

Reyes-Delgado, P. Mora, M., Duran-Limon H., Rodriguez-Martnez, L., O'Connor, R.V. and Mendoza-Gonzalez, R.,
The Strengths and Weaknesses of Software Architecture Design in the RUP, MSF, MBASE and RUP-SOA
Methodologies: A Conceptual Review, Computer Standards and Interfaces, Vol. 47, pp 24-41, 2016.

The Strengths and Weaknesses of Software Architecture Design in the
RUP, MSF, MBASE and RUP-SOA Methodologies:

 A Conceptual Review

Paola Y. Reyes-Delgadoa, Manuel Morab, Hector A. Duran-Limonc, Laura C. Rodríguez-
Martíneza, Rory V. O'Connord, Ricardo Mendoza-Gonzaleza

a Technology Institute of Aguascalientes, Aguascalientes, México

b Autonomous University of Aguascalientes, Aguascalientes, México
c CUCEA, University of Guadalajara, Jalisco, México

d Dublin City University, Dublin, Ireland

ABSTRACT
The importance of Software Architecture design has been acknowledged as a very important factor for a high-quality
software development. Different efforts in both industry and academia have produced multiple system development
methodologies (SDMs) that include SA design activities. In addition, standardization bodies have defined different
recommendations regarding Software Architecture design. However, in industry Software Architecture best practices
are currently poorly employed. This fact constrains the benefits that industry can potentially obtain from Software
Architecture design in software development. In this paper, we analyze the degree to which the four main recognized
SDMs – RUP (Rational Unified Process), MSF (Microsoft Solutions Framework), MBASE (Model-Based System
Architecting and Software Engineering), and RUP-SOA (Rational Unified Process for Service-oriented Architecture) -
adhere to the best practices of Software Architecture design. Our analysis points out some of the most important
strengths and weakness regarding Software Architecture design and highlights some of the most relevant issues of
Software Architecture design that need to be incorporated into such methodologies.

Keywords: Software Architecture design, RUP, MSF, MBASE, RUP-SOA, general model of Software Architecture
design.

1. Introduction

In the context of modern software engineering, Software Architecture (SA) artifacts are considered first-
class artifacts [1-5]. A first-class artifact implies that such an element is a highly important factor and
should be considered mandatory to be elaborated in a high-quality system development methodology, and
that its omission or partial elaboration can lead to a flawed software design and lately to a wrong software
product [3].

A Software Architecture can be defined as “the set of structures needed to reason about the system,
which comprises software elements, relations among them, and properties of both” [3, p. 1]. Software
Architecture design artifacts were posited in software development methodologies to cope with the
increasing complexity of large-scale software design [6, 7]. Given that Software Architecture artifacts are
concerned with high-level system structures and system properties [8], Software Architecture artifacts
determine the overall quality and performance of software products [9, 10, 5]. A Software Architecture
design artifact is expected to be elaborated during the Design activity in a software engineering process
(SEP). A software development methodology (SDM) represents a SEP and thus a SDM can be defined as
a well-structured process that describes the phases, activities, roles, tools, and expected artifacts for
elaborating a software system [11]. The basic requirements of an SDM is that it should fit the needs of the
project and aid project success [12] and this need should be informed by the situational context where in
the project must operate and therefore, the most suitable software development process is contingent on
the context [13, 14]. Although there are several SDMs [15], most of them share the following activities:
Project Management, Requirements-Analysis, Design, Codification-Test, and Implementation.

A considerable amount of research has produced several Software Architecture design methods and best
practices [16, 17, 7, 18, 3]. Further, standardization bodies have defined different recommendations
regarding Software Architecture design such as the standards IEEE 1471 [19] and ISO 42010 [20].
Importantly, various efforts in both industry and academia have produced several system development
methodologies (SDMs) that include Software Architecture design activities [21, 22]. For instance [21]
reports MBASE as one of the first SDMs which explicitly included Software Architecture design activities.
More concretely, in [21] is reported a set of criteria for evaluating Software Architecture designs based on
stakeholder’s concerns. In [22], the Software Architecture design conduced in RUP is improved through
the activities reported in the particular Software Architecture design method ADD: Attribute-Driven Design
method [9]. However, in industry Software Architecture best practices are considered in overall as poorly
employed [10, 23, 24, 25]. One reason of this is the transference “of innovative techniques and methods
from research to practice is slow” [10, p. 25]. Additionally, the SDM literature does not highlight the
Software Architecture design activity over other ones, and thus, the extensive generated knowledge on
Software Architecture design has incorporated little into the practical execution of SDMs [23].

In this paper, we have analyzed the degree to which four rigor-oriented SDMs, namely RUP: Rational
Unified Process [26], MSF: Microsoft Solutions Framework [27, 28], MBASE: Model-Based (System)
Architecting and Software Engineering [29], and RUP-SOA: Rational Unified Process for Service-Oriented
Architecture [30], adhere to best practices of Software Architecture design. These four SDMs can be
typified as well-recognized and used in industry (MSF) [31, 32, 33, 34, 35], in academy (MBASE) [21, 36,
37, 38], in both academy-industry (RUP) [39, 31, 32, 33, 34, 35], and as an emergent SDM (RUP-SOA)
[30, 40]. RUP [26] is an iterative-incremental based software engineering process and framework. MSF
(Microsoft Solutions Framework) [27, 28] is an iterative-milestone process for building and deploying
information technology (including software products) solutions. MBASE [29] is a SDM that integrates
several models (process, product, property and success) for developing a software system. RUP-SOA
[30], is an emergent extension of RUP focused on software systems based on service-oriented computing
platforms and languages [40]. A similar analysis for agile-oriented SDMs [41, 42, 43, 44, 45, 46] deserves
a particular additional study and is out the scope of this research [47]. It is also important clarifying that our
study is focused only on SA design methods for software systems. There are other architectural design
methods and frameworks focused on large-scale inter-organizational enterprise business systems named
Information Technology (IT) Enterprise Architecture [48, 49]. Software Architecture design methods for
software systems and IT Enterprise Architecture methods and frameworks share the same definition on
the meaning of Software Architecture. However, their scope is different. In IT Enterprise Architecture
approaches, the architecture expected to be designed includes the overall business organization, IT
deployed in all organization, the whole set of IT and systems projects, the total of human resources, and
other relevant components (e.g. the financial and physical infrastructure). In summary, the IT Enterprise
Architecture addresses the totality of IT systems and related human, financial and infrastructure resources
in the whole business organization while Software Architecture design methods for software systems have
a narrower scope focusing exclusively on the design of software systems [49]. Furthermore, our analysis
is centered on the synthesis phase [18] of Software Architecture design methods, which involves
architecture design and excludes requirements analysis and architecture evaluation.

In this research, our conceptual review is guided by the structure (activities, artifacts, and roles)
recommended by a general model of Software Architecture design [18], which emerged from five well-
known worldwide industrial Software Architecture design methods. These five Software Architecture
design methods were: Attribute-Driven Design (ADD) Method [9], Siemens’ 4 Views (S4V) method [50] ,
the Rational Unified Process 4 + 1 views (RUP 4 + 1) [51, 26], Business Architecture Process and
Organization (BAPO) [52, 53], and Architectural Separation of Concerns (ASC) [54]. Our overall aims are
to assess the conformance status among the general model of Software Architecture design and the
Software Architecture design activities used in the four SDMs, and elaborate a set of recommendations for
the literature and practice based on the review results. We consider that such a review and
recommendations can have a positive influence on improving the employment of best practices of

Software Architecture design in industry. Our research is strongly motivated by a seminal [18] research
paper. The authors in [18] proposed a general model for architecture design out of the analysis of
common practices from different software architecture design methods. Our research employs such a
general model to evaluate the software architecture design methods embedded in four SDMs, from which
three of them (i.e. MBASE, MSF and RUP-SOA) are not reported in [18]. Our study reveals insights (no
previously reported) on how these three SDMs fit the SA design theoretical recommendations from the
general model for SA design. Hence, we consider that the main overall contribution of this research is
threefold: 1) our research helps to create awareness in academy on the relevance of Software
Architecture design for producing high quality software, 2) it reports the degree to which current best
practices for Software Architecture design are used in the four reviewed SDMs, and 3) we point out
unsolved issues which are venues for future research in software architecture design.

The remainder of this paper is organized as follows. In section 2, we report the research method used. A
brief description of the four SDMs is reported in Section 3. In Section 4, a review of fundamental concepts
in Software Architecture, and the general model of Software Architecture design are explained. In section
5, we report the comparative and conformance review of the four SDMs versus the general model of
Software Architecture design. In Section 6, we present the theoretical and practical implications of these
comparisons. Finally, in Section 7 we present a summary of findings, contributions, limitations, and
recommendations for further research.

2. Research Approach

A descriptive and evaluative-interpretive research approach [55, p. 90] was used in this investigation. This
research approach can be outlined with the following main steps [56]: i) to define research goals and
questions; ii) to collect official literature on target elements to be evaluated; iii) to conduct a selective
literature review on similar studies; iv) to select descriptive-interpretative lenses (schemes); v) to conduct
a descriptive and interpretative analysis; vi) to review the analysis; and vii) to generate a report.

In i), we have defined as core research questions the following: RQ.1 What is the conformance status of
the SA design methods used in the four selected SDMs against the general model of Software
Architecture design? and RQ.2 What do theoretical and practical recommendations emerge from the
conformance results? In ii), we have collected official documents of RUP, MSF, MBASE, RUP-SOA. In iii),
we conducted a selective search for similar studies focused on SA design methods used in full SDMs but
none was found. Although comparative studies among SDMs are abundant [31, 32, 33, 34, 35, 57, 58],
we did not find any studies focused on comparing the Software Architecture design methods included in
different SDMs. In iv), we selected Hofmeister et al.’s [18] general model of Software Architecture design
as the theoretical lenses for comparing the Software Architecture design methods used in the four SDMs.
This general model of Software Architecture design was employed “to analyze other proposed Software
Architecture design methods, or even to drive the development of new architecture design methods” [18,
p. 121]. In v), the first two authors conducted the comparative analyses by doing a careful joint reading of
the official documents and by using the grid evaluation suggested by Hofmeister et al. [18]. This task was
conducted with several iterations including discussions on discrepancies until the first two authors
achieved an agreement. In vi) the third author conducted a thorough evaluation of the review results
produced by authors one and two. The discrepancies found were finally reviewed again and the three
authors agreed on a final solution. Finally, as part of this step, the rest of the authors conducted an overall
review of the comparative analysis. Only a few minor errors were found and solved jointly by the research
team. In vi), we wrote this article.

3. A General Review of RUP, MSF, MBASE and RUP-SOA SDMs

Some software Development Methodologies (SDMs) have been extensively studied in the last four
decades [59, 35]. According to Avison and Fitzgerald [59, p. 80] a methodology is a “recommended

collection of phases, procedures, rules, techniques, tools, documentation, management, and training used
to develop a system”. SDMs (like system development life cycles) provide an organized roadmap for
carrying activities required for elaborating high-quality software products. According to Kruchten [26, p. 42]
without a well-structured software process (i.e. a SDM) a developer team “will develop in an ad hoc
manner, with success relying on the heroic efforts of a few dedicated individual contributors”. An evolution
of SDMs has been reported in four major stages: pre-methodologies, rigor-oriented methodologies, agile-
oriented methodologies and emergent service-oriented methodologies [60, 61]. From the current available
variety of SDMs [35], some of them are well-recognized in the software engineering literature and practice
such as: i) Rational Unified Process (RUP) [26]; ii) Microsoft Solutions Framework (MSF) [27, 28]; and iii)
Model-Based (System) Architecting and Software Engineering (MBASE) [29]; and RUP-SOA [30], which is
considered a relevant emergent SMD. These four SDMs can be classified as rigor-oriented methodologies.
Next, we describe the SDMs phases of the four SDMs (RUP, MSF, MBASE and RUP-SOA) related to the
SA design activity.

Description of RUP: Rational Unified Process (RUP) is a "comprehensive process framework that
provides industry-tested practices for software and systems delivery and implementation and for effective
project management" [62, p. 1]. The RUP provides “a disciplined approach to assigning tasks and
responsibilities within a development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end users within a predictable schedule and budget.” [26, p. 45].

The RUP software development process or SDM can be depicted in two dimensions: phases and iterations
(time-based axis), and disciplines and workflows (activity-based axis). Each phase and cycle of iterations
ends with a milestone. A milestone is defined as: “a point in time at which certain critical decisions must be
made, and therefore key goals must have been achieved” [63, p. 3]. RUP proposes four phases: Inception,
Elaboration, Construction and Transition. In each phase, one or more iterations on activity workflows can
be performed, until reaching the expected milestone. The extent of realization of each activity into
workflows varies according to the type of the phase. There are two groups of workflows: a) core technical
and b) managerial supporting ones. The core technical disciplines and workflows are: 1) Business
Modeling, 2) Requirements, 3) Analysis and Design, 4) Implementation, 5) Test and Deployment.
Managerial supporting workflows are: 1) Configuration and Change Management, 2) Project Management,
and 3) Environment [63, 26].

Here we focus only on describing the 2) Requirements workflow and the 3) Analysis and Design workflow
as these workflows are more closely related to architecture design activities. The 2) Requirements
workflow consists of the following main activities: 1) Analyze the Problem, 2) Understand Stakeholder
Needs, 3) Define the System, 4) Manage the Scope of the System, 5) Refine the System Definition, and 6)
Manage Changing Requirements. Its main roles are: system analyst, requirements specifier, software
architect and requirements reviewer. The main artifacts generated by this workflow are: vision document,
use-case model, supplementary specifications, and a project glossary. The 3) Analysis and Design
workflow consists of the following activities: 1) Define a Candidate Architecture, 2) Refine the Architecture,
3) Perform Architectural Synthesis (reported as an optional activity), 4) Analyze Behavior, 5) Design
Components, and 6) Design the Database. The main roles of this workflow are: software architect,
designer, database designer, architecture reviewer and design reviewer. The main artifacts generated by
this workflow are: analysis model, design model, and Software Architecture document [63, 26].

Regarding phases, we describe the Inception and the Elaboration phases as they are more closely related
to architecture design activities. The Inception phase’s goal is “to achieve concurrence among all
stakeholders on the lifecycle objectives for the project” [26, p. 95]. The milestone of the Inception phase is
the Lifecycle Objectives (LCO). The main artifacts are: a vision document, the use-case model survey, an
initial project glossary, an initial business case, an initial risk assessment and a project plan. The main
workflows to be performed in the Inception phase are: project management, business modeling, and
requirements. The Elaboration phase’s goals are: “to analyze the problem domain, establish a sound

architectural foundation, develop the project plan, and eliminate the project's highest-risk elements” [26, p.
95]. The milestone of the Elaboration phase is the Lifecycle Architecture (LCA). The main outcomes are: a
use-case model, supplementary requirements, a Software Architecture description, an executable
architectural prototype, a revised risk list, a revised business case, a development plan for the overall
project, an updated development case, and a preliminary user manual (optional). The main workflows to be
performed in elaboration phase are: 1) Project Management, 2) Configuration and Change Management,
and 3) Analysis and Design.
Description of MSF: Microsoft Solutions Framework (MSF) [27, p. 4] is defined as “a deliberate and
disciplined approach to technology projects based on a defined set of principles, models, disciplines,
concepts, guidelines, and proven practices from Microsoft”. MSF is a popular alternative SDM to RUP. MSF
is organized in seven tracks (five technical and two managerial ones) and seven team groups. Tracks are
groups of workstreams and activities. Tracks can be executed simultaneously, and each track can have
several iterations (cycles) addressing different levels (check-in, daily build, accepted build, iteration, project,
and as needed). Technical tracks in MSF are: Envision, Planning, Build (Development), Stabilize and
Deploy. Managerial tracks are: Governance, and Operational Management. MSF is based on both phases
(tracks) and milestones controls [27]. Phases are “periods of time with an emphasis on certain activities
aimed at producing the relevant deliverables for that phase” [27, p. 18]. Milestones are “review and
synchronization points for determining whether the objectives of the phase have been met” [27, p. 18]. MSF
uses seven types of teams: Program Management, Architecture, Development, Test, Release
Management, User Experience, and Product Management. These team groups participate with different
intensive levels in the seven tracks. Similarly to the RUP analysis, we focus on describing the tracks related
to the Software Architecture design activity: Envision, Planning and Build tracks.

In the Envision track, there are two workstreams: 1) Capture Product Vision and Scope, and 2) Establish
Project Process. In 1) Capture Product Vision and Scope, the following activities are conducted: 1) Write a
Vision Document, 2) Define Personas, 3) Develop a Lifestyle Snapshot and a Review Product Vision. In 2)
Establish Project Process, the following activities are conducted: 1) Select a Project Process Template, 2)
Tailor to a Project Process, 3) Review the Project Process, 4) Establish a Measurement Plan, 5) Establish
a Project Data Management Plan, and 6) Monitor Measurements and Process Assets. The main
deliverables are: vision/scope document, risk assessment document, and project structure document.
Envision track ends with the vision-scope approved milestone. In the Planning track several activities are
conducted for producing the master project plan, the risk management plan, and the system’s functional
specifications. In particular, system’s functional specifications are defined in MSF as detailed descriptions
on: “how each feature is to look and behave. It also describes the architecture and the design for all the
features” [27, p. 26]. Among the main activities are: 1) Define a Plan for the Project, 2) Create QoS
Requirements (e.g. a non-functional requirement), 3) Create Scenarios, 4) Create Product Requirements,
and 5) Create a Solution Architecture. The planning track ends with the project plans approved milestone.
In the Build track, the following deliverables are produced: source code and executables, installation scripts
and configuration settings for deployment, frozen functional specification, performance support elements
and test specifications and test cases. The main activities conducted are: 1) Plan an Iteration, 2) Manage
Change requests, 3) Perform an Analysis, 4) Build a Product, and 5) Test a Customer Requirement. The
Build track ends when the planned scope milestone is reached.

Description of MBASE: Model-Based (System) Architecting and Software Engineering (MBASE) is based
on the "Win-Win Spiral" [29]. MBASE [29, p. 1] "is an approach that integrates process, products, properties
and success models, for the development of a software system”. MBASE is an iterative (with refinement)
development approach with the following workflows (or phases): 1) Operational Concept Description
(OCD), 2) System and Software Requirements Definition (SSRD), 3) System and Software Architecture
Description (SSAD), 4) Life Cycle Plan (LCP), 5) Feasibility Rationale Description (FRD), 6) Construction,
Transition, and Support (CTS) Plans and Reports, and 7) Risk-driven prototypes (RDP). These workflows
can be grouped in Inception-Elaboration phases (OCD, SSRD, SSAD, LCP, and FRD), and Construction-
Transition-Support phases (CTS, RDP). Similarly to the previous analysis of RUP and MSF, we only

describe the workflows related to Software Architecture design activities: 1) Operational Concept
Description (OCD), 2) System and Software Requirements Definition (SSRD), 3) System and Software
Architecture Description (SSAD), and 5) Feasibility Rationale Description (FRD).

These workflows are executed by stakeholders and for stakeholders (called performing agents and
participating agents, respectively). Stakeholders in MBASE are also classified as operational stakeholders
(general public, operators, maintainers, users, and customers) and development stakeholders (managers,
analysts, architects, implementers (developers, testers, and marketers)). In the 1) OCD and 2) SSRD
workflows, the participating and performing stakeholders are the operational, manager and analyst
stakeholders (as a subset of development stakeholders). In the SSAD workflow, the main associated
participating and performing stakeholders are users (domain experts), managers, analysts, architects and
implementers. In the FRD activity, the manager, development and operational stakeholders are associated.

In the 1) OCD workflow, how a planned system will operate in its organizational and technical environment
is described (e.g. statement of purpose, project goals and constraints, system capabilities, levels of service
goals, changes and effects on the organization for the new system). This workflow also reports the reasons
for developing the new system, as well as problems in the current system. Usual visual models (diagrams)
employed are: block diagrams, and context diagrams. In 2) SSRD workflows, the fundamental services to
be provided by the new system are reported. Functional and non-functional requirements (level of
services), as well as mandatory (shall, must, will) and optional (can, could, may) requirements are
described. All of these system requirements must be justified with a clear rationality by using Win-Win
agreements or options. Usual visual models used are: requirements diagrams, and block (context)
diagrams.

In the 3) SSAD workflow, the results of analyzing the 1) OCD and 2) SSRD artifacts, designing a system
architecture, and designing a system implementation are documented. This workflow is a bridging activity
among the initial 1) OCD realized in the Inception phase, with the updated and final 1) OCD reported in
Construction phase. In 3) SSAD there are three activities realized: 1) System Analysis, 2) Architecture
Design and Analysis, and 3) Implementation Design. The 1) System Analysis activity filters the 1) OCD and
2) SSRD artifacts, for refining the architecturally relevant requirements. This activity uses block (context),
collaboration, use case, use case description, activity, and level of services artifacts. 2) Architecture Design
and Analysis elaborates a high-level solution (architecture) independently from its final implementation
technology. This solution (architecture) describes: components (work units), what these components do,
how they are connected, and how they can communicate among them. Usual diagrams used are: class
diagram, component diagram, and static-structure package diagram. 3) Implementation Design elaborates
a specific technology-based implementation solution derived from the high-level architecture. A technology-
based implementation defines types of hardware and operating systems, languages, database managers,
utilities and libraries. The usual diagrams generated are: component-stereotyped diagrams and
implementation diagrams. A deployment model is also described through component and connector
configurations for a working version of the designed software system. For each configuration it must be
described the software and hardware component classes used in the configuration, the allocation of
software components to the hardware components, and their specific instances. The architecture model is
a standard deployment diagram used at this stage. Finally, the 5) FRD activity is carried out at the end of all
Inception-Elaboration phases (OCD, SSRD, SSAD, LCP). Its main purpose is to assure the logical
consistency and feasibility (economic, technical, operational, legal and organizational) of the system
definition elements generated in the OCD, SSRD, SSAD and LCP activities.

All of these activities in MBASE –grouped in Inception-Elaboration and Construction-Transition-Support
phases- are essentially driven by three completion criteria: Life Cycle Objectives (LCO), Life Cycle
Architecture (LCA), and Initial Operational Capability (IOC). LCO refers to the verification of feasible
system objectives. LCA is about the verification of a feasible architecture design and plan. Finally, IOC
refers to the verification of a product ready for initial operation.

Description of RUP-SOA: RUP-SOA provides “a disciplined approach to assigning tasks and
responsibilities within a development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its users within a predictable schedule and budget” [30, p. 12]. RUP-SOA
is an enhanced version of RUP for software systems built for service-oriented computing platforms. Thus,
RUP-SOA has the same phase-discipline structure of RUP (i.e. four phases of Inception, Elaboration,
Construction and Transition, with specific disciplines of activities to be conducted within them). The SOA
extension is mainly achieved through the IBM Service-oriented Modeling and Architecture (SOMA)
methodology [64] which is incorporated in RUP-SOA. The SOMA methodology is essentially used for
producing a service model artifact in the Elaboration phase through the identification, specification,
realization and deployment of services [30, p. 27; 64, p. 383].

SOA-based applications rely on the essential concept of service that is different from a component or a
class/object. A service can be defined as a well-defined, encapsulated, reusable, business-aligned
capability [64, p. 378] which is loosely coupled, highly reconfigurable (via orchestration and choreography
of services for the case of composite services) and highly platform-independent. Orchestration of
composite services refers to the selection of individual services for composing it and in its workflow there is
a main service that coordinates the interaction of the remainder ones. Choreography of services refers to
the specific timing-based interaction and communication rules between the service consumers and service
providers under an autonomous approach (no service has control over the others) [65].

Similarly to the RUP analysis, we focus on describing the phases directly related with the Software
Architecture design: Inception and Elaboration. The RUP-SOA core activities in the Inception phase are: 1)
Conceive New Project, 2) Prepare Project Environment, 3) Define Requirements, 4) Perform Architectural
Proof-of-Concept (activity reported as optional but strongly suggested for any SOA project), and 5) Plan
Project. The main roles in the Inception phase are similar to RUP. However, in RUP several roles are not
usually played in practice. In contrast RUP-SOA reports its execution (i.e. management reviewer, process
engineer, and tool specialist). The main artifacts generated by this workflow are also similar to RUP (i.e.
business case, software development plan, risk list, review record, and so on). However, when the activity
4) Perform Architectural Proof-of-Concept is conducted, the following artifacts must be generated: an
initial Software Architecture document, an architectural proof-of-concept, and a review record. In RUP-
SOA an architectural proof-of-concept “take many forms, such as a sketch of a conceptual model of a
solution using a notation, such as Unified Modeling Language (UML), a simulation of a solution, or an
executable prototype” [30, p. 40]. This artifact helps to assess the architectural significant requirements.

The main activities in the Elaboration phase are: 1) Refine Requirements, 2) Define Candidate
Architecture, 3) Refine Architecture, 4) Design Components, and 5) Plan Project. The main roles in the
Elaboration phase are very similar to those reported in RUP. However, in RUP-SOA some roles will be
required to have technical skills for modeling, programming and testing services. Regarding the main
artifacts generated by this workflow there are some similar ones to RUP SDM but there are other new
artifacts specific for RUP-SOA such as: 1) SOA signals and events, 2) goal-service model, 3) service
model, 4) service components, and 5) a new SOA architectural view with proprietary tables and diagrams.
Similar to RUP, in RUP-SOA each phase ends until the number of planned iterations is realized and
expected milestones are reached. Table 1 (appendix) reports a summary of phases-workflows in these four
SDMs (RUP, MSF, MBASE and RUP-SOA) related to the Software Architecture design activity.

4. Theoretical Background

Fundamental Concepts of Software Architecture. Essentially a Software Architecture conveys relevant
system’s information on its components, interrelationships and expected fundamental properties [1-5].
Components and interrelationships are fundamental design pieces in any Software Architecture [1-5]. In

turn, the expected fundamental properties of a system are derived from stakeholders’ concerns.
Stakeholders involve any entity (individuals, teams, or organizations) which affect and are affected by the
system [20]. Typical stakeholders are: customers, users, project manager, architect, builders, operators,
and maintainers [3, 20]. A stakeholder’s concern is any “interest in a system relevant to one or more of its
stakeholders” [20, p. 2]. Examples of stakeholder’s concerns are: system performance, system
functionality, systems cost, system interoperability, among others [20]. Stakeholder’s concerns must be
addressed by architecture decisions, which are justified by architecture rationale. An architecture decision
can be defined as the selection of a course of action of at least two plausible design alternatives. An
architecture rationale is the justification for a specific architecture decision, and corresponds to “records
explanation, justification or reasoning about architecture decisions that have been made” [20, p. 7].

Software Architecture designs must be documented in order to be communicated and used by
stakeholders. Software Architecture designs are documented in architecture descriptions. An architecture
description is an artifact where an architectural design is reported [20]. An architecture description “assists
the understanding of the system’s essence and key properties pertaining to its behavior, composition and
evolution, which in turn affect concerns such as the feasibility, utility and maintainability of the system”[20,
p. iv]. An architecture description includes and defines (among other elements) architecture viewpoints. An
architecture viewpoint is a “work product establishing the conventions for the construction, interpretation
and use of architecture views to frame specific system concerns” [20, p. 2]. Any stakeholder concern must
be framed by at least one architecture viewpoint but several viewpoints are usually used to frame a
stakeholder concern. The architecture viewpoints govern the architecture views. An architecture view is a
work product “expressing the architecture of a system from the perspective of specific system concerns”
[20, p. 2]. An architecture view can be conformed by one or more architecture models, which belong to a
model kind. An architecture model can be conceptualized as a specific artifact, which can be represented
by a diagram, a textual description, a formal logical description, or a hybrid notation. Architecture models,
thus, are the specific artifacts used in architecture views.

The concepts of architectural style and architectural pattern are also important for architectural descriptions.
According to Clements [3, p. 492] an architectural style is “specialization of element and relation types,
together with a set of constraints on how they can be used”. For Clements [3] an architectural style differs
from an architectural pattern in its scope of utilization. Crucially, an architectural pattern describes a more
detailed specification for an architecture viewpoint based on the specific context and the specific problem,
and thus its scope is more limited than an architectural style.

Hence, architecture descriptions serve to three generic purposes [66]: 1) for guiding implementation; 2) for
communicating among stakeholders; and 3) for educating new stakeholders. The architecture of a system
is not an architecture description. An architecture description documents “the architecture of a system of
interest”. The relevance of an adequate Software Architecture design documentation – through high
quality architecture descriptions can be highlighted when it is considered that an architecture description
represents simply the detailed high-level design and building blueprints. Thus, “if the architecture cannot
be understood so that others can build systems from it, analyze it, maintain it, and learn from it, then the
effort put into crafting it will by and large have been wasted” [66, p. 1].

General Model of Software Architecture Design. Hofmeister et al. [18] elaborated a general model of
Software Architecture design derived from a thorough study on five industrial Software Architecture
Design methods: 1) the Attribute-Driven Design (ADD) Method [9]; 2) Siemens’ 4 Views (S4V) method
[50]; 3) the Rational Unified Process 4 + 1 views (RUP 4 + 1) [26]; 4) Business Architecture Process and
Organization (BAPO) [52], and 5) Architectural Separation of Concerns (ASC) [54]. Their study was
motivated by the front-end disparity of used terminology, domains of use, and structure of phases-
activities. However, their study showed that essentially these five methods share more commonalities than
differences, and consequently a general model of Software Architecture design can be proposed. This
method “would help us better understand the strengths and weaknesses of different existing methods as

well as provide a framework for developing new methods better suited to specific application domains”
[18, p. 107]. The authors [18] also elaborated a template for analyzing Software Architecture design
methods. The template involves: general Software Architecture design activities, generated generic
artifacts, performed tasks and the used or recommended techniques.

The general model of SA design proposes four main activities, two generic input artifacts, and four generic
output artifacts. The four activities are: A0) Backlog Control, A1) Architectural Analysis, A2)
Architectural Synthesis, and A3) Architectural Evaluation. The two generic input artifacts are: I1)
architectural concerns, and I2) context issues. The four generic output artifacts are: O1) architecturally
significant requirements, O2) candidate architectural solutions, O3) validated architecture, and O4)
backlog set (a set of smaller needs, issues, problems they need to tackle, as well as ideas they might
want to use). The authors [18] indicated that the design of Software Architecture is a complex process,
and it cannot be conducted sequentially. Instead of this, an iterative ongoing workflow is recommended
among the four activities. The A0) Backlog Control activity coordinates iterations for advancing on not
solved issues, additional generated problems, requirements concerns, and design decisions. This activity
“drives the workflow, helping the architects determine what to do next” [18, p. 114]. Thus the backlog
artifact can be considered a planning document used to distribute the design efforts in several iterations of
the General Model of Software Architecture Design.

Figure 1 (adapted from [18]) illustrates this general model of Software Architecture design. This figure
shows that an iterative incremental approach rather than a sequential one carries out these three
activities. In A1) the Architectural Analysis activity, the software architect identifies the specific
requirements that are concerned with architectural issues (i.e. to frame the specific problem in the problem
space). In this activity it is required as input the following artifacts: the I1) architectural concerns and I2)
context issues. This activity generates as output the O1) architecturally significant requirements (ASRs).
The I1) architectural concerns artifact collects needs and restrictions, which will affect the Software
Architecture (e.g. issues on functionality, performance, reliability, security, distribution and evolvability).
These architectural concerns are associated with stakeholders interested in these architectural concerns.
The I2) context issues include issues and characteristics on the final software operation environment (e.g.
organization issues mainly). Both, an architectural concern and a context issue have an influence on the
final Software Architecture designed and implemented. The main difference between these two concepts
is that architectural concerns are more technically oriented than context issues, and concerns issues must
be addressed with explicit Software Architecture decisions with expected direct effects on the design. In
contrast, context issues are more organizationally oriented and their effects can be also generated after
the software is operating during an organizational evaluation period. For instance, an architectural concern
from a customer stakeholder on security issues for a new e-business platform can be addressed directly
on Software Architecture design decisions with immediate effects. Here, the desired level of security is an
architectural concern that is a non-functional requirement. A context issue such as the trust perceived by
final users of the utilization of this new e-business platform will be assessed after a software evaluation
period by end users. Here the context issue is a business goal implying that a certain level of security is
required for customers to safely carry out on line transactions.

The O1) architecturally significant requirements (ASRs) are requirements strictly identified from the set of
total software system requirements with direct effects on the Software Architecture design decisions.
Usually, not all the requirements that are part of the set of total software systems requirements are ASRs,
and conversely (e.g. not all ASRs are from the initial set of system requirements). This situation implies
that some ASRs can emerge until the A1) Architectural Analysis activity is carried out. For instance, the
software architect and system users might not be aware of needing a portable software system, however,
during the A1) activity it might be elicited a business goal consisting of migrating to an upgraded
computational platform. Consequently, this ASR on high portability might be added.

 [Insert Figure 1. "Hofmeister et al. [18] general model of Software Architecture design" about here].

In A2) the Architectural Synthesis activity, the software architect elaborates several candidate
architectures to address a sub-set of specific ASRs (e.g. several plausible solutions from the solution
space that addresses a sub-set of architectural concerns and context issues). This activity uses the ASRs
as input and generates the O2) candidate architectural solutions artifact as output. O2) candidate
architectural solutions are the plausible solutions or particular pieces of a solution. Such architectural
solutions are usually documented by selecting architecture viewpoints and by using specific architecture
views. These solutions must include statements on the rationale of the Software Architecture decisions
made on them.

Finally, regarding the A3) Architectural Evaluation activity, the set of candidate architectures are
evaluated by using as criteria the specific ASRs. This activity has as inputs the O1) architecturally
significant requirements and the O2) candidate architectural solutions and generates as output the O3)
validated architecture. The O3) validated architecture artifact includes the candidate architectural
solutions, which must satisfy the ASRs. This validation activity implies that some solutions will progress
toward the definite selected Software Architecture design and other designs or pieces of them, will be
discarded or modified.

5. Review of Software Architecture Design Methods of RUP, MSF, MBASE and RUP-SOA

The comparative analysis of the SA design methods used in the RUP, MSF, MBASE and RUP-SOA
methodologies is reported in Tables 2, 3, 4 and 5. This analysis has been carried out by using the general
model of Software Architecture design [18]. We mapped the activities and artifacts used in each SDM to
the generic activities and generated artifacts posited by Hofmeister et al. [18].

Review of RUP’s Software Architecture Design Activity: RUP covers the A1) generic activity of
Architectural Analysis with the task of the same name into the activity of 1) Define Candidate
Architecture. The generic inputs of I1) architectural concerns, and I2) context issues are covered by the
vision document and supplementary specifications artifacts. A vision document describes the system
goals, functional needs and a rationale of the planned software. This document can include architectural
(technical oriented requirements affecting the Software Architecture) and context (of the business
organization) related issues, but it is not explicitly reported in RUP. The required O1) architectural
significant requirements output is identified in RUP through a transformation, which is driven by use cases
and is shaped further by the system's non-functional requirements provided through the supplementary
specifications.

Next, the A2) generic activity of Architectural Synthesis is covered by RUP through the activities of 1)
Define a Candidate Architecture, and 2) Refine Architecture. The 1) Define a Candidate Architecture
activity produces an initial baseline architecture usually with a logical view. Such a base line architecture is
refined with the tasks included in the 2) Refine Architecture activity. These tasks are: Design Mechanisms,
Identify Design Elements, Incorporate Existing Elements (i.e. reusable ones), Design Elements, Describe
Runtime Architecture, and Describe Distribution. In this RUP activity, the analyzed elements are translated
into design elements (e.g. design classes, component classes, modules, and source code). In RUP the
generic output artifact O2) candidate architectural solutions are reported through the Software Architecture
Document, which essentially reports the four architectural views (logical, process, implementation, and
deployment). A core artifact elaborated in RUP in this A2) activity is an executable architectural prototype.

The generic A3) Architectural Evaluation activity is addressed in RUP through the optional activity of 3)
Perform Architectural Synthesis. In this RUP activity an architectural proof-of-concept can be built, and its
viability, relative to functionality and to non-functional requirements is assessed. Finally, the generic A0)
activity of Backlog Control is executed in RUP through the task of Reviewing the Architecture (which is
part of Refining the Architecture activity). Here, an issue list of missing elements is maintained.

Review of MSF’s Software Architecture Design Activity: MSF covers the first generic activity A1) of
Architectural Analysis, through the task of Create Alternative Application Partitioning Designs (by the
Create Solution Architecture activity of the Planning track). In this MSF task, the problem is analyzed, a
group of requirements that represent key business and technological challenges are selected, and the
non-functional requirements and Scenarios are used to identify architectural challenges. MSF covers the
two generic inputs of 1) architectural concerns and 2) context issues, as well as the generic output of 1)
architectural significant requirements (ASRs). In MSF such artifacts are covered with a document Vision
which reports product background, driving factors, key values, market segments, and technological
opportunities; and a global list of QoS (Quality of Service) requirements. These requirements involve: 1)
scenarios, which help to capture the functional goals of the system; and 2) a selected list of QoS
requirements related to architectural issues.

The second generic activity 2) Architectural Synthesis, is realized through the tasks of 1) Design System
Architecture and Deployment, and 2) Create Proof of Concepts (which are part of the 5) Create Solution
Architecture activity of the Planning track) in MSF. In these tasks the system diagrams capture the
system architecture for each possible architecture approach; deployment diagrams show dependencies
and core functionality; logical datacenter diagrams show where the application will be deployed; and a
proof of concept is built and examined for each architectural approach.

The generic activity 3) of Architectural Evaluation, is covered by MSF through the tasks of Assess
alternatives and Select architecture (into Create Solution Architecture activity, in Planning track). In these
tasks, an architecture assessment matrix is created; and the architecture to be used is selected. The
architectural concept is also validated against scenarios; the selection justification is written by explaining
the decisions behind why the current architecture was selected. Finally, the generic activity A0) Backlog
Control, is executed in MSF through the tasks of Select Iteration Backlog and Plan Iteration (in the Build
track). Scenarios and the selected list of QoS (quality of services) are assessed, reprioritized and ordered,
for being addressed in the next iteration.

Review of MBASE’s Software Architecture Design Activity: MBASE covers the A1) Architectural
Analysis activity through the System and Software Architecture Description (SSAD), which involves the
System Analysis activity. This activity refines the OCD and SSRD artifacts and filters the required
information for developers: what must (necessary information) and must not (unnecessary information)
know. This activity A1) of the general model proposes two input artifacts: I1) architectural concerns, and
I2) context issues, and one output artifact O1) architecturally significant requirements (ASRs). In MBASE,
the SSAD activity covers these two types of input artifacts through the Operation Concept Description
(OCD) and the Software System Requirements Definition (SSRD) artifacts, which are generated by the
activities with the same names: OCD and SSRD. The OCD artifact includes system capabilities where
some of them are architectural concerns of the stakeholders, as well as organizational environment issues
(i.e. context issues). The SSRD artifact includes: functional and non-functional requirements (called Levels
of Service in MBASE), and evolution requirements. The output artifact O1) architectural significant
requirements posited in the general model is covered in MBASE through an updated Life Cycle Objectives
package (LCO) for relevant architectural requirements. This milestone includes: capability requirements,
level of service requirements, system interface requirements and project requirements. In this activity, the
models commonly used by MBASE are: block (context) diagrams, collaboration, use case, use case
descriptions, activity and level of services diagrams.

Next, the A2) Architectural Synthesis activity in the general model is also extensively covered by
MBASE through the activity System and Software Architecture Description (SSAD): Architecture Design
and Analysis. For the A2) generic activity are suggested I1) architecturally significant requirements (ASRs)
(as input) and O2) candidate architectural solutions (as output). MBASE covers both through the updated
Life Cycle Objectives package document (as input) and the Life-Cycle Architecture (LCA) package (as
output). LCA includes: Architecture Design and Analysis, and Implementation Design. Architecture Design
and Analysis corresponds to a High-Level Design, and the Implementation Design corresponds to a Low-
Level Design. The Architecture Design activity and the Analysis activity in MBASE elaborate a high-level
solution (architecture) independently from its final implementation technology. This solution (architecture)
describes: components (work units), what these components do, how they are connected, and how they
can communicate with each other. The diagrams commonly used by MBASE in this activity are: class
diagram, component diagram, and static-structure package diagram. Finally, the Implementation design
activity in MBASE elaborates a specific technology-based implementation solution derived from the high-
level architecture. A technology-based implementation defines: types of hardware and operating systems,
languages, database managers, utilities and libraries. Diagrams typically used are: component-
stereotyped diagrams and implementation diagrams. Finally, in the Deployment Model, the physical
Software Architecture is described through component and connector configurations for a working version
of the designed software system. In this case, MBASE commonly employs the deployment diagram.

The generic activity A3) Architectural Evaluation is covered in MBASE through the Feasibility Rationale
Description (FRD) activity. This activity is conducted as a control review generic activity executed for each
MBASE macro-phase of Inception, Elaboration, Construction and Transition. Thus, a FRD activity is
conducted for reviewing the LCA milestone. Finally, MBASE covers partially the A0) generic activity of
Backlog Control through the Life Cycle Plan (LCP) activity. This implies that MBASE does not explicitly
indicate the iterative internal process for SSAD, instead, MBASE considers the planning of each iteration.

Review of RUP-SOA’s Software Architecture Design Activity: RUP-SOA covers the generic activity A1)
Architectural Analysis with some tasks included in the activities 2) Define Candidate Architecture, and 3)
Refine Requirements into the Elaboration phase. It differs from RUP in that RUP-SOA includes an optional
task called 4) Perform Architectural Proof-of-Concept activity conducted in the Inception phase. The
required output of O1) architectural significant requirements is partially covered by RUP-SOA through the
use-case model and supplementary specifications, but directly addressed through the architectural proof-
of-concept when it is elaborated. The generic asked inputs of I1) architectural concerns and I2) context
issues can be considered partially covered by the business case artifact and the goal-service model. A
business case artifact describes the goals, needs and rationale of the planned software. It can include
architectural (technical oriented requirements affecting the Software Architecture) and context (business
organizational ones) related issues. A goal-service model “maintains the alignment of services with
business goals and refines the subsequent scope of business processes being evaluated as well as
existing systems and assets” [64; p. 385]. RUP-SOA includes also other output artifact called architectural
proof-of-concept (which can be one or more artifacts) where the Software Architecture’s viability is
assessed against the architecturally significant requirements (ASRs). For having this artifact, the activity 4)
Perform Architectural Proof-of-Concept must be executed. These ASRs are identified in RUP-SOA through
particular use cases and supplementary specifications that represent some significant functionality with a
substantial architectural coverage, or stress or illustrate a specific and delicate point of the architecture [30].
This last conceptual architecture design artifact is not reported in RUP in the A1) activity. RUP proposes
only an executable architectural prototype but in the A2) activity. Hence, RUP-SOA reinforces a Software
Architecture conceptual design before codifying an executable prototype.

Next, the A2) generic activity of Architectural Synthesis is covered totally by RUP-SOA through the tasks
that are part of 2) Define Candidate Architecture, 3) Refine Architecture, and 4) Design Components
activities. The 2) Define Candidate Architecture activity includes the tasks of: 1) Architectural Analysis, 2)
Service Analysis, 3) Existing Asset Analysis, and 4) Use-Case Analysis. These tasks produce initial

candidate architectures. Existing software service components assets (for reusing them) are leveraged,
architectural SOA patterns are identified, and architecturally significant use cases are realized for each
candidate architecture, After a candidate architecture has been defined, the 2) Define Candidate
Architecture activity is completed with an iteration of 3) Refine Architecture activity. In 3) Refine
Architecture, the following tasks are conducted: 1) Identify Elements of Design, 2) Describe the run-time
Architecture, 3) Describe the Distributed Architecture, and 4) Review the Architecture. Identification of
analysis elements necessary to describe the behavior of each use case is realized. This analysis of
elements will be translated into design elements (e.g. design classes, component classes, modules, and
source code). In RUP-SOA the generic output artifact O2) candidate architectural solutions are reported
through the Software Architecture document which includes the normal RUP 4+1 views augmented with a
SOA view, SOA signals and events diagrams, goal-service model, service model, and service component
specifications. For reporting such artifacts RUP-SOA uses proprietary service diagrams and tables such as:
Goal-Service Table, Functional Areas and Sub-Systems Table, Process Decomposition, Service Portfolio
Table, Orchestration Diagram, Choreography Diagram, Service Model Specification Diagram, and SOA
Architecture Diagram [64]. Additionally, similar to RUP, RUP-SOA has the activity 4) Design Components
where the detailed design of components is realized according to the iteration plan. Thus, RUP-SOA builds
on top of RUP to provide support to SOA systems by offering specific SOA artifacts. In addition, RUP-SOA
extends RUP in generating several candidate architectures, which will be compared among them, similar to
MBASE and MSF SDMs. In contrast, RUP uses only the traditional 4 views and defines a single candidate
architecture that will be refined only if several iterations are conducted.

The generic A3) Architectural Evaluation activity is addressed partially in RUP-SOA through the Review
of Records activity. It is realized –actually- as a sub-activity in the 3) Refine Architecture activity. This
generic A3) activity can be also supported in RUP-SOA through the review of the artifacts generated in the
optional activity of 5) Perform Architectural Proof-of-Concept activity conducted in the Inception phase.
Finally, the generic activity A0) Backlog Control is partially executed in the RUP-SOA through the 1) Plan
the Project (iterated) activity. However, RUP-SOA explicitly considers that the 2) Define Candidate
Architecture and 3) Refine Architecture activities conducted iteratively implies an evaluation and
improvement of the candidate architecture solutions generated in each iteration.

Table 2. Analysis of the Software Architecture Design Method in RUP

Generic Artifacts RUP Artifacts RUP Activities RUP
Techniques and tools

A
rc

hi
te

ct
ur

al

 a
na

ly
si

s

- Context (input): a
system’s environment, or
context, business goals,
characteristics of the
organization, and the state
of technology.

- Architectural concerns
(input): System
considerations such as
performance, reliability,
security, distribution, and
evolvability.

- Architecturally
significant requirements
(ASR) (output):
requirements upon a
software system which
influences its architecture.

- Vision document: reports
functional requirements, use case,
technical issues, business case,
scenarios.

- Supplementary
Specification: reports non-functional
requirements or quality attributes.

- ASRs via scenarios and risk list:
they describe use-case instances or
a subset of a use case, and list of
ongoing or impending concerns that
has a significant probability of
adversely affecting the success of
major milestones.

- Architectural
Analysis (in Define a
Candidate Architecture
activity): it starts with a
use-case analysis,
focusing on the use
cases that are deemed
architecturally
significant, and with any
reference architecture
the organization may
reuse.

- UML use case
diagrams, UML use case
descriptions, text-based
descriptions.

A
rc

hi
te

ct
ur

al

sy
nt

he
si

s

- Candidate architectural
solutions (output): whole
or partial alternative
solutions, design rationale,
and traceability of
decisions to requirements.

– Architectural design
(e.g., views, perspectives)
or Prototypes

- Rationale on design
decisions

- Software Architecture document:
design decisions are incrementally
captured in four views (logical,
process, implementation,
deployment), supplemented with a
use-case view and with
complementary texts, and an
executable architectural prototype.

- This artifact is not reported.

- Define a Candidate
Architecture: The
single initial layering and
organization of the
system is elaborated.

- Refine the
Architecture: identify
design elements
(classes, processes,
etc.) and integrate them
in the architectural
prototype; identify
design mechanisms,
describe the
organization of the
system's runtime and
deployment architecture.

- Logical view (UML class
diagrams, entity-
relationship diagrams).

- Process view (UML
state machine diagram,
UML sequence diagram,
UML timing diagram, UML
communication diagram).

- Implementation view
(UML component
diagrams, UML
packages).

- Deployment view (UML
deployment diagrams).

A
rc

hi
te

ct
ur

al

ev
al

ua
tio

n

- Validated Architecture:
those candidate
architectural solutions that
are consistent with the
ASRs.

- Quality attributes

- Architectural assessment

Complete, executable architectural
prototype: prototype complete
enough to be tested, and to validate
that major architectural
objectives (functional and
non-functional, such as performance)
have been met, and major technical
risks mitigated.

- Perform Architectural
Synthesis: build an
architectural proof-of-
concept, and assess its
viability, relative to
functionality and to non-
functional requirements.

- Software Architecture
evaluation methods.

O
ve

ra
ll

 p
ro

ce
ss

 d
riv

er
 - Backlog: a list of smaller

needs, issues, problems
that software architects
need to tackle, as well as
ideas
they might want to use in
next SA design iteration.

- Iteration plan: Architectural
objectives are allocated to upcoming
iterations, and captured in the form of
iteration objectives.

- Issue list: contains elements of the
backlog.

- Review the
architecture (into
Refine the
Architecture): an issue
list is maintained, which
contains elements of the
backlog.

- Iteration plan,
checklists, budget-
schedule-milestone
charts.

Table 3. Analysis of the Software Architecture Design Method in MSF

Generic Artifacts MSF Artifacts MSF Activities MSF
Techniques and

tools

A
rc

hi
te

ct
ur

al

 a
na

ly
si

s

- Context (input): a system’s
environment, or context,
business goals, characteristics
of the organization, and the
state of technology.

- Architectural concerns
(input): System considerations
such as performance,
reliability, security, distribution,
and evolvability.

- Architecturally significant
requirements (ASR) (output):
requirements upon a software
system which influences its
architecture.

- Vision document: reports
product background, driving
factors, key value, market
segments, and technological
opportunities.

- Global list of QoS
requirements - Scenarios: QoS
are non-functional requirements or
constraints on the functionality of
the system. Scenarios capture the
functional goals of the system.

- Selected list of QoS
requirements and Scenarios

- Create Alternative
Application Partitioning
Designs (in Create
Solution Architecture -
Planning): the problem is
analyzed, a group of
requirements are selected
that represent key business
and technological
challenges. QoS
requirements and Scenarios
are used to identify
architectural challenges.

- Quality of Services
List (QoS)

- Scenarios

A
rc

hi
te

ct
ur

al

sy
nt

he
si

s

- Candidate architectural
solutions (output): whole or
partial alternative solutions,
design rationale, and
traceability of decisions to
requirements.

– Architectural design (e.g.,
views, perspectives) or
Prototypes

- Rationale on design
decisions

- Architecture Alternative
Solutions Proposal: detailed
proposal about a candidate
architecture to compare it to other
proposals using the LAAAM
(Lightweight Architecture
Alternative Analysis Method)
Assessment Matrix and arrive at a
decision about which is the best
solution.

- Proof of concept: an
architectural proof of concept
prototype used to guide evaluation
of value, development cost, and
operations cost of strategies.
- This artifact is reported in the
assessment alternative task.

- Design System
Architecture and
Deployment - Create Proof
of Concepts (in Create
Solution Architecture -
Planning): system
diagrams are created that
capture the system
architecture for each
possible architecture
approach; deployment
diagrams show
dependencies and core
functionality; logical
datacenter diagram show
where the application will be
deployed. A proof of concept
is built and examined for
each architectural approach.

- Application
diagrams

- System diagrams

- Deployment
diagrams

- Logical data center
diagrams

A
rc

hi
te

ct
ur

al

ev
al

ua
tio

n

- Validated Architecture:
those candidate architectural
solutions that are consistent
with the ASRs.

- Quality attributes

- Architectural assessment

- Assessed architecture
proposals: the different
architectural proposals are
evaluated and one is selected.

- Utility tree: it represents the
hierarchical nature of the qualities
and provides a basis for
prioritization.

- LAAAM Assessment Matrix: it
helps to evaluate the suitability of
strategies against scenarios.

- Assess alternatives -
Select architecture (in
Create Solution
Architecture - Planning):
architecture assessment
matrix is created. The
architecture to be used is
selected; the architectural
concept is validated against
scenarios; the selection
justification is written
explaining the decisions
behind why the current
architecture was selected.

- Lightweight
Architecture
Alternative Analysis
Method (LAAAM)

- Risk analysis

O
ve

ra
ll

 p
ro

ce
ss

dr

iv
er

- Backlog: a list of smaller
needs, issues, problems that
software architects need to
tackle, as well as ideas
they might want to use in next
SA design iteration.

- Project Backlog: a general
repository for the whole project.
Not specific for architecture
design.

- Select Iteration Backlog
and Plan Iteration (in Build
track): from the project
backlog, re-assess,
reprioritize, and sort the
scenarios and QoS.

- Project
management
techniques (Gantt
charts, effort
estimation models,
etc).

Reyes-Delgado, P. Mora, M., Duran-Limon H., Rodriguez-Martnez, L., O'Connor, R.V. and Mendoza-Gonzalez, R.,
The Strengths and Weaknesses of Software Architecture Design in the RUP, MSF, MBASE and RUP-SOA
Methodologies: A Conceptual Review, Computer Standards and Interfaces, Vol. 47, pp 24-41, 2016.

Table 4. Analysis of the Software Architecture Design Method in MBASE

 Generic Artifacts MBASE Artifacts MBASE Activities MBASE
Techniques and tools

A
rc

hi
te

ct
ur

al

 a
na

ly
si

s

- Context (input): a system’s
environment, or context,
business goals, characteristics
of the organization, and the
state of technology.

- Architectural concerns
(input): System considerations
such as performance, reliability,
security, distribution, and
evolvability.

- Architecturally significant
requirements (ASR) (output):
requirements upon a software
system which influences its
architecture.

- Operational Concept
Description (OCD):
describes how a proposed new
system will operate within its
environment, organization’s
background and goals, system
environment.

- System and Software
Requirements Definition
(SSRD): describe functional and
non functional (levels of service
concerns) requirements..

- Life Cycle Objectives (LCO)
package: capability
requirements; level of service
(non functional requirements),
system interface requirements,
project requirements) refined-
filtered by ASRs

- System Analysis (in
SSAD activity): refine
the OCD proposed in
SSRD phase into a
model that focuses on
the system and its
requirements. Filters
information no
necessary for
architectural purposes.

- Block context diagram,
UML collaboration
diagrams, text-based
descriptions

- Descriptions of levels of
service concerns (e.g.
non functional
requirements)

- Block system diagram,
UML use case diagrams,
UML use case
descriptions (marking
ASR cases), UML activity
diagrams

A
rc

hi
te

ct
ur

al

sy
nt

he
si

s

- Candidate architectural
solutions (output): whole or
partial alternative solutions,
design rationale, and traceability
of decisions to requirements.

– Architectural design (e.g.,
views, perspectives) or
Prototypes

- Rationale on design decisions

- Life Cycle Architecture
(LCA) package: choice of
architecture and elaboration by
increment; domain-architecture
and architectural style choices;
deployment considerations;
logical and physical
components, connectors,
configurations, constraints;
architecture evolution
parameters. Prototypes are
linked to user interface
concerns.

- Rationale is documented in
the FRD activity.

- Architectural Design
and Analysis (in SSAD
activity): analysis
problem and design a
high-level, general
architecture for the
system that is
independent of the
implementation
technology.
- Implementation
Design (in SSAD
activity): design a
technology–specific
implementation for the
system by refining the
general architecture .

- Topology diagrams
(layers, partitions,
subsystems), UML static-
structure diagrams, UML
component diagrams,
UML deployment
diagrams, UML interfaces
diagrams, UML use case
realization tables, UML
activity diagrams, UML
class diagrams, list of
constraints, level of
services projected, table
of architectural styles-
patterns

A
rc

hi
te

ct
ur

al

ev
al

ua
tio

n

- Validated Architecture: those
candidate architectural solutions
that are consistent with the
ASRs.

- Quality attributes

- Architectural assessment

- Life Cycle Architecture
(LCA) package of FRD
activity: assurance of
consistency among the system
definition elements above for
the architecture specified in the
SSAD activity.

- Levels of Service (in FRD
activity): they are evaluated
against architectural strategies.

- FRD package: architectural
alternatives and tradeoffs.

- Analysis results (in
FRD activity): identify
architectural alternatives
and trade-offs; identify
unfeasible architectures;
document criteria for
rejection of architectural
alternatives.

- Risk analysis
techniques, checklist
tables, cost-benefit
analysis, trade-off
analysis

- Software Architecture
evaluation methods

O
ve

ra
ll

 p
ro

ce
ss

 d
riv

er
 - Backlog: a list of smaller

needs, issues, problems that
software architects need to
tackle, as well as ideas
they might want to use in next
SA design iteration.

- Life Cycle Architecture
(LCA) of LCP activity:
identification of key TBDs (to-
be-determined items) for later
increments.

- Life Cycle Plan (LCP):
monitoring and
controlling the project’s
progress; controlling the
project's progress in
achieving the software
product objectives.

- Project management
techniques (Gantt
diagrams, PERT,
summary tasks planning
checks, earned value
status reports, budget-
schedule-milestone
charts)

Reyes-Delgado, P. Mora, M., Duran-Limon H., Rodriguez-Martnez, L., O'Connor, R.V. and Mendoza-Gonzalez, R.,
The Strengths and Weaknesses of Software Architecture Design in the RUP, MSF, MBASE and RUP-SOA
Methodologies: A Conceptual Review, Computer Standards and Interfaces, Vol. 47, pp 24-41, 2016.

Table 5. Analysis of the Software Architecture Design Method in RUP-SOA

 Generic Artifacts RUP-SOA Artifacts RUP-SOA Activities RUP-SOA
Techniques and tools

A
rc

hi
te

ct
ur

al

 a
na

ly
si

s

- Context (input): a system’s
environment, or context,
business goals, characteristics
of the organization, and the
state of technology.

- Architectural concerns
(input): System considerations
such as performance,
reliability, security, distribution,
and evolvability.

- Architecturally significant
requirements (ASR) (output):
requirements upon a software
system which influences its
architecture.

- Vision document: reports
functional requirements, use case,
technical issues, scenarios.
- Business case: financial data,
risk trade-offs.
- Supplementary
Specification: reports non-
functional requirements or quality
attributes.
- ASRs via Use Case View: use
case are analyzed against
potential risks.
- Architectural Proof-of-
Concept: initial conceptual model
of the Software Architecture.

- Architectural
Analysis (in Define
Candidate
Architecture): detail a
use case, develop
supplementary
specifications, capture a
common vocabulary,
and prioritize use
cases focusing on those
that are deemed
architecturally
significant. The
architectural
proof-of-concept is
assessed against the
architecturally significant
requirements.

- UML use case
diagrams, UML use case
descriptions, text-based
descriptions, risk
analyses, conceptual
model for architectural
proof-of-concept, or
prototype.

A
rc

hi
te

ct
ur

al

sy
nt

he
si

s

- Candidate architectural
solutions (output): whole or
partial alternative solutions,
design rationale, and
traceability of decisions to
requirements.

– Architectural design (e.g.,
views, perspectives) or
Prototypes

- Rationale on design
decisions

- Software Architecture
Document: the 4+1 views of RUP
augmented with:
- SOA signals and events:
business flows described in
choreography and orchestration
diagrams.
- Goal-Service Model: also
named a Service Portfolio, is a
hierarchical decomposition of
goals-subgoals, key performance
indicators, metrics and business
services.
- Service Model: all services,
providers, specifications,
partitions, messages,
collaborations, and the
relationships between them with
proprietary service diagrams and
tables.
- This artifact is partially covered in
the Review Record artifact.

- Refine the
Architecture: provides
the natural transition
from analysis activities
to design activities by
identifying appropriate
design elements from
analysis elements. It
also describes the
organization of the
system’s run-time and
deployment architecture
and maintains the
consistency and integrity
of the architecture.

- The same RUP views
(Logical, Process,
Implementation, and
Deployment)
 and usual UML
diagrams for each view.

- SOA view (IBM
proprietary diagrams
and tables: Goal-Service
Table, Functional Areas
and Sub-Systems Table,
Process Decomposition,
Service Portfolio Table,
Orchestration Diagram,
Choreography Diagram,
Service Model
Specification Diagram,
SOA Architecture
Diagram) [64].

A
rc

hi
te

ct
ur

al

ev
al

ua
tio

n

- Validated Architecture:
those candidate architectural
solutions that are consistent
with the ASRs.

- Quality attributes

- Architectural assessment

- Architectural proof-of-concept:
initial conceptual model of the SA.
- Review record: registers with
changes, updates and
improvements.

- Perform Architectural
Synthesis: review of the
resulting architecture, as
documented in the
Software Architecture
Document. It can be
complemented with the
architectural proof-of-
concept, for assessing
its viability, relative to
functionality and to non-
functional requirements.

- Software Architecture
evaluation methods.

O
ve

ra
ll

 p
ro

ce
ss

dr

iv
er

- Backlog: a list of smaller
needs, issues, problems that
software architects need to
tackle, as well as ideas
they might want to use in next
SA design iteration.

- Iteration plan: Architectural
objectives are allocated to
upcoming iterations, and captured
in the form of iteration objectives.

- Issue list: contains elements of
the backlog.

- Review the
Architecture (in Refine
Architecture): an issue
list is maintained, which
contains elements of the
backlog.

- Iteration plan,
checklists, budget-
schedule-milestone
charts.

6. Discussion of Findings and Theoretical and Practical Implications.

We have found relevant findings in this comparative review of Software Architecture design methods used
in RUP, MSF, MBASE and RUP-SOA

A1) Architectural Analysis: Regarding architectural analysis tasks, the four SDMS (RUP, MSF, MBASE
and RUP-SOA) include specific and adequate activities. However, their compliance level is different. RUP
supports partially well this task through the definition of an initial and single candidate architecture by
considering the use cases and scenarios that represent ASRs. Use cases and scenarios accounts for
functional requirements. For non-functional requirements, RUP employs supplementary specifications,
and a list of risks as input artifacts. MSF supports more adequately architectural analysis tasks than RUP.
MSF proposes a partition and selection of ASRs, which are selected against business and technological
challenges with architectural implications. MSF also uses adequate input artifacts such as: vision
documents, lists of QoS (Quality of Services, e.g. non-functional requirements), and scenarios. In the case
of MBASE, this methodology defines a task called architectural analysis. In this task, all elements not
affecting Software Architecture design are filtered. In particular in MBASE are addressed the following
issues from architectural lenses: services to be provided and to be consumed, interactions of the system
with external actors, and system capabilities useful for the organization. MBASE also employs suitable
input artifacts such as: OCD (Operational Concept Description), List of Service Levels (e.g. non-functional
requirements), and system interfaces. Finally, RUP-SOA also supports very well this generic Software
Architecture design task. RUP-SOA proposes an Architectural Analysis task in Define Candidate
Architecture activity, where use cases are detailed and prioritized focusing on those with architectural
significance. Additionally, an architectural proof-of-concept (which can include one or several proofs) is
used to identify architecturally significant requirements (ASRs). Hence, given the aforementioned
arguments we assess MSF, MBASE, and RUP-SOA with a high compliance and RUP with a moderate
compliance, regarding the expected Software Architecture design prescriptions from the general model.

A2) Architectural Synthesis: The architectural synthesis task is performed adequately in the case of
MSF, MBASE and RUP-SOA, whereas RUP only provides partial support. RUP elaborates it through a
single iterative-incremental design based on the well-known 4+1 views approach (logical, process,
implementation, and deployment). These views use well-known UML diagrams. A Software Architecture
design is effectively generated in this task through a refinement approach. However, a single candidate
architecture (and not several architecture options) is elaborated. Another relevant omission in RUP is the
lack of explicit documentation on the rationale of Software Architecture design decisions. RUP uses a
classic software design divided in two levels: the high-level design corresponds to Software Architecture
design whereas low-level design regards detailed design of components, classes and other artifacts. A
positive issue of RUP, from the practitioner perspective, is that RUP provides a straightforward
architectural synthesis task. A Software Architecture design, thus, must be elaborated by generating the
four expected architecture views (logical, process, implementation, and deployment) and by using the
standard UML diagrams.

In the case of MSF, architectural synthesis tasks are better supported than RUP. MSF proposes several
Software Architecture designs. These Software Architecture designs will compete for a final selection in
the architectural evaluation phase. MSF employs suitable input artifacts such as: a proposal for alternative
architecture solutions, where several Software Architecture designs are elaborated as well as the rationale
of design decisions (reported in the architectural evaluation phase). MSF also proposes to elaborate a
prototype (called proof of concept) when a large system demands it. MSF does not distinguish between
high- and low-level design as RUP does. However, It can be considered that in MSF a high-level Software
Architecture design corresponds to the design of architecture system diagrams whereas low-level
Software Architecture design corresponds to architecture deployment and data centered diagrams. MSF
uses proprietary architectural diagrams for carrying out Software Architecture design. A detailed software
design is elaborated implicitly in the next Build track. Similar to RUP, MSF also provides a straightforward

architectural synthesis task. Thus, for elaborating a Software Architecture design, practitioners must follow
a clear process and generate the expected architecture system, deployment and data centered diagrams.

In the case of MBASE, several Software Architecture designs are elaborated as well as documents
describing the rationale of Software Architecture design decisions (in another activity called FRD). MBASE
also recommends constructing a prototype, mainly for addressing human-computer interactions issues.
MBASE, similar to MSF, does not establish an explicit division of software design in two levels (high-level
for SA design and low-level for the detailed software design). Nevertheless, it can be considered that in
MBASE a high-level Software Architecture design corresponds to a Software Architecture design not
linked to a specific computer technology (implementation and deployment diagrams are not used). The
architectural synthesis involves MBASE’s Architecture Design and Analysis task (which is part of the
SSAD track). A low-level Software Architecture design corresponds to a Software Architecture design
where a specific computer technology is selected and the high-level Software Architecture design is
refined. For instance, the descriptions of the behavior of the architecture and of the Level of Services
provided by the architecture are refined based on the implementation technology. This low-level Software
Architecture design is elaborated by the Implementation Design task (which is part of the SSAD track).
The detailed software design is elaborated in the next Construction, Transition and Support track. While
MBASE does provide a detailed architectural synthesis task, in contrast with RUP and MSF, it does not
prescribe a unique set of diagrams and techniques for elaborating a Software Architecture design. For
instance, MBASE suggests using any ADL (architecture description language) for describing the
architecture topology. Thus, while MBASE supports adequately the architectural synthesis task as MSF
does, the openness of techniques and tools of MBASE add an extra complexity when compared with
MSF.

Finally, in the case of RUP-SOA, while it also uses the well-known 4+1 view approach, it is enhanced with
additional tasks and artifacts. RUP-SOA includes additional tasks such as: 1) Identify Elements of Design,
2) Describe the run-time Architecture, 3) Describe the Distributed Architecture, and 4) Review the
Architecture. The analysis of elements is required to translate them into design elements (e.g. design
classes, component classes, modules, and source code). In RUP-SOA the Software Architecture
document includes: use-case realizations; analysis model, design mode, service model, sub-system
design, package design, and user-interface prototypes, and this document is more complete than reported
in RUP. Furthermore, RUP-SOA adds specific SOA artifacts highly related to the Software Architecture
design such as: SOA view, SOA signals and events diagrams, goal-service model, service model, and
service component specifications. These new architectural artifacts help to define a more analyzed and
documented Software Architecture than in RUP in the case of designing a SOA system.

A3) Architectural Evaluation: The architectural evaluation task is adequately supported in MSF and
MBASE but not in RUP and RUP-SOA. We found that MSF and MBASE report more detailed and careful
descriptions than RUP and use decision-making techniques for the architectural evaluation task. This
limitation of RUP and RUP-SOA come from the architectural synthesis task. This is because RUP does
not suggest explicitly the definition of competitive Software Architecture designs based on different design
rationales, and RUP’s evaluation method only involves a prototype. RUP-SOA suggests implicitly several
candidate architectures but does not report an explicit decision-making process for selecting the most
adequate candidate architecture. This selection is conducted more in an informal discussion process than
a formal quantitative-based decision-making process as used in MSF or MBASE. MSF proposes a clear
task for evaluating the different Software Architecture design proposals with robust decision-making
methods. MSF uses a utility tree and a quantitative-based LAAAM (Lightweight Architecture Alternative
Analysis Method) approach. MSF also proposes to elaborate a prototype (called proof of concept) if
required but in the previous phase, i.e. architecture synthesis. In the case of MBASE, a specific and robust
activity is proposed in the FRD track where the functional and non-functional requirements are evaluated
against different options of architectural strategies. A trade-off analysis is also considered among
competitive SA designs. MBASE, similar to MSF, proposes the utilization of decision-making techniques.

However, while MSF proposes a single specific technique, MBASE is open to propose a myriad of them.
For instance, MBASE reports a Top-Level Field Guide to Software Architecture Attribute Analysis
Methods, as part of the architectural evaluation tasks. Thus, MBASE provides better support for the
architectural evaluation task than RUP and RUP-SOA and a similar level of support than MSF, but with a
greater openness and complexity than MSF. Table 6 reports weaknesses and strengths found in these
four SDMs.

7. Limitations, Recommendations and Conclusions.

This research has studied the Software Architecture design methods included in four well-known rigor-
oriented System Development Methodologies: RUP, MSF, MBASE and RUP-SOA. Our study, like any
research work, has some methodological limitations. We report them for cautionary interpretative
purposes. 1) The analysis was conducted only on four rigor-oriented SDMs and other modern SDMs were
not considered (XP, SCRUM, UPEDU, among others) [67, 47]. 2) The analysis was based on the official
documents which describe the four SDMs. Data from real software projects using these four SDMs was
not available. Thus, while MSF and MBASE are assessed with an overall high adherence to the
theoretical prescriptions from modern Software Architecture design literature, their empirical conformance
by practitioners could not be assessed. 3) We did not conduct a detailed analysis on the specific
contextual domain of applications suitable for each SDM. We can only report that RUP, MSF and MBASE
can be considered usable for any type of software of middle or large scale, of business information type
being either embedded or industrial cyber-physical systems, and for object-oriented or component-based
platforms. In the case of RUP-SOA, it is particularized for service-oriented computational platforms, for
business information type and embedded or industrial cyber-physical systems, and for middle and large-
scale systems. 4) The assessment of adherence was realized by the first two researchers in the research
team, with a careful review for the third author, and the rest of the research team carried out an overall
review of the findings. Few discrepancies were found. The demographic profile of the research team was
as follows: 1 PhD student in Software Engineering, 1 EngD in Systems Engineering, 1 Post doctorate
academician in Software Engineering, and 3 PhD in Software Engineering; an average individual research
experience is over 7 years; a joint record of more than 25 publications in journals listed in ISI Web of
Science; an average teaching expertise of SDMs for more than 10 years; and an average age range of 45
years.

Several theoretical and practical recommendations can also be derived from this research. We consider
the following theoretical implications: 1) in general terms, an academic (MBASE), an industrial (MSF), and
an emergent (RUP-SOA) SDM include in their software design track of activities adequate Software
Architecture design prescriptions according to the core Software Architecture design literature [18]; 2) the
most popular SDM both for academic and industrial settings, i.e. RUP, covers partially current Software
Architecture design prescriptions, which might result in insufficient support for the complexity of the new
software systems demanded in the organizations (e.g. SOA and Cloud-based systems); 3) MBASE, MSF
and RUP-SOA provide a shared perspective on the relevance of the Software Architecture design, where
their software design tracks correspond totally to Software Architecture design (general and refined
Software Architecture designs); 4) RUP-SOA, while little has been reported in literature on its utilization, it
is industrially sponsored by a large-scale and relevant worldwide software business (i.e. IBM) and it is
expected to become the substitute of RUP in scenarios targeting SOA systems; and 5) MBASE and MSF
adequately cover a decision-making processes for evaluating competitive candidate architectural designs,
whereas RUP-SOA only supports this with an informal decision-making process and RUP omits it.

Table 6. Main Strengths and Weaknesses in Software Architecture Design Methods in RUP, MSF, MBASE
and RUP-SOA

 SA Design in RUP SA Design in MSF SA Design in MBASE SA Design in RUP-SOA

St
re

ng
th

s

On expected SA activities:
- It provides a

straightforward SA
method.

- It relies on the well-known
4+1 architectural views
approach.

- It is widely used in
industry settings.

- It is widely taught in
academic settings.

On expected SA artifacts:
- It uses popular UML

diagrams.
- It uses a reduced set of

diagrams, through the 4
views.

On expected SA activities:
- It covers totally all of the

expected SA activities.
- It provides a reduced and

specific set of techniques
for supporting expected
SA activities. In particular
a decision-making method
for evaluating architectural
decisions.

- It provides a free-cost
EPG (electronic process
guide)

- It is used widely in
industry settings.

On expected SA artifacts:
- It covers totally all of the

expected SA artifacts.
- It acknowledges the SA

artifact as of first-class
type.

- It includes a modern
concept for non functional
requirements (quality of
services).

On expected SA activities:
- It covers totally all of the

expected SA activities.
- It provides a wide variety

of techniques for
supporting expected SA
activities.

- It promotes the utilization
of different ADL
(Architecture Description
Languages) (not only
UML).

- It provides a free-cost
EPG (electronic process
guide)

On expected SA artifacts:
- It covers totally all of the

expected SA artifacts.
- It acknowledges the SA

artifact as of first-class
type (first worldwide SDM
using the LCA concept).

- It includes a modern
concept for non -
functional requirements
(level of services).

On expected SA activities:
- It covers almost totally all

of the expected SA
activities.

- It values the SA design.
- It includes specific

artifacts for SOA software
systems,

- It proposes an optional
Define Architectural Proof-
of-Concept activity

- It is framed in a well-
known RUP phase-activity
scheme.

On expected SA artifacts:
- It covers almost totally all

of the expected SA
artifacts.

- It acknowledges the SA
artifact as of first-class
type.

- It includes also implicitly a
modern concept for non-
functional requirements
(level of services).

W
ea

kn
es

se
s

On expected SA activities:
- It partially covers the

expected architectural
synthesis activities.

- It does not consider
explicitly alternative SA
designs to be evaluated.
An initial SA design is
incremented but no
competitive ones are
analyzed.

- Its EPG (electronic
process guide) is not free.

- Lack of guidance on how
to elaborate SA diagrams.

On expected SA artifacts:
- Rationale on SA design

decisions is not explicitly
reported. This relevant
knowledge, thus, is not
documented.

- It documents SA design
with UML diagrams and
they can be interpreted
from multiple forms.

On expected SA activities:
- It is a rigor-oriented SDM,

and thus its learning curve
is a quite long.

- Its teaching in academic
settings is scarce.

- Lack of guidance on how
to elaborate SA diagrams.

On expected SA artifacts:
- It uses a proprietary type

of diagrams. Not standard
UML diagrams.

On expected SA activities:
- It is a strong rigor-oriented

SDM, and thus its learning
curve is long.

- Its utilization has been
more in academic settings
than industry.

- Lack of guidance on which
specific SA diagrams
should be defined and on
how to elaborate such
diagrams.

On expected SA artifacts:
- None was found.

On expected SA activities:
- It is a rigor-oriented SDM,

and thus its learning curve
is long.

- It is a proprietary SDM
and thus its learning has a
high cost.

- The optional Define
Architectural Proof-of-
Concept activity might be
omitted and lead to a
wrong SA design. This
activity should be
mandatory.

- Lack of guidance on how
to elaborate SA diagrams.

On expected SA artifacts:
- The rationale on the SA

design decisions is not
explicitly reported. This
relevant knowledge, thus,
is not documented. The
review records might
document it but it is not
explicitly indicated.

From a practitioner’s perspective, we can derive the following implications: 1) given that RUP has some
core limitations for Software Architecture design according to modern Software Architecture design
prescriptions, the practitioners using RUP and elaborating new complex software systems will need to
update this SDM to a modern RUP version (e.g. RUP for SOA [30] to cover modern practices of Software
Architecture design); 2) RUP-SOA and MSF can be considered strictly proprietary SDMs, with a high
training cost for organizations, so practitioners can pursue MBASE which is an academic free-cost SDM.
However, in both cases (RUP-SOA/MSF or MBASE) practitioners interested in using them, can face a
hard learning curve; 3) this research was focused on rigor-oriented SDMs, but many practitioners working
for small and medium-sized businesses are currently using agile-based SDMs [68, 47], and thus, our
research findings might not be useful for such practitioners. In this case it can be reported that both MSF
and MBASE have released agile versions (MSF for Agile [69]) and Lean MBASE [70], and thus
practitioners might explore these options.

Finally, although the four reviewed SDMs represent important efforts to consolidate good practices for
Software Architecture design, we believe there is still an important issue that needs to be tackled in the
realm of architectural synthesis: the guide for best practices in Software Architecture design is insufficient
for the inexperienced practitioner. In the best case, an SDM, such as RUP, RUP-SOA and MBASE,
defines the specific diagrams that need to be defined as part of a Software Architecture design. However,
no specific guide is given in how these diagrams can be constructed, rather, it is assumed that the
practitioner has enough experience to conduct herself in elaborating such diagrams. We believe, one of
the main reasons Software Architecture best practices are currently poorly employed in industry is the lack
of more specific guidance in current SDMs. Software Architecture best practices are not carried out in
many cases when the inexperienced practitioner does not know how to proceed when elaborating
Software Architecture designs in a specific domain area. Even for the experienced practitioner, the lack of
specific SDM procedures can lead her to obviate such procedures. One of the principal causes of the lack
of more specific guidance of current SDMs is the general-purpose nature of such SDMs. Therefore, further
efforts are required to define domain-specific SDMs. Although RUP-SOA is an initial effort to address this
issue, RUP-SOA still suffers from providing guides on how the prescribed diagrams should be
constructed. As a consequence, further efforts are required to define domain-specific SDMs targeting
more specific guides on how Software Architecture diagrams can be elaborated, among other more
specific Software Architecture design recommendations.

Several recommendations for further research emerge also from this study. 1) To extend this conceptual
review to agile SDMs (e.g. MSF for Agile, Lean MBASE, XP, SCRUM, and UPEDU, among others) [47].
2) To conduct empirical research (via a survey research method or a multi-case study method) on the
adherence of SDMs to modern Software Architecture design prescriptions by the utilization of these four
SDMs (RUP, MSF, MBASE, and RUP-SOA) in real settings. 3) To conduct empirical research through lab
experiments with an adequate sample of practitioners on the differences (if any found) on usability metrics
and quality design metrics by using the different Software Architecture design methods (e.g. those posited
in RUP, MSF, MBASE, and RUP-SOA). And, 4) to study improvements on the Software Architecture
design method used in RUP.

Hence, this study found that MSF and MBASE can be considered with a very high adherence, RUP-SOA
with a high level adherence, and RUP with a moderate to low level adherence to the Software Architecture
design prescriptions defined by the general model of Software Architecture design. Our findings on RUP
weaknesses have also been reported elsewhere. For instance, [71, p. 20] indicated that RUP and UML
Software Architecture design methods: “don’t clearly state the architecture’s implications”. However, we
have also pointed out that a major weakness of the four reviewed SDMs is that the lack of specific guides
on how Software Architecture diagrams can be elaborated has resulted on poorly guiding the inexpert
practitioner and discouraging the expert practitioner on employing Software Architecture best practices.
Hence, further efforts are needed to develop domain-specific SDMs providing more specific guidance on

Software Architecture design, and in particular for SOA and the emergent cloud-computing paradigm [72,
73].
Finally, we can conclude that: 1) the Software Architecture design artifact is a first-class artifact in modern
and complex software systems; 2) some of the reviewed rigor-oriented SDMs (i.e. MSF, MBASE and
RUP-SOA) have a clear and high adherence to best and modern Software Architecture design practices;
and 3) Software Architecture design activities seem to be still misunderstood and misapplied in industry by
the utilization of a popular SDM (i.e. RUP) as well as the other less popular SDMs (i.e. MSF, MBASE or
RUP-SOA) with weaknesses on specific detailed guidelines for conducting Software Architecture design.

References

[1] Kruchten, P. (2004). An Ontology of Architectural Design Decisions in software intensive systems, In:

Proceedings of the 2nd Groningen Workshop on Software Variability Management, Groningen, NL, pp.
1-8

[2] Kruchten, P., Capilla, R., & Dueas, J. C. (2009). The decision view's role in Software Architecture

practice. Software, IEEE, 26(2), 36-42.

[3] Clements P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., & Stafford,

J. (2011). Documenting Software Architecture: Views and Beyond, Boston, MA, USA: Addison Wesley,
pp. 01-517.

[4] Vogel, O., Arnold, I., Chughtai, A., & Kehrer, T. (2011). Software Architecture: a comprehensive

framework and guide for practitioners. Springer Science & Business Media, Heidelberg, Germany,
2011, pp. 1-463.

[5] Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I. (2013). Software Architecture

optimization methods: A systematic literature review. IEEE Transactions on Software
Engineering, 39(5), 658-683. doi:10.1109/TSE.2012.64.

[6] Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of Software Architecture. ACM SIGSOFT

Software Engineering Notes, 17(4), 40-52.

[7] Shaw, M., & Clements, P. (2006). The golden age of Software Architectures: A comprehensive

survey. TechnicalReport CMU-ISRI-06-101, pp. 1-15,Carnegie-MellonUniversity, USA.

[8] Kim, J. S., & Garlan, D. (2010). Analyzing architectural styles. Journal of Systems and Software, 83(7),

1216-1235.

[9] Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in practice (2nd ed.). Boston, MA,

USA: Addison Wesley.

[10] Kruchten P., Obbink, H. & Stafford, J. (2006). The past, present, and future for Software

Architecture. Software, IEEE, 23(2), 22-30.

[11] Oktaba, H., & Ibargüengoitia, G. (1998). Software process modeled with objects: Static view .

Computation y Sistemas, 1(4), 228-238.

[12] Clarke, P., O’Connor, R. V., Leavy, B., & Yilmaz, M. (2015). Exploring the Relationship between

Software Process Adaptive Capability and Organisational Performance. Software Engineering, IEEE
Transactions on, 41(12), 1169-1183.

[13] Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software development
process: Towards a comprehensive reference framework. Information and Software Technology, 54(5),
433-447.

[14] Jeners, S., O'Connor, R., Clarke, P., Lichter, H., Lepmets, M., & Buglione, L. (2013). Harnessing

software development contexts to inform software process selection decisions. Software Quality
Professional, 16(1), 35-36.

[15] Mora, M., Gelman, O., O’Connor, R., Alvarez, F., & Macías-Luévano, J. (2009). An Overview of Models

and Standards of Processes in the SE, SwE, and IS Disciplines. Information Communication
Technology Standardization for E-Business Sectors: Integrating Supply and Demand Factors:
Integrating Supply and Demand Factors, 147.

[16] Garlan, D. (2000). Software Architecture: a roadmap. In Proceedings of the Conference on the Future

of Software Engineering (pp. 91-101). ACM.

[17] Garland, J., & Anthony, R. (2003). Large-scale Software Architecture: a practical guide using UML.

John Wiley & Sons.

[18] Hofmeister, C., Kruchten, F., Nord, R., Obbink, H., Ran, A. & America, P. (2007). A general model of

Software Architecture design derived from five industrial approaches. Journal of System and Software,
80(1), 106-126.

[19] Maier, M. W., Emery, D., & Hilliard, R. (2001). Software Architecture: introducing IEEE Standard

1471. Computer, 34(4), 107-109.

[20] ISO/IEC/IEEE 42010:2011: International Standard, Systems and software engineering - Architecture

description. ISO Organization, Switzerland.

[21] Boehm, B., Port, D., Egyed, A., & Abi-Antoun, M. (1999). The MBASE life cycle architecture milestone

package. In: Proceedings of the 1st Working International Conference on Software Architecture,
Springer US, (pp. 511-528).

[22] Kazman, R., Kruchten, P., Nord, R., & Tomayko, J. E. (2004). Integrating Software-Architecture-Centric

Methods into the Rational Unified Process. SEI/CMU Technical Report CMU/SEI-2004-TR-011, pp. 1-
55.

[23] Lange, C. F., Chaudron, M. R., & Muskens, J. (2006). In practice: UML Software Architecture and

design description. Software, IEEE, 23(2), 40-46

[24] Hoorn, J. F., Farenhorst, R., Lago, P., & van Vliet, H. (2011). The lonesome architect. Journal of

Systems and Software, 84(9), 1424-1435.

[25] Weinreich, R., & Buchgeher, G. (2012). Towards supporting the Software Architecture life

cycle. Journal of Systems and Software, 85(3), 546-561.

[26] Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.

[27] Microsoft (2002). MSF process model v. 3.1. Retrieved from Microsoft Corporation, Download Center

Web site: https://www.microsoft.com/en-us/download/confirmation.aspx?id=13870

[28] Microsoft (2006). MSF for CMMI process improvement: process guidance. Retrieved from Microsoft
Corporation, Download Center Web site: https://www.microsoft.com/en-
ca/download/details.aspx?id=496

[29] CfSE-USC (2003). Guidelines for Model-Based (System) Architecting and Software Engineering

(MBASE) v2.4. Center for Software Engineering, University of Southern California, pp. 1-353.

[30] Péraire C., Edwards, M., Fernandes, A., Mancin, E. & Carroll, K., (2007). The IBM Rational Unified
Process for System Z, 1-252, IBM Rational Software, Red Books.

[31] Rada, R., & Craparo, J. (2000). Sharing standards: standardizing software projects. Communications

of the ACM, 43(12), 21-25.

[32] Bygstad, B., & Munkvold, B. E. (2002). Software engineering and IS implementation research: An

assessment of current SE frameworks. Information Systems Development: Advances in Methodologies,
Components and Management. Kluwer Academic/Plenum Publishers, New York. pp. 227-239.

[33] Traa, J. W. (2006). Rational unified process vs. Microsoft solutions framework: A comparative

study. Master of Informatics & Economics), Erasmus University Rotterdam, The Netherlands.

[34] Del Maschi, V. F., Spínola, M. M., Costa, I., Esteves, A. L., & Vendramel, W. (2007). Practical

Experience in Customization of a Software Development Process for Small Companies Based on RUP
Processes and MSF. In: PICMET 2007 Proceedings, 5-9 August, Portland, Oregon – USA, (pp. 2440-
2457).

[35] Liviu, M. (2014). Comparative study on software development methodologies. Database Systems
Journal, 5(3), 37-56.

[36] Klappholz, D., & Port, D. (2004). Introduction to MBASE (Model-Based (System) Architecting and

Software Engineering). Advances in Computers, 62, 203-248.

[37] Valerdi, R., & Madachy, R. (2007). Impact and contributions of MBASE on software engineering

graduate courses. Journal of Systems and Software,80(8), 1185-1190.

[38] Frailey, D. J. (2007). Experience teaching Barry Boehm’s techniques in industrial and academic

settings. Journal of Systems and Software, 80(8), 1217-1221.

[39] Kruchten, P. (2001). What Is the Rational Unified Process? The Rational Edge Magazine.

[40] Ameller, D., Franch, X., Gómez, C., Araujo, J., Berntsson Svensson, R., Biffl, S., & Moreira, A. (2015).

Handling non-functional requirements in Model-Driven Development: An ongoing industrial survey.
In Requirements Engineering Conference (RE), 2015 IEEE 23rd International (pp. 208-213). IEEE.

[41] Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they
 coexist?. Software, IEEE, 27(2), 16-22.

[42] Kruchten, P. (2010). Software Architecture and agile software development: a clash of two cultures?.

In Software Engineering, 2010 ACM/IEEE 32nd International Conference on (Vol. 2, pp. 497-498).
IEEE.

[43] Tang, A., Gerrits, T., Nacken, P., & van Vliet, H. (2011). On the responsibilities of software architects
and software engineers in an agile environment: who should do what?. In Proceedings of the 4th
international workshop on Social software engineering (pp. 11-18). ACM, Szeged, Hubgary.

[44] Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: Towards

explaining agile software development. Journal of Systems and Software, 85(6), 1213-1221.

[45] Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G., Subiaco, P., & D'Amore, C. (2010). Peaceful

coexistence: Agile developer perspectives on Software Architecture. IEEE Software, (2), 23-25.

[46] Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study in

smart grids. Information and Software Technology,56(7), 727-748.

[47] Yang, C., Liang, P., & Avgeriou, P. (2016). A systematic mapping study on the combination of software

architecture and agile development. Journal of Systems and Software, 111, 157-184.

[48] Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information

systems architecture. IBM systems journal, 31(3), 590-616.

[49] Shan, T. C., & Hua, W. W. (2009). Architecture Methods and Frameworks Overview. In M. Khosrow-

Pour (Ed.), Encyclopedia of Information Science and Technology, Second Edition (2nd ed.) (pp. 218-
225). Hershey, PA: Information Science Reference. doi:10.4018/978-1-60566-026-4.ch038.

[50] Hofmeister, C., Nord, R. & Soni, D. (1999). Applied Software Architecture, Boston, USA: Addison-

Wesley, Boston.

[51] Kruchten, P. (1995). The 4 + 1 View Model of Architecture. IEEE Software 12 (6), 45–50.

[52] America, P., Obbink, H., & Rommes, E. (2003). Multi-view variation modeling for scenario analysis. In:

Proceedings of Fifth International Workshop on Product Family Engineering (PFE-5), Siena, Italy.
Springer-Verlag, (pp. 44–65).

[53] Obbink, H., Mu¨ ller, J.K., America, P., van Ommering, R., Muller, G., van der Sterren, W., Wijnstra,

J.G. (2000). COPA: a component-oriented platform architecting method for families of software-
intensive electronic products (Tutorial). In: Proceedings of SPLC1, the First Software Product Line
Conference, Denver, Colorado.

[54] Ran, A. (2000). ARES conceptual framework for Software Architecture. In: Jazayeri, M., Ran, A., van

der Linden, F. (Eds.), Software Architecture for Product Families Principles and Practice. Addison-
Wesley, Boston, pp. 1–29.

[55] Glass, R. L., Ramesh, V., & Vessey, I. (2004). An analysis of research in computing

disciplines. Communications of the ACM, 47(6), 89-94.

[56] M. Mora, O. Gelman, D. Paradice, and F. Cervantes. (2008) The case of conceptual research in

information systems. In Proceedings of the International Conference on Information Resources
Management (Conf-IRM 2008), pages 1-10, Niagara Falls, Ontario, Canada.

[57] Santos, S., S., (2007). Comparing the Rational Unified Process (RUP) and Microsoft Solutions

Framework (MSF), IBM, Software Group. Retrieved on January 05, 2016, from:
http://www.ibm.com/developerworks/rational/library/apr07/santos/

[58] Kendall, J. E., & Kendall, K. E. (1993). ‘Metaphors and methodologies: Living beyond the systems
machine’, MIS Quarterly, 149-171.

[59] Avison, D. E., & Fitzgerald, G. (2003). Where now for development methodologies?. Communications

of the ACM, 46(1), 78-82.

[60] Boehm, B., & Turner, R. (2004). Balancing agility and discipline: Evaluating and integrating agile and

plan-driven methods. In: Proceedings of the 26th International Conference on Software Engineering
(ICSE’04) (pp. 718-719). IEEE.

[61] Rodríguez, L. C., Mora, M., Martin, M. V., O’Connor, R., & Alvarez, F. (2009). Process Models of

SDLCs: Comparison and Evolution. In M. Syed, & S. Syed (Eds.) Handbook of Research on Modern
Systems Analysis and Design Technologies and Applications(pp. 76-89). Hershey, PA: Information
Science Reference. doi:10.4018/978-1-59904-887-1.ch005

[62] IBM (2013). IBM International Business Machines (IBM) Rational Unified Process (RUP). Retrieved

from IMB, Redbooks Web site: http://www.redbooks.ibm.com/redbooks/pdfs/sg247362.pdf ISO (2011).

[63] Rational (2001). Rational unified process: Best Practices for Software Development Teams. Rational

Company, pp. 1-21.

[64] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S. & Holley, K. (2008), ‘SOMA: a Method

for Developing Service-oriented Solutions’, IBM Systems Journal, 47(3), 377-396.

[65] Open Group, (2008). ‘Service-Oriented Architecture Ontology’, The Open Group.

[66] Clements P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., & Stafford,

J. (2002). A Practical Method for Documenting Software Architectures. Retrieved from Carnegie Mellon
University’s institutional repository: http://repository.cmu.edu/compsci/671/

[67] Bustard, D., Wilkie, G., & Greer, D. (2013). Towards optimal software engineering: learning from agile

practice. Innovations in Systems and Software Engineering, 9(3), 191-200.

[68] Galvan, S., Mora, M., O’Connor, R.V., Acosta, F., & Alvarez, F.(2015). A Compliance Analysis of Agile

Methodologies with the ISO/IEC 29110 Project Management Process. Procedia Computer Science, 64,
pp.188-195.

[69] Microsoft, (2006). MSF for agile software development: process guidance. Retrieved from Microsoft

Corporation, Download Center Web site: http://www.microsoft.com/en-
us/download/confirmation.aspx?id=5365

[70] Boehm, B., Klappholz, D., Colbert, E., Puri, P., Jain, A., Bhuta, J., & Kitapci, H. (2005). Guidelines for

lean model-based (system) architecting and software engineering (lean MBASE). Center for Software
Engineering, University of Southern California.

[71] Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying architecture. IEEE Software, (2),

19-27.

[72] Sommerville, I. (2013). Teaching cloud computing: a software engineering perspective. Journal of

Systems and Software, 86(9), 2330-2332.

[73] France, R., & Rumpe, B. (2010). Modeling for the cloud. Software and Systems Modeling, 9(2), 139-
140.

Appendix. Table 1. Phases and Workflows in RUP, MSF, MBASE and RUP-SOA SDMs related

with SA Design Activity.

GENERIC
SDM

DISCIPLINE

SDM ACTIVITIES

RUP MSF MBASE RUP-SOA

R
EQ

U
IR

EM
EN

TS

Requirements:
• Analyze the

Problem
• Understand

Stakeholder
Needs

• Define the
System

• Manage the
Scope of the
System

• Refine the
System
Definition

• Manage
Changing
Requirements.

Envision:
• Capture

Product Vision
and Scope

• Establish
Project Process

Planning:
• Plan Project
• Create QoS

(Quality of
Service)
Requirements

• Create
Scenarios

• Create Product
Requirements

Operational
Concept
Description
(OCD)

System and
Software
Requirements
Definition (SSRD)

Feasibility
Rationale
Description (FRD)

Define and Refine
Requirements:
• Elaborate Product Vision
• Define Use Case and Actors
• Generate Supplementary

Specifications
• Prioritize Use Cases

Perform Architectural Proof-of-
Concept (optional):
• Initial Architectural Analysis
• Build Architectural Proof of

Concept
• Assess Feasibility of

Architectural Proof of Concept

D
ES

IG
N

Analysis &
Design:
• Define a

Candidate
Architecture

• Perform
Architectural
Synthesis
(optional)

• Refine the
Architecture

• Analyze

Behavior
• Design

Components
• Design the

Database

Planning:
• Create Solution

Architecture

(Design System
Architecture
and
Deployment,
Create Proof of
Concepts,
Assess
Alternatives,
Select
Architecture).

 Build:
• Analysis

(detailed
design)

System and
Software
Architecture
Description
(SSAD):
• System

Analysis
• Architecture

Design and
Analysis

• Implementation
Design

- Feasibility
Rationale
Description
(FRD)

Construction,
Transition &
Support
• Software

Detailed Design

Define Candidate Architecture:
• Architecture Analysis
• Analysis of Services
• Analysis of Reusable Assets
• Analysis of Use Cases

Refine Architecture:
• Identify Elements of Design
• Describe the run-time

Architecture
• Describe the Distributed

Architecture
• Review the Architecture

Design Components:
• Design Use Cases
• Design of Sub-systems
• Design of Modules
• Design of Classes
• Design of SOA sub-systems
• Specify SOA components
• Design of BBDD
• Design of User Interfaces

