
On a Software-Defined CAN Controller for Embedded Systems

Gianluca Cenaa, Ivan Cibrario Bertolottia,⇤, Tingting Hub, Adriano Valenzanoa

aCNR – National Research Council of Italy, IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy
bUniversity of Luxembourg – Faculty of Science, Technology and Communication, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Abstract

Controller Area Network (CAN) technology is nowadays ubiquitous in vehicular applications and is also gaining popularity in
other contexts, for instance, embedded and industrial automation systems. The recent standardization of CAN with flexible data
rate (CAN FD), as well as other academic proposals, have highlighted the usefulness of enhancing the CAN physical and data
link layers to attain better performance and other features. This paper describes a portable software-defined CAN controller called
SDCC. Besides being handy as a research tool for experimenting with novel protocol concepts at the data link layer, SDCC is also
fully capable of real-time execution. Hence, it can interact with real-world CAN devices through a physical bus interface.

Keywords: Controller area network (CAN), Industrial control, Real-time distributed systems

1. Introduction and Related Work

Since shortly after its conception in 1986 [1] and its first
ISO standardization [2], Controller Area Network (CAN) has
enjoyed an ever increasing popularity, not only within its in-
tended application scenario—in-vehicle communication—but
also elsewhere, for instance, in Cyber Physical Systems (CPS)
such as real-time distributed industrial control systems [3]. Af-
ter its initial evolution, culminating in 1995 with the introduc-
tion of CAN version 2.0B (supporting 29-bit extended identi-
fiers) the CAN data link layer remained unchanged for years.
One notable exception is time-triggered CAN (TTCAN) [4]
that, as its name suggests, incorporates the time-triggered
paradigm into CAN communication, although it did not enjoy
widespread adoption.

Much more recently, the standardization of CAN with flexi-
ble data rate (CAN FD) [5] at the end of 2015, as well as other
academic proposals, like CAN+ [6] and CAN with extensible
in-frame reply (CAN XR) [7], have revamped the CAN proto-
col by improving its data transfer rate, maximum frame length,
and flexibility, while also enabling it to support new services.
At the same time, the latter research has shown the usefulness
of working at the CAN data link layer to experiment with novel,
advanced protocol features. However, experimental work on
the data link layer of CAN (as for virtually any other protocol
stack) has customarily been confined to the hardware domain,
because the high performance required ruled out a software im-
plementation.

⇤Corresponding author. CNR-IEIIT c/o Politecnico di Torino, c.so Duca
degli Abruzzi 24, I-10129 Torino, Italy. Tel.: +39 011 0905426, Fax: +39 011
0905429.

Email addresses: gianluca.cena@ieiit.cnr.it (Gianluca Cena),
ivan.cibrario@ieiit.cnr.it (Ivan Cibrario Bertolotti),
tingting.hu@uni.lu (Tingting Hu),
adriano.valenzano@ieiit.cnr.it (Adriano Valenzano)

An FPGA-based implementation approach is feasible in
many cases, but requires specialized programming tools and a
thorough knowledge of hardware description languages, such
as VHDL [8], which CAN protocol designers and practition-
ers may or may not possess. Moreover, any prototype design
can be deployed only on systems equipped with an on-board
FPGA. Due to the relatively high cost of an FPGA with respect
to a typical embedded microcontroller, this may severely limit
the extent and complexity of the experimental test bed—for in-
stance, in terms of the number of nodes.

Therefore, this paper presents a completely software-defined
CAN controller called sdcc. Its design and implementation was
inspired by the concept of software-defined radio (SDR) [9],
in which software modules take the place of radio communica-
tion components traditionally realized in hardware. SDRs are
nowadays popular both in literature and in practical applica-
tions for exactly the same reasons just mentioned. sdcc has been
completely implemented in the C programming language [10],
which most programmers are likely proficient with. Although
it can be used in simulation mode and operate on a virtual CAN
bus, unlike other software simulators formerly presented in lit-
erature [11], sdcc is also fully capable of real-time execution
and can be connected to a real CAN bus. In this way, sdcc com-
bines the flexibility and ease of use of a simulator with the abil-
ity to interact with other o↵-the-shelf or custom CAN devices
through a physical bus, typical of the hardware-based approach.
Since exactly the same software runs in both cases (with the ex-
ception of a thin and easy to check hardware adaptation layer),
there is no validation gap between the two scenarios.

The sdcc approach also di↵ers radically from other software
products, like the Vehicle Network Toolbox (VNT) of MAT-
LAB/Simulink [12]. In fact, VNT provides an extensive set of
primitives to send, receive, log, and analyze CAN messages, but
still relies on a standard, hardware CAN controller for bus com-
munication. As a consequence, its users cannot deviate from the

Preprint submitted to Computer Standards & Interfaces June 19, 2018

ISO-standardized data link layer protocol in any way. Similarly,
but at a lower level of abstraction, SocketCAN [13] adds a user-
accessible, socket-based CAN communication API to the Linux
kernel. However, it does not support any simulation modes and,
as VNT, relies on a hardware CAN controller for bus commu-
nication.

The viability of the sdcc concept has been confirmed by us-
ing it to evaluate enhancements to the CAN data link layer [7].
At the application layer, sdcc has been employed to implement
existing proposals [14] and explore novel ways of supporting
security protocols on CAN-based networks [15]. Besides re-
search purposes, sdcc may prove to be advantageous also for
deployment in real environments. For instance, the Local In-
terconnect Network (LIN), standardized as ISO 17987 [16], is
customarily employed for in-vehicle body electronics at a max-
imum communication bit rate of 20 kb/s, due to its lower cost
with respect to CAN. This is mainly due to the slower, simpler
2-wire connection and the software protocol implementation. If
LIN and CAN protocol overheads are considered to be compa-
rable, coupling sdcc with, for instance, SAE J2411 single-wire
CAN (SWCAN) [17] at the same bit rate would probably lead
to similar performance and saving as LIN, but with the remark-
able advantage of being fully compliant to the CAN paradigm.

Industrial Internet of Things (IIoT) [18] is another scenario
where sdcc could likely provide tangible benefits. As sketched
in [19], it is possible to adopt CAN as the underlying trans-
mission technology for wired sensor networks, which ensures
industrial applications uninterruptible operation because of the
external power supply. Moreover, several techniques already
exist that map the Internet Protocol (IP) atop CAN [20, 21].
This means that most existing embedded devices (including
those lacking an internal CAN controller) can be potentially
turned into wired IIoT nodes easily and inexpensively, thanks
to sdcc.

The paper is organized as follows: After a short introduction
to the CAN protocol, given in Section 2, the paper describes the
general principles behind the sdcc design in Section 3. Then,
Section 4 provides more information on its implementation and
the optimization techniques needed to achieve good real-time
performance, even within the typical computing resource con-
straints of embedded systems. Section 5 focuses on sdcc real-
time execution mode, that is, how its core supports a physical
CAN bus interface. A di↵erent, simulation-oriented operating
mode using mostly the same code base is presented in Section 6,
while Section 7 is centered on sdcc experimental evaluation.
Section 8 concludes the paper and hints at future work.

2. CAN Protocol Overview

The CAN protocol is specified by the ISO 11898 stan-
dard [5]. Its physical-layer medium is a broadcast bus that can
assume two possible levels, recessive (the idle level, usually de-
noted as 1) and dominant (denoted as 0). Simultaneous trans-
mission by multiple nodes is allowed. In this case the domi-
nant level prevails on recessive, thus implementing a distributed
wired-and among all transmitted values. The standard defines
four possible frame formats at the data link layer. Two of them

DATA
(0 ... 64 b)

EOF
(7 b)

ID, RTR, res
(14 or 34 b)SO

F DLC
(4 b)

CRC
(15 b) AC

K

Bit-stuffed regionHard synch. edge Soft synch. edges
…

Arbitration and Control
1

0

Figure 1: Classical CAN frame formats (stu↵ bits not shown).

(FBFF and FEFF formats) pertain to CAN FD and will not be
described further for conciseness. The other two (CBFF and
CEFF) are also called classical formats and are summarized in
Figure 1. A classical frame consists of:

• The start of frame (SOF) dominant bit that delimits the
beginning of the frame.

• The arbitration and control fields, their most important
components being the message identifier ID and the data
length code DLC.

• The data field, whose length is determined by the DLC
value and can be between 0 and 8 bytes.

• The cyclic redundancy check (CRC) field, whose coverage
spans from the SOF bit to the end of the data field and
helps to assess frame integrity.

• The acknowledgment (ACK) bit, surrounded by two re-
cessive delimiter bits, which is driven to dominant by re-
ceivers to confirm they successfully received the frame.

• The end of frame (EOF), a sequence of recessive bits that
marks the end of the frame.

It must also be noted that the arbitration and control fields
also include a remote transmission request (RTR) bit and a cou-
ple of reserved (res) bits, which are unimportant for this brief
overview. The only di↵erences between the two frame formats
are the length of the message ID, 11 bits for the CBFF and 29
bits for the CEFF format, as well as the number and placement
of reserved bits.

Although CAN nodes must confirm the bus is idle before at-
tempting a transmission, it is still possible that multiple nodes
start transmitting a frame simultaneously. In this case, the
bus access conflict is resolved by means of a content-based
distributed arbitration algorithm involving the arbitration field.
This algorithm, leveraging the intrinsic bit-by-bit wired-and op-
eration performed by the bus, ensures that the node with the
lowest ID keeps transmitting, whereas all the others are in-
formed they lost the conflict, are still able to receive the current
frame, and will retry their transmission at a later time.

Since the bus does not have any dedicated clock line, CAN
nodes have to recover the clock autonomously in order to re-
ceive individual bits correctly. They do so by means of a free-
running local clock with a period q = t/n called quantum,
where t is the bit time and n is an integer that represents the
number of quanta per bit. A quantum counter c 2 [0, n � 1]
is incremented according to the local clock and indicates the

2

current position within a bit. CAN nodes synchronize their no-
tion of bit boundary by looking at the edges of the incoming bit
stream and adjusting c as needed. Due to the electrical char-
acteristics of the bus, recessive ! dominant edges are sharper
than dominant ! recessive edges, and hence, only the former
are considered for synchronization.

As illustrated in Figure 1, the leading edge of the SOF bit
marks the beginning of the CAN frame and is considered a
hard synchronization point, that is, it unconditionally aligns
c to the bit boundary. Instead, all the other edges are re-
synchronization points. In a re-synchronization, a configuration
parameter called synchronization jump width (SJW), expressed
in quanta, caps the maximum adjustment to c to prevent way-
ward synchronizations due to noise spikes.

To ensure that the edges suitable for synchronization indeed
occur frequently enough in the bit stream, the whole CAN
frame except the part that follows the CRC field is subject to
bit stu�ng. According to this encoding technique, CAN nodes
must append one extra stu↵ bit whenever they transmit 5 con-
secutive bits at the same level on the bus. Its level must be
the complement of the preceding bits, thus enforcing the pres-
ence of (at least) one edge in the bit stream. Symmetrically,
CAN nodes must also transparently remove stu↵ bits from the
incoming bit stream while decoding the frame, a process known
as de-stu�ng.

Besides bit-level synchronization, CAN nodes also need to
achieve proper frame-level synchronization. This cannot be
done by looking at the SOF bit alone because, as outlined
above, it is an ordinary dominant bit and cannot be distin-
guished from other dominant bits that appear elsewhere in the
frame. For this reason, CAN nodes must in some cases wait
until they detect a stream of at least 11 consecutive recessive
bits, going through a process known as bus integration, before
they start looking for SOF bits and start receiving/transmitting
frames. One of those cases is initial startup, while others are re-
lated to error recovery. The value 11 corresponds to the reces-
sive delimiter bit that follows the ACK, plus 7 recessive EOF
bits, plus 3 recessive bits of intermission that separate CAN
frames, not shown in Figure 1. This is also the minimum num-
ber of bits the bus must stay at the recessive level between con-
secutive frames according to the CAN standard, except when
signaling an overload condition.

The CAN standard [5] specifies five di↵erent error detection
measures for classical frames. More specifically, transmitters
compare the value they are transmitting with the actual bus
level, a mechanism known as bit monitoring. Any discrepancy
leads to a bit error. They also detect an ACK error if the frame
they transmitted has not been acknowledged properly by any
receiver. Receivers check the incoming CRC and flag a CRC
error if they find it incorrect. They also verify that the bit stu↵-
ing rules are fulfilled, with any violations leading to a stu↵ er-
ror. Finally, they confirm that the frame is well-formed, that
is, some specific bits within the frame, like the delimiters, have
the intended value. If this is not the case, a form error occurs.
After detecting an error, CAN nodes are expected to globalize
it, that is, make all the other nodes on the bus aware that an
error occurred by transmitting an error flag. Then, transmitters

Physical Coding Sublayer (PCS)
Bus Synchronization

(RX)
Bit Alignment

(TX)

Physical Medium Attachment (PMA)

CAN Bus
Interface

Timing
Reference

Medium Access Control (MAC)

De-Stuffing
Bit Error Detection

Bus Integration

Stuffing
Trailer generation

Portable components

Target-specific components

LLC and upper layers (omitted)

PCS_Data.Ind
(every bit at SP)

PCS_Data.Req
(asynchronous)

PMA_NodeClock.Ind
(every quantum)

PMA_Data.Req
(on bit boundary)

Deserialization
CRC Calculation

ACK Generation/Check

RX automata
Serialization
Arbitration

Auto Retransmission

TX automata

MA_Data.Ind
(every frame)

MA_Data.Req
MA_Data.Conf

(confirmed)

Figure 2: SDCC layers and their general structure.

should also re-transmit the frame. Further discussion of these
mechanisms is however beyond the scope of this overview and
readers are referred to [5] for further details.

3. General Design

As shown in Figure 2, sdcc has been designed according
to the well-known layered approach. The internal structure of
each layer, as well as their relationships, closely reproduce what
is specified in the CAN standard [5]. More specifically, sdcc
consists of three layers. Proceeding in a a top-down fashion,
we find:

1. The medium access control (MAC) layer, which is respon-
sible of frame-level synchronization and serializes/dese-
rializes CAN frames according to Figure 1. Moreover,
it implements the arbitration algorithm, takes care of bit
stu�ng and de-stu�ng, and is in charge of error detection,
globalization, and recovery.

2. The physical coding sub-layer (PCS), which implements
bit-level synchronization and aligns transmitted bits with
respect to the locally reconstructed bus clock.

3. The physical medium attachment (PMA), which connects
sdcc to the physical or virtual CAN bus hardware and in-
terfaces it with the local clock.

3.1. Medium Access Control (MAC)

The MAC layer is the most complex of the three and con-
tains 1185 lines of C code. It implements two pairs of nested
finite state machines (FSM), or automata, one pair for the re-
ceive path, and the other pair for the transmit path.

3

The lower-level receive FSM is activated whenever the phys-
ical coding sub-layer (PCS) receives a bit from the bus, by
means of the PCS Data.Ind indication. It implements bus in-
tegration, outlined in Section 2, to ensure that sdcc synchro-
nization at the CAN frame level is correct and performs start-
of-frame (SOF) detection when bus integration is complete. In
addition, it performs bus monitoring (while the controller itself
is transmitting) and detects stu↵ and bit errors according to the
definition given in Section 2. Most importantly, it also carries
out bit de-stu�ng. The higher-level receive FSM takes as input
the bit stream coming from the first. Its main purpose is to de-
serialize the incoming frame, then reconstruct and analyze its
structure while detecting CRC and form errors. Upon the suc-
cessful reception of a whole frame, this FSM is also responsible
for acknowledging it, by transmitting an ACK bit, and forward-
ing the frame to the upper layers by triggering a MA Data.Ind

indication.
The two transmit FSMs are also clocked by PCS Data.Ind

indications, the sole timing reference of the MAC layer. The
higher-level FSM serializes the frame to be transmitted, passed
to the MAC layer by means of a MA Data.Req request. Coop-
erating with the higher-level receive FSM, it also implements
the CAN arbitration algorithm and stops transmitting when it
detects an arbitration loss. Towards the end of frame transmis-
sion, it collaborates with the high-level receive FSM again to
calculate the CRC to be transmitted and subsequently confirm
that an ACK has been received correctly. If this is not the case,
it flags an ACK error. If any error occurs during transmission, it
applies the CAN automatic frame retransmission rules. Finally,
it generates a MA Data.Conf confirmation after any frame trans-
mission. The lower-level transmit FSM coordinates with the
lower-level receive FSM to determine when frame transmission
can start, according to CAN rules. Moreover, it performs bit
stu�ng on the serialized data stream coming from the higher-
level transmit FSM. As described in Section 2, bit stu�ng is
crucial to ensure that PCS bit-level bus synchronization, to be
discussed in Section 3.2, can operate correctly.

3.2. Physical Coding Sub-layer (PCS)

The PCS consists of 441 lines of C code. Along the receive
path, its main role is to keep sdcc synchronized with the incom-
ing CAN bus bit stream, by means of edge detection. The full
details of the mechanism are specified in the CAN standard [5],
but the general idea resembles a digital phase-locked loop. In
summary:

• The PMA activates the PCS every quantum period q, by
means of the PMA NodeClock.Ind indication, providing the
sampled bus level.

• The PCS performs edge detection on the incoming stream,
by comparing adjacent samples. Barring noise spikes,
these edges shall nominally occur on bit boundaries and
serve as the base for synchronization. As explained in Sec-
tion 2, only recessive! dominant edges are considered to
this purpose.

• Various edge rejection techniques are applied to enhance
robustness against noise. For instance, after detecting an
edge, subsequent ones are neglected until a recessive bit is
received, in order to avoid multiple synchronizations very
close in time, which would likely be due to noise spikes.

• If an edge passes all rejection checks, the PCS determines
the phase error e, defined as the number of quanta between
the actual edge arrival and the nominal position of the bit
boundary according to prior PCS knowledge.

• Last, the PCS adjusts its notion of bit boundary accord-
ing to e. As recalled in Section 2, the SJW may cap the
maximum adjustment depending on whether it is a hard
synchronization or a re-synchronization.

Based on the knowledge of bit boundary position (derived
from synchronization) and configuration information, the PCS
is also responsible for sampling the bit value at the appropriate
sampling point (SP) and forwarding it to the MAC by means of
the PCS Data.Ind indication. Being invoked once per bit, the
same indication also provides a periodic timing reference to the
MAC.

For the transmit path, the PCS handles bit transmission re-
quests, submitted asynchronously by the MAC by means of the
PCS Data.Req request. Using again the synchronization infor-
mation described previously, it ensures that bit transmission is
properly aligned with respect to bus bit boundaries, by bu↵er-
ing PCS Data.Req requests and issuing PMA Data.Req requests
at the appropriate time. It is worth noting that, although all sdcc
layers depend on a common timing reference that originates in
the PMA, PCS Data.Req requests must still be considered asyn-
chronous because the MAC invokes this primitive immediately
after ascertaining what should be transmitted as the next bus bit.
This typically happens shortly after the sampling point (SP) of
the previous bit, with a variable delay that depends on the inter-
nal MAC processing time.

3.3. Physical Medium Attachment (PMA)

The PMA is the layer closest to the CAN bus hardware, either
real or simulated, and its implementation is therefore target-
specific for the most part. The only portable PMA module con-
sists of 93 lines of C code. It exports the target-independent
layer application programming interface (API) and acts as an
interface towards the other modules. The main PMA functions
are:

1. Propagate the PCS layer data output, as indicated by
means of the PMA Data.Req primitive, through a bus
transceiver and onto the CAN bus.

2. Sample the CAN bus every quantum period q and
provide its state to the PCS layer by means of the
PMA NodeClock.Ind primitive. Being strictly periodic, this
primitive also furnishes a timing reference to the other sdcc
layers.

In order to realize the second function, the PMA must also
be connected to a suitable timing reference, which could be

4

Pointer to read/write memory

Pointer to read-only memory

Read-write
layer descriptor:
state information

Upper Layer
Descriptor

Lower Layer
Descriptor

Indications and
Confirmations of

Upper Layer

Read-only layer
configuration
parameters

Read-only layer
methods

Requests and
Responses in

this Layer

Indications and
Confirmations

Invoked by
Lower Layer

Figure 3: Internal structure of an sdcc layer and links between them.

a free-running hardware timer on a real-time target, or a pe-
riodic event source in an event-driven simulator. Further details
about PMA implementation on a real-time target are given in
Section 5, while Section 6 describes the role of the PMA in a
simulation context.

4. Implementation Technique and Optimization

As stated in Section 1, sdcc has been implemented in C rather
than in another, higher-level programming language to improve
performance and reduce memory footprint. Both are especially
important features when a piece of code is intended for real-
time execution on an embedded platform. However, object-
oriented (OO) design concepts have been used to preserve mod-
ularity, as well as ease of code reuse and enhancement, bearing
in mind that one of the main sdcc purposes is to encourage ex-
perimentation with the CAN data link layer. Figure 3 provides
more details about the internal structure of individual sdcc lay-
ers, which have been introduced and summarized in Figure 2.
The centerpiece of each layer is a data structure called layer
descriptor, which contains all the basic state variables the cor-
responding layer needs.

Table 1 describes the contents of the layer descriptors of the
portable sdcc layers and is meant to complement the discussion
of the same layers given in Section 3. Adjacent layer descrip-
tors are bound together by a pair of pointers, to form a double-
linked list (these pointers are shown at the top left of the de-
scriptor in the figure). The layer descriptor contains a vector
of pointers to methods, or functions, accessible from adjacent
layers (sometimes called public methods). They are shown at
the bottom right of the descriptor in Figure 3. These methods

are responsible for implementing all requests and responses di-
rected to the layer.

Moreover, other methods handle indications and confirma-
tions originated by the lower layer. Methods of this kind are
made known to the lower layer during protocol stack initial-
ization through a registration procedure that establishes further
links among adjacent layers. According to the OO program-
ming paradigm, both kinds of method receive a pointer to the
descriptor of the layer they belong to as first argument upon
invocation. The number and type of the next arguments are
method-specific instead. More specifically, the registration pro-
cedure fills a vector of methods, which is part of the descriptor
of layer x, to point to the methods of layer x + 1 that are re-
sponsible for handling indications and confirmations originated
by, and coming from, layer x (this vector is shown at the bot-
tom left of the descriptor in Figure 3). It is worth remarking
that this implementation technique directly relates to the well-
known upcall mechanism specified by the ISO Open Systems
Interconnection (OSI) model [22].

The use of a vector of pointers to refer to methods indirectly,
instead of using hardwired names, enhances layer modularity at
a negligible performance penalty because, in this way, the pub-
lic interface of a layer stays the same regardless of how its in-
ternal implementation may evolve with time. A further pointer
within the layer descriptor (at the top right of the descriptor in
the figure) leads to a data structure that contains (often constant)
layer configuration parameters. Examples of parameters of the
PCS layer, discussed in Section 3.2, are the SJW and the SP
position.

Another advantage of using pointers to link together informa-
tion pertaining to a certain layer instead of using a monolithic
data structure is that, in this way, it becomes possible to mark
part of the data as read-only, rather than read-write. Marking
can be accomplished easily and without breaking compatibility
with the C language standard [10] by using the const keyword
sensibly. First of all, this enhances compiler optimizations, by
improving its chance of correctly identifying immutable data.
Secondly, when marking is combined with appropriate direc-
tives to the linker—usually embedded in a linker script [23]—
it becomes possible to place code and the read-only part of
these data structures in non-volatile (Flash) memory rather than
RAM. This is especially important on embedded systems, in
which RAM is often a precious resource.

On the other hand, it is worth remarking that, at the cost of a
modest RAM footprint overhead, inter-layer pointers have been
kept in RAM. In this way, sdcc supports the dynamic configu-
ration of the protocol stack, allowing users not only to statically
build the chain of layers of their choice, but also to change it at
runtime.

Optimizations have been performed exclusively at the
C language level, building on past experience with other
performance-critical software [24] and prior knowledge of how
compilers work internally. One of the goals was to show that it
is possible to achieve good optimization results even across dif-
ferent processor architectures by working at this level, without
sacrificing portability and conformance to language standards,
and without using handwritten assembly code.

5

Table 1: SDCC Layer State Information Items (Portable Layers)

Layer/Item Description

MAC
rx fsm state Receive automata state
bus integration counter Bit counter to measure the bus integration interval (11 consecutive recessive bits)
nc bits, nc pol Number of consecutive bits at the same polarity, and their polarity, for bit (de)stu�ng
crc Cyclic Redundancy Check of the frame being received or transmitted
field bits Bit counter used to determine the end of multi-bit fields being received
bus bits, de stuffed bits Number of bits received from the bus and number of de-stu↵ed bits (for statistics and diagnostics)
rx identifier Identifier of the incoming frame
rx rtr Remote Transmission Request bit of the incoming frame
rx ide Identifier Extension bit, discriminates between classical CAN base (CBFF) and extended (CEFF) frames
rx fdf CAN FD Format indicator of the incoming frame (currently, sdcc does not handle FD frames)
rx dlc Incoming Data Length Code, used to determine the length of the data field and de-serialize accordingly
rx byte Temporary bu↵er to hold each data field byte as it is being de-serialized
rx byte index Index of the current byte (held in rx byte) within the data field
rx data Data field of the incoming frame
tx fsm state Transmit automata state
data req pending Indicates whether a frame is waiting to be transmitted or not
tx identifier Identifier of the frame to be transmitted
tx format Format of the frame to be transmitted (CBFF or CEFF)
tx dlc Data Length Code of the frame to be transmitted
tx data Data field of the frame to be transmitted
tx byte index Index of the byte in tx data currently being serialized
tx bit count Bit counter used while transmitting multi-bit fields
tx shift reg Shift register to serialize multi-bit fields while transmitting

PCS
nodeclock ts Node clock timestamp counter for debugging and data logging
prescaler m cnt Counter for the node clock prescaler
quantum m cnt Quantum counter c within a bit, subject to hard synchronization and re-synchronization
quanta per bit Total number of quanta per bit n, derived from configuration parameters
prev bus level Bus value sampled at the previous quantum, for edge detection
prev sample Bit value at the previous sampling point, for dominant! recessive edge rejection
sending level Level currently being sent on the bus, for positive-e edge rejection while sending recessive
sync inhibit Synchronization inhibit flag, to avoid multiple synchronizations until sampling a recessive bus
hard sync allowed Flag to allow or forbid hard synchronization, set by MAC based on the current position within the frame
output unit buf Bu↵er to store the value to be transmitted while aligning it with bit boundaries

5. Real-Time, Physical Bus Interface

As discussed in Section 3, only a small part of the PMA layer
is portable because it is responsible for interfacing sdcc with
real or simulated hardware components. In this section, we de-
scribe a PMA that enables sdcc to operate in real-time on a
physical CAN bus. A di↵erent PMA, which supports the sdcc
simulation mode instead, will be presented in Section 6.

The connection between the PMA and the physical CAN bus
typically takes place through a general-purpose I/O (GPIO) port
connected to a CAN transceiver external to the microcontroller
chip. These connections are shown on the left of Figure 4. The
role of the GPIO port is to convert the numeric bus level gen-
erated along the sdcc transmit path into an electrical signal that
is then brought o↵ chip, and vice versa along the receive path.
On the other hand, the transceiver takes care of all the details
concerning the electrical interface to the CAN bus.

Connecting the GPIO port to the transceiver is generally easy

on a CAN-enabled microcontroller because, as shown in the fig-
ure, most of them are capable of routing multiple sets of internal
signals to the same input and output pins. For instance, the NXP
LPC17xx family of microcontrollers [25] embeds a pin connect
block (PINSEL) to this purpose. As shown in Figure 4, the pins
to which the transceiver is electrically connected are ordinarily
routed to the hardware CAN controller but, by re-programming
the PINSEL logic, it is possible to route the same pins to the
GPIO port.

The other important component the PMA must interact with
is a free-running timer, shown on the right of the figure. It
is used to periodically sample the bus level and generate the
node clock, that is, the stream of PMA NodeClock.Ind indica-
tions that makes up the timing reference for sdcc as a whole,
as described in Section 3.3. On the LPC17xx, any of the four
32-bit, programmable timers (TIMER0. . . 3) has an adequate
operating frequency and resolution, and is suited for use.

As an example, Figure 5 shows how this core PMA func-

6

Physical Medium Attachment (PMA)

GPIO
Interface

Hardware Timer
Interface

GPIO PortCAN
Controller

Transceiver

CAN bus

Chip boundary

RX TX RX TX

Timer
(node clock)

Pin connect block
(PINSEL)

Hardware/Software boundary

Hardware components

Target-specific components

Figure 4: sdcc real-time interface towards a physical CAN bus.

x = read_ts ();

while (1)

{

/ ⇤ S y n c h r o n i z e w i t h TIMER0 , t h e node c l o c k ⇤ /
while(x == read_ts ());

/ ⇤ S a m p le b u s l e v e l , g e n e r a t e a node c l o c k i n d . ⇤ /
if(pma ->primitives.nodeclock_ind)

pma ->primitives.nodeclock_ind(pma ->pcs ,

gpio_rx_pin ());

/ ⇤ P r e p a r e t o w a i t f o r n e x t quan tum ⇤ /
x++;

/ ⇤ S i m p l e c y c l e o v e r f l o w c h e c k ⇤ /
if(x == read_ts ())

LED_ON(GREEN);

else

LED_OFF(GREEN);

}

Figure 5: Core of the PMA towards a hardware CAN transceiver and timer.

tion has been implemented. For simplicity, the implementation
follows a polling-based approach, but interrupt-driven methods
are also feasible. The outer, infinite loop starts executing af-
ter sdcc initialization. Immediately before entering the outer
loop, variable x is set to the current value of timer TIMER0,
returned by the function read ts. By means of initialization
code not shown in the figure, this timer has been programmed
to run at the desired node clock frequency. The inner loop
traps the processor in an active wait until the current value of
TIMER0 changes. In other words, this loop synchronizes the
PMA with timer value transitions that, as stated previously, oc-
cur once every node clock period. Upon exiting from the inner
loop, the code samples the current bus level provided by the
transceiver, through the corresponding GPIO pin, by means of
the function gpio rx pin. Then, it forwards the value to the
PCS by invoking the method registered (by the PCS itself) in
the primitives.nodeclock ind element of the method vector
stored within the PMA layer descriptor pma.

Simulator components

Target-specific components

Physical Medium Attachment (PMA)

Simulated Bus
Interface

Simulated Timer
Interface

Portable Components

Simulator-
Driven Timer

Simulator-
Driven Bus In

te
rn

al
 S

ta
te

 S
ni
ffe

rs
 (d

is
ab

le
d

in
 re

al
-ti

m
e

ex
ec

ut
io

n
m

od
e)

Simulation Infrastructure

Figure 6: sdcc in simulation mode.

As explained in Section 4, the method receives a pointer to
its own layer descriptor (the PCS in this case) as first argument,
and the bus level as second argument. The PCS layer descrip-
tor can be conveniently and e�ciently accessed from the PMA
layer descriptor by following the upward pointer shown in Fig-
ure 3, that is, pma->pcs. After the method returns, the PMA
prepares for the next timer synchronization by incrementing x,
which represents its own notion of node clock number. The
availability of this information provides a handy opportunity
to detect a schedule overflow, that is, a method invocation that
takes more than one node clock period to return.

Any overflow is a critical error and must be flagged because
it implies that sdcc was unable to meet its real-time execution
constraints. In this case, the code compares x with the timer’s
notion of current node clock number, provided by a fresh invo-
cation of read ts. If these two values are the same, the PMA
is “in time,” that is, the method returned before the beginning
of the next node clock period, otherwise an overflow just oc-
curred. The result of the comparison is used to drive another
GPIO output by means of the functions LED ON and LED OFF, so
called because the output is physically connected to a LED on
the evaluation board used as a test bed. This output can then
be checked visually or, more e↵ectively, with an oscilloscope:
Any spike implies that the PMA lost synchronization with the
hardware timer for at least one node clock period.

6. Simulation Mode

Besides being executed in real-time mode on an embedded
system, as described in Section 5, the same sdcc portable lay-

7

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20 25 30

rx-level
quantum-m-cnt

sync-inhibit
Nominal edge position

Time (quanta)

a) positive phase error, e = 2

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20 25 30

rx-level
quantum-m-cnt

sync-inhibit
Nominal edge position

Time (quanta)

b) negative phase error, e = �2

Figure 7: Example of sdcc internal state observation (PCS layer).

ers can also be compiled for a personal computer and work in
simulation mode with the help of a di↵erent PMA, shown in
Figure 6. This feature is convenient, for instance, during the
early stages of development of a new protocol idea, because it
o↵ers significantly better observation and debugging aids than
real-time execution without sacrificing fidelity, because mostly
the same code base runs in both scenarios. Timing fidelity is
mostly preserved, too, because sdcc execution is still accurate
down to the node clock period within the simulated time line.
The only timing-related aspect that is not checked in simulation
mode with respect to real-time mode is the sdcc execution time
overflow described at the end of Section 5.

The simulation-mode PMA connects sdcc to a simulated
CAN bus, which can be driven by the simulator according to a
programmable stimuli file. Moreover, it interfaces with a sim-
ulated timer to generate PMA NodeClock.Ind indications when
triggered by the simulator. In addition, all sdcc layers, both
portable and non-portable, support “sni↵ers” that work on layer
descriptors and make part of their state variables available to
the simulator. The simulation infrastructure then simulates the
passage of time, gathers all this state information, and finally
makes it available in a file suitable to be given as input to
gnuplot [26] or other post-processing tools for further analy-
sis.

Figure 7 shows an example of observation of some sdcc state
variables taken from the PCS and PMA layers and pertaining
to the synchronization process discussed in Section 3.2. The
state variables being observed are the quantum counter c (de-
noted as quantum m cnt in the figure) and sync inhibit (also
discussed in Table 1) from the PCS, and rx level from the sim-
ulated PMA. The latter simply represents the current CAN bus
level received from the transceiver.

For this experiment, the PCS has been configured with
quanta per bit=8, that is, it considers that a bit period is nom-
inally made of 8 quanta, numbered from 0 to 7. Accordingly,
quantum m cnt also counts from 0 to 7, included, the SP has
been set between the 5th and the 6th quantum of a bit, and the
nominal edge position is considered to be at the transition be-
tween the 0th and the 1st quantum.

The upper part of the figure (Figure 7a) shows the PCS be-
havior when the incoming edge is “late” with respect to the
nominal position, that is, it has a positive phase error e =
2. More specifically, it shows how quantum m cnt is decre-
mented by 2 upon edge detection, thus updating the PCS no-
tion of where bit boundaries are with respect to the incoming
bit stream. Instead, the lower part of the figure (Figure 7b)
shows how the PCS adjusts quantum m cnt when the incoming
edge is “early,” that is, it has a negative phase error e = �2.
In this case, at edge arrival, the PCS assumes a new bit has
begun and, to compensate the phase error, unconditionally sets
quantum m cnt to the value 1. In both examples, we assume that
the SJW has been set to a value � 2, so that it does not cap the
quantum m cnt adjustment in any way.

The same figure also demonstrates that the PCS correctly sets
sync inhibit when it performs a synchronization and, as re-
quired by the CAN specification, resets it only when it samples
a recessive bit. In both examples, this happens at the SP of the
next bit. As a consequence, further synchronizations, possibly
due to noise spikes, are inhibited in the meantime.

7. Experimental Evaluation

The characteristics of sdcc have been experimentally evalu-
ated in three di↵erent areas: memory footprint, real-time exe-
cution performance, and compatibility with commercial CAN
controllers.

7.1. Memory Footprint

In order to determine its memory footprint, sdcc has been
compiled for two dissimilar architectures.

1. On the LPC1768 microcontroller, with the real-time PMA
described in Section 5, using gcc version 4.9.3 as cross-
compiler.

2. On an Intel T9400 processor, with the simulated PMA pre-
sented in Section 6 and simulation mode enabled, using the
native Apple C compiler clang version 900.0.39.2.

The first scenario is deemed to be representative of a typi-
cal embedded system, while the second constitutes a common
example of personal computing environment. The main results

8

Table 2: SDCC Memory Footprint, in bytes

Layer LPC1768 T9400
Text Conf. BSS Total

Medium Access Control (MAC) 1728 0 136 10920
Phys. Coding Sub-Layer (PCS) 376 24 80 3232
Phys. Medium Attachment (PMA) 340 0 20 1156
Total 2444 24 236 15308

are shown in Table 2. For the LPC1768, the memory footprint
has been divided into three categories:

• text section, containing code and other read-only data,

• layer configuration data, typically read-only, and

• read-write, uninitialized data, traditionally called BSS.

This distinction is important because, as explained in Sec-
tion 4, items belonging to the first two categories can be al-
located in Flash memory instead of RAM. On the other hand,
only RAM memory is accessible on the T9400 system, given
that the processor is managed by a general-purpose operating
system. Therefore, only total sizes have been shown.

In both cases, memory footprint has been determined by
means of the size command, executed on individual object
modules, plus manual inspection of the linker map files to
achieve a finer level of granularity and determine the size of
layer configuration parameters. The first observation that can
be drawn from the experimental data shown in the table is the
significant di↵erence between the footprint of sdcc on the two
targets, amounting to a factor of about 5. There are several main
reasons for this:

• When compiled in simulation mode, as is the case for the
T9400, sdcc layers contain extra code to support the snif-
fers mentioned in Section 6, as well as other debugging
aids, for instance, a facility to trace main sdcc activities
and generate a log file.

• The LPC1768 embeds an ARM Cortex-M3 processor core,
with a 32-bit architecture, whereas the T9400 belongs to
the Intel Core 2 Duo family and implements the Intel 64
64-bit architecture. As a consequence, several commonly-
used data types (for instance, pointers) are twice as big on
the T9400, with respect to the LPC1768.

• Cortex-M3 instructions are either 16 or 32 bits in size,
whereas Intel 64 instructions vary in length from 1 to 15
bytes. Moreover, the two compilers have di↵erent opti-
mization goals on the two architectures, that is, they tend
to optimize code size on the Cortex-M3 and execution
speed on the T9400.

On the other hand, footprint measurements confirm the rela-
tively small size of sdcc when cross-compiled in real-time ex-
ecution mode (less than 3 KB of memory in total, most of it
read-only), and hence, its suitability even for low-cost embed-
ded systems with limited memory resources.

7.2. Real-time Execution Performance

Real-time performance assessment has been performed on
the LPC1768 microcontroller, configuring the processor to run
at the maximum clock speed, that is, 100 MHz. As a first ap-
proximation, the code shown in Figure 5 has been used to detect
schedule overflows while sdcc was running at several standard
bit rates. The check was done with sdcc connected to a physical
bus, which other CAN nodes saturated by issuing back-to-back
frame transmission requests. In this way it has been determined
that sdcc starts exhibiting sporadic schedule overflows when
the bit rate is brought from 50 to 100 kb/s. Then, to double-
check and refine the evaluation, the total number of clock cycles
that sdcc requires to handle a PMA NodeClock.Ind indication has
been measured, by means of cycle-accurate timestamps. As de-
scribed in Section 3, this entails the execution of the whole PCS
layer and all the four FSMs within the MAC layer.

Experimental results indicate that, in the worst case, sdcc can
completely process a PMA NodeClock.Ind in 130 clock cycles,
fast enough to sustain communication on a CAN bus running at
62.5 kb/s when allocating 100% of the core cycles to this task.
This is a remarkable result, above all if we consider that, by
present-day standards, the LPC1768 is placed at the low end of
the spectrum of microcontrollers used in typical embedded ap-
plications. On the other hand, it also reveals that core utilization
is the main limiting factor of sdcc in actual applications, given
that the microcontroller has to execute other tasks as well, be-
cause it grows linearly with the bit rate.

Instead, as shown in Section 7.1, memory footprint is modest
and does not depend on it. When higher bit rates are required,
the only ways out of this limitation are to further optimize sdcc
code, or use a microcontroller with a higher clock frequency
and a more powerful instruction set. On the contrary, if sdcc is
seen as a replacement of LIN, as proposed in Section 1, we can
assume it would also operate at the maximum LIN bit rate, that
is, 20 kb/s. In this case, even on a low-end LPC1768, sdcc is
going to consume only about 32% of core cycles, thus leaving
a significant share of computing power to other tasks.

7.3. Compatibility with Commercial Controllers

While working on CAN protocol enhancements, both at the
data link and application layers [7, 15], sdcc has been experi-
mentally confirmed to be compatible with several commercial
CAN controllers dissimilar from each other, that is, the ones
embedded in the NXP LPC1768, LPC2468 and LPC4357, as
well as the Freescale MCF5282 (now also acquired by NXP).
Namely, more than 10 million frames have been successfully
exchanged among multiple instances of sdcc and the above-
mentioned commercial controllers without detecting any prob-
lems. Although a thorough evaluation of conformance to the
CAN specification, by means of the relevant ISO standard [27],
would be necessary to prove the interoperability between sdcc
and other CAN implementations, those results still provide
some evidence that no major issues are likely to exist.

9

8. Conclusion

This paper described sdcc, a software-defined CAN con-
troller that operates in real time and can be connected to a phys-
ical CAN bus. When executed on a Cortex-M3 processor run-
ning at a clock speed of 100 MHz, it supports bus bit rates of up
to 62.5 kb/s. The same code base can also work in simulation
mode on an ordinary PC for initial protocol development, test-
ing and debugging. In this way, it provides a valuable, flexible,
and inexpensive tool to experiment with novel ideas concerning
the CAN data link layer protocol. As an example, the prototype
implementation of a CAN-based security protocol [15] on top
of sdcc required only about 280 additional lines of C code, thus
shortening protocol development time and freeing valuable re-
sources within the research team.

References

[1] U. Kiencke, S. Dais, M. Litschel, Automotive serial controller area net-
work, in: Proc. SAE International Congress and Exposition, SAE Inter-
national, Reading, UK, 1986, pp. 1–8.

[2] ISO, ISO 11898-1:1993 – Road vehicles – Controller area network (CAN)
– Part 1: Data link layer and physical signalling, International Organiza-
tion for Standardization (Nov. 1993).

[3] CiA, CiA 301 V4.2.0 – CANopen application layer and communication
profile, CAN in Automation e.V. (Feb. 2011).

[4] ISO, ISO 11898-4 – Road vehicles – Controller area network (CAN) –
Part 4: Time-triggered communication, International Organization for
Standardization (Aug. 2004).

[5] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network (CAN)
– Part 1: Data link layer and physical signalling, International Organiza-
tion for Standardization (Dec. 2015).

[6] T. Ziermann, S. Wildermann, J. Teich, CAN+: A new backward-
compatible controller area network (CAN) protocol with up to 16x higher
data rates, in: Proc. Design, Automation & Test in Europe Conference
Exhibition (DATE), European Design and Automation Association, Leu-
ven, Belgium, 2009, pp. 1088–1093.

[7] G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valenzano, CAN with exten-
sible in-frame reply: Protocol definition and prototype implementation,
IEEE Transactions on Industrial Informatics 13 (5) (2017) 2436–2446.
doi:10.1109/TII.2017.2714183.

[8] Robert Bosch GmbH, VHDL reference CAN, Available online,
at http://www.bosch-semiconductors.com/ip-modules/

can-ip-modules/vhdl-reference-can/ (2018).
[9] T. Ulversoy, Software defined radio: Challenges and opportunities,

IEEE Communications Surveys Tutorials 12 (4) (2010) 531–550.
doi:10.1109/SURV.2010.032910.00019.

[10] International Organization for Standardization and International Elec-
trotechnical Commission, ISO/IEC 9899, Programming Languages — C,
3rd Edition (Dec. 2011).

[11] P. Mundhenk, A. Mrowca, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy,
S. Chakraborty, Open source model and simulator for real-time perfor-
mance analysis of automotive network security, SIGBED Rev. 13 (3)
(2016) 8–13. doi:10.1145/2983185.2983186.

[12] The MathWorks, Inc., Vehicle Network Toolbox, Available online, at
https://it.mathworks.com/products/vehicle-network.html

(2018).
[13] M. Kleine-Budde, SocketCAN — the o�cial CAN API of the Linux ker-

nel, in: Proc. Intl. CAN Conference (iCC), 2012, pp. 5-17–5-22.
[14] A. Mueller, T. Lothspeich, Plug-and-secure communication for CAN, in:

Proc. of the Intl. CAN Conference (iCC), CAN in Automation, Nürnberg,
Germany, 2015, pp. 06-6–06-14.

[15] G. Bloom, G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valenzano, Sup-
porting security protocols on CAN-based networks, in: Proc. 18th IEEE
International Conference on Industrial Technology (ICIT), IEEE, Piscat-
away, NJ, 2017, pp. 1334–1339.

[16] ISO, ISO 17987-1:2016 – Road vehicles – Local Interconnect Network
(LIN) – Part 1: General information and use case definition, International
Organization for Standardization (Aug. 2016).

[17] SAE, SAE J2411 – Single Wire Can Network for Vehicle Applications,
SAE International (Feb. 2000).

[18] L. D. Xu, W. He, S. Li, Internet of things in industries: A survey,
IEEE Transactions on Industrial Informatics 10 (4) (2014) 2233–2243.
doi:10.1109/TII.2014.2300753.

[19] G. Bloom, G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valen-
zano, Optimized event notification in CAN through in-frame replies
and Bloom filters, in: Proc. 13th IEEE International Workshop
on Factory Communication Systems (WFCS), 2017, pp. 1–10.
doi:10.1109/WFCS.2017.7991963.

[20] P. Cach, P. Fiedler, Internet draft – IP over CAN, Available on-
line, at http://mirror.physik-pool.tu-berlin.de/pub/ietf/

ietf-tools.html/draft-cafi-can-ip-00.html, expires: Sept.
2001 (Mar. 2001).

[21] G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valenzano, Seamless integration
of CAN in intranets, Computer Standards & Interfaces 46 (2016) 1–14.
doi:http://dx.doi.org/10.1016/j.csi.2015.11.004.

[22] ISO/IEC, ISO/IEC 7498-1:1994 – Information technology – Open Sys-
tems Interconnection – Basic Reference Model: The Basic Model, Inter-
national Organization for Standardization (Nov. 1994).

[23] S. Chamberlain, I. L. Taylor, The GNU linker ld (GNU binutils) Version
2.26, Free Software Foundation, Inc. (2015).

[24] G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valenzano, Fixed-length pay-
load encoding for low-jitter Controller Area Network communication,
IEEE Transactions on Industrial Informatics 9 (4) (2013) 2155–2164.
doi:10.1109/TII.2013.2240310.

[25] NXP B.V., LPC17XX User manual, UM10360 rev. 2 (Aug. 2010).
[26] T. Williams, C. Kelley, Gnuplot 5.0 — An Interactive Plotting Program

(2015).
[27] ISO, ISO 16845 – Road vehicles – Controller area network (CAN) – Con-

formance test plan, International Organization for Standardization (2004).

Gianluca Cena received the Laurea degree and the Ph.D.
degree in information and system engineering from the
Politecnico di Torino, Italy. Since 2005 he has been a Di-
rector of Research with the Institute of Electronics, Com-
puter and Telecommunication Engineering of the National
Research Council of Italy. His research interests include
wired and wireless industrial communication systems, and
real-time protocols. He has coauthored more than 130
technical papers and one international patent. Dr. Cena
served as a Program Co-Chairman for IEEE WFCS 2006
and 2008. Since 2009 he has been an Associate Editor of
the IEEE Transactions on Industrial Informatics.

Ivan Cibrario Bertolotti has been a Researcher with the
Institute of Electronics, Computer and Telecommunica-
tion Engineering of the National Research Council of Italy
(CNR–IEIIT), Turin, since 1996. He has co-authored two
books on real-time operating systems and regularly serves
as a Technical Referee for primary international journals
and conferences. His research interests include real-time
operating system and communication, as well as model-
ing languages and runtime support for cyber-physical sys-
tems. He received, as a coauthor, the Best Paper Award
presented at the 8th IEEE Workshops on Factory Commu-
nication Systems (WFCS 2010).

Tingting Hu received her master degree in Computer
Engineering in 2010 and PhD degree in Computer and
Control Engineering in 2015 from Politecnico di Torino,
Turin, Italy. Between 2010 and 2016, she also worked
as a research fellow with the National Research Council
of Italy. Since December 2016, she became a post-doc
researcher of University of Luxembourg. Her primary re-
search interest concerns real-time embedded systems and
industrial communication protocols. Currently, she is fo-
cusing on model driven engineering for safety-critical sys-
tems. She serves as program committee member and tech-
nical referee for several primary journals and conferences
in her research area.

10

Adriano Valenzano is Director of Research with the Na-
tional Research Council of Italy (CNR). He is currently
with CNR-IEIIT, Torino, Italy, where he is the supervi-
sor of the Computer Engineering and Networks group. He
is the recipient of the 2013 IEEE IES and ABB Lifetime
Contribution to Factory Automation Award. In 2017 he
has been awarded for the best paper published in the IEEE
Transactions on Industrial Informatics (TII). He also re-
ceived the Best Paper Awards at the 5th, 8th and 13th IEEE
Workshops on Factory Communication Systems. Since
2007, he has been serving as an Associate Editor for the
IEEE TII.

11

