
Author’s Accepted Manuscript

Data Modeling in the NoSQL World

Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo,
Riccardo Torlone

PII: S0920-5489(16)30118-0
DOI: http://dx.doi.org/10.1016/j.csi.2016.10.003
Reference: CSI3149

To appear in: Computer Standards & Interfaces

Received date: 25 March 2016
Revised date: 30 September 2016
Accepted date: 6 October 2016

Cite this article as: Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo and Riccardo
Torlone, Data Modeling in the NoSQL World, Computer Standards &
Interfaces, http://dx.doi.org/10.1016/j.csi.2016.10.003

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

http://www.elsevier.com
http://dx.doi.org/10.1016/j.csi.2016.10.003
http://dx.doi.org/10.1016/j.csi.2016.10.003


Data Modeling in the NoSQL World✩

Paolo Atzenia, Francesca Bugiottib, Luca Cabibboa, Riccardo Torlonea

aUniversità Roma Tre
bCentraleSupélec

Abstract

NoSQL systems have gained their popularity for many reasons, including the

flexibility they provide in organizing data, as they relax the rigidity provided by

the relational model and by the other structured models. This flexibility and

the heterogeneity that has emerged in the area have led to a little use of tradi-

tional modeling techniques, as opposed to what has happened with databases

for decades.

In this paper, we argue how traditional notions related to data modeling

can be useful in this context as well. Specifically, we propose NoAM (NoSQL

Abstract Model), a novel abstract data model for NoSQL databases, which ex-

ploits the commonalities of various NoSQL systems. We also propose a database

design methodology for NoSQL systems based on NoAM, with initial activities

that are independent of the specific target system. NoAM is used to specify a

system-independent representation of the application data and, then, this inter-

mediate representation can be implemented in target NoSQL databases, taking

into account their specific features. Overall, the methodology aims at support-

ing scalability, performance, and consistency, as needed by next-generation web

applications.

Keywords: Data models, database design, NoSQL systems

✩This paper extends a short article appeared in the Proceedings of the 33rd International
Conference on Conceptual Modeling (ER 2014) with the title Database Design for NoSQL
Systems [1].

Preprint submitted to Journal of LATEX Templates October 15, 2016



1. Introduction

NoSQL database systems are today an effective solution to manage large

data sets distributed over many servers. A primary driver of interest in No-

SQL systems is their support for next-generation Web applications, for which

relational DBMSs are not well suited. These are simple OLTP applications for5

which (i) data have a structure that does not fit well in the rigid structure of

relational tables, (ii) access to data is based on simple read-write operations,

(iii) relevant quality requirements include scalability and performance, as well

as a certain level of consistency [2, 3].

NoSQL technology is characterized by a high heterogeneity; indeed, more10

than fifty NoSQL systems exist [4], each with different characteristics. They can

be classified into a few main categories [2], including key-value stores, document

stores, and extensible record stores. In any case, this heterogeneity is highly

problematic to application developers [4], even within each category.

Beside the differences between the various systems, NoSQL datastores ex-15

hibit an additional phenomenon: they usually support significant flexibility in

data, with limited (if any) use of the notion of schema as it is common in

databases. So, the organization of data, and their regularity, is mainly hard-

coded within individual applications and is not exposed, probably because there

is little need for sharing data between applications. Indeed, the notion of20

schema, and the need for a separation between data and programs, were moti-

vated in databases by the need for sharing data between applications. If this

requirement does not hold any longer, many developers are led to believe that

the importance of schemas gets reduced or even disappears.

As the idea of data model is usually tightly related to that of schema, this25

“schemaless” point view may lead to claim that the very notion of model and of

modeling activities becomes irrelevant with respect to NoSQL databases. The

goal of this paper is to argue that models and modeling do have an interesting

role in this area. Indeed, modeling is an abstraction process, and this helps in

general and probably even more in a world of diversity, as the analyst/designer30

2



can reason at a high level, before delving into the details of the specific systems.

Instead, given the variety of systems, it is currently the case that the design

process for NoSQL applications is mainly based on best practices and guide-

lines [5], which are specifically related to the selected system [6, 7, 8], with no

systematic methodology. Several authors have observed that the development35

of high-level methodologies and tools supporting NoSQL database design are

needed [9, 10, 11], and models here are definitely needed, in order to achieve

some level of generality.

Let us recall the various reasons for which modeling is considered important

in database design and development [12]. First of all, beside being crucial40

in the conceptual and logical design phases, it offers support throughout the

lifecycle, from requirement analysis, where it helps in giving a structure to the

process, to coding and maintenance, where it gives valuable documentation. The

main point to be mentioned is that modeling allows the specialist to describe

the domain of interest and the application from various perspectives and at45

various levels of abstraction. Moreover, it provides support to communication

(and to individual comprehension). Finally, it provides support to performance

management, as physical database design is also based on data structures, and

query processing efficiency is often based on reference to the regularity of data.

Conceptual and logical modeling, as they are currently known, were devel-50

oped in the database world, with specific attention to relational systems, but

found applications also in other contexts. Indeed, while the importance of rela-

tional databases was clear since the Eighties, it was soon understood that there

were many “non-business” application domains for which other modeling fea-

tures were needed: the advocates of object-oriented databases observed, more55

or less at the same time, that some requirements were not satisfied, such as

those in CAD, CASE, and multimedia and text management [13]. This led

to the development of models with nested structures, more complex than the

relational one, and less regular, and so more difficult to manage.

Flexibility in structures was also required in another area, which emerged a60

decade later, and has since been very important: the area of Web applications,

3



where there were at least two kinds of developments concerned with models. On

the one hand, work on complex object models for representing hypertexts [14,

15, 16], and on the other hand significant development in semistructured data,

especially with reference to XML [17].65

Another recurring claim in the database world in the last ten or fifteen

years has been the fact that, while relational databases are a de facto standard,

it is not the case that there is one solution that works well for all kinds of

applications. As Stonebraker and Çetintemel [18] argued, it is not the case that

“one size fits all,” and different engines and technologies are needed in different70

contexts, for example OLAP and OLTP have different requirements, but the

same holds for other kinds of applications, such as stream processing, sensor

networks, or scientific databases.

The NoSQL movement emerged for a number of motivations, including most

of the above, with the goal of supporting highly scalable systems, with specific75

requirements, usually with very simple operations over many nodes, on sets of

data that have flexible structure. Given that there are many different appli-

cations and the specific requirements vary, many systems have emerged, each

offering a different way of organizing data and a different programming interface.

Heterogeneity can become a problem if migration or integration are needed, as80

this is often the case, in a world with changing requirements and new tech-

nological developments. Also, the availability of many different systems, with

different implementations, has led to different design techniques, usually related

just to individual systems or small families thereof.

In this paper we argue that a model-based approach can be useful to tackle85

the difficulties related to heterogeneity, and provide support in the form of

abstraction. In fact, modeling can be at the basis of a design process, at various

level; at a higher one to represent the features of interest for the application,

and at a lower one to describe some implementation features in a concrete but

system-independent way.90

Indeed, we will present a high-level data model for NoSQL databases, called

NoAM (NoSQL Abstract Model) and show how it can be used as an interme-

4



diate data representation in the context of a general design methodology for

NoSQL applications having initial steps that are independent of the individual

target system. We propose a design process that includes a conceptual phase,95

as common in traditional application, followed (and this is unconventional and

original) by a system-independent logical design phase, where the intermediate

representation is used, as the basis for both modeling and performance aspects,

with only a final phase that takes into account the specific features of individual

systems.100

The rest of the paper is organized as follows. In Section 2, we illustrate

the features of the main categories of NoSQL systems arguing that, for each

of them, there exists a sort of data model. In Section 3 we present NoAM,

our system-independent data model for NoSQL databases, and in Section 4 we

discuss our design methodology for NoSQL databases. In Section 5 we briefly105

review some related literature. Finally, in Section 6 we draw some conclusions.

2. NoSQL data models

In this section we briefly present and compare a number of representative

NoSQL systems, to make apparent the heterogeneity (as well as the similarities)

in the way they organize data and in their programming interfaces. We first110

introduce a sample application dataset, and then we show how to represent

these data in the representative systems we consider.

2.1. Running example

Let us consider, as a running example, an application for an on-line social

game. This is indeed a typical scenario in which the use of a NoSQL database115

is suitable, that is, a simple next-generation Web application (as discussed in

the Introduction).

The application should manage various types of objects, including players,

games, and rounds. A few representative objects are shown in Figure 1. The

figure is a UML object diagram. Boxes and arrows denote objects and relation-120

ships between them, respectively.

5



mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Figure 1: Sample application objects

mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Figure 2: Sample aggregates (as groups of objects)

To represent a dataset in a NoSQL database, it is often useful to arrange

data in aggregates [19, 20]. Each aggregate is a group of related application

objects, representing a unit of data access and atomic manipulation. In our

example, relevant aggregates are players and games, as shown by closed curves125

in Figure 2. Note that the rounds of a game are grouped within the game itself.

In general, aggregates can be considered as complex-value objects [21], as shown

in Figure 3.

The data access operations needed by our on-line social game are simple read-

write operations on individual aggregates; for example, create a new player and130

retrieve a certain game. Other operations involve just a portion of an aggregate;

6



Player:mary : 〈
username : ”mary”,

firstName : ”Mary”,

lastName : ”Wilson”,

games : {
〈 game : Game:2345, opponent : Player:rick 〉,
〈 game : Game:2611, opponent : Player:ann 〉

}
〉

Player:rick : 〈
username : ”rick”,

firstName : ”Ricky”,

lastName : ”Doe”,

score : 42,

games : {
〈 game : Game:2345, opponent : Player:mary 〉,
〈 game : Game:7425, opponent : Player:ann 〉,
〈 game : Game:1241, opponent : Player:johnny 〉

}
〉
Game:2345 : 〈

id : ”2345”,

firstPlayer : Player:mary,

secondPlayer : Player:rick,

rounds : {
〈 moves : . . . , comments : . . . 〉,
〈 moves : . . . , actions : . . . , spell : . . . 〉

}
〉

Figure 3: Sample aggregates (as complex values)

for example, add a round to an existing game. In general, it is indeed the

case that most real applications require only operations that access individual

aggregates [2, 22].

2.2. NoSQL database models135

NoSQL database systems organize their data according to quite different

data models. They usually provide simple read-write data-access operations,

which also differ from system to system. Despite this heterogeneity, a few main

categories can be identified according to the modeling features of these sys-

7



tems [2, 3]: key-value stores, document stores, extensible record stores, plus140

others (e.g., graph databases) that are beyond the scope of this paper.

2.3. Key-value stores

In general, in a key-value store, a database is a schemaless collection of key-

value pairs, with data access operations on either individual key-value pairs or

groups of related pairs.145

As a representative key-value store we consider here Oracle NoSQL [23]. In

this system, keys are structured; they are composed of a major key and a minor

key. The major key is a non-empty sequence of strings. The minor key is a

sequence of strings. Each element of a key is called a component of the key. On

the other hand, each value is an uninterpreted binary string.150

A sample key-value is the pair composed of key /Player/mary/-/username

and value ”mary”. In the key, symbol ‘/ ’ separates key components, while

symbol ‘-’ separates the major key from the minor key. The distinction between

major key and minor is especially relevant to control data distribution and

sharding.155

In a pair, the value can be either a simple value (such as the string ”mary”)

or a complex value. In the former case, it is common to use some data inter-

change format (such as XML, JSON, and Protocol Buffers [24]) to represent

such complex values.

Oracle NoSQL offers simple atomic access operations, to access and modify160

individual key-value pairs: put(key, value) to add or modify a key value pair

and get(key) to retrieve a value, given the key. Oracle NoSQL also provides

an atomic multiGet(majorKey) operation to access a group of related key-value

pairs, and specifically the pairs having the same major key. Moreover, it offers

an execute operation for executing multiple put operations in an atomic and165

efficient way (provided that the keys specified in these operations all share a

same major key).

The data representation for a dataset in a key-value store can be based on

aggregates. These are two common representations for aggregates:

8



• Represent an aggregate using a single key-value pair. The key (major key)170

is the aggregate identifier. The value is the complex value of the aggregate.

See Figure 4(a).

• Represent an aggregate using multiple key-value pairs. Specifically, the

aggregate is split in parts that need to be accessed or modified separately,

and each part is represented by a distinct but related key-value pair. The175

aggregate identifier is used as major key for all these parts, while the minor

key identifies the part within the aggregate. See Figure 4(b).

The data access operations provided by key-value stores usually enable an ef-

ficient and atomic data access to aggregates with respect to both data repre-

sentations. Indeed, all systems support the access to individual key-value pairs180

(useful in the former case) and most of them (such as Oracle NoSQL) provide

also the access to groups of related key-value pairs (required in the latter case).

2.4. Document stores

In a document store, a database is a set of documents, each having a complex

structure and value.185

In this category, a widely used system isMongoDB [25]. It is an open-source,

document-oriented data store that offers a full-index support on any attribute,

a rich document-based query API and Map-Reduce support.

In MongoDB, a database comprises one or more collections. Each collection

is a named group of documents. Each document is a structured document, that190

is, a complex value, a set of attribute-value pairs, which can comprise simple

values, lists, and even nested documents. Thus, documents are neither freeform

text documents nor Office documents. Documents are schemaless, that is, each

document can have its own attributes, defined at runtime.

Specifically, MongoDB documents are based on BSON (Binary JSON), a195

variant of the popular JSON format. Values constituting documents can be of

the following types: (i) basic types, such strings numbers, dates, and boolean

values; (ii) arrays, i.e., ordered sequences of values; and (iii) documents (or

9



key (/major/key/-) value

/Player/mary/- { username: ”mary”, firstName: ”Mary”, ... }
/Player/rick/- { username: ”rick”, firstName: ”Ricky”, ... }
/Game/2345/- { id: ”2345”, firstPlayer: ”Player:mary”, ... }

(a) Single key-value pair per aggregate

key (/major/key/-/minor/key) value

Player/mary/-/username ”mary”

Player/mary/-/firstName ”Mary”

Player/mary/-/lastName ”Wilson”

Player/mary/-/games[0] {game: ”Game:2345”, opponent: ”Player:rick”}
Player/mary/-/games[1] {game: ”Game:2611”, opponent: ”Player:ann”}
Player/rick/-/username ”rick”

Player/rick/-/firstName ”Ricky”

Player/rick/-/lastName ”Doe”

Player/rick/-/score 42

Player/rick/-/games[0] {game: ”Game:2345”, opponent: ”Player:mary”}
Player/rick/-/games[1] {game: ”Game:7425”, opponent: ”Player:ann”}
Player/rick/-/games[2] {game: ”Game:1241”, opponent: ”Player:johnny”}
Game/2345/-/id 2345

Game/2345/-/firstPlayer ”Player:mary”

Game/2345/-/secondPlayer ”Player:rick”

Game/2345/-/rounds[0] {moves: ..., comments: ...}
Game/2345/-/rounds[1] {moves: ..., actions: ..., spell: ...}

(b) Multiple key-value pairs per aggregate

Figure 4: Representing aggregates in Oracle NoSQL

objects): a document is a collection of zero or more key-value pairs, where each

key is a plain string, while each value is of any of these types. Figure 5 shows a200

JSON representation of the complex value of a sample Player aggregate object

of Figures 2 and 3.

A main document is a top-level document with a unique identifier, repre-

sented by a special attribute id, associated to a value of a special type ObjectId.

Data access operations are usually over individual documents, which are205

units of data distribution and atomic data manipulation. The basic operations

offered by MongoDB are as follows: insert(coll, doc) adds a main document doc

into collection coll ; and find(coll, selector) retrieves from collection coll all main

documents matching document selector. The simplest selector is the empty

document {}, which matches with every document; it allows to retrieve all210

10



[

"username" : "mary",

"firstName" : "Mary",

"lastName" : "Wilson",

"games" : {

[ "id" : "Game:2345", "opponent" : "Player:rick" ],

[ "id" : "Game:2611", "opponent" : "Player:ann"]

}

]

Figure 5: The JSON representation of the complex value of a sample Player object

collection document id document

Player mary {" id":"mary", "username":"mary", "firstName":"Mary", ...}
Player rick {" id":"rick", "username":"rick", "firstName":"Rock", ...}
Game 2345 {" id":"2345", "firstPlayer":"Player:mary", ...}

Figure 6: Representing aggregates in MongoDB

documents in a collection. Another useful selector is document { id:ID}, which
matches with the document having identifier ID. There is also an operation to

update a document. Moreover, it is also possible to access or update just a

specific portion of a document.

In a document store, each aggregate is usually represented by a single main215

document. The document collection corresponds to the aggregate class (or

type). The document identifier ID is the aggregate identifier. The content of

the document is the complex-value of the aggregate, in JSON/BSON, including

also an additional key-value pair { id:ID} for the identifier. See Figure 6.

Also in this case, the data access operations offered by document stores220

(such as MongoDB) provide an atomic and efficient data access to aggregates.

Specifically, they generally support both operations on individual aggregates, or

to specific portions of them, thereof.

2.5. Extensible record stores

In an extensible record store, a database is a set of tables, each table is a225

set of rows, and each row contains a set of attributes (or columns), each with a

name and a value. Rows in a table are not required to have the same attributes.

11



Data access operations are usually over individual rows, which are units of data

distribution and atomic data manipulation.

A representative extensible record store is Amazon DynamoDB [26], a No-230

SQL database service provided on the cloud by Amazon Web Services (AWS).

In DynamoDB a database is organized in tables. A table is a set of items. Each

item contains one or more attributes, each with a name and a value (or a set

of values). Each table designates an attribute as primary key. Items in a same

table are not required to have the same set of attributes — apart from the pri-235

mary key, which is the only mandatory attribute of a table. Thus, DynamoDB

databases are mostly schemaless.

Specifically, the primary key is composed of a partition key and an optional

sort key. If the primary key of a table includes a sort key, then DynamoDB

stores together all the items having the same partition key, in such a way that240

they can be accessed in an efficient way.

Distribution is operated at the item level and, for each table, is controlled

by the partition key only.

Some operations offered by DynamoDB are as follows: putItem(table, key, av)

adds (or modifies) a new item in table table with primary key key, using the245

set of attribute-value pairs av ; and getItem(table, key) retrieves the item of table

table having primary key key. It is also possible to access or update just a subset

of the attributes of an item. All these operations can be executed in an efficient

way.

In an extensible record store (such as DynamoDB), each aggregate can be250

represented by a record/row/item. The table corresponds to the aggregate class

(or type). The primary key (partition key) is the aggregate identifier. Then,

the item can have a distinct attribute-value pair for each top-level attribute of

the complex value of the aggregate (or for each major part of the aggregate that

needs to be accessed separately). See Figure 7.255

Again, the data access operations provided by the systems in this category

support an efficient data access to aggregates or to specific portions of them.

12



table Player

username firstName lastName score games[0] games[1] games[2]

”mary” ”Mary” ”Wilson” { game: ..., opponent: ... } { ... }
”rick” ”Ricky” ”Doe” 42 { game: ..., opponent: ... } { ... } { ... }

table Game

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2]

2345 Player:mary Player:rick { moves: ..., comments: ... } { ... }

Figure 7: Representing aggregates in DynamoDB (abridged)

2.6. Comparison

To summarize, it is possible to say that each NoSQL system provides a num-

ber of “modeling elements” to organize data, which can be considered the “data260

model” of the system. Moreover, the various systems can be effectively classified

in a few main categories, where each category is based on “data models” that,

even though not identical, do share some similarities. In the next section we

show that it is possible to pursue these similarities, thus defining an “abstract

data model” for NoSQL databases.265

3. The NoAM data model

In this section we present NoAM (NoSQL Abstract Data Model), a system-

independent data model for NoSQL databases. In the following section we will

also discuss how this data model can be used to support the design of NoSQL

databases.270

Intuitively, the NoAM data model exploits the commonalities of the data

modeling elements available in the various NoSQL systems and introduces ab-

stractions to balance their differences and variations.

A first observation is that all NoSQL systems have a data modeling element

that is a data access and distribution unit. By “data access unit” we mean275

that the system offers operations to access and manipulate an individual unit

at a time, in an atomic, efficient, and scalable way. By “distribution unit” we

mean that each unit is entirely stored in a server of the cluster, whereas differ-

ent units are distributed among the various servers. With reference to major

13



NoSQL categories, this element is: (i) a group of related key-value pairs, in key-280

value stores; (ii) a document, in document stores; or (iii) a record/row/item, in

extensible record stores.

In NoAM, a data access and distribution unit is modeled by a block. Specif-

ically, a block represents a maximal data unit for which atomic, efficient, and

scalable access operations are provided. Indeed, while the access to an individ-285

ual block can be performed in an efficient way in the various systems, the access

to multiple blocks can be quite inefficient. In particular, NoSQL systems do

not usually provide an efficient “join” operation. Moreover, most NoSQL sys-

tems provide atomic operations only over single blocks and do not support the

atomic manipulation of a group of blocks. For example, MongoDB [25] provides290

only atomic operations over individual documents, whereas Bigtable does not

support transactions across rows [22].

A second common feature of NoSQL systems is the ability to access and

manipulate just a component of a data access unit (i.e., of a block). This

component is: (i) an individual key-value pair, in key-value stores; (ii) a field,295

in document stores; or (iii) a column, in extensible record stores. In NoAM,

such a smaller data access unit is called an entry.

Finally, most NoSQL databases provide a notion of collection of data access

units. For example, a table in extensible record stores or a document collection

in document stores. In NoAM, a collection of data access units is called a300

collection.

According to the above observations, the NoAM data model is defined as

follows.

• A NoAM database is a set of collections. Each collection has a distinct

name.305

• A collection is a set of blocks. Each block in a collection is identified by a

block key, which is unique within that collection.

• A block is a non-empty set of entries. Each entry is a pair 〈ek, ev〉, where
ek is the entry key (which is unique within its block) and ev is its value

14



Player

mary

username ”mary”

firstName ”Mary”

lastName ”Wilson”

games[0] 〈 game : Game:2345, opponent : Player:rick 〉

games[1] 〈 game : Game:2611, opponent : Player:ann 〉

rick

username ”rick”

firstName ”Ricky”

lastName ”Doe”

score 42

games[0] 〈 game : Game:2345, opponent : Player:mary 〉

games[1] 〈 game : Game:7425, opponent : Player:ann 〉

games[2] 〈 game : Game:1241, opponent : Player:johnny 〉

Game

2345

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0] 〈 moves : ..., comments : ... 〉

rounds[1] 〈 moves : ..., actions : ..., spell : ... 〉

Figure 8: A sample database in NoAM

(either complex or scalar), called the entry value.310

For example, Figure 8 shows a possible representation of the aggregates

of Figures 2 and 3 in terms of the NoAM data model. There, outer boxes

denote blocks representing aggregates, while inner boxes show entries. Note

that entry values can be complex, being this another commonality of various

NoSQL systems.315

Please note that the same data can be usually represented in different ways.

Compare, for example, Figure 8 with Figure 9. We will discuss this possibility

in the next section.

In summary, NoAM describes in a uniform way the features of many NoSQL

systems, and so can be effectively used, as we show in the next section, for an320

15



Player

mary ε

〈username:”mary”,

firstName:”Mary”,

lastName:”Wilson”,

games : {
〈 game : Game:2345, opponent : Player:rick 〉,
〈 game : Game:2611, opponent : Player:ann 〉

} 〉

rick ε

〈username:”rick”,

firstName:”Ricky”,

lastName:”Doe”,

score:42,

games : {
〈 game : Game:2345, opponent : Player:mary 〉,
〈 game : Game:7425, opponent : Player:ann 〉,
〈 game : Game:1241, opponent : Player:johnny 〉

} 〉

Game

2345 ε

〈id : ”2345”,

firstPlayer : Player:mary,

secondPlayer : Player:rick,

rounds : {
〈 moves :..., comments : ... 〉,
〈 moves :..., actions : ..., spell : ... 〉

} 〉

Figure 9: Another NoAM sample database

intermediate representation in a NoSQL database design methodology.

4. System-independent design of NoSQL databases with NoAM

The main goal of NoAM is to support a design methodology for NoSQL

databases that has initial activities that are independent of the specific tar-

get system. In particular, NoAM is used to specify an intermediate, system-325

independent representation of the application data. The implementation in a

target NoSQL system is then a final step, with a translation that takes into

account its peculiarities.

16



The motivations to consider database design for NoSQL systems are as fol-

lows. It is important to notice that despite the fact that NoSQL databases330

are claimed to be “schemaless,” the data of interest for applications do show

some structure, which should be mapped to the modeling elements (collections,

tables, documents, key-value pairs) available in the target system. Moreover,

different alternatives in the organization of data in a NoSQL database are usu-

ally possible, but they are not equivalent in supporting qualities such as perfor-335

mance, scalability, and consistency (which are typically required when a NoSQL

database is adopted). For example, a “wrong” database representation can lead

to performance that are worse by an order of magnitude as well as to the in-

ability to guarantee atomicity of important operations.

Specifically, our design methodology has the goal of designing a “good” rep-340

resentation of the application data in a target NoSQL database, and is intended

to support major qualities such as performance, scalability, and consistency, as

needed by next-generation Web applications.

The NoAM approach is based on the following main activities:

• conceptual data modeling and aggregate design, to identify the various345

entities and relationships thereof needed in an application, and to group

related entities into aggregates;

• aggregate partitioning and high-level NoSQL database design, where ag-

gregates are partitioned into smaller data elements and then mapped to

the NoAM intermediate data model;350

• implementation, to map the intermediate data representation to the spe-

cific modeling elements of a target datastore.

In this approach, only the implementation depends on the target datastore.

We will discuss the various steps of this approach in the rest of this section.

4.1. Conceptual modeling and aggregate design355

The methodology starts, as it is usual in database design, by building a con-

ceptual representation of the data of interest, in terms of entities, relationships,

17



and attributes. (This activity is discussed in most database textbooks, e.g.,

[12].) Following Domain-Driven Design (DDD [19]), which is a widely followed

object-oriented methodology, we assume that the outcome of this activity is a360

conceptual UML class diagram defining the entities, value objects, and relation-

ships of the application. An entity is a persistent object that has independent

existence and is distinguished by a unique identifier (e.g., a player or a game,

in our running example). A value object is a persistent object which is mainly

characterized by its value, without an own identifier (e.g., a round or a move).365

Then, the methodology proceeds by identifying aggregates.

The design of aggregates has the goal of identifying the classes of aggregates

for an application, and various approaches are possible. After the preliminary

conceptual design phase, entities and value objects are grouped into aggregates.

Each aggregate has an entity as its root, and it can also contain many value370

objects. Intuitively, an entity and a group of value objects are used to define an

aggregate having a complex structure and value.

The relevant decisions in aggregate design involve the choice of aggregates

and of their boundaries. This activity can be driven by the data access pat-

terns of the application operations, as well as by scalability and consistency375

needs [19]. Specifically, aggregates should be designed as the units on which

atomicity must be guaranteed [20] (with eventual consistency for update op-

erations spanning multiple aggregates [27]). In general, it is indeed the case

that most real applications require only operations that access individual aggre-

gates [2, 22]. Each aggregate should be large enough so as to include all the data380

required by a relevant data access operation. (Please note that NoSQL systems

do not provide a “join” operation, and this is a main motivation for clustering

each group of related application objects into an aggregate.) Furthermore, to

support strong consistency (that is, atomicity) of update operations, each ag-

gregate should include all the data involved by some integrity constraints or385

other forms of business rules [28]. On the other hand, aggregates should be as

small as possible; small aggregates reduce concurrency collisions and support

performance and scalability requirements [28].

18



Thus, aggregate design is mainly driven by data access operations. In our

running example, the online game application needs to manage various collec-390

tions of objects, including players, games, and rounds. Figure 2 shows a few

representative application objects. (There, boxes and arrows denote objects and

links between them, respectively. An object having a colored top compartment

is an entity, otherwise it is a value object.) When a player connects to the

application, all data on the player should be retrieved, including an overview395

of the games she is currently playing. Then, the player can select to continue

a game, and data on the selected game should be retrieved. When a player

completes a round in a game she is playing, then the game should be updated.

These operations suggest that the candidate aggregate classes are players and

games. Figure 2 also shows how application objects can be grouped in aggre-400

gates. (There, a closed curve denotes the boundary of an aggregate.)

As we mentioned above, aggregate design is also driven by consistency needs.

Assume that the application should enforce a rule specifying that a round can

be added to a game only if some condition that involves the other rounds of the

game is satisfied. An individual round cannot check, alone, the above condition;405

therefore, it cannot be an aggregate by itself. On the other hand, the above

business rule can be supported by a game (comprising, as an aggregate, its

rounds).

In conclusion, the aggregate classes for our sample application are Player

and Game, as shown in Figures 2 and 3.410

4.2. Data representation in NoAM and aggregate partitioning

In our approach, we use the NoAM data model (Section 3) as an intermedi-

ate model between application aggregates (Section 4.1) and NoSQL databases

(Section 2). We represent each class of aggregates by means of a distinct col-

lection, and each individual aggregate by means of a block. We use the class415

name to name the collection, and the identifier of the aggregate as block key.

The complex value of each aggregate is represented by a set of entries in the

corresponding block. For example, the aggregates of Figures 2 and 3 can be

19



represented by the NoAM database shown in Figure 8. The representation of

aggregates as blocks is motivated by the fact that both concepts represent a420

unit of data access and distribution, but at different abstraction levels. Indeed,

NoSQL systems provide efficient, scalable, and consistent (i.e., atomic) opera-

tions on blocks and, in turn, this choice propagates such qualities to operations

on aggregates.

In general, an application dataset of aggregates can be represented in NoAM425

database in several different ways. Each data representation for a dataset δ is a

NoAM databaseDδ representing δ. Specifically, the various data representations

for a dataset differ only in the choice of the entries used to represent the complex

value of each aggregate. We first discuss basic data representation strategies,

which we illustrate with respect to the example described in Figure 3. We then430

introduce additional and more flexible data representations.

A simple data representation strategy, called Entry per Aggregate Object

(EAO), represents each individual aggregate using a single entry. The entry

key is empty. The entry value is the whole complex value of the aggregate. The

data representation of the aggregates of Figure 3 according to the EAO strategy435

is shown in Figure 9.

Another data representation strategy, called Entry per Top-level Field (ETF ),

represents each aggregate by means of multiple entries, using a distinct entry

for each top-level field of the complex value of the aggregate. For each top-level

field f of an aggregate o, it employs an entry having as value the value of field f440

in the complex value of o (with values that can be complex themselves), and as

key the field name f . Figure 10 shows the data representation of the aggregates

of Figure 3 according to the ETF strategy.

As a comparison, we can observe that the EAO data representation uses a

block with a single entry to represent the Player object having username mary,445

while the ETF representation needs a block with four entries, corresponding to

fields username, firstName, lastName, and games. Moreover, blocks in EAO

do not depend on the structure of aggregates, while blocks in ETF depend on

the top-level structure of aggregates (which can be “almost fixed” within each

20



Player

mary

username ”mary”

firstName ”Mary”

lastName ”Wilson”

games
{〈 game: Game:2345, opponent : Player:rick 〉,
〈 game: Game:2611, opponent : Player:ann 〉 }

rick

username ”rick”

firstName ”Ricky”

lastName ”Doe”

score 42

games

{〈 game: Game:2345, opponent : Player:mary 〉,
〈 game: Game:7425, opponent : Player:ann 〉,
〈 game: Game:1241, opponent : Player:johnny 〉 }

Game

2345

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds
{〈 moves: ..., comments: ..., 〉
〈 moves: ..., actions: ..., spell: ... 〉 }

Figure 10: The ETF data representation

class).450

The general data representation strategies we just described can be suited in

some cases, but they are often too rigid and limiting. For example, none of the

above strategies leads to the data representation shown in Figure 8. The main

limitation of such general data representations is that they refer only to the

structure of aggregates, and do not take into account the data access patterns455

of the application operations. Therefore, these strategies are not usually able to

support the performance of these operations. This motivates the introduction

of aggregate partitioning.

We first need to introduce a preliminary notion of access path, to specify a

“location” in the structure of a complex value. Intuitively, if v is a complex value460

and w is a value (possibly complex as well) occurring in v, then the access path

21



ap for w in v represents the sequence of “steps” that should be taken to reach

the component value w in v. More precisely, an access path ap is a (possibly

empty) sequence of access steps, ap = p1 p2 . . . pn, where each step pi identifies

a component value in a structured value. Furthermore, if v is a complex value465

and ap is an access path, then ap(v) denotes the component value identified by

ap in v.

For example, consider the complex value vmary of the Player aggregate

having username mary shown in Figure 3. Examples of access paths for this

complex value are firstName and games[0].opponent. If we apply these access470

paths to vmary, we access values Mary and Player:rick, respectively.

A complex value v can be represented using a set of entries, whose keys are

access paths for v. Each entry is intended to represent a distinct portion of the

complex value v, characterized by a location in its structure (the access path,

used as entry key) and a value (the entry value). Specifically, in NoAM we475

represent each aggregate by means of a partition of its complex value v, that is,

a set E of entries that fully cover v, without redundancy. Consider again the

complex value vmary shown in Figure 3; a possible entry for vmary is the pair

〈games[0].opponent,Player:rick〉. We have already applied the above intuition

earlier in this section. For example, the ETF data representation (shown in480

Figure 10) uses field names as entry keys (which are indeed a case of access

paths) and field values as entry values.

Aggregate partitioning can be based on the following guidelines (which are a

variant of guidelines proposed in [12] in the context of logical database design):

• If an aggregate is small in size, or all or most of its data are accessed or485

modified together, then it should be represented by a single entry.

• Conversely, an aggregate should be partitioned in multiple entries if it is

large in size and there are operations that frequently access or modify only

specific portions of the aggregate.

• Two or more data elements should belong to the same entry if they are490

frequently accessed or modified together.

22



Game

2345

ε

〈 id:2345,

firstPlayer :Player:mary,

secondPlayer :Player:rick 〉
rounds[0] 〈 moves : . . . , comments : . . . 〉
rounds[1] 〈 moves : . . . , actions : . . . , spell : . . . 〉

Figure 11: An alternative data representation for games (Rounds)

• Two or more data elements should belong to distinct entries if they are

usually accessed or modified separately.

The application of the above guidelines suggests a partitioning of aggregates,

which we will use to guide the representation in the target database.495

For example, in our sample application, consider the operations involving

games and rounds. When a player selects to continue a game, data on the

selected game should be retrieved. When a player completes a round in a game

she is playing, then the aggregate for the game should be updated. To support

performance, it is desirable that this update is implemented in the database500

just as an addition of a round to a game, rather than a complete rewrite of the

whole game. Thus, data for each individual round is always read or written

together. Moreover, data for the various rounds of a game are read together,

but each round is written separately. Therefore, each round is a candidate to

be represented by an autonomous entry. These observations lead to a data505

representation for games shown in Figure 8. However, apart from rounds, the

remaining data for each game comprises just a few fields, which can be therefore

represented together in a single entry. This further observation leads to an

alternative data representation for games, shown in Figure 11.

4.3. Implementation510

We now discuss how a NoAM data representation can be implemented in

a target NoSQL database. Given that NoAM generalizes the features of the

various NoSQL systems, while keeping their major aspects, it is rather straight-

forward to perform this activity. We have implementations for various NoSQL

23



systems, including Cassandra, Couchbase, Amazon DynamoDB, HBase, Mon-515

goDB, Oracle NoSQL, and Redis. For the sake of space, we discuss the im-

plementation only with respect to a single representative system for each main

NoSQL category. Moreover, with reference to the same aggregate objects of

Figures 2 and 3 we will sometimes show only the data for one aggregate. Sim-

ilar representations can be obtained for the other aggregates of the running520

example.

4.3.1. Key-value store: Oracle NoSQL

In the key-value store Oracle NoSQL [23] (Section 2.3), a data representa-

tion D for an application dataset can be implemented as follows. We use a

key-value pair for each entry 〈ek, ev〉 in D. The major key is composed of the525

collection name C and the block key id, while the minor key is a proper cod-

ing of the entry key ek (recall that ek is an access path, which we represent

using a distinct key component for each of its steps). An example of key is

/Player/mary/-/firstName, where symbol / separates components, and symbol

- separates the major key from the minor key. The value associated with this530

key is a representation of the entry value ev; for example, Mary. The value can

be either simple or a serialization of a complex value, e.g., in JSON.

The retrieval of a block can be implemented, in an efficient and atomic way,

using a single multiGet operation — this is possible because all the entries of a

block share the same major key. The storage of a block can be implemented535

using various put operations. These multiple put operations can be executed in

an atomic way — since, again, all the entries of a block share the same major

key.

For example, Figure 4(b) shows the implementation in Oracle NoSQL of the

data representation of Figure 8. Moreover, Figure 4(a) shows the implementa-540

tion in Oracle NoSQL of the EAO data representation of Figure 9.

An implementation can be considered effective if aggregates are indeed turned

into units of data access and distribution. The effectiveness of our implementa-

tion is based on the use we make of Oracle NoSQL keys, where the major key

24



controls distribution (sharding is based on it) and consistency (an operation in-545

volving multiple key-value pairs can be executed atomically only if the various

pairs are over a same major key).

More precisely, a technical precaution is needed to guarantee atomic con-

sistency when the selected data representation uses more than one entry per

block. Consider two separate operations that need to update just a subset of550

the entries of the block for an aggregate object. Since aggregates should be units

of atomicity and consistency, if these operations are requested concurrently on

the same aggregate object, then the application would require that the NoSQL

system identifies a concurrency collision, commits only one of the operations,

and aborts the other. However, if the operations update two disjoint subsets555

of entries, then Oracle NoSQL is unable to identify the collision, since it has

no notion of block. We support this requirement, thus providing atomicity and

consistency over aggregates, by always including in each update operation the

access to the entry that includes the identifier of the aggregate (or some other

distinguished entry of the block).560

4.3.2. Extensible record store: DynamoDB

In the extensible record store Amazon DynamoDB ([26], Section 2.5), the

implementation of a NoAM database can be based on a distinct table for each

collection, and a single item for each block. The item contains a number of

attributes, which can be defined from the entries of the block for the item.565

A NoAM data representationD can be represented in DynamoDB as follows.

Consider a block b in a collection C having block key id. According to D, one

or multiple entries are used within each block. We use all the entries of a block

b to create a new item in a table for b. Specifically, we proceed as follows: (i)

the collection name C is used as a DynamoBD table name; (ii) the block key570

id is used as a DynamoBD primary key in that table; (iii) the set of entries

(key-value pairs) of a block b is used as the set of attribute name-value pairs

in the item for b (a serialization of the values is used, if needed). For example,

Figure 7 shows the implementation of the NoAM database of Figure 8.

25



collection Player

id document

mary

{
id:”mary”,

username:”mary”,

firstName:”Mary”,

lastName:”Wilson”,

games:

[ { game:”Game:2345”, opponent:”Player:rick”},
{ game:”Game:2611”, opponent:”Player:ann”} ]

}

Figure 12: Implementation in MongoDB

The retrieval of a block, given its collection C and block key id, can be imple-575

mented by performing a single getItem operation, which retrieves the item that

contains all the entries of the block. The storage of a block can be implemented

using a putItem operation, to save all the entries of the block, in an atomic way.

It is worth noting that, using operation getItem, it is also possible to retrieve a

subset of the entries of a block. Similarly, using operation updateItem, it is also580

possible to update just a subset of the entries of a block, in an atomic way.

This implementation is also effective, since DynamoDB controls distribution

and atomicity with reference to items.

4.3.3. Document store: MongoDB

In MongoDB ([29], Section 2.4), which is a document store, a natural imple-585

mentation for a NoAM database can be based on a distinct MongoDB collection

for each collection of blocks, and a single main document for each block. The

document for a block b can be defined as a suitable JSON/BSON serialization

of the complex value of the entries in b, plus a special field to store the block

key id of b, as required by MongoDB, { id:id}.590

With reference to a NoAM data representation D, consider a block b in a

collection C having block key id. If b contains just an entry e, then the document

for b is just a serialization of e. Otherwise, if b contains multiple entries, we use

all the entries in block b to create a new document. Specifically, we proceed by

26



collection Player

id document

mary

{
id:”mary”,

username:”mary”,

firstName:”Mary”,

lastName:”Wilson”,

games[0]: { game:”Game:2345”, opponent:”Player:rick” },
games[1]: { game:”Game:2611”, opponent:”Player:ann” }

}

Figure 13: Alternative implementation in MongoDB

building a document d for b as follows: (i) the collection name C is used as the595

MongoDB collection name; (ii) the block key id is used for the special top-level

id field { id:id} of d; (iii) then, each entry in the block b is used to fill a (possibly

nested) field of document d. See Figure 12.

The retrieval of a block, given its collectionC and key id, can be implemented

by performing a find operation, to retrieve the main document that represents600

all the block (with its entries). The storage of a block can be implemented using

an insert operation, which saves the whole block (with its entries), in an atomic

way. It is worth noting that, using other MongoDB operations, it is also possible

to access and update just a subset of the entries of a block, in an atomic way.

An alternative implementation for MongoDB is as follows. Each block b605

is represented, again, as a main document for b, but using a distinct top-level

field-value pair for each entry in the NoAM data representation. In particular,

for each entry (ek, ev), the document for b contains a top-level field whose name

is a coding for the entry key (access path) ek, and whose value is either an

atomic value or an embedded document that serializes the entry value ev. For610

example, according to this implementation, the data representation of Figure 8

leads to the result shown in Figure 13.

4.4. Experiments

We will now discuss a case study of NoSQL database design, with refer-

ence to our running example. For the sake of simplicity, we just focus on the615

27



representation and management of aggregates for games.

Data for each game include a few scalar fields and a collection of rounds.

The important operations over games are: (1) the retrieval of a game, which

should read all the data concerning the game; and (2) the addition of a round

to a game.620

Assume that, to manage games, we have chosen a key-value store as the

target system. The candidate data representations are: (i) using a single entry

for each game (as shown in Figure 9, in the following called EAO); (ii) splitting

the data for each game in a group of entries, one for each round, and including

all the remaining scalar fields in a separate entry (as shown in Figure 11, called625

Rounds).

We expect that the first operation (retrieval of a game) performs better in

EAO, since it needs to read just a key-value pair, while the second one (addition

of a round to a game) is favored by Rounds, which does not require to rewrite

the whole game.630

We ran a number of experiments to compare the above data representations

in situations of different application workloads. Each game has, on average, a

dozen rounds, for a total of about 8KB per game. At each run, we simulated

the following workloads: (a) game retrievals only (in random order); (b) round

additions only (to random games); and (c) a mixed workload, with game re-635

trieval and round addition operations, with a read/write ratio of 50/50. We ran

the experiments using different database sizes, and measured the running time

required by the workloads. The target system was Oracle NoSQL, deployed over

Amazon AWS on a cluster of four EC2 servers.1

The results are shown in Figure 14. Database sizes are in gigabytes, timings640

are in milliseconds, and points denote the average running time of a single op-

eration. The experiments confirm the intuition that the retrieval of games (Fig-

ure 14(a)) is always favored by the EAO data representation, for any database

size. On the other hand, the addition of a round to an existing game (Fig-

1 This activity was supported by AWS in Education Grant award.

28



0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Game Retrieval

EAO Rounds

(a) Game Retrieval

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Round Addition

EAO Rounds

(b) Round Addition

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Mixed Load (50/50)

EAO Rounds

(c) Mixed Load

Figure 14: Experimental results

ure 14(b)) is favored by the Rounds data representation. Finally, the exper-645

iments over the mixed workload (Figure 14(c)) show a general advantage of

Rounds over EAO, which however decreases as the database size increases.

Overall, it turns out that the Rounds data representation is preferable.

We also performed other experiments on a data representation that does

not conform to the design guidelines proposed in this paper. Specifically, a data650

representation that divides the rounds of a game into independent key-value

pairs, rather than keeping them together in a same block, as suggested by our

approach. In this case, the performance of the various operations worsens by at

least an order of magnitude. Moreover, with this data representation it is not

possible to update a game in an atomic way.655

Overall, these experiments show that: (i) the design of NoSQL databases

should be done with care as it affects considerably the performance and consis-

29



tency of data access operations, and (ii) our methodology provides an effective

tool for choosing among different alternatives.

5. Related works660

Although several authors have observed that there is a need for data-model

approaches to the design and management of NoSQL databases [9, 10, 11],

very few works have addressed this issue, especially from a general and system-

independent point of view. Indeed, most of them propose a solution to a specific

problem in a limited scenario.665

For instance, Pasqualin et al. have recently shown how a document-oriented

model can be efficiently implemented in a NoSQL document store [30]. Sim-

ilarly, Olivera et al. [31] and de Lima and Mello [32] have proposed a data-

model based methodology for the design of NoSQL document database [32],

whereas Chevalier et al. have addressed the specific problem of leveraging on670

a document-oriented model for implementing a multidimensional database in a

NoSQL document store [33] and in a column-oriented NoSQL database [34].

Most of the other contributions to data modeling for NoSQL systems come

from on-line papers, usually published in blogs of practitioners, that discuss

best practices and guidelines for modeling NoSQL databases, most of which675

are suited only for specific systems. For instance, [5] lists some techniques for

implementing and managing data stored in different types of NoSQL systems,

while [35] discusses design issues for the specific case of key-value datastores.

Similarly, Mior et al. [36] have recently proposed an approach to the problem of

schema design for the specific class of extensible record stores. On the system-680

oriented side, [6, 7, 8] illustrate design principles for the specific cases of HBase,

MongoDB, and Cassandra, respectively. However, none of them tackles the

problem from a general perspective, as we advocate in this paper.

Recently, Ruiz et al. have proposed a reverse engineering strategy aimed at

inferring the implicit schema of NoSQL databases [37]. This approach supports685

the idea that, even in this context, a model-based description of the organization

30



of data is very useful during the entire life-cycle of a data set.

To the best of our knowledge, this paper presents the first general design

methodology for NoSQL systems with initial activities that are independent of

the specific target system. Our approach to data modeling is based on data690

aggregates, a notion that is central in NoSQL databases where application data

are grouped in atomic units that are accessed and manipulated together [3].

The notion of aggregate also occurs in other contexts with a similar meaning.

For example, in Domain Driven Design [19], a widely followed object-oriented

software development approach, an aggregate is a group of related application695

objects, used to govern transactions and distribution. Also Helland [20] advo-

cates the use of aggregates (there called entities) as units of distribution and

consistency. In this framework, Baker et al. [38] propose the notion of entity

groups, a set of entities that can be manipulated in an atomic way. They also

describe a specific mapping of entity groups to Bigtable [22], which however700

makes the approach targeted only to a specific NoSQL system. Our approach is

based on a more abstract database model, NoAM, and is system independent,

as it is targeted to a wide class of NoSQL systems.

The issue of identifying data access units in database design shows some

similarities with problems studied in the past, such as: (i) the early works705

on vertical partitioning and clustering [39], with the idea to put together the

attributes that are accessed together and to separate those that are visited

independently, and (ii) the more recent approaches to relational (or object-

relational) storage of XML documents [40], where various alternatives obviously

exist, with tables that can be very small and handle individual edges, or very710

wide and handle entire paths, and many alternatives in between.

A major observation from [9] is that the availability of a high-level represen-

tation of the data remains a fundamental tool for developers and users, since it

makes understanding, managing, accessing, and integrating information sources

much easier, independently of the technologies used. We have addressed this715

issue by proposing NoAM, an abstract data model that makes it possible to

devise an initial phase of the design process that is independent of any specific

31



system but suitable for each.

Along this line, SOS [41] is a tool that provides a common programming

interface towards different NoSQL systems, to access them in a unified way.720

The interface is based on a simple, high-level common data model which is

inspired by those of non-relational systems and provides simple operations for

inserting, deleting, and retrieving database objects. However, the definition of

tools for data access is complementary to data models and design issues.

Finally, Jain et al. discusses the potential mismatch between the require-725

ments of scientific data analysis and the models and languages of relational

database systems [42], whereas Alagiannis et al. [43] advocate a new database

design philosophy for emerging applications. This paper tries to provide a con-

tribution to these problems.

6. Conclusion730

In this paper we have argued how data modeling can be useful in the No-

SQL arena. Specifically, we have proposed a comprehensive methodology for

the design of NoSQL databases, which relies on an aggregate-oriented view of

application data, an intermediate system-independent data model for NoSQL

datastores, and finally an implementation activity that takes into account the735

features of specific systems.

References

[1] F. Bugiotti, L. Cabibbo, P. Atzeni, R. Torlone, Database design for NoSQL

systems, in: Conceptual Modeling - 33rd International Conference, ER

2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings, 2014, pp. 223–740

231.

[2] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Record 39 (4)

(2010) 12–27.

[3] P. J. Sadalage, M. J. Fowler, NoSQL Distilled, Addison-Wesley, 2012.

32



[4] M. Stonebraker, Stonebraker on NoSQL and enterprises, Comm. ACM745

54 (8) (2011) 10–11.

[5] I. Katsov, NoSQL data modeling techniques, Highly Scalable Blog,

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/,

accessed February 2016 (2012).

[6] A. Khurana, Introduction to HBase Schema Design, ;login: The Usenix750

magazine 37 (5) (2012) 29–36.

[7] M. Hamrah, Data Modeling at Scale: MongoDB + Mon-

goid, Callbacks, and Denormalizing Data for Efficiency,

http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-

(Accessed February, 2016) (2011).755

[8] A. Chebotko, A. Kashlev, S. Lu, A Big Data Modeling Methodology for

Apache Cassandra, in: IEEE International Congress on Big Data, 2015,

pp. 238–245.

[9] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, R. Torlone, The rela-

tional model is dead, SQL is dead, and I don’t feel so good myself, SIGMOD760

Record 42 (2) (2013) 64–68.

[10] A. Badia, D. Lemire, A call to arms: revisiting database design, SIGMOD

Record 40 (3) (2011) 61–69.

[11] C. Mohan, History repeats itself: sensible and NonsenSQL aspects of the

NoSQL hoopla, in: EDBT, 2013, pp. 11–16.765

[12] C. Batini, S. Ceri, S. B. Navathe, Conceptual Database Design: An Entity-

Relationship Approach, Benjamin/Cummings, 1992.

[13] F. Bancilhon, Object-oriented database systems, in: Proceedings of the

Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, March 21-23, 1988, Austin, Texas, USA, 1988, pp. 152–770

162.

33

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/


[14] P. Atzeni, P. Merialdo, G. Mecca, Data-intensive web sites: Design and

maintenance, World Wide Web 4 (1-2) (2001) 21–47.

[15] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera,

Designing Data-Intensive Web Applications, Morgan Kaufmann, 2003.775

[16] G. Mecca, A. O. Mendelzon, P. Merialdo, Efficient queries over web views,

IEEE Trans. Knowl. Data Eng. 14 (6) (2002) 1280–1298.

[17] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to

Semistructured Data and XML, Morgan Kaufmann, 1999.

[18] M. Stonebraker, U. Çetintemel, “one size fits all”: An idea whose time780

has come and gone (abstract), in: Proceedings of the 21st International

Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan,

2005, pp. 2–11.

[19] E. Evans, Domain-Driven Design, Addison-Wesley, 2003.

[20] P. Helland, Life beyond distributed transactions: an apostate’s opinion, in:785

CIDR 2007, 2007, pp. 132–141.

[21] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-

Wesley, 1995.

[22] F. Chang, et al., Bigtable: A distributed storage system for structured

data, ACM Trans. Comput. Syst. 26 (2).790

[23] Oracle, Oracle NoSQL Database, http://www.oracle.com/us/products/database/nosql/,

accessed February 2016.

[24] J. Shute, et al., F1: A distributed SQL database that scales, PVLDB 6 (11)

(2013) 1068–1079.

[25] MongoDB Inc., MongoDB, http://www.mongodb.org, accessed February795

2016.

34

http://www.oracle.com/us/products/database/nosql/
http://www.mongodb.org


[26] Amazon Web Services, DynamoDB, http://aws.amazon.com/dynamodb,

accessed February 2016.

[27] D. Pritchett, BASE: An ACID alternative, ACM Queue 6 (3) (2008) 48–55.

[28] V. Vernon, Implementing Domain-Driven Design, Addison-Wesley, 2013.800

[29] K. Chodorow, MongoDB: The Definitive Guide, O’Reilly Media, 2013.

[30] D. Pasqualin, G. Souza, E. L. Buratti, E. C. de Almeida, M. D. Del Fabro,

D. Weingaertner, A case study of the aggregation query model in read-

mostly NoSQL document stores, in: 20th Int. Database Engineering &

Applications Symposium (IDEAS ’16), IDEAS ’16, ACM, New York, NY,805

USA, 2016, pp. 224–229.

[31] H. V. Olivera, M. Holanda, V. Guimarâes, F. Hondo, W. Boaventura, Data

modeling for NoSQL document-oriented databases, in: 2nd Annual Int.

Symposium on Information Management and Big Data (SIMBig 2015),

Vol. 1478 of CEUR Workshop Proceedings, 2015, pp. 129–135.810

[32] C. de Lima, R. dos Santos Mello, A workload-driven logical design approach

for NoSQL document databases, in: 17th Int. Conference on Information

Integration and Web-based Applications & Services (iiWAS ’15), iiWAS

’15, ACM, New York, NY, USA, 2015, pp. 73:1–73:10.

[33] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Implemen-815

tation of multidimensional databases with document-oriented NoSQL, in:

17th International Conference on Big Data Analytics and Knowledge Dis-

covery, (DaWaK 2015), Vol. 9263 of Lecture Notes in Computer Science,

Springer, 2015, pp. 379–390.

[34] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Implementa-820

tion of multidimensional databases in column-oriented NoSQL systems, in:

19th East European Conference on Advances in Databases and Information

Systems (ADBIS 2015), 2015, pp. 79–91.

35

http://aws.amazon.com/dynamodb


[35] T. Olier, Database design using key-value tables,

http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/,825

accessed February 2016 (2006).

[36] M. J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose: Schema design for nosql

applications, in: 32nd IEEE International Conference on Data Engineering,

ICDE 2016, Helsinki, Finland, May 16-20, 2016, 2016, pp. 181–192.

[37] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring Versioned Schemas from830

NoSQL Databases and Its Applications, in: 34th International Conference

on Conceptual Modeling (ER 2015), 2015, pp. 467–480.

[38] J. Baker, et al., Megastore: Providing scalable, highly available storage for

interactive services, in: CIDR 2011, 2011, pp. 223–234.

[39] T. J. Teorey, J. P. Fry, The logical record access approach to database835

design, ACM Comput. Surv. 12 (2) (1980) 179–211.

[40] D. Florescu, D. Kossmann, Storing and querying XML data using an

RDMBS, IEEE Data Eng. Bull. 22 (3) (1999) 27–34.

[41] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL systems, Inf.

Syst. 43 (2014) 117–133.840

[42] S. Jain, D. Moritz, D. Halperin, B. Howe, E. Lazowska, SQLShare: Results

from a multi-year SQL-as-a-Service experiment, in: Proceedings of the 2016

International Conference on Management of Data, SIGMOD Conference

2016, San Francisco, CA, USA, June 26 - July 01, 2016, 2016, pp. 281–293.

[43] I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, A. Ailamaki, NoDB:845

efficient query execution on raw data files, Commun. ACM 58 (12) (2015)

112–121.

36

http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/



