2(a), where xi,pi is on the selected
path of joining members, and the one of Fig. 5(c) to that of
Fig. 2(b), where xi,pi is a newly created internal k-node on the
join path. Note that according to the path selection algorithm, at
most one JOIN path will be selected in any rekeying interval. If
there are n newmembers, and the last internal k-node, xh,ph, on the
join path is not full, all new members will be placed in a subtree,
which will be a child of xh,ph. If xh,ph is full, all newmembers and a
selected external k-node, xh+1,sh + 1

, of an old member will be put
in a newly-created subtree, which will be inserted in the original
position of xh+1,sh + 1

. The insertion procedure is a direct extension
of that of the single join operation.

In scenario (a), k-node xi,pi is marked LEAVE, the JOIN
mark is not important and is thus ignored. The server then
selects subtree yi+ 1,si + 1

, which has the most external k-nodes
and is not marked JOIN, among the child subtrees of xi,pi, and
computes the new auxiliary key

k Vi;pi ¼ f kiþ1;siþ1Pki;pi
� �

:

The server will encrypt k′i,pi with the keys of the sibling subtrees
of yi+ 1,si + 1

, and send them by multicasts. In scenario (b), k-node
xi,pi is marked JOIN but not NEW, so it is an old internal k-node.
Its old auxiliary key value is used as the derivation key, and the
server computes

k Vi;pi ¼ f ki;pi
� �

:

The server will encrypt k′i,pi with the key of the child subtree in
which the new members are placed, and send it by unicasts or
multicasts. In scenario (c), k-node xi,pi is newly created. The key
value of the root k-node of subtree yi+1,si + 1

is selected for key
derivation with the following rules. If all child k-nodes of xi,pi
are newly created, the subtree with the most external k-nodes is
selected. The new auxiliary key can be computed by

k Vi;pi ¼ f kiþ1;siþ1PK1

� �
;

where ki+1,si + 1
is the derivation key and a non-zero constant,

K1, is the salt value. If the leftmost child subtree is an external
k-node of an old member, the new auxiliary key is computed by

k Vi;pi ¼ f kiþ1;siþ1Pkg
� �

;

where ki + 1,si + 1
, the individual key of the old member, is the

derivation key and the old group key, kg, is the salt value. The
server will encrypt k′i,pi with the keys of the sibling subtrees of
yi + 1,si + 1

, and send them by unicasts or multicasts.
We can safely use a non-zero constant K1, because the

derivation method of Fig. 5(c) will be applied at most once to
any internal k-node when it is newly created. Since it is possible
that the derivation key of scenarios (a) or (c) is itself a newly
derived key, the server has to use a bottom-up key derivation
order. It guarantees that the server will not reuse an old auxiliary
key value known by a leave member, or use an undefined key
value of a new k-node as a derivation key.

The algorithm can be demonstrated by the example in Fig. 6.
Assume that, in the rekeying interval, member u4 leaves,
and members u8 and u9 join. K-node x3,4 and u-node u4 are
removed, and by the path selection algorithm, old k-node
x3,7=x2,3 and new ones x′3,8, x′3,9 become children of a new
internal k-node x′2,3, which is inserted in the original position
of x2,3. The new keys are k V2;2 ¼ f k3;5Pk2;2

� �
(scenario (b)),

k V2;3 ¼ f k3;7Pkg
� �

(scenario (c)), and k V1;1 ¼ f k2;1Pk1;1
� �

(scenario (c)), where k3,5=k5, k3,7=k7, k2,1 are chosen as
derivation keys, and the old group key kg=k1,1 is used as the salt
value to compute both k′2,3 and k′1,1. These new encrypted keys
are sent to all members:

sYu5 : k V1;1
� �

k V2;2

sYu6 : k V1;1
� �

k V2;2
jj k V2;2
� �

k6

sYu7 : k V1;1
� �

k V2;3

sYu8 : k V1;1
� �

k V2;3
jj k V2;3
� �

k8

sYu9 : k V1;1
� �

k V2;3
jj k V2;3
� �

k9
:

Comparing to three separated join operations and leave
operations, the overlapped keys of k-nodes x′1,1 and x′2,3 are
saved. Though the derivation method of Fig. 5(a) does not
produce as much saving as that of Fig. 5(b), it is used more
frequently in batch update operations, since there will usually be
leave members in a rekeying interval, and a LEAVE mark has
higher priority than a JOIN mark.

4. Communication, computation, and storage costs

Table 1 shows the communication, computation, and storage
costs of SKDC (key star in [44]), LKH [12], OFT [36], ELK
[34], and our protocol SKD. There are five rekeying operations:
single join (SJ), single leave (SL), multiple join (MJ), multiple
leave (ML), and batch update (BU). All the costs are measured
in terms of the number of new keys generated or transmitted,

Fig. 5. Key derivation algorithm for the batch update operation.

199J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
which consume most of the computation power and the
rekeying bandwidth. The one-way function of OFT and the
pseudo-random function of ELK are considered equivalent to
the key derivation function of SKD. For ELK, the hint size is set
to zero, and the left and right child keys are of the same size.
Multicast bandwidth and unicast bandwidth are compared
separately. For asynchronous rekeying operations MJ, ML, and
BU, the server can choose to send keys to new members via
unicast or multicast channel. When the server uses multicast
channels to send the rekeying messages to all new and old
members, the communication costs are shown in multicast all
rows.

In the table, n denotes the group size, j the number of join
members, l the number of leave members. The length of a path
of the key tree of LKH, OFT, ELK, SKD is h, in particular, h2
for binary key trees, and hd for d-ary key trees, and hd=[logdn]
for balanced key trees. Values sL, sJ, and sN represent the
Fig. 6. A batch up
number of k-nodes marked LEAVE, JOIN only, and NEWonly,
respectively. Constant K is the key size, and E, D, F, R denote
the computation costs of encryption, decryption, key derivation,
and random key generation, respectively.

If binary key trees are used, the communication overhead of
SKD is the lowest, with the exception of ELK in join
operations, since ELK does not have to send any information
to members, while SKD still has to multicast join notifications
with the information of join paths, but no keys. However, in
join operations, the server running ELK will compute all
auxiliary keys of the key tree, which consumes lots of
computation power. If sJ and j are set to zero, the costs of
BU and MJ can be compared. Likewise, if sL and l are set to
zero, the costs of BU and ML can be compared. SKD is still the
best choice regarding to multicast communication costs
(multicast and multicast all). LKH with 4-ary key trees requires
the least bandwidth according to [26,44], but the bandwidth
date example.

Table 1
Communication, computation, and storage costs of SKDC, LKH, OFT, ELK, and SKD

Protocol SKDC LKH OFT ELK SKD

Communication costs
SJ Multicast K 2hdK h2K 0 h2

Unicast K hdK h2K h2K hdK
SL Multicast (n−1)K dhdK h2K 2h2K (d−1)hdK
MJ Multicast K n.a. (h2+1)K 0 n.a.

Unicast jK jh2K jh2K
Multicast all jK (2sJ+sN+ j+1)K (sJ+ sN+ j−1)K

ML Multicast (n− l)K n.a. (sL+ l)K 2sLK n.a.
BU Multicast (n− l)K (dsL+2sJ)K n.a. n.a. (d−1)sLK

Unicast jK jhdK jhdK
Multicast all (n− l+ j)K (dsL+2sJ+ sN+ j)K ((d−1)sL+ sJ+ j)K

Computation costs
SJ Server 2E+R hd(2E+R) h2(2E+2F)+2R 2(n+1)F+h2E+R hd(E+F)+R

Old member D hdD h2(D+F) 2h2F hdF
New member D hdD hdD h2D hdD

SL Server (n−1)E+R hd(dE+R) h2(E+2F) h2(2E+7F) hd((d−1)E+F)
Member D hdD h2(D+F) h2(D+4F) hd((d−1)D+F)/d

MJ Server (j+1)E+R n.a. (sJ+ j)(2E+2F)+
E+(j+1)R

2(n+ j)F+(j−1)R+
(sJ+2j−1)E

n.a.

Old member D h2(D+F) h2F
New member D h2D h2D

ML Server (n− l)E+R n.a. sL(E+2F)+ l(E+R) sL(2E+7F) n.a.
Member D h2(D+F) h2(D+4F)

BU Server (n+ j− l)E+R (dsL+2sJ+ sN+ j)E+(sL+ sJ+ sN)R n.a. n.a. ((d−1)sL+ sJ+ j)E+(sL+ sJ+sN)F
Old member D hdD hd((d−1)D+F)/d
New member D hdD hdD

Storage costs
Server (n+1)K (dn−1)K/(d−1) (2n−1)K (2n−1)K (dn−1)K/(d−1)
Member 2K hdK h2K h2K hdK

200 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
reduction by shared key derivation makes binary or ternary key
trees more attractive. In our simulation, we determine the best
tree structure for SKD.

Considering the computation costs of LKH, OFT, ELK, and
SKD, SKD uses about the same number of encryptions as OFT,
about half the number of encryptions as ELK. SKD will likely
have the lowest computation overhead for the server, since a key
derivation replaces a random key generation and a key
encryption. The space requirement of SKDC is the lowest,
and those of LKH, OFT, ELK, and SKD are comparable.

5. Simulation

Protocols LKH, OFT, ELK, and SKD, are implemented in
our simulation. Key trees of degree 2 to 5 are simulated for
LKH and SKD, and a number is attached to the protocol name
to indicate its degree. For example, SKD2 means that the server
runs protocol SKD with binary key tree. OFT and ELK are
designed specifically for binary key trees, so only binary key
trees are used. Single join and single leave operations are
used to evaluate the performance of synchronous rekeying. For
asynchronous rekeying, batch update operations are used
by LKH and SKD. For OFT or ELK, the server queues all
join and leave requests in the interval, and then performs a
multiple leave operation, if there are leave members, and a
multiple join operation, if there are join members, in the end of
the interval.

Session data collected by Mlisten in the MBone [1], which
served as a testbed for the development of multicast protocols
and group conference tools, are used in the simulation. The data
came from the real audio sessions from November 18 to
December 9, 1996. Three longest sessions are chosen, and the
rekeying interval is fixed at 300 s.

5.1. Communication cost

Fig. 7 shows the simulation results of LKH, OFT, ELK, and
SKD. The communication cost of a protocol is measured by the
total number of keys transmitted in the session, and it is
normalized to the number of keys unicast to new members by
the server performing single join operations of LKH2. For all
synchronous and asynchronous rekeying operations, the join
unicast, join multicast, and leave multicast costs represent the
unicast bandwidth overhead due to join requests, multicast
bandwidth overhead due to join requests, and multicast
bandwidth overhead due to leave requests, respectively. For
asynchronous rekeying operations, we also evaluated the
communication costs for multicast only scheme, where the
server uses multicasts to deliver new keys to all new and old
members. The join multicast all, and leave multicast all costs

201J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
represent the multicast bandwidth overhead due to join requests,
and multicast bandwidth overhead due to leave requests,
respectively.

We use an example to show the communication costs of the
asynchronous rekeying operation of Fig. 6. When both unicasts
and multicasts are used, the transmitted keys of join unicast are
[k′1,1]k′2,3, [k′2,3]k8 (u8), and [k′1,1]k′2,3, [k′2,3]k9 (u9); those of leave
multicast are [k′1,1]k′2,2, [k′1,1]k′2,3, and [k′2,2]k6 (u5, ..., u9). When
only multicasts are used to send keys to all members, the
transmitted keys of join multicast all are [k′2,3]k8 and [k′2,3]k9;
those of leave multicast all are [k′1,1]k′2,2, [k′1,1]k′2,3, and [k′2,2]k6. In
both situations, the number of new keys of join multicast is
always zero; the number of new keys on the paths of leaving
members will not be affected by how the server transmits the
keys to new members, so the costs of leave multicast and leave
multicast all are the same.

Though all sessions have different average membership
duration and average inter-arrival time, the simulated results are
quite consistent for most protocols. The unicast communication
bandwidth is used by single join operations. The cost is mainly
determined by the lengths of join paths of new members, and is
thus affected by the degree of the key tree. The results show that
key trees of higher degrees will have lower unicast costs,
because, with the same number of external k-nodes, they will
have a shorter average path length in general.

First of all, we compare the communication costs of LKH
and SKD with key trees of degrees 2 to 5. The following results
can be obtained by inspecting Fig. 7:

a) Comparing the costs of join unicast, the number of keys sent
to new members decreases from 100% to 46% of that of
LKH2 with synchronous rekeying, and from 92% to 46% of
that of LKH2 with asynchronous rekeying. The cost of join
unicast decreases, because the number of keys sent to new
members is dominated by the lengths of the join paths,
which are shorter when the degrees of the key trees are
higher.

b) Comparing the costs of leave multicast, which is equivalent
to leave multicast all, the number of keys sent to old members
increases from 50% to 97% of that of LKH2 with
synchronous rekeying, and from 50% to 88% of that of
LKH2with synchronous LKH2with asynchronous rekeying.
The cost of leave multicast increases with the degree,
because, for any newly derived auxiliary key k of k-node x,
the server has to encrypt k with individual keys or auxiliary
keys of all child subtrees of x except the one whose key is the
derivation key.

c) With asynchronous rekeying, the server can send the
encrypted keys which are planned to be sent to new
members by unicasts (join unicast), and those planned to be
sent to old members by multicasts (leave multicast) together
by multicasts (join multicast all+ leave multicast all). The
cost of join multicast all decreases from 51% to 26% of that
of LKH2 with asynchronous rekeying. However, the
decrease cannot balance the increasing overhead of the
cost of updating the auxiliary keys due to leaving members
(leave multicast all).
From results (a) and (b), comparing to higher degree key
trees, binary key trees result in lower multicast communication
overhead (leave multicast) and higher unicast communication
overhead (join unicast). Binary key trees are the better choice,
since often we will sacrifice unicast performance for better
multicast performance due to the much higher overhead of
multicasts. From results (b) and (c), it is very clear that, if the
server uses multicasts to send encrypted keys to all members
(join multicast all+ leave multicast all), binary key trees are
better than the higher degree ones. No matter which degree we
choose, SKD performs better than its LKH counterpart.
Therefore, SKD2 will be the best choice with the lowest
communication overhead, which conforms with the expected
communication costs listed in Table 1.

Since the best configuration of SKD and LKH is SKD2, we
further compare its communication costs with those of OFT and
ELK, which both use binary key trees, and the communication
cost of LKH2 is used as the referenced benchmark. The
following results can be obtained by inspecting Fig. 7:

d) Comparing the costs of join unicast, the numbers of keys
sent to new members are the same for all protocols with
synchronous rekeying, and SKD2 achieves the most reduc-
tion, approximately 7% of the number of LKH2 with
asynchronous rekeying. With asynchronous rekeying, SKD2
can use the derivation method of 4(c) to further reduce the
number of keys when there are multiple new members in a
rekeying interval, but the performance improvement isminute.

e) Comparing the cost of leave multicast, which is equivalent
to leave multicast all, SKD2 and OFT both reduce 50% of
the communication cost of LKH2 with synchronous
rekeying, while ELK performs the same as LKH2. SKD2,
OFT, and ELK lower the communication costs to 50%, 55%,
99% of that of LKH2 with asynchronous rekeying. OFT has
to use about 5% more keys due to leaving members, since it
has to randomly generate new individual keys for old
members who are the siblings of the leaving ones. Addi-
tionally, new auxiliary keys generated due to adding new
members also have to be multicast to old members (join
multicast), which dramatically increases the multicast
communication overhead.

f) With asynchronous rekeying, when the encrypted keys
needed by new members (join multicast all) are sent with
those needed by old members (leave multicast all) by
multicasts, SKD2 and ELK reduce the costs of join multicast
all to 50% and 85%, respectively, of that of LKH2, but OFT
sends 86% more keys than LKH2 does. Comparing the costs
of sending keys with multicasts only (join multicast all+ leave
multicast all), SKD2, ELK and OFT lower the numbers of
transmitted keys to 50%, 93%, and 93%, respectively, of that
of LKH2.

From results (d), (e), and (f), ELK has good performance in
updating keys generated due to new members, but does not do
well in updating keys generated due to leaving members. The
results of OFT are the exact opposite of those of ELK. Therefore,
SKD2 is obviously the best choice.

Fig. 7. Communication costs of LKH, OFT, ELK, and SKD.

202 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
Depending on different sessions and protocols, the
bandwidth reduction of batch rekeying can be more than
70%. It is found that, for all three sessions, the buffering of
asynchronous rekeying filters out about 41% to 58% of the
requests. More multicast bandwidth is saved by overlapping
join paths with leave paths. The actual distribution of join
events and leave events will determine how these two factors
affect the total bandwidth reduction. Therefore, among
the four protocols, SKD2 is better than LKH2, OFT, and
ELK, and the performance gain is greater with asynchronous
rekeying.

Comparing the bandwidth reduction of asynchronous
rekeying over synchronous rekeying, it can be observed that
LKH and SKD provide greater reduction on join multicast costs
than OFT and ELK, since LKH and SKD both directly support
batch update operations, which provide more reduction than
multiple join and multiple leave operations. The join multicast
and join multicast all costs show that batch update operations

Table 2
Computation cost of LKH, OFT, ELK, SKD

LKH2 OFT ELK SKD2 LKH3 LKH4 LKH5 SKD3 SKD4 SKD5

Session 1
Synchronous Random key generation 1.000 0.173 0.086 0.000 0.683 0.560 0.489 0.000 0.000 0.000

Key derivation 0.000 2.000 29.555 1.000 0.000 0.000 0.000 0.683 0.560 0.489
Key encryption 2.000 1.544 1.456 1.000 1.626 1.582 1.597 0.943 1.022 1.109

Asynchronous Random key generation 0.335 0.074 0.000 0.000 0.221 0.180 0.156 0.000 0.000 0.000
Key derivation 0.000 0.836 9.967 0.335 0.000 0.000 0.000 0.221 0.180 0.156
Key encryption 0.670 0.633 0.650 0.335 0.583 0.585 0.597 0.361 0.405 0.441

Session 2
Synchronous Random key generation 1.000 0.207 0.103 0.000 0.699 0.572 0.530 0.000 0.000 0.000

Key derivation 0.000 2.000 19.860 1.000 0.000 0.000 0.000 0.699 0.572 0.530
Key encryption 2.000 1.554 1.446 1.000 1.651 1.587 1.698 0.952 1.016 1.168

Asynchronous Random key generation 0.309 0.078 0.000 0.000 0.202 0.166 0.145 0.000 0.000 0.000
Key derivation 0.000 0.758 5.991 0.309 0.000 0.000 0.000 0.202 0.166 0.145
Key encryption 0.617 0.583 0.596 0.309 0.535 0.534 0.543 0.333 0.368 0.397

Session 3
Synchronous Random key generation 1.000 0.263 0.132 0.000 0.708 0.582 0.516 0.000 0.000 0.000

Key derivation 0.000 2.000 13.899 1.000 0.000 0.000 0.000 0.708 0.582 0.516
Key encryption 2.000 1.568 1.432 1.000 1.650 1.577 1.601 0.943 0.994 1.086

Asynchronous Random key generation 0.284 0.085 0.000 0.000 0.194 0.161 0.140 0.000 0.000 0.000
Key derivation 0.000 0.652 3.980 0.284 0.000 0.000 0.000 0.194 0.161 0.140
Key encryption 0.568 0.510 0.490 0.284 0.482 0.474 0.473 0.289 0.313 0.333

Table 3
Execution time (Seconds/1,000,000 computations)

Key size (bit) 128 256

R: random key generation (X9.17 with AES) 1.656 3.218
F: key derivation (SHA-1/SHA-256) 1.140 1.907
E: key encryption (AES) 0.516 0.953
D: key decryption (AES) 0.797 1.437

203J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
generate less new keys than single join operations, since the
join paths overlap the leave paths, and the new keys on the
overlapped paths are already counted as the leave multicast
costs.

5.2. Computation cost

The numbers of random key generations, key derivations,
and key encryptions are used to measure the computation costs
of LKH, OFT, ELK, and SKD, and the results are listed in
Table 2. All these numbers are normalized to the number of
random keys generated by the server running LKH2 with
synchronous rekeying.

From the simulation results, it can be verified that random
key generations of LKH are totally replaced by key derivations
of SKD. The decryption counts of SKD are less than those of
LKH, and the differences are exactly their respective key
derivation counts of SKD. SKD and LKH have the lowest
computation overhead when binary key trees and 4-ary key
trees are used respectively.

The server running OFT has to encrypt new keys for joins
and leaves, but it can save about half of the number of
encryptions needed by a leave operation of LKH2. The server
running ELK needs fewer number of encryptions because in
join operations, the server only has to encrypt new keys for new
members. Comparing to OFT, SKD uses fewer encryptions in
join operations, and to ELK, SKD uses fewer encryptions in
leave operations. Therefore, regarding the encryption costs,
OFT and ELK are better than LKH, but worse than SKD. Since
the server running ELK has to recompute all keys of the key tree
for join requests, it will do an excessive amount of computation,
especially when the group becomes larger. Whether the extra
computation of ELK is justifiable depends on the applications,
but we believe that the use of asynchronous rekeying operations
makes ELK's approach less attractive.

We use the software implementation of random number
generators, hash functions, and symmetric ciphers of crypto-
graphic library Crypto+ [6] to evaluate the computation time of
these functions. AES [10] is chosen as the encryption and
decryption algorithms, as it supports both 128-bit and 256-bit
keys. We use the ANSI X9.17 [35] random number generator
with block cipher AES. SHA-1 [8] and SHA-256 [9] are used as
the key derivation functions for 128-bit and 256-bit keys,
respectively. Table 3 lists the execution time of each function
run on a 2.4 GHz Pentium 4 PC.

The total computation time of a protocol is estimated by nRR+
nFF+nEE, where nR, nF, and nE are the numbers of random
key generations, key derivations, and key encryptions performed
by the server, respectively. Table 4 shows the average
computation time, which is normalized to that of LKH2 with
128-bit keys, of three sessions of each protocol. As expected,
with 256-bit keys, the server approximately needs twice as
much computation power as the one with 128-bit keys, and the
asynchronous rekeying protocols are all better than their
synchronous versions. Though key trees of higher degrees

Table 4
Estimated server computation time

Protocol LKH2 OFT ELK SKD2 LKH3 LKH4 LKH5 SKD3 SKD4 SKD5

128-bit key Synchronous 1.00 1.28 9.29 0.62 0.74 0.66 0.63 0.48 0.44 0.43
Asynchronous 0.31 0.48 2.93 0.19 0.23 0.21 0.19 0.15 0.14 0.14

256-bit key Synchronous 1.91 2.23 15.6 1.06 1.42 1.24 1.19 0.83 0.76 0.76
Asynchronous 0.60 0.83 4.92 0.33 0.43 0.39 0.37 0.26 0.25 0.24

204 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
will need less computation power, they will require more
rekeying bandwidth. Therefore, SKD2 should be chosen. SKD2
has the lowest communication cost, and it is faster than LKH2,
OFT, and ELK that use binary key trees.

6. Practical issues and tradeoffs

Practical issues, such as reliable rekeying, and tradeoffs, in-
cluding rekeying delay and key size, are discussed in this section.

6.1. Reliable multicast rekeying

Reliable multicast with forward error correction (FEC) has
been studied extensively [33,24]. Though more bandwidth is
consumed to transmit additional FEC packets, receivers are
more likely to be able to correct errors, reconstruct the original
message by receiving enough packets, and avoid asking the
source to retransmit. This approach works well for a large
amount of receivers. Recently, reliable multicast is used to
provide reliable rekeying service in [48] and [50]. SKD can take
advantage of the reliable multicast rekeying techniques to
further improve the performance of group key rekeying.

6.2. Rekeying delay

One problem of asynchronous rekeying is the delayed
rekeying of join requests. A new member may wait for the entire
rekeying interval before the new group key is received. The delay
is particularly unacceptable when the rekeying interval is too
long. The improved scheme of LKH, the LKH+ [12], uses a
suitable function to compute the new group key whenever a new
member joins. The server then sends the new key to newmember,
and multicasts a notification message to other members so that
they can compute the new group key themselves. OFT+ also uses
a similar scheme.

The method shown in Fig. 8 is designed for SKD to shorten
the rekeying delay. Suppose the rekeying interval is divided into
n sub-intervals, and the latest group key is kg, which is available
Fig. 8. Sub-intervals and group key der
to all members. Group key kg is not used directly, but it is used
to derive the temporary group key

ki ¼ f i kg
� �

of each sub-interval i=1,…, n. The server and all members are
able to compute these keys. If a new member joins the group in
some sub-interval, the temporary group key is unicast to the
new member. The new member can compute the temporary
group keys of later sub-intervals by itself. If there are members
leaving the group, the derivation algorithm in Fig. 5 will be
used. Otherwise, the next batch update operation will compute a
new key

k Vg ¼ f kgPK2

� �
;

where K2 is a predefined non-zero constant. The minor
modification ensures that new members without kg cannot
compute the new key k′g from any f i(kg). Even if a new member
leaves before the end of the rekeying interval, k′g is not derivable
and forward group key secrecy is preserved.

6.3. Key size

The protocol can use keys shorter than the default key size of
the chosen encryption algorithm. Shortened keys are stored,
encrypted, or transmitted, and the corresponding encryption
keys are generated on-the-fly. Extension function g(∙) is used to
transform a shortened key k to an encryption key

k V¼ g kð Þ;
where |k|b |k′|. This approach basically trades off computation
power for storage and bandwidth. However, the system
becomes less secure due to the smaller effective key size.

7. Conclusion

In this paper, a group key management protocol based on
novel shared key derivation methods is proposed to reduce the
ivations for new and old members.

Fig. 9. A key dependency graph example.

205J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
communication and computation overhead of centralized secure
group communication systems with key trees. With shared key
derivation, the server does not have to encrypt and transmit
new keys to members who have enough information to derive the
keys by themselves. With strong encryption function and key
derivation function, protocol SKD is provably secure. It is shown
in our analysis and simulation that, comparing to LKH, OFT, and
ELK, SKD requires the least communication bandwidth and
computation power, and the protocol is most efficient with binary
key trees and asynchronous rekeying. The protocol supports
synchronous and asynchronous rekeying operations, and, with
minor modification, the rekeying delay and the key size of the
protocol can be tuned to meet different system needs.

In many network applications, often a source has to send data
to many receivers. IP multicasts and application-layer multi-
casts provide efficient and scalable one-to-many or many-to-
many communications. The proposed group key management
protocol is designed for multiple users to share a common secret
key securely and efficiently, and can be easily adopted by large-
scaled network applications requiring secure data distribution,
such as distant learning, audio broadcasting, video streaming,
and online gaming. To support massive-scaled communications,
to increase fault-tolerance, to bridge the gaps between networks
separated by firewalls, or to promote fairness in peer-to-peer
environments, users might have to form interconnected or
hierarchical subgroups. Every subgroup can assign its own key
server, which can be a dedicated server, or a peer, to manage the
shared subgroup key with protocol SKD, and then collaborates
with other subgroups to provide secure group communications.

Acknowledgment

The authors would like to thank Professor K. C. Almeroth
for providing the audio session data collected in the MBone.

Appendix

Security analysis

In the analysis, we will prove that the proposed protocol is
immune to collusion attacks, and provides backward and
forward group key secrecy. There are two ways for a member to
get a new auxiliary key. They can either decrypt the encrypted
key in a rekeying message sent by the server, or compute the
new key using key derivation functions.

If the server sends an encrypted key [k′]k, a decryption
dependency k �0 k V is created, since members knowing key k
will be able to decrypt key k′. However, it is assumed that
adversaries can get all encrypted keys, which are transmitted by
the server over insecure unicast or multicast channels. There-
fore, only the decryption key k is crucial in our analysis.

If key k′ is derived with derivation key k, it creates a
derivation dependency k �0 k V. Though salt values are used in
key derivations to avoid producing repetitive key values, they
do not introduce additional dependencies, since, according to
the protocol, a member knowing a derivation key must also
know the salt values, which are old keys or constants.
Key dependency graphs extend the concept of encryption
graphs of [47], such that all individual keys and auxiliary keys
are modeled as nodes, and all key dependencies are modeled as
directed edges. In the following discussion, we implicitly
assume that all keys and dependencies are generated by the
server or users running protocol SKD. In these graphs, we do
not distinguish derivation dependencies and decryption depen-
dencies, since both kinds of dependencies are treated equally by
the lemmas and theorems.

Definition 3. (Rekeying dependency graph)

A rekeying dependency graph Gn, n≥ 0, is a key
dependency graph with vertices V(Gn) containing all the
new individual keys, the derivation keys, the decryption keys,
and the newly derived keys in the nth rekeying operation
(single join, single leave, or batch update), and edges E Gnð Þ ¼
k; k Vð Þjk �0 k V1k; k VaV Gnð Þf g.
In the rest of the analysis, it is assumed that the server does

not have pre-initialized individual keys and auxiliary keys, so
G0=ϕ.

Definition 4. (Rekeying dependency history graph)
A rekeying dependency history graph Hn, n≥0, is defined by

Hn ¼ [n
i¼0Gi.

Definition 5. (Key owner set)
Key owner set S of key k is the set of users who knows k by the

protocol.

Definition 6. (Ascendant key)
Key k is said to be an ascendant key of k′, denoted by k � k V,

if and only if there are m keys, m≥0, such that

k �0 k1 �0
: : : �0 km �0 k V:

When m=0, k is an immediate ascendant key of k′.
Fig. 9 gives a key dependency graph example according to the

batch update example in Fig. 6. Assuming that the batch update
operation is the nth rekeying operation. The dashed arrows
represent a subset of the dependencies ofHn−1. The solid arrows
represent all dependencies created by the batch update operation.
Then, V(Gn)={k5, k6, k7, k8, k9, k2,1, k′2,2, k′2,3, k′1,1}, E(Gn)=
{(k5,k′2,2), (k6,k′2,2), (k7,k′2,3), (k8,k′2,3), (k9,k′2,3), (k2,1,k′1,1),
(k′2,2,k′1,1), (k′2,3,k′1,1)}. In the example, k5 � k V1;1, and key owner
sets S5 of k5 and S′2,2 of k′2,2 are {u5} and {u5,u6}, respectively.

Since the single join operation and the single leave operation
can be viewed as special cases of the batch update operation, we
only have to discuss the three derivation methods in Fig. 5. Both

206 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
derivation methods of Fig. 5(a) and (c) produce one derivation
dependency, kiþ1;siþ1 �0 k Vi;pi , and m−1 decryption dependen-
cies, kiþ1;tj �0 k Vi;pi , where m is the number of children of x′i,pi
and tj, 0b jbm, is the index of sibling key tree of yi+1,si + 1

. The
derivation method of Fig. 5(b) produces one derivation
dependency, ki;pi �0 k Vi;pi , and one decryption dependency,
kiþ1; j �0 k Vi;pi , where j is the index of the child subtree of x′i,pi
containing the new members. Generally speaking, given all
immediate ascendant keys, ka1,..., kam, of auxiliary key k′, and
their respective key owner sets Sa1,..., Sam, S′, we have

S V¼ [m
i¼1

Sai ; ð1Þ

and Sai \ Saj ¼ / for all 0b i, j≤m, i≠ j. Since every new
auxiliary key has at least two immediate ascendant keys (m≥2)
whose key owner sets are not empty, it follows that

SaioS V; ð2Þ
for all 0b i≤m. For instance, in Fig. 9, since S V2;2 ¼ S5 [S6 and
S V1;1 ¼ S2;1 [S V2;2 [S V2;3, we find that S5oS V2;2 and S V2;2oS V1;1.

Criterion 7. (Invariance of key owner set)
Given two rekeying dependency history graphsHm,Hn,mbn, of

the server running protocol SKD, and keys kaV Hmð Þ, k VaV Hnð Þ,
and their respective key owner sets S, S′, if k=k′, then S=S′.

Criterion 7 states that, for every key k, the users who know it
are entirely determined by the time the key is created, and the key
owner set S is final with respect to future rekeying operations.
The key owner set of any key will not be changed after the key is
created, which implies that Eq. (2) will always be true for all
individual keys and auxiliary keys. The rekeying operations in
Section 3 can be verified that (a) no members will derive an
auxiliary key which has already been used by the others, and
(b) the server will not encrypt an auxiliary key which has already
been used by some members, and send it to them.

Lemma 8. Given rekeying dependency history graph Hn, nN0,
two keys k, k VaV Hnð Þ, and their respective key owner sets S, S′, if
k � k V, then SoS V.

Proof. If k �0 k V, the lemma is true from Eq. (2). Otherwise,
there exist keys k1,..., km in V(Hn), mN0, such that

k �0 k1 �0
: : : �0 km �0 k V:

From Eq. (2) and Criterion 7, it can be concluded that

SoS1o: : :oSmoS V;

where Si is the key owner set of ki, for all 1≤ i≤m. □

Theorem 9. Protocol SKD is immune to collusion attacks.

Proof. To prove that our protocol is immune to collusion
attacks, it only has to be shown that several members cannot use
their combined knowledge to compute a key that they do not
already know [29,38]. We prove the theorem by contradiction.

Assume that after n rekey operations, a set of malicious
users, M, can successfully collude to find key k VaV Hnð Þ that
they should not know according to the protocol. Since k′ should
not be known by the protocol, the key owner set S′ should not
include any user in M, that is,

M \ S V¼ /: ð3Þ
To be able to compute k′ without breaking the key derivation

algorithm or the key encryption algorithm, at least one user
uaM has to know some key kaV Hnð Þ, such that k � k V. From
Lemma 8,

uf gaSoS V; ð4Þ
where S is the key owner set of k. It follows that Eq. (4)
contradicts Eq. (3), which completes the proof. □

Agroup keymanagement protocol is said to provide backward
group key secrecy,when a newmemberwho joins the group in the
nth rekeying operation cannot collude with users who do not
know kgi to compute the past group keys generated in the ith, ibn,
rekeying operation. The protocol is said to provide forward group
key secrecy, when a member who leaves the group in the nth
rekeying operation cannot collude with users who do not know kgj
to compute the future group keys generated in the jth, j≥n,
rekeying operation. A protocol providing backward and forward
group key secrecy ensures that users know the group keys only
when they are members of the group.

Theorem 10. Protocol SKD provides backward and forward
group key secrecy.

Proof. Let kgi be the group key generated in the ith rekeying
operation, and u be a member joining the group in the nth
rekeying operation, where ibn. Assume that, according to the
protocol, user u and several other users who do not know kgi try
to compute kgi. By Theorem 9, the collusion attack will fail.
Therefore, protocol SKD provides backward group key secrecy.

Let kgj be the group key generated in the jth rekeying
operation, and u be a member leaving the group in the nth
rekeying operation, where j≥n. Assume that, according to the
protocol, user u and several other users who do not know kgj try to
compute kgj. By Theorem 9, the collusion attack will fail. There-
fore, protocol SKD provides forward group key secrecy. □
References

[1] K.C. Almeroth, M.H. Ammar, Collecting and modeling the join/
leave behavior of multicast group members in the MBone, Proceedings of
the Symposium on High Performance Distributed Computing, IEEE, 1996.

[2] D. Balenson, D. McGrew, A. Sherman, Internet-draft: key management
for large dynamic groups: one-way function trees and amortized initial-
ization, Internat Draft, IRTF, August 2000, http://www.securemulticast.
org/smug3-balenson.pdf.

[3] Y. Challal, H. Bettahar, A. Bouabdallah, SAKM: a scalable and adaptive
key management approach for multicast communications, SIGCOMM
Computer Communications Review 34 (2) (2004) 55–70.

[4] T.-H. Chen, W.-B. Lee, G. Horng, Secure sas-like password authentication
schemes, Computer Standards& Interfaces, Elsevier Science 27 (2004) 25–31.

[5] Y.F. Chung, K.H. Huang, F. Lai, T.S. Chen, Id-based digital signature
scheme on the elliptic curve cryptosystem, Computer Standards &
Interfaces, Elsevier Science 29 (2007) 601–604.

[6] W. Dai, Crypto++ library, URL: http://www.cryptopp.com/.
[7] L. Dondeti, A. Samai, S. Mukherjee, A dual encyrpion protocol for

scalable secure multicasting, The Fourth IEEE Symposium on Computers
and Communications, Red Sea, Egypt, 1999.

http://www.securemulticast.org/smug3-balenson.pdf
http://www.securemulticast.org/smug3-balenson.pdf
http://www.cryptopp.com/

207J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
[8] FIPS 180-1, Secure Hash Standard (SHS) (April 1995).
[9] FIPS 180-2, Secure Hash Standard (SHS) (August 2002).
[10] FIPS 197, Advanced Encryption Standard (AES) (May 2002).
[11] J. Goshi, R.E. Ladner, Algorithms for dynamic multicast key distribution

trees, Proceedings of the Twenty-Second Annual Symposium on
Principles of Distributed Computing, ACM Press, Boston, Massachusetts,
2003.

[12] H. Harney, E. Harder, Logical key hierarchy protocol, Internat Draft, IETF,
Expired in August 1999, April 1999, http://tools.ietf.org/html/draft-harney-
sparta-lkhp-sec-00.

[13] G. Horng, Cryptanalysis of a key management scheme for secure multicast
communications, IEICE Transcations on Communication E85-B (5) (2002)
1050–1051.

[14] M. Hosseini, D.T. Ahmed, S. Shirmohammadi, N.D. Georganas, A survey
of application-layer multicast protocols, IEEE Communications Surveys &
Tutorials 9 (3) (2007) 58–74.

[15] J.-H. Huang, S. Mishra, Mykil: a highly scalable key distribution protocol
for large group multicast, IEEE 2003 Global Communications Conference
(GLOBALCOM 2003), San Francisco, CA, 2003.

[16] M.-S. Hwang, J.-W. Lo, S.-C. Lin, An efficient user identification scheme
based on id-based cryptosystem, Computer Standards & Interfaces,
Elsevier Science 26 (2004) 565–569.

[17] IETF, RFC1075: Distance Vector Multicast Routing Protocol (November
1988).

[18] IETF, RFC2362: Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification (June 1998).

[19] IETF, RFC3973: Protocol Independent Multicast — Dense Mode (PIM-
DM): Protocol Specification (January 2005).

[20] R. Ingle, G. Sivakumar, Tunable group key agreement, Proceedings of the
32nd IEEE Conference on Local Computer Networks, IEEE Computer
Society, 2007.

[21] Y. Kim, A. Perrig, G. Tsudik, Simple and fault-tolerant key agreement for
dynamic collaborative group, Proceedings of ACM CCS (CCS-7), ACM
(Association of Computing Machinery), 2000.

[22] W.-C. Ku, S.-M. Chen, An improved key management scheme for large
dynamic groups using one-way function trees, Proceedings of the IEEE
International Conference on Parallel Processing Workshops, 2003.

[23] J.O. Kwon, I.R. Jeong, K. Sakurai, D.H. Lee, Efficient verifier-based
password-authenticated key exchange in the three-party setting, Computer
Standards & Interfaces, Elsevier Science 29 (2007) 513–520.

[24] M.S. Lacher, J. Nonnenmacher, E.W. Biersack, Performance comparison
of centralized versus distributed error recovery for reliable multicast, IEEE/
ACM Transactions on Networking 8 (2) (2000) 224–238.

[25] N.-Y. Lee, Y.-C. Chiu, Improved remote authentication scheme with smart
card, Computer Standards & Interfaces, Elsevier Science 27 (2005)
177–180.

[26] X.S. Li, Y.R. Yang, M.G. Gouda, S.S. Lam, Batch rekeying for secure
group communications, Proceedings of the 10th International Conference
on World WideWeb, ACM Press, 2001.

[27] T. Liao, Webcanal: a multicast web application, Proceedings of the Sixth
Intenational WWW Conference, Santa Clara, California, 1997.

[28] J.C. Lin, C.Y. Chou, F. Lai, K.P. Wu, A distributed key management
protocol for dynamic groups, Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks, IEEE Computer Society, 2002.

[29] S.H. Low, N.F. Maxemchuk, S. Paul, Anonymous credit cards and their
collusion analysis, IEEE/ACM Transactions on Networking 4 (6) (1996)
809–816.

[30] S. Mittra, Iolus: a framework for scalable secure multicasting, Proceedings
of the ACM SIGCOMM'97, ACM, 1997, pp. 277–288.

[31] M. Moyer, J. Rao, P. Rohatgi, Maintaining balanced key trees for secure
multicast, IETF, draft-irtf-smug-key-tree-balance-00.txt, June 1999, http://
tools.ietf.org/html/draft-irtf-smug-key-tree-balance-00.

[32] W.H.D. Ng, M. Howarth, Z. Sun, H. Cruickshank, Dynamic balanced key
tree management for secure multicast communications, IEEE Trans. on
Computers 56 (5) (2007) 590–605.

[33] J. Nonnenmacher, E.W. Biersack, D. Towsley, Parity-based loss recovery
for reliable multicast transmission, IEEE/ACM Transactions on Network-
ing 6 (4) (1998) 349–361.
[34] A. Perrig, D. Song, J.D. Tygar, ELK: a new protocol for efficient large-
group key distribution, Proceedings of the IEEE Security and Privacy
Symposium, 2001.

[35] B. Schneier, Applied cryptography, 2nd edition, John Wiley & Sons, Inc.,
1996.

[36] A.T. Sherman, D.A. McGrew, Key establishment in large dynamic groups
using one-way function trees, IEEE Transactions on Software Engineering
29 (5) (2003) 444–458.

[37] J. Snoeyink, S. Suri, G. Varghese, A lower bound for multicast key
distribution, Proceedings of IEEE INFOCOM, vol. 1, IEEE (Institute of
Electrical and Electronics Engineers, Inc.), 2001.

[38] N.F.M. Steven, H. Low, An algorithm to compute collusion paths,
INFOCOM 1997, Kobe, Japan, 1997.

[39] T. Tung, Mediaboard: a shared whiteboard application for the mbone,
Master's thesis, U.C. Berkeley (1998).

[40] T. Turletti, C. Huitema, Video-conferencing on the internet, ACM/IEEE
Trans. Networking 4 (3) (1996) 340–351.

[41] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, B. Plattner, The VersaKey
framework: versatile group key management, IEEE JSAC 17 (9).

[42] X. Wang, Y.L. Yin, H. Yu, Finding collisions in the full SHA-1, Advances
in Cryptology— CRYPTO'05, LNCS, Springer-Verlag, 2005, pp. 17–36.

[43] X.-M. Wang, W.-F. Zhang, J.-S. Zhang, M.K. Khan, Cryptanalysis and
improvement on two efficient remote user authentication scheme using
smart cards, Computer Standards & Interfaces, Elsevier Science 29 (2007)
507–512.

[44] C. Wong, M. Gouda, S. Lam, Secure group communications using key
graphs, Proceedings of the ACM SIGCOMM'98, ACM, 1998, pp. 68–79.

[45] C.K. Wong, S.S. Lam, Keystone: a group key management service,
International Conference on Telecommunications, ICT 2000, IEEE, 2000.

[46] K.P. Wu, S.J. Ruan, F. Lai, C.K. Tseng, On key distribution in secure
multicasting, Proceedings of the 25th Annual IEEE Conference on Local
Computer Networks, IEEE Computer Society, 2000.

[47] Y.R. Yang, S.S. Lam, A secure group key management protocol
communication lower bound, Tech. rep. TR2000-24, Dept. of Computer
Sciences, University of Texas at Austin, July 2000.

[48] Y.R. Yang, X.S. Li, X.B. Zhang, S.S. Lam, Reliable group rekeying:
design and performance analysis, Proceedings of ACM SIGCOMM '01,
San Diego, CA, 2001.

[49] W. Yu, Y. Sun, K.R. Liu, Optimizing the rekeying cost for contributory
group key agreement schemes, IEEE Trans. On Dependable and Secure
Computing 4 (3) (2007) 228–242.

[50] X.B. Zhang, S.S. Lam,D.-Y. Lee, Y.R.Yang, Protocol design for scalable and
reliable group rekeying, IEEE/ACM Transactions on Networking 11 (6)
(2003) 908–922.

Jen-Chiun Lin received a B.S. degree and a M.S.
degree in Electrical Engineering from National Taiwan
University in 1995 and 1997, respectively. He is
currently a Ph.D. candidate in Computer Science
Division of the Electrical Engineering Department in
National Taiwan University. His research interests
include network security, cryptography, distributed
systems, and wireless mobile ad hoc networks.
Kuo-Hsuan Huang received the B.S. and the M.S.
degrees from Dayeh University in 2001 and 2003
respectively, both in Computer Science and Information
Engineering, Taiwan. He is currently a Ph.D. candidate in
Computer Science of the Electrical Engineering Depart-
ment in National Taiwan University, and doing research,
i.e., information security, cryptography, and medical
security.

mailto:
mailto:
http://tools.ietf.org/html/draft-irtf-smug-key-tree-balance-00
http://tools.ietf.org/html/draft-irtf-smug-key-tree-balance-00

208 J.-C. Lin et al. / Computer Standards & Interfaces 31 (2009) 192–208
Feipei Lai received a B.S.E.E. degree from National
Taiwan University in 1980, and M.S. and Ph.D.
degrees in Computer Science from the University of
Illinois at Urbana–Champaign in 1984 and 1987,
respectively. He is a Professor in the Graduate Institute
of Biomedical Electronics and Bioinformatics, the
Department of Computer Science and Information
Engineering and the Department of Electrical Engineer-
ing at National Taiwan University. He is a Vice
Superintendent of National Taiwan University Hospital.

He is the Chairman of Taiwan Network Information

Center. He was a Visiting Professor in the Department of Computer Science and
Engineering at the University of Minnesota, Minneapolis, USA. He was also a
Guest Professor at the University of Dortmund, Germany and a Visiting Senior
Computer System Engineer in the Center for Supercomputing Research and
Development at the University of Illinois at Urbana–Champaign. Dr. Lai holds 6
Taiwan patents and 3 USA patents currently. His current research interests are
SOC low power computing and medical information system. Prof. Lai is one of
the founders of the Institute of Information and ComputingMachinery. He is also a
member of Phi Kappa Phi, Phi Tau Phi, ACM, and the Chinese Institute of
Engineers. Dr. Lai is the chairman of Taiwan Internet Content Rating Foundation.
He received the Taiwan Fuji Xerox Research award in 1991. Dr. Lai is a senior
member of IEEE and included in “Who's Who in Science and Engineering" and
“Who's Who in the World".
Hung-Chang Lee, born in 1961, Taiwan. He got his
Ph.D. degree from National Taiwan University. Cur-
rently, he is an Associate Professor in the Department
of Information Management of Tamkang University.

	Secure and efficient group key management with shared key derivation
	Introduction
	Related work

	Key tree and group key rekeying
	Key tree
	Synchronous rekeying and asynchronous rekeying

	Shared key derivation (SKD) protocol
	Key derivation function
	Hash function
	Pseudo-random number generator
	One-way trapdoor function

	Synchronous rekeying operations
	Single join operation
	Single leave operation

	Asynchronous rekeying operations
	Join operation
	Leave operation
	Batch update operation

	Communication, computation, and storage costs
	Simulation
	Communication cost
	Computation cost

	Practical issues and tradeoffs
	Reliable multicast rekeying
	Rekeying delay
	Key size

	Conclusion
	Acknowledgment
	app1
	Security analysis

	References

