
SLA-Driven Modeling and Verifying Cloud Systems: A Bigraphical Reactive
Systems-based Approach

Oussama Kamela,b, Allaoua Chaouib, Gregorio Diazc, Mohamed Gharzoulib

a Faculty of Medicine, University Constantine 3 Salah Boubnider, Constantine, Algeria
bMISC Laboratory, Department of Computer Science and its Applications, University Constantine 2 Abdelhamid Mehri, Constantine, Algeria

cSchool of Computer Science, University of Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain

Abstract

We propose a formal approach based on Bigraphical Reactive Systems (BRSs) and model checking techniques
for modeling and verifying the interaction behaviours of SLA-based cloud computing systems. In the first phase of
this approach, we address the modeling of the static structure and the dynamic behavior of cloud systems using BRSs.
We show how bigraphs enable the description of the different cloud entities, including cloud actors, cloud services,
service level agreements (SLAs), the diversity of their properties, and the complex interactions and dependencies
among them. Furthermore, we propose a four-stages SLA lifecycle, and define a set of bigraphical reaction rules to
abstract these stages and model the dynamic nature of the cloud. The second phase of this approach verifies that the
behavior of services and cloud actors will cope with the agreed SLA terms during the lifecycle of the SLA. We map the
proposed bigraphical models into SMV descriptions. Then, we express the interaction behaviors as a set of liveness
and safety properties using Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) formulas, and we use
the NuSMV model checker to verify them. Finally, we define a case study on which we illustrate the application of
our proposed approach.

Keywords: Cloud computing, SLA, Bigraph, Bigraphical Reactive Systems, NuSMV, Formal verification

1. Introduction1

During the last decades, several computing models and paradigms have been proposed to make the utility comput-2

ing vision a reality. Cloud computing, one of the well-known emerging models, promises virtually infinite computing3

resources whenever and wherever they are required [1]. On-demand self-service, broad network access, resource pool-4

ing, measured service, and rapid elasticity, among other key characteristics of the cloud, have encouraged academia,5

industry, and government to move towards cloud computing solutions [2]. The cloud introduces a new model in which6

everything is offered and used as a service (the acronyms *aaS, XaaS or EaaS stand for Everything as a Service) [3].7

According to the widely accepted definition, given by the National Institute of Standards and Technology (NIST) [4],8

cloud services are delivered under three main models: infrastructures (Infrastructure as a Service, i.e., IaaS), platforms9

(Platform as a Service, i.e., PaaS) and applications (Software as a Service, i.e., SaaS), and are deployed following four10

models (public cloud, private cloud, community cloud, and hybrid cloud).11

Although the aforementioned gained benefits, this paradigm faces different issues such as the vendor lock-in12

problem [5]. This problem is due to the different models and descriptions used by providers to represent their cloud13

services. As a first objective of this paper, we will show how to use formal methods for the modeling and description14

of cloud services and other cloud entities, since formal methods offer standardized and rigorous descriptions. Another15

problem concerns the Service Level Agreement (SLA) and its management lifecycle. The SLA [6, 7] permits to16

regulate and control the provision and consumption of services and specifies the set of quality of service (QoS) that17

must be guaranteed. The realization of the SLA follows different stages [8, 9]. Through the whole lifecycle of the18

SLA, the different providers, end-users, and also the offered services may have different changing states and different19

kinds of interactions. Tackling the first problem using formal methods will pave the way towards formal verification,20

and therefore ensuring the correctness of interaction behaviors among the different cloud entities during the SLA21

lifecycle, which represents the second objective of this paper.22

Preprint submitted to Computer Standards & Interfaces June 14, 2021

Figure 1: A layered cloud system

In the following, we present a motivating example through which we identify the different challenges that are23

faced when modeling and verifying SLA-based cloud systems, and also the specific features of the cloud that have24

been considered by such approach.25

Let us consider the following motivating example, depicted in Figure 1, in which a cloud architecture comprises26

two layers. The lower one represents the UaaS (Utility as a Service) layer in which we find infrastructure services27

offered as virtual machines (VMs). The second layer represents SaaS providers that use services from the previous28

layer. On top of the cloud layers, Figure 1 shows end-users that consume services offered by the different providers.29

Note here that we have considered only the two layers following the classification proposed by [10, 11] in which it is30

considered that the cloud incorporates application services (SaaS) and utility services (UaaS). Utility services include31

both IaaS and PaaS services. Further explanation and examples, about cloud services classification, will be given in32

Section 4. Consider the example shown in Figure 1 where a SaaS provider wants to deploy two services. The first33

service depends on the second one. We start by presenting two scenarios for the deployment. In the first one, the34

provider wants to deploy the two services S1 and S2 in the same VM (VM1) offered by a public cloud provider. In35

the second scenario services S3 and S4, we suppose that service S4 will process confidential data, and therefore the36

provider wants to deploy it in his private cloud VM3 (in order to ensure data privacy and access control) and keep S337

deployed on the public cloud VM2.38

Generally, providers of services give different details and properties of the offered services, for instance, the39

UaaS provider describes the offered VMs in terms of their CPU, RAM, Storage, Location, etc. On the other side,40

a consumer selects services depending on its requirements, for instance, the SaaS provider (playing the role of a41

consumer) may look for VMs having certain capacities, located in a specific region, and following particular security42

protocols. The consumer selects services that can meet its requirements and starts negotiating with their providers.43

The negotiation may be terminated by the definition and the establishment of an SLA. This includes a set of terms to44

be respected during the provision and consumption of services. Examples of SLA terms are: the availability of the45

offered service must be always greater than 99,99%, and the maximum number of violations is 3. As we can observe46

in the first example, these terms usually refers to QoS requirements. Deployed in a highly dynamic environment, such47

as the cloud, QoS of the delivered services are subjected to different changes. The monitoring process verifies that48

the execution of services is performed according to the signed SLA and reports any SLA violations. This process49

continues until the termination of SLA that can take place by one of two reasons: the expiration time has been reached50

or the occurrence of violations.51

The focus of this paper is the modeling of cloud computing systems and the verification of interaction behav-52

iors among their different cloud entities during the lifecycle of SLAs. Analyzing the motivating example, we have53

identified the following challenges:54

1. Diversity of cloud services models: In the motivating example, we have considered two types of delivery models55

that are SaaS and UaaS. In the literature, however, we may find more and different classifications of the delivery56

models [4, 10, 11]. Therefore, the proposed approach should offer the possibility to consider any classification57

and define any type of cloud services.58

2

2. Service properties and QoS consideration: Services can be described using different properties and QoS [12].59

The example cites some resources features such as CPU, RAM, location, availability, etc. Note here that these60

parameters depend on the type of entity they describe. The proposed approach should offer means to define61

different properties and QoS.62

3. Cloud actors and SLA stakeholders: In our example, three types of actors are identified: end-users, SaaS63

providers, and UaaS providers. These actors are involved in the establishment of the SLA as customers or64

providers. The proposed solution should permit the definition of different actors and SLA parties.65

4. Specific service compositions and diverse relationships: Generally, a composition of services is required to66

offer a complete solution and satisfy the users’ (functional and non-functional) requirements [13]. In cloud67

environments, service composition can be intra-layer composition (horizontal), which denotes composition of68

services that are on the same layer (between S1 and S2), or inter-layer composition (vertical), which involves69

services from different layers (between S1 from the SaaS layer and VM1 from the UaaS layer) [14]. This70

composition is always considered as a complex problem due, on one hand, to the wide variety and the growing71

number of services available in the cloud, and on the other hand, to the requirements of users that are more and72

more complicated [15]. Indeed, the establishment of such composition requires complex interactions between73

providers of these services and their consumers [16]. The proposed approach should allow the definition of74

such types of service compositions and relationships between cloud actors.75

5. SLA consideration: In the motivating example, the SLA includes, among others, terms specifying the expected76

level of services (e.g., availability). The proposed solution should allow the specification of SLAs and their77

different terms.78

6. SLA lifecycle and dynamic change of cloud entities: Cloud actors and services can go through different states79

during the lifecylce of SLA. The proposed solution should allow the modeling of the different SLA lifecycle80

stages. In addition, it should allow the description of the dynamic change of these entities states. For instance,81

an end-user can be satisfied or dissatisfied with the offered service.82

7. Correctness verification: The proposed approach should be based on a formal foundation [17], and hence83

enables reasoning about the different entities such as services, end-users, providers, and SLAs. Specifically,84

it should permit to verify that the behavior of services and cloud actors will cope with the defined SLA terms85

during the lifecycle of the SLA. For instance, we may want to verify that: 1) Always the monitoring process86

launches directly after the establishment stage, 2) Once the number of occurred violations reaches the maximum87

allowed number of violations, the SLA will be directly terminated with penalties, or 3) The number of occurred88

violations must not exceed the maximum allowed number of violations. In this research we have considered two89

types of properties, introduced in [18], that are: liveness and safety. While the former describes that something90

good will eventually happen (e.g., properties 1 and 2), the latter denotes that something bad will never happen91

(e.g., property 3) during the lifecyle of the SLA. In other words, they express desirable or undesirable behaviors92

of the different cloud entities during the SLA lifecycle.93

Based on Milner’s Bigraphical Reactive Systems (BRSs) [19, 20] and model checking techniques [21, 22, 23],94

we aim to propose a novel formal approach for modeling and verifying SLA-based cloud systems to cover all the95

aforementioned challenges simultaneously. Taking into account these challenges, the contributions of this article are96

as follows:97

• We cover the first five challenges by proposing a generic and complete formal description, based on the bigraph98

theory, for the different cloud entities, relationships thereof, and their properties. The cloud entities include99

cloud actors, cloud services, and cloud SLAs.100

• We cover challenge 6 by proposing a four-stages cloud-SLA lifecycle and defining a set of bigraphical reaction101

rules to describe it. Moreover, the proposed reaction rules consider the dynamic change of these entities during102

the SLA lifecycle.103

• We cover the last challenge by proposing a formal verification approach, based on the NuSMV model checker,104

to ensure the correctness of interaction behaviors among the different cloud entities, during the SLA lifecycle.105

This verification approach is based on a set of liveness and safety properties specified in Linear Temporal Logic106

(LTL) and Computation Tree Logic (CTL). Moreover, the defined properties are ranging from general ones to107

specific properties which are depending on the signed SLA.108

3

The rest of this paper is organized as follows. Section 2 presents an overview of the BRS theory. An overview109

of the proposed approach is detailed in Section 3. Our BRS-based modeling approach from static and dynamic per-110

spectives are introduced in Sections 4 and 5, respectively. In Section 6, the formal verification approach is presented.111

In Section 7, we define a case study, with different scenarios, on which we apply the proposed approach. The related112

work and conclusion are presented in Sections 8 and 9, respectively.113

2. Background114

The theory of bigraphs has been introduced by Milner and colleagues for modeling ubiquitous systems [19, 20].115

Through the combination of bigraphs and a bigraphical reaction rules-set, this theory can deal with both the static116

structure and the dynamic behavior of systems. This combination yields bigraphical reactive systems. Although in117

its infancy, BRSs have shown their successful adoption in many different domains such as cyber-physical systems118

[24, 25], context-aware systems [26, 27], wireless networks [28, 29], and cloud computing [30, 31].119

2.1. Modeling static structure: bigraphs120

Milner and co-workers have proposed a mathematical formalism called bigraphs [19, 20]. This model intends121

to unify earlier models (universal process algebra), such as the π-calculus [32] , CSS [20] and Petri nets [33] . The122

theory of bigraphs offers a graphical and a formal representation that can describe both locality and connectivity.123

This feature is achieved by specifying two extra types of graphs: the place graph and the link graph that compose124

bigraphs. These two graphs share the same node-set of their bigraph. Figures 2a and 2b show two bigraphs G and125

H modeling the first and the second scenarios, respectively, presented above. GP and GL are the corresponding place126

graph (Figure 2c) and link graph (Figure 2d) of G. Nodes in bigraphs can model physical (real) or logical (virtual)127

entities. Controls are used to define the different types of bigraph’s nodes. For instance (see Figure 2a), E1 is an128

EUser-node (i.e., E1 has been assigned the control EUser) and S1 is a node of control SaaS. Each control has zero,129

one or many ports. The defined controls set K and the function ar : K→N, specifying the arity of each control (the130

number of its ports), are defined by the bigraph basic signature (K, ar). For instance, the signature of the bigraph G is131

defined as follows: K = {EUser : 1, S aaS : 4,UaaS : 4, S LA : 0,Req : 0,DepM(x) : 0}. Notice that the definition of132

the control DepM(x) uses the parameter x that will be replaced by real values (for example, private or public) during133

its instantiation. This kind of controls is called parameterised controls [34] [29].134

2.1.1. Place graph135

This graph depicts the locality of the bigraph nodes as a containment relationship. For example, the node denoted136

by E1 contains the document SLA with the identifier SL1 (Figure 2a). As shown in Figure 2c, the place graph is137

structured as a forest of trees, where, their roots represent the bigraph’s regions (dashed boxes), and some of their138

leaves represent the bigraph’s sites (shaded boxes). In figure 2a, we have three regions indexed from 0 to 2 and eight139

sites indexed from 0 to 7. Sites play an important role in the bigraph theory since they can be used to model details140

that are not the current interest. For instance, site 6 (Figure 2a) shows that in addition to the existing nodes contained141

in VM1 (the SLA document and deployment model), this latter may contain other entities (unspecified nodes), such142

as response time, geographical location, and RAM capacity nodes.143

2.1.2. Link graph144

This graph expresses the interconnection between the bigraph nodes (see Figure 2d). Edges within this hypergraph145

may connect many ports (black dots) belonging to different nodes. As shown in Figure 2a, the edge e2 expresses that146

S 2 is deployed on VM1 and the edge e0 expresses that the end-user E1 has started using S1.147

2.2. Formal representations148

According to Milner [19],] is used as the union operator between sets known or assumed to be disjoint, and a149

finite ordinal m is treated as the set {0, . . .,m − 1}. Milner [19] has defined bigraphs as follows:150

Definition 1. A bigraph G is a quintuplet (V, E, ctrl, prnt, link) : < m, X >→ < n,Y >, such that151

• V and E denote finite sets of nodes and edges, respectively.152

4

SL1:SLA

E1:EUser

E2:EUser

R1:Req

SL2:SLA

SL4:SLA

SL3:SLA

S1:SaaS

S2:SaaS

D1:DepM(pub)

VM1:UaaS

VM3:UaaS

VM2:UaaS

0 1

3

2

4

5

6

7

e0

e3

e1

e2

0 1 2

D2:DepM(prv)

D3:DepM(pub)

(a) Bigraph G (scenario 1)

SL1:SLA

E3:EUser

E2:EUser

R1:Req

SL2:SLA

SL4:SLA

SL3:SLA

S3:SaaS

S4:SaaS

VM2:UaaS

VM1:UaaS

VM3:UaaS

0 1

3

2

4

5

6

7

e0

e3

e1

e2

SL5:SLA

0 1 2

D2:DepM(pub)

D1:DepM(pub)

D3:DepM(prv)

(b) Bigraph H (scenario 2)

E1

SL1

E2

R1

0

0 S1 S2

1

SL2 SL4 34

1

2

VM1 VM2 VM3 2

SL3 D1 6 D2 7 D3 5

(c) Place Graph GP

E1 S1 S2

VM1

SL1

E2

R1

SL2

VM2 VM3

D1 D2D3

SL4

SL3

(d) Link Graph GL

Figure 2: Graphical representation of bigraphs, place graphs, and link graphs.

• Nodes are assigned each a control using the control map ctrl : V → K.153

• While prnt : m]V → V]n, the parent map, defines the containment relationship, the link map, link : X]P→154

E] Y, defines how nodes are linked.155

• The set P = {(v, i) | v ∈ V and i ∈ ar(v)} specifies ports.156

• Both m and n are ordinals indexing sites and regions, respectively.157

• The pair < m, X > (< n,Y >, respectively) forms the inner (outer, respectively) interface of the bigraph, where158

X and Y are called inner and outer names.159

The bigraph G depicted in Figure 2a is defined as (V, E, ctrl, prnt, link) : < 8, φ >→ < 3, φ > , where:160

V = {E1, E2, S L1,R1, S 1, S L2, S 2, S L4,V M1, S L3,D1,V M2,D2,V M3,D3}161

E = {e0, e1, e2, e3}162

ctrl(v) =

EUser : 1, i f v ∈ {E1, E2}
S aaS : 4, i f v ∈ {S 1, S 2}
UaaS : 4, i f v ∈ {V M1,V M2,V M3}
S LA : 0, i f v ∈ {S L1, S L2, S L3, S L4}
Req : 0, i f v ∈ {R1}
DepM(x) : 0, i f v ∈ {D1,D2,D3}

163

5

prnt(v) =

Region0, i f v ∈ {E1, E2, S ite0}
Region1, i f v ∈ {S 1, S 2, S ite1}
Region2, i f v ∈ {V M1,V M2,V M3, S ite2}
E1, i f v ∈ {S L1}
E2, i f v ∈ {R1}
S 1, i f v ∈ {S L2, S ite4}
S 2, i f v ∈ {S L4, S ite3}
V M1, i f v ∈ {S L3,D1, S ite6}
V M2, i f v ∈ {D2, S ite7}
V M1, i f v ∈ {D3, S ite5}

164

link(l) =

e0, i f l ∈ {(E1, 0), (S 1, 0)}
e1, i f l ∈ {(S 1, 2), (V M1, 0)}
e2, i f l ∈ {(S 2, 2), (V M1, 0)}
e3, i f l ∈ {(S 1, 1), (S 2, 3)}

165

Note here that the set of ports of the node S1 is denoted as PS 1 = {(S 1, 0), (S 1, 1), (S 1, 2), (S 1, 3)}166

where, for instance, the notation (S 1, 0) denotes the port 0 in the node S 1.167

2.3. Algebra of bigraphs168

Milner [35] has defined an algebraic notation that can describe bigraphs and support their graphical representation169

as summarized in table 1. For instance, the bigraph G depicted in Figure 2a is expressed as :170

G = (E1e0.S L1) | (E2.R1) | d0 ‖ (S 1e0,e1,e3.(S L2 | d4)) | (S 2e2,e3.(S L4 | d3)) | d1 ‖ (V M1e1,e2.(S L3 | D1 | d6)) |171

(V M3.(D3 | d5)) | (V M2.(D2 | d7)) | d2172

The notation di denotes a site with the index i. For instance, d0, d1,...d7 are the sites used in the bigraph G. The173

nesting operator (U.V) is used to express the containment relationship. For example, E1e0.S L1 expresses that the174

node S L1 is nested inside the node E1. The prime product operator U | V denotes that U and V are contained into the175

same parent. For instance, V M1e1,e2.(S L3 | D1 | d6) expresses that the nodes S L3, D1, and the site d6 are juxtaposed176

under the node V M1. The parallel product operator defines new regions, for instance, in the bigraph G there are three177

regions that are juxtaposed using the operator || twice.

Table 1: Bigraphical algebraic representation

Bigraphical term Meaning
di Site indexed i

U.V Nesting (U contains V)
U|V Prime product
U||V Parallel product

178

2.4. Bigraphical sorting discipline179

The sorting mechanism for bigraphs was developed by Milner [19]. This mechanism categorizes controls and180

links in different sorts. In addition, it may impose more constraints on both the containment and the interconnection181

relationships (called place sorting and link sorting, respectively), thereby ensuring that only well-formed bigraphs will182

be obtained.183

Definition 2. A place sorting is a triple ΣP = (ΘP,K,Φ), comprising a nonempty set ΘP of place sorts. The signature184

K is place-sorted over ΘP, i.e., the controls, from the basic signature, are assigned each a sort from ΘP.185

Definition 3. A link sorting is a triple ΣL = (ΘL,K,Φ), comprising a non-empty set ΘL of link sorts. The signature K186

is link-sorted over ΘL, i.e., the arities of each control, from the basic signature, are assigned each a sort from ΘL.187

In both place and link sorting, the component Φ (called formation rule) specifies properties that have to be fulfilled188

by the bigraph. For example, all children of c1-nodes are c2-nodes, or c1-nodes cannot be linked to c2-nodes.189

6

2.5. Modeling dynamic structure: BRS190

Bigraphs enable the description of only the static structure of a system through the modeling of the two concepts:191

locality and connectivity. To complete the description of that system, i.e., modeling its dynamic behavior, these192

bigraphs are furnished with a bigraphical reaction rules-set. This combination yields what is called BRS . The defined193

reaction rules allow the reconfiguration (rewriting) of bigraphs’ placing or linking. A reaction rule is written R→ R′,194

where the redex (i.e., its left-hand side) R expresses the conditions that have to be satisfied to apply it, and the reactum195

(i.e., its right-hand side) R′ represents the effect of the application of this rule [19]. In other words, a rule ReacRul is196

applicable on a bigraph G if the redex of ReacRul occurs in G, and its application means that the reactum of ReacRul197

will replace the matching part in G.198

Definition 4. A reaction rule is a triple (R,R′, η), where R : m → J, R′ : m′ → J, and η : m′ → m represent the199

redex, the reactum, and a map of ordinals, respectively.200

Figure 3a depicts graphically a bigraphical reaction rule called Rmigrate modeling the migration of a service de-201

ployed on a VM offered by a public cloud provider to another VM in a private cloud. The algebraic representation of202

Rmigrate is :203

((S aaS e0.d2) | d0) ‖ (UaaS e0.(DepM(pub) | d3)) | (UaaS .(DepM(prv) | d4)) | d1 → ((S aaS e0.d2) | d0) ‖204

(UaaS .(DepM(pub) | d3)) | (UaaS e0. (DepM(prv) | d4)) | d1205

In the redex of Rmigrate (its left-hand side), a service from the SaaS layer is deployed on a VM from the UaaS206

layer. This VM contains a node of control DepM(pub) to denote that is provided by a public provider. In the reactum207

of Rmigrate (its right-hand side), the first link is removed and a new link between the SaaS service and another VM208

from a private provider (DepM(prv)) is created. The application of this rule on the bigraph G yields a new bigraph as209

depicted in Figure 3b. The algebraic representation of this application is :210

(EUsere0.S LA) | (EUser.Req) | d0 ‖ (S aaS e0,e1,e3.(S LA | d4)) | (S aaS e2,e3.(S LA | d3)) | d1 ‖ (UaaS e1,e2.(S LA |211

DepM(pub) | d6)) | (UaaS .(DepM(pub) | d5)) | (UaaS .(DepM(prv) | d7)) | d2 → (EUsere0.S LA) | (EUser.R1) |212

d0 ‖ (S aaS e0,e1,e3.(S LA | d4)) | (S aaS e2,e3.(S LA | d3)) | d1 ‖ (UaaS e1.(S LA | DepM(pub) | d6)) | (UaaS .213

(DepM(pub) | d5)) | (UaaS e2.(S LA | DepM(prv) | d7)) | d2214

3. Approach overview215

With respect to the selected formalism, we have found that BRSs are a well-suited formalism to address the216

first objective of this research as they can capture the different cloud entities, their properties, their relationships and217

interconnections, and their dynamic behaviors. Furthermore, BRSs are based on a rigorous mathematical foundation218

(category theory) and offer simple graphical notations.219

Concerning the second objective, the formal verification, few tools are proposed to develop, simulate and formally220

verify BRS models such as BPLTool [36], BigMC [37], Big Red [38] and BigraphER [39]. Among all of these tools,221

BigMC [37] is the only one that supports formal verification. However, it does not support parametric controls, and222

it is not mature enough to express and verify complex properties. Different research works have tackled the formal223

verification problem in the cloud computing domain [40]. Model checking, as one of the verification techniques, rep-224

resents an attractive approach that aims to ensure system correctness [21, 22]. The symbolic model checker NuSMV225

[23] allows to deal with real size models as those we can find out in the cloud computing context [40]. NuSMV offers226

model checking verification and simulation techniques. According to [40], the symbolic model checker NuSMV has227

been the most used in the verification of cloud case studies. In this work, we use NuSMV to address the second228

objective of this research.229

Next, we present an overview of the proposed modeling and verification approach for SLA-based cloud systems.230

It consists of two phases: modeling and verification (see Figure 4).231

• The modeling phase: In this phase, we propose a formal modeling approach based on BRS. It is composed of232

two steps:233

– The structural modeling step (label 1): During this step, we can address different aspects of the cloud. The234

first aspect to consider is the architecture modeling. Bigraphs enable us to model the layered architecture235

7

SaaS
UaaS

DepM(pub)

UaaS

DepM(prv)

0
1

4

3

0 1 0 1

2

SaaS

2

UaaS

DepM(pub)

3

0

DepM(prv)

4
1

(a) Rmigrate

SL1:SLA

E1:EUser

E2:EUser

R1:Req

SL2:SLA

SL4:SLA

SL3:SLA

S1:SaaS

S2:SaaS

D1:DepM(pub)

VM1:UaaS

VM3:UaaS

VM2:UaaS

0 1

3

2

4

5

6

7

e0

e3

e1

e2

0 1 2

D2:DepM(prv)

D3:DepM(pub)

SL1:SLA

E1:EUser

E2:EUser

R1:Req

SL2:SLA

SL4:SLA

SL3:SLA

S1:SaaS

S2:SaaS

VM1:UaaS

VM3:UaaS

VM2:UaaS

0 1

3

2

4

5

6

7

e0

e3

e1

e2

SL5:SLA

0 1 2

D1:DepM(pub)

D3:DepM(pub)

D2:DepM(prv)

(b) Application on bigraph G

Figure 3: Example of a reaction rule and its application

Structural modeling Behavior modeling

BRS-SMV mapping

NuSMV checking

Properties specification

Modeling phase Verification phase

Cloud Systems

cloud actors,

cloud services,

SLA, QoS,

SLO,...

Bigraphical models for

 cloud systems

EU
S1

S2
0 1

0 1

SMV

Mapping rules

 NuSMV descriptions for

SLA-based cloud systems

Module Main
 Var EU: EU(SLA.state)

Module CloudService

BRS formalism

region, site,

node, link, port,

sort, control,

reaction rule, ...

Use

SLA lifecycle

negotiation,

establishment,

monitoring,

termination,

Reaction rules for cloud

SLA lifecycle

S1

S2

S1

S2

R
negotiate

0

R
establish

R....

1

BRS

sort

control

reaction rule

...

module

variable

transition

...

Use

AG ((Stage.state = Monitoring...
AG ((V1.availability < 99 | V1....
....
....
AG !(V1.security = low & EX...
....
....

Temporal properties

TRUE

FALSE

CounterExample

3

1 2

4

5

Figure 4: SLA-based cloud systems modeling and verification approach overview

of cloud computing. We use the concept of region in the bigraph theory to model each layer of the cloud.236

The second aspect is the service modeling. This approach proposes the use of bigraph nodes and sorting237

mechanism to define a generic model for cloud services. The use of place sorts (ΣP) allows us to define238

different kinds of services and describe their properties. The third aspect is the service composition and239

interconnection modeling. We use bigraph links to model the relationships and dependencies between240

8

the different services. We define different ports (link sorts ΣL), through which, services satisfy their241

requirements and expose their offerings. Another important aspect is the SLA. We use also nodes and242

sorting mechanism to represent this agreement and its components.243

– The behavior modeling step (label 2): First, based on the work [8], we propose an SLA lifecycle, which244

consists of four stages (see Figure 4). Then, we define different bigraphical reaction rules to describe245

these stages. First, we introduce two reaction rules to represent the negotiation and the establishment of246

an SLA. In the monitoring stage, we define a rule to model the SLA violation detection and other rules247

to describe how to fix the violation (either by a service adjustment or by an adjustment of the SLA).248

Finally, we present two rules expressing two possible cases of termination that are normal termination and249

termination due violations.250

• The verification phase: After the modeling phase, the verification employs model checking techniques to check251

the correctness of interaction behaviors among the different cloud entities during the SLA lifecycle. It follows252

three steps:253

– Mapping BRS to SMV descriptions (label 3): We follow a set of proposed mapping rules to translate the254

obtained BRS models to SMV descriptions.255

– Properties specification (label 4): We express the interaction behaviors of the different cloud entities as a256

set of liveness and safety properties using LTL and CTL formulas [21, 22].257

– NuSMV checking (label 5): In this step, the NuSMV model checker takes as input the resulting SMV258

descriptions and the defined properties. As a result, it returns whether these properties are satisfied or259

not. In case a property is not satisfied a counterexample is provided with all the information necessary to260

reproduce the problem, which allows to trace errors.261

The number and complexity of concepts addressed in both phases depend on the type and complexity of the262

properties we want to check. In addition, the use of sites allows us to focus on these concepts alleviating the model263

complexity. To implement this approach, there are different mechanisms to extract the information regarding these264

concepts and they are closely related to the used cloud provider. For instance, Amazon Web Services (AWS) provides265

a large set of SLAs 1 for the different featured services it offers such as the Amazon Elastic Compute Cloud (EC2) 2.266

These SLAs are not enforced by Amazon, but by the users themselves via a manual claim management system using267

the request logs, which must be provided by the user. This practice is common among cloud providers, however it268

will be desirable their automatic enforcement. Initiatives like TOSCA (Topology and Orchestration Specification for269

Cloud Applications) [41] and OCCI (Open Cloud Computing Interface) [42] to standardize the specification of cloud270

applications may pave the path to accomplish this task.271

4. Structural modeling272

In this section, we define the static structure of services, actors and SLAs using bigraphs’ nodes. Moreover, we use273

bigraphs’ links to model the collaboration between these services, and the interaction between end-users and services.274

4.1. Cloud service description275

We consider services as the first-class entities. We use bigraphs’ nodes to represent these services. We define276

ΘP
{service} a set of place sorts for services as: ΘP

{service} = {XaaS 1, XaaS 2, . . . , XaaS n} where each sort represents the277

type of service.278

The content of ΘP
{service} depends on the considered types of services. We will give more details about each sort279

later, i.e., we will present controls belonging to each sort and describing the states of services.280

1https://aws.amazon.com/legal/service-level-agreements/
2https://aws.amazon.com/compute/sla/

9

https://aws.amazon.com/legal/service-level-agreements/
https://aws.amazon.com/compute/sla/

Example 1. In the literature, we can find different classifications of service models. Following the classification281

proposed by [2] and [4], the ΘP
{service} is instantiated as: ΘP

{service} = {S aaS , PaaS , IaaS }. The IBM Cloud Computing282

Reference Architecture has extended this classification by adding the Business Process as a Service model (BPaaS)283

[43, 44]. Therefore the ΘP
{service} will be: ΘP

{service} = {S aaS , PaaS , IaaS , BPaaS }.284

Example 2. According to [10], cloud services fall into two main categories: application services (they refer to the285

S aaS model) and utility services (denoted as UaaS and they include the PaaS and IaaS models). Thus we instantiate286

ΘP
{service} as: ΘP

{service} = { S aaS , UaaS } .287

Generally, cloud services are associated with different functional and non-functional properties [12]. To model these288

properties, a service-node may contain other nodes such as:289

• ΘP
{O f f ering} = {o f f er}: this sort contains only one control o f f er. A node of this control describes what the290

service offers to end-users and/or other services.291

• ΘP
{Requirement} = {req}: while the last control describes what the service provides to others, a req-node describes292

what the service requires from others, for example, services and resources on which it will be deployed. A293

node of this control marks that its parent (in this case the service-node in which it is contained) is not ready to294

provide its capabilities because it has some requirements to function.295

• ΘP
{property} = {Prop1(x), Prop2(x), . . . , Propm(x)}: We can add more nodes to describe other service’s properties.296

We propose to use parameterized controls [34, 29] to describe them. For example, a node representing a297

resource (virtual machine) from the UaaS layer can contain nodes of type RAM(x) and CPU(x) to describe its298

configuration in terms of RAM and CPU, respectively. The instantiation of them means that we give real values299

for the parameter x, for instance, RAM(2) and CPU(3) denote that its capacity of RAM is 2GB and its CPU has300

the capacity 3GHz.301

We note here that these nodes depend on their parents (in which they will be inserted). For instance, the property-302

nodes of services from the S aaS layer will not be the same as the property-nodes of resources from the UaaS layer.303

In addition, as previously mentioned, sites have an important role in bigraphs, since they help us to abstract away304

details that are not our current interest. Indeed, this feature allows us to control the level of abstraction depending on305

our necessities. For instance, we can abstract a set of property-nodes inside a service-node by a site and thus reducing306

the complexity of the model and show only relevant information currently under study.307

Example 3. Figure 5a shows a generic model for cloud services. We use this model to describe an Amazon EC2308

instance 3. Figure 5b illustrates that this instance is provided by Amazon Web Service (Provider(AWS)), hosted in309

Europe-Ireland (Location(eu − west − 1)) and running an Amazon Linux operating system (OS (AmazonLinux)). The310

type of this instance is m5.large (Type(m5.large)). The parametrized controls vCPU(2), Memory(8), and CPU(3, 1)311

represent other properties of this instance that are the number of processors, the capacity of its memory and its312

processors. In addition to the last controls that denote functional attributes, this instantiation may also include313

controls to describe QoS attributes such as Availability(99, 99).314

4.2. Cloud Actors315

In this paper, we consider that a cloud actor can be a provider of cloud services or an end-user. In the following,316

we describe how to model each type:317

• Provider of services: providers can be of different types depending on the services they are offering. In the318

bigraph model, we propose that each region corresponds to a layer in the cloud architecture in which we find319

providers of the same service model (services that belong to the same cloud layer). Hence, the set of nodes320

representing services are categorized in separate bigraph’s regions depending on their types. For instance,321

Figure 6b depicts a bigraph with two regions that model XaaS i and XaaS j layers.322

3https://aws.amazon.com/ec2/instance-types/

10

:Prop(x)

:Offer

:Prop(x)

:XaaS

UsedBy

Deploy

Use

DeployedOn

 0

0

1

2

i

(a) Generic model

:Offer

:Provider(AWS)

VM1:IaaS

UsedBy

Deploy

Use

DeployedOn

 0

0

1

2

:OS(Amazon Linux)

:Location(eu-west-1)

:vCPU(2)

:CPU(3.1)

:Memory(8)

:Availability(99.99)

:Type(m5.large)

(b) Amzon EC2 instance description

Figure 5: Generic model for cloud service and an example of instantiation

UsedBy

Deploy

Use

DeployedOn

 0

0

1

:XaaS
i

UsedBy

Deploy

Use

DeployedOn

:XaaS
i

2

Link

(a) Horizontal composition

UsedBy

Deploy

Use

DeployedOn

0

0

1

:XaaSi

UsedBy

Deploy

Use

DeployedOn

:XaaSj

3
Link

2

1

(b) Vertical composition

0

0

1

iUsedBy

Deploy

Use

DeployedOn

:XaaS

3

Link

2

 1
:EU

Use

(c) Interaction between End-user and services

Figure 6: Generic model for horizontal composition, vertical composition and End-users

• End-user: in addition to providers’ regions, we define another region that represents end-users. We model these323

latter as a set of nodes from the sort: ΘP
{Euser} = {EU}. Euser-nodes may also contain other nodes, for example,324

to model requirements of an end-user we add a req-node in Euser-node. For instance, region 0 and 1 represent325

end-users and providers exposing XaaS i services, respectively (see Figure 6c).326

Example 4. Consider the hierarchical view of cloud computing presented in [45]. It involves four layers, namely327

SaaS, PaaS, IaaS, and Data Centers layers. The graphical representation of its bigraphical model is shown in Figure328

7. In addition to the first region representing end users, there are four other regions denoting the SaaS, PaaS, IaaS,329

and Data Centers layers. This last layer provides physical machines (PM).330

4.3. Service Interaction331

In this section, we continue the description of nodes we have just defined before. We start by the definition332

of different types of ports for service-nodes and Euser-nodes. Then, we use these ports to show how services are333

connected to each other (in terms of two types of compositions) and how end-users consume these services.334

11

0

0

1

:EU

:SaaS

5

:SaaS

3

:SaaS

4

:PaaS

8

:PaaS

7

:IaaS

11

:IaaS

10

:PM

14

:PM

13

:PM

15

2 3 41

2 6 9 12

Figure 7: Example of Cloud computing actors

Cloud computing is composed of different layers that are related in a producer-consumer way [46]; the first layer335

consumes services from providers of the second layer, and these latter may also play the role of consumers as they336

consume services from the next layer, etc. Therefore, we associate for each service-node four ports: { Deploy,337

DeployedOn, Use, UsedBy } that allow them to play the role of consumer and/or provider, i.e., they use these ports to338

satisfy requirements and/or offer capabilities. On top of the cloud layers, end-users interact with and consume services339

offered by the different providers. Therefore, we associate only one port {Use} to Euser-nodes because end-users just340

consume services and do not offer anything. We will give more details about these ports in what follows. We note341

here that the proposed model is extensible and we have the possibility to add more ports to represent other types of342

relationships if necessary.343

Definition 5. We define a service composition as a set of linked service-nodes. Bigraph’s nodes having sort ΘP
{service}344

specify services involved in the composition and links, connected through ports { Deploy, DeployedOn, Use, UsedBy345

}, define relationships between them.346

The notation (v, portS ort) expresses the port portS ort on the node v. According to [14, 47, 48], the service com-347

position in the cloud computing area is defined in two dimensions: horizontal composition (or intra-layer composition)348

and vertical composition (or inter-layer composition) :349

• Horizontal composition: it expresses the combination of services that are on the same level (have the same350

service model). In order to model this type of composition, we assign two ports to service-nodes: ΘL
{service} =351

{Use,UsedBy}. A link connected to the first port expresses that the service consumes capabilities offered by352

another service, while the connection to the UsedBy port models that this service offers features to the others.353

Definition 6. The horizontal composition of two services S 1 and S 2 is defined by the creation of a new link e354

between (S 1,Use) and (S 2, UsedBy).355

In the example of Figure 6a, two services from the same layer are horizontally composed.356

• Vertical composition: it was introduced by Mietzner [14]. It expresses the collaboration of services of different357

models to offer complete solutions and satisfy the functional and non-functional requirements of users [13]. To358

model this kind of composition, we extend the link sorts by two new ports and assign them to service-nodes:359

ΘL
{service} = ΘL

{service} ∪ {Deploy,DeployedOn}. While the deployment feature is offered through the connection360

to the first port, a connection from the second port models the need to this feature.361

Definition 7. The vertical composition of two services S 1 and S 2 (S 1 is deployed on S 2) is defined by the362

creation of a new link e between (S 1,DeployedOn) and (S 2,Deploy).363

In the example of Figure 6b, an XaaS i service is vertically composed with an XaaS j service from another layer,364

meaning that the first one is deployed on the second one. For instance, a software application from the S aaS365

layer needs other resources from PaaS or IaaS layers to be deployed.366

12

In addition to the interaction between services, end-users can also interact with and consume services. Therefore, we367

define a new port Use and assign it to Euser-nodes: ΘL
{Euser} = {Use}.368

Definition 8. The interaction between an end-user EU1 and a service S 1 is defined by the creation of a new link e369

between the port Use in the node EU1 and the port UsedBy in the service S 1.370

Figure 6c models an end-user using an XaaS i service.371

4.4. SLA-driven Modeling372

The SLA permits to regulate and control the interaction of service providers with their consumers. The SLA373

consists of different components including among others [6, 8]:374

• Parties: Different parties are involved in the establishment and management of the SLA such as signatory375

parties (customers and providers) and supporting parties (such as brokers and auditors). In this work, we focus376

on the first that represents providers and consumers of services. We have just defined sorts Θ{Euser} and Θ{service}377

representing end-users and services offered by providers, respectively.378

• Service-level objectives (SLOs): The SLA indicates the functional and non-functional capabilities of services379

that have to be ensured. Service availability must be at least 99,99% and response time must be at most 2 sec.380

are some examples of SLOs. Now, we define a new sort Θ{S LA} = {S LA} to represent the SLA between providers381

and their customers.382

• Penalties: They will be applied if the expected SLOs are not achieved. We use a node of control Pen defined in383

the sort Θ{Pen} to model these penalties: Θ{Pen} = {Pen}.384

Moreover, we can define other sorts to model more components in the SLA or we can just use a site inside the SLA-385

node to abstract them away. According to [49], different cloud SLAs can be defined due to the layered architecture of386

the cloud and the producer-consumer relationship between these layers. Therefore, we add new SLA-nodes (in both387

nodes representing consumers and providers) each time an interaction between the parties is started. We note here388

that we will define different states of SLA-nodes that depend on the different stages of the SLA lifecycle. Indeed, once389

the interaction has started, the state of the inserted SLA-node is updated according to the stage of the SLA lifecycle.390

Definition 9. Let S 1 and S 2 be two services. S 2 requires capabilities offered by S 1. We define an SLA between the391

providers of S 1 and S 2 by the insertion (update of the states) of SLA-node inside the two nodes representing services392

S 1 and S 2.393

Definition 10. Let S 1 be a service and let EU1 be an end-user. The capabilities offered by S 1 meet the requirements394

of EU1. We define the SLA between the provider of S 1 and the end-user EU1 by the insertion (update of the states)395

of SLA-node inside the two nodes representing S 1 and EU1.396

In the last two definitions we mean by the SLA not only the final established agreement but also this agreement in its397

different states during the SLA lifecycle.398

Figure 8 shows two cases, from right to left-hand-side: in the first one, we have two providers offering XaaS j and399

XaaS k services, to model the interaction and the SLA between these providers we insert an SLA-node in both of them.400

In the second case, the two parties are an end-user (from region 0) and the provider of XaaS i service (from region 1).401

The SLA between them is modeled by the insertion of an SLA-node in both of them. In the two cases, we have also402

created a new link between nodes representing consumer and provider of services to show the interaction between the403

two parties. We note here that SLA-nodes contain sites to model the SLA components and properties such as the SLOs.404

4.5. Modeling services, end-users and SLA states405

We now give more details about the sorts that we have defined. We start by defining the states of services, end-406

users, and SLA as a set of controls inside Θ{service}, Θ{Euser}, and Θ{S LA}, respectively. We present a set of controls in407

each sort to represent real states of these entities through the different stages of the lifecycle of SLA.408

13

0

0

1

:EU

5

2

 1

3

4

8

6

 2

7

:SLA

:XaaSi

:SLA

:XaaSj

:SLA

11

9

 3

10

:XaaSk

:SLA

Figure 8: SLA at different levels

• Service states: In order to specify the states of services, we use three controls :409

∀XaaS ∈ Θ{service}, XaaS = {XaaS Req, XaaS PL, XaaS BPL}410

The control XaaS Req models a service that is not ready to be used because it has requirements that demand to411

be satisfied. For example, to be deployed, a S aaS application requires other infrastructure resources. Once a412

service has satisfied all its requirements, it can be in one of the following two states. The first one is represented413

by the control XaaS PL denoting a service that is offering (can offer) the promised level of service. We use the414

control XaaS BPL, representing the second case, when the level of service, that is in use, is decreased below the415

promised one.416

• End-users states: The sort EU = {EUReq, EUS at, EUDisS at} defines the different states that an end-user can417

experience during the SLA lifecycle. We use the first control EUReq to represent an end-user looking for a418

service, i.e., he/she has some requirements. Once the end-user has found and started using the service, we use419

the two controls EUS at or EUDisS at to model its states. While the former denotes that he/she is satisfied with420

the offered service, the latter denotes a dissatisfied end-user.421

• SLA states: The different states of the SLA are regrouped in the sort S LA = {S LAnegotiated, S LArespected,422

S LAviolated, S LAsuccess, S LA f ailure}423

We use the first control to describe the negotiation between parties in order to define and establish the SLA.424

Once the SLA has been established, and in order to model its monitoring, we use two controls. A node of425

S LArespected control describes that the SLA is respected, and the control S LAviolated denotes that an SLA viola-426

tion is detected.427

According to [8] there are two cases in which the SLA may be terminated. We use the two controls S LAsuccess
428

and S LA f ailure to describe these cases. The former denotes normal termination, i.e., the SLA reaches its429

timeout, and the latter describes the case in which the termination is due an SLA violation (termination due430

violations).431

Table 2 summarizes the correspondence between concepts in cloud computing and bigraphs.

Table 2: Correspondence between cloud computing concepts and bigraphs

Cloud computing Bigraph
service, SLA, end-users, properties nodes

cloud entities states controls
interaction links

cloud layers region

432

14

5. Behavior modeling433

We now complete the definition of the proposed bigraphical model by addressing its dynamic structure. The434

dynamic aspect describes the SLA lifecycle and how the states of end-users, services, and SLAs are evolving during435

the lifecycle of the SLA. The realization of the SLA follows different stages [8, 9]. In our work, we propose a436

lifecycle in four stages, based on the one defined in [8], which are ”negotiation”, ”establishment”, ”monitoring”,437

and ”termination”. We introduce a reaction rules-set that allows the transition between these stages and describes438

the dynamic changes of end-users states, cloud services states, and SLAs states. Figure 9 shows the proposed SLA439

lifecycle and the different reaction rules allowing the transition from one stage to another one. In the following figures,440

we show only the connected ports. In addition, the notations X/Y , used in figures, and X̂Y , used in formulas, indicate441

that the control of the node can either be X or Y . For instance, the reaction rule (Figure 11) can be applied for end-442

users (by using EUReq in the redex and EUS at in the reactum) or for XaaS services (by using XaaS Req in the redex443

and XaaS PL in the reactum).444

5.1. Negotiation445

A consumer locates providers depending on its needs. Generally, a consumer selects cloud service providers based446

on its functional requirements and then negotiates nonfunctional properties of the desired services [50]. During the447

negation stage, the two parties negotiate in order to reach a mutual agreement and define the final SLA components448

such as SLOs, penalties, and budget. Reaction rules depicted in Figure 10 model this stage.449

In the first rule (from left to right→), the left-hand side indicates a consumer, in region 0, and a service XaaS PL,450

in region 1, that can satisfy this consumer’s requirements. The consumer can be either an end-user with requirements451

(EUReq) or a service requiring other services or resources (XaaS Req). Starting the negotiation is modeled by the right-452

hand side, in which we create a new link between this consumer and the service XaaS PL. Moreover, we add a node453

of control S LAnegotiated in both nodes representing the consumer and the offered service. We can specify Rnegotiate in454

algebraic terms as follows:455

Rnegotiate
def
= ((̂EUReqXaaS Req.(d1 | req)) | d0) ‖ ((XaaS PL.d3) | d2)→ ((̂EUReq

e XaaS Req
e .(d1 | req | (S LAnegotiated.d4)456

)) | d0) ‖ ((XaaS PL
e .d3 | (S LAnegotiated.d5)) | d2)457

The process of negotiation may terminate in two scenarios:458

• In the first scenario, the two parties have not reached a mutual agreement and thus ceasing the negotiation459

process. This scenario is modeled by the opposite reaction rule depicted in Figure 10 (from right to left←) , in460

which the bigraph goes back to the initial state (remove the link between the two parties and also the two nodes461

S LAnegotiated from both of them).462

• The second scenario represents a successful termination of the negotiation process. Thus we go to the next463

stage: establishment of S LA.464

5.2. Establishment465

After a successful negotiation, the S LA will be established, and the expected service will be delivered. The rule466

Restablish represents this scenario (Figure 11). Its left-hand side represents the negotiation step, i.e., the consumer and467

provider are negotiating, and therefore they are linked together and both of them contain an S LAnegotiated-node. The468

application of this rule models that the two parties have agreed on the terms of the SLA, and therefore we replace the469

node of control S LAnegotiated by the node of control S LArespected on its right-hand side. Moreover, the consumer’s state470

is updated from EUReq (XaaS Req respectively) to EUS at (XaaS PL respectively) and the req-node is removed from it.471

We note here that the link now describes that this consumer has begun consuming this XaaS PL that is expected to472

fulfill his/her requirements. In algebraic terms, Restablish can be denoted as follows:473

Restablish
def
= ((̂EUReq

e XaaS Req
e .(d1 | req | (S LAnegotiated.d4))) | d0) ‖ ((XaaS PL

e .d3 | (S LAnegotiated.d5)) | d2) →474

((̂EUS at
e XaaS PL

e .(d1 | (S LArespected. d4))) | d0) ‖ ((XaaS PL
e .d3 | (S LArespected.d5)) | d2)475

15

Figure 9: SLA lifecycle in the cloud

0

0

1

2

 1

3

:XaaS

XaaS / EU ReqReq

:req

PL

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU ReqReq

:req

PL

negotiated
5

:SLA
negotiated

Figure 10: A consumer and provider start an SLA negotiation (→), negotiation failure (←)

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

PL

respected
5

:SLA
respected

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU ReqReq

:req

PL

negotiated
5

:SLA
negotiated

Figure 11: Reaction rule for an SLA establishment

5.3. Monitoring476

The monitoring process is launched immediately once the SLA is established and the consumer commences the477

use of the provided service. Hence Figure 9 has not shown any reaction rules between the establishment and the478

monitoring stages. This process verifies the execution of services according to the agreed SLA. It constantly observes479

and compares the actual provisioned service against the pre-agreed level of service, and then, it reports any SLA480

violations. The process of monitoring will be continued until a termination state, defined in the SLA, is reached (see481

Sect. 5.4). In this stage, we first define a rule that tags a service as unable to offer the promised level (Service level482

degradation), then, we introduce a rule that models an SLA violation, and finally, we present rules describing different483

scenarios after an SLA violation (SLA violation treatment).484

16

0

0

1

:XaaS
PL

0

1

:XaaS
BPL

0

(a)

0

0

1

2

 1

3
4

:XaaS

:SLA

XaaS / EU DisSatBPL

BPL

violated 5
:SLA
violated

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

BPL

respected
5

:SLA
respected

:pen

(b)

Figure 12: Service Failure And S LA Violation

5.3.1. Service level degradation485

Deployed in a highly dynamic environment, such as the cloud, QoS of the delivered services are subjected to486

different changes. Figure 12a illustrates how to mark a service that has failed to satisfy the consumer’s requirements487

(for example due to QoS degradation). In the reactum of this rule RS erFail, the service’s state is updated from XaaS PL
488

to XaaS BPL; meaning that its level has decreased below the agreed one. The algebraic form of RS erFail is:489

RS erFail
def
= (XaaS PL.d1) | d0 → (XaaS BPL.d1) | d0490

5.3.2. SLA violation491

Once a service has failed to reach the expected level, an SLA violation is occurred. To model this situation we use492

the rule depicted in Figure 12b. The redex of this rule denotes a service that cannot fulfill the consumer’s requirements,493

thus we assign the control XaaS BPL to the offered service (we use the last rule RS erFail to mark that this service is unable494

to offer the promised level of service). On the right-hand side, we update the consumer’s state from EUS at (XaaS PL
495

respectively) to EUDisS at (XaaS BPL respectively) to model that he/she is not satisfied with the offered service. The496

reactum updates also the state of the SLA from respected (S LArespected) to violated (S LAviolated). Updating the S LA497

state in the two nodes models that both parties (provider and consumer) are informed by this violation. In addition,498

we insert a new Pen-node in the offered XaaS BPL to express that the corresponding penalties defined in the SLA (in499

the case of its violation) are applied to the provider of this service (in this case we have considered that the provider500

is the party who violate the SLA). This rule is defined algebraically as follows:501

Rviolate
def
= ((̂EUS at

e XaaS PL
e .(d1 | (S LArespected. d4))) | d0) ‖ ((XaaS BPL

e . d3 | (S LArespected.d5)) | d2) → ((502

̂EUDisS at
e XaaS BPL

e .(d1 | (S LAviolated. d4))) | d0) ‖ ((XaaS BPL
e .d3 | (S LAviolated.d5) | Pen) | d2)503

5.3.3. SLA violation treatment504

We consider the following three scenarios when an SLA violation is occurred:505

• Service adjustment: the provider, in this first scenario, possesses the ability to resolve the detected S LA violation506

and re-provide the pre-agreed level of service (it has remediation strategies for the detected problem). We define507

the rule RS erviceAd just, depicted in Figure 13a, to model this scenario. After an S LA violation (denoted by the508

redex of this rule), the provider applies the appropriate strategy and executes the corrective actions (add new509

instance, service substitution , resource reconfiguration, etc.). We note that the corrective strategies are not510

the scope of this work and readers can refer to [51, 52] in which the authors have modeled elasticity actions as511

reaction rules. The reactum of RS erviceAd just models that the provider has successfully resolved the problem; note512

that the bigraph goes back to its state before the S LA violation where the two parties are satisfied (EUS at and513

XaaS PL) and the agreement is respected (S LArespected). Moreover, the reactum of RS erviceAd just has substituted514

the service XaaS with a new one XaaS ′ (we have used the prime symbol to differ them) to denote the application515

of the service adjustment and the corrective strategies. The algebraic notation of this rule is:516

RS erAd just
def
= ((̂EUDisS at

e XaaS BPL
e .(d1 | (S LAviolated. d4))) | d0) ‖ ((XaaS BPL

e .d3 | (S LAviolated.d5) | Pen) | d2) →517

((̂EUS at
e XaaS PL

e .(d1 | (S LArespected. d4))) | d0) ‖ ((XaaS ′ PL
e . d3 | (S LArespected.d5)) | d2)518

17

0

0

1

2

 1

3
4

:XaaS

:SLA

XaaS / EU DisSatBPL

BPL

violated 5
:SLA

violated

:pen

 0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

' PL

respected
5

:SLA
respected

(a)

0

0

1

2

 1

3
4

:XaaS

:SLA

XaaS / EU DisSatBPL

BPL

violated 5
:SLA

violated

:pen

 0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

PL

respected
5

:SLA
respected'

(b)

Figure 13: Service and S LA Adjustment

• SLA adjustment: in this scenario, the two parties renegotiate the current SLA and agreed on the definition of a519

new one by updating some of the S LOs. In contrast to static and predefined SLAs that cannot be changed after520

their establishment, recent studies have addressed the problem of dynamic SLAs and their adjustment during521

the service provisioning [53, 54]. The rule RS laAd just , depicted in Figure 13b, illustrates this scenario. Analogy522

to the first scenario, the application of this rule brings the bigraph back to its state before the S LA violation.523

In addition, in the reactum of this rule, we have used a new node S LA′ in the place of S LA to model that the524

agreement is renegotiated and a new one is defined. The algebraic terms of this rule is:525

RS laAd just
def
= ((̂EUDisS at

e XaaS BPL
e .(d1 | (S LAviolated. d4))) | d0) ‖ ((XaaS BPL

e .d3 | (S LAviolated.d5) | Pen) | d2) →526

((̂EUS at
e XaaS PL

e .(d1 | (S LArespected. d4))) | d0) ‖ ((XaaS PL
e . d3 | (S LA′ respected.d5)) | d2)527

• Provider limitations: if the encountered problems are beyond remedy (the provider cannot remedy the problem528

or the parties have not agreed on new terms in the renegotiation process), the termination due violations will be529

the next stage of the SLA lifecycle.530

5.4. Termination531

In this stage we model how the SLA can be terminated. We consider two scenarios [8] in which an SLA termina-532

tion may be occurred:533

• Normal termination: In this first case, the consumer has continued using the service until the predefined expiry534

of the agreement. In the left-hand side of the rule (Figure 14a), we have a satisfied consumer (EUS at or XaaS PL
535

) using an offered service XaaS PL and a respected SLA between the two parties (S LArespected). The right-hand536

side models the successful fulfillment of the SLA, thus the node of control S LArespected is replaced by the node537

of control S LAsuccess. This rule can be defined as:538

RNormalTerm
def
= ((̂EUS at

e XaaS PL
e .(d1 | (S LArespected.d4))) | d0) ‖ ((XaaS PL

e .(d3 | (S LArespected.d5))) | d2) →539

((̂EUS at
e XaaS PL.((S LAsuccess .d4) | d1)) | d0) ‖ ((XaaS PL.(d3 | (S LAsuccess.d5))) | d2)540

18

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

PL

success
5

:SLA
success

0

0

1

2

 1

3

4

:XaaS

:SLA

XaaS / EU SatPL

PL

respected
5

:SLA
respected

(a)
0

0

1

2

 1

3
4

:XaaS

:SLA

XaaS / EU DisSatBPL

BPL

failure 5
:SLA
failure

:pen

 0

0

1

2

 1

3
4

:XaaS

:SLA

XaaS / EU DisSatBPL

BPL

violated 5
:SLA
violated

:pen

(b)

Figure 14: Normal termination And Termination due violations

• Termination due violations: In this scenario, the consumer ceases the utilization of the offered service before541

the contract expired. This termination may occur in some cases, e.g., one of the two parties cancels the contract,542

the number of violations reaches the maximum allowed and defined in the SLA [55]. To specify this scenario,543

we use the rule depicted in Figure 14b. It is applied after SLA violations, thus the state of the SLA in its redex544

is violated (S LAviolated). The redex shows also that the consumer is dissatisfied (EUDisS at or XaaS BPL) with545

the consumed service (XaaS BPL). The reactum models that the SLA has not been fulfilled (S LA f ailure) and has546

been terminated due violations. This rule can be defined as:547

RViolTerm
def
= ((̂EUDisS at

e XaaS BPL
e .(d1 | (S LAviolated.d4))) | d0) ‖ ((XaaS BPL

e .(d3 | Pen | (S LAviolated.d5))) | d2) →548

((̂EUDisS at
e XaaS BPL. ((S LA f ailure .d4) | d1)) | d0) ‖ ((XaaS BPL.(d3 | Pen | (S LA f ailure.d5))) | d2)549

Note that once this stage is achieved (in both termination scenarios), the allocated resources and services are550

released and thus no link between the two parties remains in the reactum of RNormalTerm and RViolTerm,551

6. Verification552

In this work, we use the NuSMV [23] model checker to verify the correctness of interaction behaviors of cloud553

entities during the whole lifecycle of SLA. The verification phase starts by mapping the proposed bigraphical models554

to SMV descriptions. In the second step, we specify the set of liveness and safety properties we want to check. Finally,555

the NuSMV model checker verifies the resulting SMV descriptions against the defined properties.556

6.1. Mapping BRS to SMV descriptions557

In this subsection, we describe how to translate the proposed bigraphical models to SMV descriptions. Table 3558

summarizes the mapping rules between BRS concepts and SMV language. We associate each sort in the bigraphical559

models with a module in the SMV code. For instance, we create two SMV modules called EndUser and CloudService560

to represent the two sorts EU and XaaS, respectively. Furthermore, the BRS using these latter sorts is defined as the561

SMV main module and in which the other modules are instantiated. We create a variable of type enumeration called562

state in each SMV module to encode controls of each sort. For instance, the variable state in the EndUser module563

19

has three enumerative values : EUreq, EUsat and EUdis to denote the different controls of the EU sort. Modules may564

also include other variables to describe more properties. Reaction rules are expressed as transitions in SMV code. For565

instance, we define in the module CloudService a transition that changes the state of this service from Sbpl to Spl.566

Moreover, a set of transitions in the SLAstages module are implemented to model the transitions between the SLA567

lifecycle stages. We note here that we have used modules with parameters in order to model the relationships between568

the different cloud entities. For instance, the two modules EndUser and CloudService use the variable state defined in569

the SLAagreement module (modeling the SLA) as a parameter to denote their relationships through the SLA.

Table 3: Correspondence between BRS concepts and SMV language

BRS SMV concept SMV code

BRS main module MODULE main
. . .

sort module MODULE SortName (P a r a m e t e r s)
. . .

control variable
VAR

VariableName : V a r i a b l e V a l u e s ;
. . .

reaction rule transition

ASSIGN
i n i t (Var iableName) : = I n i t i a l V a l u e s ;
n e x t (Var iableName) : = NextValues ;
. . .

570

6.2. Properties specification571

According to Lamport [18], there are two types of properties to be verified which are: liveness and safety. In our572

work, these types state that something good will eventually happen or something bad will never happen during the573

lifecyle of the SLA, respectively. In other words, they describe desirable or undesirable behaviors of the different cloud574

entities during the SLA lifecycle. Moreover, properties can be also classified as general or specific properties. The575

former type does not depend directly on the agreed SLA terms as the latter type does. In addition, general properties576

must hold at any scenario but not specific properties. For instance, always the monitoring process launches directly577

after the establishment stage, and, the SLA cannot be declared violated when the offered service is provisioning the578

expected level, both of them represent general properties. An example of specific properties is: once the number579

of occurred violations reaches the maximum allowed number of violations, the SLA will be directly terminated with580

penalties. Notice that the maximum number of violations and the amount of penalties (defined in this property)581

depend on the signed SLA and may vary since each scenario consists of different stakeholders with varying features582

and specific requirements.583

Regarding the specification of these properties, we have used temporal logic. The NuSMV model checker supports584

both LTL and CTL [21, 22] for properties expression. LTL specifications use different operators: X (next state), G585

(globally), F (finally) and U (until). In addition, LTL logic supports past-tense operators such as Y (previous state)586

and H (historically). In the CTL logic, the two path quantifiers : E (some path) and A (all paths) precede temporal587

operators. Some examples of CTL operators are: exists next state (EX), forall next state (AX), exists finally (EF),588

forall finally (AF), exists globally (EG), and forall globally (AG). A set of LTL and CTL properties that will be verified589

are given below. We note here that we use the dot notation as Mod.Var to encode the value of the variable Var in the590

module Mod. In addition, we use the symbol -> to denote the implication operator.591

6.3. NuSMV checking592

We employ the NuSMV model checker to verify the obtained SMV descriptions against the defined CTL and LTL593

properties. The NuSMV model checker returns TRUE if the SMV descriptions satisfy the defined properties. Other-594

wise, it returns FALSE and generates a counterexample (execution traces that violate the property). We create a file595

20

with the extension (.smv) that includes the SMV descriptions and the set of properties. Then, we will input this file596

to the NuSMV model checker that will process it using different commands. We use check ctlspec and check ltlspec597

to check the different properties expressed in CTL and LTL, respectively. Moreover, we use the check fsm and com-598

pute reachable commands to check the deadlock problem and compute reachability states, respectively.599

7. Use case600

As a proof of concept, we present a use case on which we will apply the proposed modeling and verification601

approach. First, we follow the BRS-based approach, as defined in sections 4 and 5, to model this use case. Then,602

we define the corresponding SMV descriptions of the obtained BRS models, as described in section 6, to execute and603

verify them using the NuSMV tool.604

7.1. BRS modeling605

Let assume that a company (called TrustUS) needs an IaaS provider to deploy its new SaaS application (called S1).606

This initial state is represented by bigraph BGstate0 in Figure 15. S1 will process confidential data, therefore, TrustUS607

looks for an IaaS provider that can guarantee a very high level of security regarding data confidentiality. Among608

several providers, offering different security policies and mechanisms [56], TrustUS negotiates and establishes an609

SLA with a provider called IaaS4All. The negotiation step is represented by bigraph BGstate1 (Figure 15). Reaction610

rule Restablish is applied and the new bigraph BGstate2 represents the establishment step. The signed agreement is611

represented by the SLA-node in which it is specified the SLA objectives. Some of these objectives are depicted in612

table 4. In this case study, we consider two parameters that are availability and security. According to this table,613

the availability must be always greater than or equal 99%, and the level of security has to be guaranteed is high (we614

suppose that IaaS4All proposes 3 levels: low, medium, and high). In addition, the maximum number of violations615

is 3 for the availability and for the level of security is limited to 1, i.e., if any degradation is detected in security, the616

SLA is directly terminated with penalties. Moreover, table 4 shows penalties applied to each violation. The amount617

of penalty is calculated using the number of occurred violations (Numbrviol) and the penalty unit (PenUnity) defined618

during the negotiation (in our example PenUnity equals 20 euro). The provider is penalized with PenUnity∗Numbrviol619

euro if the availability is violated and it is greater than or equal to 98%, and with 2∗PenUnity∗Numbrviol euro if the620

availability is less than 98%. Regarding the security parameter, the amount of penalties equals to 100∗PenUnity euro.621

We note here that, in Figure 15 and 16, we have kept only relevant nodes and we have used sites to abstract others.622

Table 4: Agreed SLA between TrustUS and IaaS4All

SLA parameters Values Penalties
Availability (Av) Av ≥ 99 % 0 (SLA respected)

98% ≤Av< 99% PenUnity∗Numbrviol
Av<98% 2∗PenUnity∗Numbrviol

Numbrviol(Av)= 3 Termination (SLA Failed)
Security (Sec) Sec=high 0 (SLA respected)

Sec=medium or Sec=low Termination (SLA Failed)
and 100∗PenUnity

After the establishment of the SLA and during service provisioning, the IaaS4All provider has faced three succes-623

sive problems:624

• Problem 1: We suppose that the availability of resources offered by IaaS4All is dropped to 98%. This new625

situation (BGstate3 , i.e., IaaS4All has failed to offer the expected availability) is obtained after the application626

of reaction rule RS erFail on bigraph BGstate2 depicted in Figure 15. This problem leads to an SLA violation627

(application of Rviolate) represented by bigraph BGstate4 (Figure 15). This latter bigraph shows also that the628

corresponding penalties are applied to IaaS4All (20∗1). After the detection of this failure, TrustUS fixes it629

(application of RserAd just) and the the availability comes back to 99% (BGstate5 shown in Figure 15).630

21

Figure 15: BRS modeling for the use case: problem 1

• Problem 2: Similar to the first problem, the availability is decreased again to 97% and an SLA violation is631

detected. Thereafter, TrustUS has successfully resolved this problem and the availability comes back to 99%.632

The only difference between the two problems is in the amount of penalties applied to IaaS4All (in this problem,633

the penalty amount will be 2∗20∗2).This problem is illustrated through the following reaction rules sequence634

(see Figure 16):635

BGstate5
RSerFail
−→ BGstate6

Rviolate
−→ BGstate7

RserAdjust
−→ BGstate8636

• Problem 3: We suppose that TrustUS encounters a security problem and cannot deal with it. The SLA violation637

occurs, penalty amount is calculated (100∗20) and the agreement is directly terminated according to table 4 (if638

any security violation is detected, the SLA terminates directly with penalties). A sequence of three reaction639

rules is used to describe this problem as follows (see Figure 16):640

22

BGstate8
RSerFail
−→ BGstate9

Rviolate
−→ BGstate10

RViolTerm
−→ BGstate11641

Figure 16: BRS modeling for the use case: problem 2 and problem 3

7.2. NuSMV-based verification and execution scenarios642

We now follow the mapping rules defined in Section 6.1 to translate the obtained BRS models to SMV descrip-643

tions. We create a file called CaseStudy.smv that contains five modules: main, SaaS, IaaS, SLAagreement, and644

SLAstages. In the main module, we instantiate the other four modules. In these latter modules, we define a variable645

state that describes the state of the SaaS service, IaaS service, SLA, and the stage of the SLA lifecycle, respectively.646

23

Moreover, we define other variables to describe properties and parameters of services and SLAs. For instance, both647

CloudService and SLAagreement modules have a variable called availability that denotes the current offered availabil-648

ity and the expected availability, respectively. Furthermore, two constants maxviolav and maxviols defined in module649

SLAagreement denote the maximum number of violations for availability and security, respectively. Modules include650

also a set of transitions describing how states, properties or parameters change during the SLA lifecycle. Figure 17651

shows an excerpt of the obtained SMV program. After the creation of this file, we use the interactive simulation652

mode to generate the trace corresponding to our use case. Figure 18 shows the resulting simulation trace that con-653

tains 12 states. From this figure, we notice that IaaS4All has violated the SLA three times (V1.numbviolav=2 and654

V1.numbviols=1) and it has fixed it twice (Stage.state=ViolFixing has occurred twice in the trace). The NuSMV tool655

reports that the SLA has terminated with penalties and the IaaS4All is penalized with a total of 2100 euro.656

MODULE main
VAR

S1:SaaS(SLA...);
 V1: IaaS(SLA...);
 SLA:SLAagreement(Stage...);
 ...
CTLSPEC NAME LP2 := AG ((V1.availability < 99 | V1.sec...
...
--
MODULE SLAagreement(Stage)
 VAR

state: {neg,resp,viol,fail,succ};
 availability: {99}; -- expected Availability
 security:{high}; -- expected security
 ...
 ASSIGN

init(state) := neg;
next(state) := case

 (Stage = Negotiation) & next(Stage)=Negotiation : neg;
 ...
--
MODULE SaaS(Agreement)
 VAR

state:{SaaSreq,SaaSpl,SaaSbpl};
 ...
--
MODULE IaaS(Agreement...)
 VAR

security:{low,medium,high};
 ...

MODULE SLAstages(...)
 VAR

state:{Negotiation,Establishment,...Ptermination};
 ...

Figure 17: NuSMV descriptions

7.3. Verification results657

We now verify the following set of properties using the NuSMV model checker. We specify these properties658

informally and in NuSMV as follows:659

• Liveness properties:660

During the monitoring stage, any degradation in the service level will be detected.661

LP1: AG ((Stage.state = Monitoring & V1.state = IaaSbpl) -> AX Stage.state = ViolDetection).662

24

NuSMV > show_traces -v

<!-- ################### Trace number: 1 ################### -->

Trace Description: Simulation Trace

Trace Type: Simulation

- > State: 1.1 < -

S1.state = SaaSreq

V1.state= IaaSreq

V1.availability = 99

V1 .numbviolav = 0

V1.numbviols = 0

V1.security = high

V1.PenAmount = 0

SLA.state= neg

Stage.state = Negotiation

S1.provider = TrustUs

V1.provider= IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav=3

SLA.maxviols = 1

SLA.PenUnit = 20

- > State: 1.2 < -

S1.state = SaaSreq

V1.state= IaaSpl

V1.availability = 99

V1 .numbviolav = 0

V1.numbviols = 0

V1.security = high

V1.PenAmount = 0

SLA.state= neg

Stage.state = Negotiation

S1.provider = TrustUs

V1.provider= IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav=3

SLA.maxviols = 1

SLA.PenUnit = 20

- > State: 1.3 < -

S1.state = SaaSpl

V1.state= IaaSpl

V1.availability = 99

V1 .numbviolav = 0

V1.numbviols = 0

V1.security = high

V1.PenAmount = 0

SLA .state = resp

Stage .state = Establishment

S1.provider = TrustUs

V1.provider = IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav=3

SLA.maxviols = 1

SLA.PenUnit = 20

- > State: 1.4 < -

S1.state = SaaSpl

V1.state= IaaSbpl

V1.availability = 98

V1 .numbviolav = 0

V1.numbviols = 0

V1.security = high

V1.PenAmount = 0

SLA.state = resp

Stage.state = Monitoring

S1.provider = TrustUs

V1.provider = IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav = 3

SLA .maxviols = 1

SLA.PenUnit = 20

- > State: 1.5 < -

S1.state = SaaSbpl

V1.state= IaaSbpl

V1. availability = 98

V1.numbviolav = 1

V1.numbviols = 0

V1.security = high

V1.PenAmount=20

SLA.state= viol

Stage.state = ViolDetection

S1.provider = TrustUs

V1.provider = IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav=3

SLA.maxviols = 1

SLA.PenUnit = 20

- > State: 1.6 < -

S1.state = SaaSpl

V1.state= IaaSpl

V1. availability = 99

V1.numbviolav = 1

V1.numbviols = 0

V1.security = high

V1.PenAmount = 20

SLA .state = resp

Stage.state= ViolFixing

S1.provider = TrustUs

V1.provider = IaaS4All

SLA.availability = 99

SLA.security = high

SLA.maxviolav = 3

SLA.maxviols = 1

SLA.PenUnit = 20

 - > State: 1.7 < -

 S1.state = SaaSpl

 V1.state = IaaSbpl

 V1.availability = 97

 V1.numbviolav = 1

 V1.numbviols = 0

 V1.security = high

 V1.PenAmount=20

 SLA.state = resp

 Stage.state = Monitoring

 S1.provider = TrustUs

 V1.provider = IaaS4All

 SLA.availability = 99

 SLA.security = high

 SLA.maxviolav = 3

 SLA.maxviols = 1

 SLA.PenUnit = 20

 - > State: 1.8 < -

 S1.state= SaaSbpl

 V1.state= IaaSbpl

 V1.availability = 97

 V1.numbviolav = 2

 V1.numbviols = 0

 V1.security=high

 V1.PenAmount=100

 SLA.state = viol

 Stage.state = ViolDetection

 S1.provider = TrustUs

 V1.provider = IaaS4All

 SLA.availability = 99

 SLA.security = high

 SLA.maxviolav=3

 SLA.maxviols = 1

 SLA.PenUnit = 20

 - > State: 1.9 < -

S1.state = SaaSpl

 V1.state= IaaSpl

 V1.availability = 99

 V1.numbviolav = 2

 V1.numbviols = 0

 V1.security=high

 V1.PenAmount=100

 SLA .state = resp

 Stage.state=ViolFixing

 S1.provider=TrustUs

 V1.provider=IaaS4All

 SLA.availability = 99

 SLA.security=high

 SLA.maxviolav = 3

 SLA.maxviols = 1

 SLA.PenUnit = 20

 - > State: 1.10 < -

 S1.state = SaaSpl

 V1.state= IaaSbpl

 V1.availability = 99

 V1.numbviolav = 2

 V1.numbviols = 0

 V1.security = low

 V1.PenAmount = 100

 SLA .state = resp

 Stage.state = Monitoring

 S1.provider = TrustUs

 V1.provider = IaaS4All

 SLA.availability = 99

 SLA.security = high

 SLA.maxviolav = 3

 SLA.maxviols = 1

 SLA.PenUnit = 20

 - >State: 1.11 < -

 S1.state = SaaSbpl

 V1.state= IaaSbpl

 V1. availability = 99

 V1.numbviolav =2

 V1.numbviols = 1

 V1.security= low

 V1.PenAmount =2100

 SLA.state = viol

 Stage.state = ViolDetection

 S1.provider = TrustUs

 V1.provider = IaaS4All

 SLA.availability = 99

 SLA.security = high

 SLA.maxviolav=3

 SLA.maxviols = 1

 SLA.PenUnit = 20

 - > State: 1.12< -

 S1.state= SaaSbpl

 V1.state= IaaSbpl

 V1. availability = 99

 V1.numbviolav =2

 V1.numbviols = 1

 V1.security= low

 V1.PenAmount = 2100

 SLA.state= fail

 Stage.state = Ptermination

 S1.provider = TrustUs

 V1.provider = IaaS4All

 SLA.availability = 99

 SLA.security = high

 SLA.maxviolav=3

 SLA.maxviols = 1

 SLA.PenUnit = 20

Figure 18: The corresponding NuSMV trace for the use case

A service is not able to offer the expected level if at least one of the SLA objectives is not met.663

LP2: AG ((V1.availability < 99 | V1.security != high) -> V1.state = IaaSbpl)664

25

Always the monitoring process launches directly after the establishment stage.665

LP3: AG (Stage.state = Establishment -> AX Stage.state = Monitoring)666

During the provisioning of a service, its level can go through different states (in our work we have proposed two667

levels either able to offer the promised level or not).668

LP4: AG (Stage.state = Monitoring -> (V1.state = IaaSbpl | V1.state = IaaSpl))669

Once an SLA violation is detected an amount of penalties will be imposed on the provider of this service.670

LP5: AG (SLA.state = viol -> V1.PenAmount > 0)671

Once the number of occurred violations reaches the maximum allowed number of violations, the SLA will be672

directly terminated with penalties.673

LP6: AG ((V1.numbviolav = SLA.maxviolav | V1.numbviols = SLA. maxviols) -> AX Stage.state = Ptermination)674

The SLA is declared successful if the service level has been always the expected one, or if a degradation in the675

service level has been detected, the provider of this service has fixed it.676

LP7: G (SLA.state = succ -> ((H V1.state = IaaSbpl & X Stage.state = ViolFixing) | G V1.state = IaaSpl))677

• Safety properties:678

SLA establishment cannot be done if the required service has some requirements or it is not able to offer the679

required quality.680

SP1: AG (Stage.state = Establishment -> !(V1.state = IaaSbpl | V1.state = IaaSreq))681

The number of occurred violations must not exceed the maximum allowed number of violations.682

SP2: AG !(V1.numbviolav > SLA.maxviolav | V1.numbviols > SLA. maxviols)683

The SLA cannot be declared violated when the offered service is provisioning the expected level.684

SP3: AG !(SLA.state = viol & V1.state = IaaSpl)685

Once the security is violated there is no way to fix it.686

SP4: AG !(V1.security = low & EX Stage.state = ViolFixing)687

When the level of security is respected, the SLA will be never violated.688

SP5: AG !(V1.security = high & Stage.state = ViolDetection)689

It is worthy to note that the specification of these properties may vary from this scenario to a new one since the690

agreed SLA may be different. For instance, in this scenario the two parties agree on the level of availability to be691

greater than or equal 99%. This QoS parameter may be different depending on the requirements and offerings of the692

SLA parties (customers and providers). Therefore, a customization of these properties is necessary to be addressed693

for different scenarios.694

The results of the verification are shown in Figure 19. We notice that our model verifies all the properties except695

property SP5. For this property, NuSMV returns false and gives back a counterexample in which the SLA was violated696

due to the violation of the availability parameter (The SLA will never be violated if all its objectives are respected,697

i.e., both security and availability). We have introduced this property to show a NuSMV counterexample generation.698

Moreover, Figure 20 shows that there is no deadlock problem and all the states are reachable.699

8. Related work700

Service description, cloud systems modeling and verification, and SLA management have been investigated in701

different research works. This section discusses related works in three categories: (i) general approaches not using702

bigraphs ([57, 58, 59, 60, 61, 62, 63]), (ii) SLA management in the cloud ([64, 65, 66, 49, 9, 67, 68, 69, 70]), and703

(iii) BRS-based approaches ([30, 71, 51, 52, 72, 73, 31]). Note here that although the intensive work that has been704

done in this domain, to the best of our knowledge, these research works do not consider all the challenges identified705

in section 1 simultaneously. In addition, they do not consider the different states of cloud entities and their dynamic706

change during the SLA lifecyle.707

26

NuSMV > check_ltlspec

- - specification G (SLA.state = succ -> ((H V1.state = IaaSbpl & X Stage.state = ViolFixing) | G V1.state = IaaSpl)) is true

NuSMV > check_ctlspec

- - specification AG ((Stage.state = Monitoring & V1.state = IaaSbpl) -> AX Stage.state = ViolDetection) is true

- - specification AG ((V1.availability < 99 | V1. security != high) -> V1.state = IaaSbpl) is true

- - specification AG (Stage.state = Establishment -> AX Stage.state = Monitoring) is true

- - specification AG (Stage.state = Monitoring -> (V1.state = IaaSbpl | V1.state = IaaSpl)) is true

- - specification AG ((V1.numbviolav = SLA. maxviolav | V1.numbviols = SLA. maxviols) -> AX Stage.state = Ptermination) is true

- - specification AG (Stage.state = Establishment -> !(V1.state = IaaSbpl | V1.state = IaaSreq)) is true

- - specification AG !(V1.numbviolav > SLA. maxviolav | V1.numbviols > SLA. maxviols) is true

- - specification AG !(SLA.state = viol & V1.state = IaaSpl) is true

- - specification AG !(V1. security = low & EX Stage.state = ViolFixing) is true

- - specification AG !(V1. security = high & Stage.state = ViolDetection) is false

- - as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

S1.state = SaaSreq

V1.state = IaaSpl

V1.availability= 99

V1.numbviolav = 0

V1.numbviols = 0

V1security = high

V1.PenAmount = 0

SLA.state = neg

Stage.state = Negotiation

S1.provider = TrustUs

V1.provider = IaaS4All

SLA.availability = 99

SLA. security = high

SLA. maxviolav = 3

SLA. maxviols = 1

SLA.PenUnit = 20

- - specification AG (Stage.state = ViolDetection -> V1.PenAmount > 0) is true

-> State: 1.2 <-

 S1.state = SaaSpl

SLA.state = resp

Stage.state = Establishment

-> State: 1.3 <-

V1.state = IaaSbpl

V1.availability = 98

Stage.state = Monitoring

-> State: 1.4 <-

 S1.state = SaaSbpl

 V1.numbviolav = 1

 V1.PenAmount = 20

SLA.state = viol

Stage.state = ViolDetection

Figure 19: Results of the formal verification

8.1. General approaches708

Nguyen et al. [57] proposed a blueprinting approach for the description of cloud service offerings. The defined709

blueprint, as a uniform description format, assists developers to select, customize, and compose the different types of710

cloud services (i.e., IaaS, PaaS, and SaaS). Moreover, the authors detailed a six stages life cycle of blueprints starting711

from their specification to their deployment to the cloud. In addition, they defined a case study and developed a712

prototype based on the blueprint concept in the EC’s 4caaSt FP7 project.713

Authors in [58] proposed a generic autonomic manager (AM) that deals with the management of cloud services.714

The AM allows the specification, (re)configuration, and monitoring of any XaaS layer. In addition to the autonomic715

computing, the CoMe4ACloud project applied the Model-driven engineering (MDE) principals and used the con-716

straint programming. The authors defined two complementary metamodels. The first one is used for the specification717

(at design time) of cloud systems’ topologies. The second one is used to represent the actual running systems’ config-718

urations. To determine the optimal configuration of the modeled systems with the imposed constraints, the proposed719

AM relies on a constraint solver. The authors applied the proposed approach to a real Openstack IaaS infrastructure.720

Amato and Moscato [59] exploited workflow patterns and cloud to deal with the analysis and verification of cloud721

service composition problem. They proposed a methodology that tackles this problem and facilitates the description722

of services and their relationships with other resources required by the composition. Model transformation tech-723

niques were used and the Pattern Grounding Language (PGL) was defined in order to translate patterns declarations724

in workflow-based descriptions. The transformation creates a graph in the Operational Flow Language (OFL) that725

enables the analysis and evaluation of QoS properties of composite cloud services.726

27

NuSMV > check_fsm

##

The transition relation is Total: No deadlock state exists

##

NuSMV > print_fsm stats

Statistics on BDD FSM machine.

BDD nodes representing init set of states: 30

BDD nodes representing state constraints: 1

BDD nodes representing input constraints: 1

Forward Partitioning Schedule BDD cluster size (#nodes):

cluster 1 : size 1187

cluster 2 : size 1606

Backward Partitioning Schedule BDD cluster size (#nodes):

cluster 1 : size 1187

cluster 2 : size 1606

NuSMV > print_fair_states

###

fair states: 191 (2^7.57743) out of 6.80627e+07 (2^26.0204)

###

NuSMV > print_fair_transitions

Fair transitions: 316 (2^8.30378) out of 6.80627e+07 (2^26.0204)

###

NuSMV > compute_reachable

The computation of reachable states has been completed.

The diameter of the FSM is 11.

Figure 20: Deadlock and reachability properties

Le Sun et al. [60] summarized the specific requirements needed for cloud service description languages/models.727

Then, based on these Cloud-specific requirements, they extended the Unified Service Description Language (USDL)728

to model cloud services. The proposed cloud service description model (CSDM) defines a new module (called transac-729

tion) and updates the nine modules defined in USDL (adding new classes and attributes in these modules). Moreover,730

CSDM permits the description of cloud services and this description supports different aspects such as the delivery731

and deployment models, the participating roles, and the measurement of service qualities.732

In the same direction, Ghazouani and Slimani [61] adopted and extended USDL to be suitable for the description733

of cloud services. The authors focused on the semantic aspect not covered by USDL. Therefore, the authors defined734

a WSMO ontology to semantically describe services in the cloud. The authors defined nine concepts in the WSMO735

ontology, each concept represents a module in USDL. In addition, classes, properties and data from USDL are repre-736

sented, respectively, by sub-concept, attributes and instances in the defined ontology. The authors used the proposed737

ontology to describe three services from different layers (SaaS, PaaS and IaaS).738

Authors in [62] proposed a formal approach to model, verify, and provision elastic component-based applications.739

The proposed Event-B based approach starts by modeling the component artifacts. Then, it uses the refinement740

concept defined in Event-B to introduce the elasticity mechanisms to the previous component artifacts. In fact, the741

authors proposed two Event-B events, namely duplicate and consolidate, to scale up or scale down applications.742

The PROB animator/model checker was used to validate the proposed model, and implemented their approach as an743

Eclipse plug-in.744

Jlassi et al. [63] proposed an Event-B-based modeling approach for the management of the Free and Open Source745

Software (FOSS) applications, their composition, and their horizontal elasticity. The authors dealt with the cloud746

resource allocation problem for this kind of applications. In fact, they applied different refinements in order to model747

the FOSS’ required cloud resources (computing, networking and storage resources), their allocation process, and also748

the vertical elasticity and shareability properties of these resources. The authors verified the proposed model using749

the PROB model checker and the proof correctness.750

8.2. Cloud SLA management751

Cloud SLA management has been the focus of several approaches [7]. Garcı́a and Blanquer [64] proposed a752

generic SLA-based methodology for describing cloud services. This methodology generates different SLA fragments753

28

that include static and dynamic features of services. In order to offer complete SLA templates, Garcı́a and Blanquer754

introduced an algorithm that composes, on-the-fly, the SLA-based representations of cloud services (SLA fragments).755

The authors described optimization techniques used to improve the introduced algorithm’s performance. The proposed756

methodology was developed in the Cloudcompaas framework project [53].757

Authors in [65] proposed a modeling approach based on the model-driven architecture principles. This approach758

defines three metamodels: the CloudCustomer, the CloudProvider, and the CWSLA metamodels. They are based on759

the standard Business Process Modeling Notation (BPMN), the UML QoS framework, and the Web Service Level760

Agreement (WSLA). The three proposed languages enable the description of the functional and non-functional re-761

quirements of composite SaaS applications, the required IT resources (IaaS) to satisfy these requirements, and the762

SLA established between providers and their customers, respectively. In addition, the authors detailed the generation763

process of the SLA document using the Atlas Transformation Language (ATL).764

Uriarte et al. [66] dealt with the dynamic SLAs in the domain of cloud computing. They defined a new SLA765

language, called SLAC, that takes into consideration the specific features of cloud services and the dynamic aspects of766

cloud environments. In fact, in order to reduce the renegotiation of SLA terms, this language enables the definition of767

agreements with new features such as the expression of changing requirements of the involved parties and the dynamic768

service levels. An open source framework supporting the SLAC language was developed and used in the different769

SLA lifecycle.770

Authors in [49] defined a new model called SLA aware Service (SLAaaS). This model was integrated with the dif-771

ferent levels of the cloud architecture (i.e., end-users, IaaS, PaaS and SaaS). Cloud Service Level Agreement (CSLA),772

a novel QoS and SLA language was proposed for any cloud service. The CSLA language allows the management773

of cloud elasticity by introducing new properties such as QoS uncertainty, functionality degradation and advanced774

penalty model. Moreover, the authors adopted the control theory to manage and ensure SLA in the cloud. They775

illustrated, through different use cases, how to use the SLAaaS model to establish cross-layer SLAs.776

Lu et al. [9] adopted the actor model for the management of the SLA lifecycle in cloud environments. They777

defined four types of actors: customer, SLA manager, SLA and QoS actors. Finite state machines are used to model778

these actors. A framework consists of different layers of actors related in a parent-child relationship was proposed.779

This hierarchy between actors permits escalation of the failure upwards until its resolution. The authors presented a780

fault tolerance scenario and illustrated failure handling in the different framework’s layers. The proposed approach781

was simulated using CloudSim framework.782

In addition, to achieve the expected SLA requirements, the elasticity and scalability of cloud resources has been783

addressed in several works [67, 68, 69, 70]. Authors in [67] tackled the problem of scaling fog/edge computing784

nodes to fulfill the dynamic IoT workload and avoid any SLA violation. They proposed a queuing theory-based785

analytical model that, depending on the IoT workload, determines to scale down or up fog computing resources in786

order to meet the agreed-on SLA and the expected QoS parameters. The analytical model involves three queuing787

sub-systems, namely edge computing, cloud gateway, and cloud data center models. Different mathematical formulas788

are obtained and used for performance analysis considering different key parameters such as the system loss rate, the789

CPU utilization, the system throughput, and the system response time. Authors validated the proposed models using790

discrete event simulations based on the Java Modeling Tool.791

Al-Haidari et al. [68] studied the autoscaling of cloud resources regarding two factors: CPU thresholds and the792

scaling size. They conducted several simulations experiments to analyze the impact of configuring these factors on the793

performance of cloud services. The performance is evaluated in terms of several metrics such as resource utilization,794

response time, and the cost of the allocated instances. To minimize the cost and offer a low response time, thus795

ensuring SLA objectives, authors proposed a method that determines the optimal value of the upper CPU thresholds796

and the scaling size.797

Calyam et al. [69] tackled the problem of designing and verifying resource allocation schemes for virtual desktop798

clouds (VDCs). They developed a tool called VDC-Analyst allowing the estimation of two quality of experiments799

(QoE) metrics Service Response Time and Net Utility. The authors developed the Multi-stage Queuing Model and the800

Cost-Aware Utility-Maximal Resource Allocation Algorithm and integrated them into the VDC-Analyst tool to be used801

in the QoE metrics estimation. In addition, the VDC-Analyst can be used for the simulation and emulation of VDC802

systems in two different modes run simulation and run experiment.803

El Kafhali and Salah [70] adopted the queuing theory to propose a stochastic model for analyzing performance804

in cloud data centers. The performance evaluation considers several QoS metrics including drop rate, response time,805

29

and CPU utilization. The proposed model allows to estimate the proper number of VM instances required to meet806

the expected QoS. Authors used Java Modeling Tool simulator for the validation of this model and illustrated its807

usefulness through different scenarios.808

8.3. BRS based approaches809

Several research studies have adopted the bigraph theory in the cloud computing area [30, 51, 52, 71, 72]. These810

studies have addressed cloud systems modeling focusing on the elasticity mechanisms. However, in addition to the811

cloud systems modeling, we have addressed more and important aspects that have not been the focus of them: the SLA812

and its lifecycle. Furthermore, different from these studies, ours considers the dynamic change of cloud entities states,813

and the different specific features of cloud services such as delivery models, and QoS. Regarding the verification step,814

we check more other important properties that are safety, liveness, and reachability. Compared to our earlier works815

[31, 73], this research proposes a more general definition that can represent any type of cloud services or resources,816

specify different QoS and properties, and defines several types of interactions. Also, it proposes a four-stages SLA817

lifecycle and uses different rules to model it. Moreover, it proceeds with the verification step by using the NuSMV818

model checker and checking different properties.819

Benzadri et al. [30] presented the first attempt to adopt bigraphs for modeling cloud computing systems. The820

proposed model consists of two bigraphs that describe the front-end part (Cloud Customers Bigraph CCB) and back-821

end part (Cloud Services Bigraph CSB) of cloud systems. While the former describes cloud customers, the latter822

represents the three service delivery models. The authors defined three different ports assigned to cloud services823

nodes to represent the different deployment models. The dynamic structure of the cloud model was specified using a824

reaction rules-set that allows the migration, allocation, and des-allocation of services.825

The last work has been extended in [71]. Regarding the static structure, the authors defined a third bigraph for826

the virtualisation layer (data center and servers) (CVB). Regarding the dynamic evolution, Benzadri et al. introduced827

different rules according to the three bigraphs such as user changing location, service migration, and server redundancy828

rules. In order to design and analysis cloud architectures, the authors presented a mapping of the BRS-based model829

to the Maude language. Three cloud-related properties was introduced (concurrency, mobility, and auto scaling),830

specified in LTL, and checked with the Maude model checker.831

The authors in [51] dealt with the elasticity of cloud systems. They proposed a BRS-based model that consists832

of two bigraphs encoding the front-end and the back-end of cloud systems. A third bigraph was used to model the833

elasticity controller of these systems. This latter adopted the IBM’s [74] Monitor, Analyze, Plan, and Execute (MAPE)834

autonomic control loop. Furthermore, two categories of bigraphical reaction rules are introduced. The first one is used835

to model clients/applications interactions. The second one expresses the elementary elastic methods (vertical scale,836

horizontal scale, and migration). These rules are then used to simulate four scenarios in which the different elasticity837

methods are applied.838

The authors in [52] delimited their research to the back-end and the elasticity controller parts presented in [51]. The839

BRS-based approach in this work introduced two cross-layer elasticity strategies (provisioning and de-provisioning840

host environment strategies) and focused on the horizontal scale of resources in the cloud. The authors proceeded with841

the verification step to check the correctness of the elastic behaviors of cloud systems, and therefore they proposed an842

executable solution based on the encoding of the bigraphical specification into Maude language. They also presented a843

quantitative analysis of the proposed elasticity strategies based on a queuing approach and through different simulated844

scenarios.845

Moudjari et al. [72] dealt with the management of cloud elasticity at two levels: the intra-cloud and the inter-846

cloud. They proposed a Multi Agent System for Cloud of Clouds Elasticity Management (MAS-C2EM). The clouds847

cooperation process, offered by MAS-C2EM, uses a fuzzy dominance approach to ensure the management of inter-848

cloud elasticity. The BRS formalism was used to specify the proposed MAS-C2M. The obtained bigraphical MAS-849

C2M (BigMAS-C2EM) defines five classes of reaction rules to describe the clouds cooperation process. In order to850

formally analyze some properties of BigMAS-C2EM, the authors used the model checker BigMC.851

The present work builds upon our previous works [31, 73]. In the first work [31], we tackled the service com-852

position problem in the cloud. We defined a cloud service composition signature considering cloud architectures853

composed of three layers: end-users, SaaS and UaaS. We introduced different reaction rules to model the dynamic854

behavior of cloud actors and services involving in such composition. We presented a case study to illustrate both855

30

the direct and indirect dependencies among the different cloud entities. In the best of our knowledge, it was the first856

attempt to consider SLA in BRS-based approaches.857

In the second work [73], we used BRS to model a general provider-customer interaction in the cloud. We defined858

different states for customers, services and also SLAs. In addition, we proposed several reaction rules to model the859

changing states of cloud entities during the SLA lifecycle. We applied the introduced models on a four-layers cloud860

architecture. A case study with different scenarios was presented. Even if this work was our first attempt to model the861

SLA lifecycle, only two stages were considered.862

Table 5 summarize the BRS-based related approaches and compares them to our work regarding several service863

and SLA concepts:864

• SM : indicates whether the proposed solution supports all service delivery models (XaaS) or only some cloud865

services types (SaaS, PaaS, or IaaS). From this table, we notice that all the above BRS-based approaches support866

XaaS services (except [72]). However the present work benefits from the sorting mechanism and proposes a867

generic definition for cloud services, and therefore allowing not only modeling the well-known types but any868

other cloud services or resources.869

• DM: refers whether the different deployment models are taken into consideration (X) or not (empty cell).870

Authors in [30, 71] proposed to use ports to describe the different models. In our work, we have used parametric871

controls to model them.872

• QoS: shows the capacity of the proposed solutions to model QoS. Authors in [72] cited some examples of QoS873

in the proposed MAS-based model (MAS-C2EM) but any of them was considered in the corresponding BRS-874

based model (BigMAS-C2EM). Authors in [51] abstracted resources properties (such as CPU, memory and875

storage) as simple controls. These latter are used only to show these properties but not to carry data and show876

their real values. However, in our work we have introduced different parametric controls to model QoS and the877

different properties of services.878

• SLA: determines whether the SLA was considered (X) or not (empty cell). Only two works [73, 31] considered879

cloud SLAs. However, these works proposed only two different states of the SLA. In the present paper, we have880

proposed different controls to model these agreements and describe their different states (five states).881

• SLAL: indicates whether the BRS-based approaches considered the whole SLA lifecycle (X), only some of its882

stages (∼), or not at all (empty cell). Our work [73] was the first attempt to model the SLA lifecycle using BRS.883

However, this study [73] did not cover all the SLA lifecycle and only two stages were considered (establishment884

and monitoring). None of the other works models SLA lifecycle. In the present paper, the authors have proposed885

different bigraphical reaction rules modeling the different phases of the SLA lifecycle. Compared to the above886

BRS-based approaches, almost of these works [51, 52, 72] focused on the problem of elasticity in the cloud and887

proposed different reaction rules to model elasticity strategies. In our work, these proposed rules can be adopted888

as appropriate solutions in the ”service adjustment” scenario during the monitoring phase.889

• INT: we use the symbol X to indicate that the proposed approach supports different types of interactions (such890

as customer-provider interaction, vertical and horizontal compositions) and allows the definition of other rela-891

tionships. The symbol ∼ is used to indicate that the proposed solution does not consider different relationships892

and does not discuss its extension to support other types of interactions. Almost of the proposed BRS-based893

approaches supported the interaction between customers and cloud systems, and considered the vertical service894

composition in terms of deployment relationships. However, we do not find any work that discusses the pos-895

sibility of extension to support other types. In our work we tackled this problem by using ports and the link896

sorting mechanism. Different ports and link sorts are defined to describe customer-provider interaction, vertical897

and horizontal compositions.898

The BRS-based related approaches are summarized and compared to our work regarding verification concepts899

(see Table 6):900

• VER: in table 6, we keep only works that proceeded with the verification step (X). Authors in [71, 51, 52, 72]901

discussed the verification of the proposed models using two different model checkers. No verification was902

provided in [31, 73, 30].903

31

• LOG: refers to the temporal logic formulas used in the verification process. Almost of these studies specified904

their properties in the form of LTL formulas. In our work, we have used the two formulats LTL and CTL.905

• VT: indicates which tools were used in the verification process. Maude LTL model checker was used in [51,906

52, 71]. The BigMC model checker was used in [72]. In this work, we have used NuSMV model checker.907

• VP: specifies the different properties that are checked. The author in [71] defined three cloud computing-related908

properties (concurrency (C), mobility (M), and auto scaling (AS)) and check them. Authors in [52] defined909

different elasticity strategies (ES) and verify their correctness.The reachability property (R) was evaluated in910

[72]. In our work, we have analyzed different properties including: liveness (L), safety (S), and reachability911

(R).912

Approach SM DM QoS SLA SLAL Int
Benzadri et al. [30] XaaS X ∼

Benzadri et al. [71] XaaS X ∼

Sahli et al. [51] XaaS ∼ ∼

Khebbeb et al. [52] XaaS ∼

Moudjari et al. [72] SaaS/IaaS ∼ ∼

Kamel et al. [31] XaaS X X
Kamel et al. [73] XaaS X ∼ X

Our work XaaS X X X X X

Table 5: Comparison of BRS-based approaches regarding service and SLA-related concepts

Approach VER LOG VT VP
Benzadri et al. [71] X LTL Maude C, M and AS

Sahli et al. [51] X LTL Maude
Khebbeb et al. [52] X LTL Maude ES
Moudjari et al. [72] X CTL alike BigMC R

Our work X LTL/CTL NuSMV L, S, and R

Table 6: Comparison of BRS-based approaches regarding verification-related concepts

9. Conclusion913

The present work proposes a formal approach that adopts the BRS formalism and the NuSMV model checker914

for modeling and verifying cloud systems. In the modeling phase of this approach, We extend bigraphs to cope with915

the structure, the dynamic behavior, and also the distinctive aspects of cloud systems. We illustrate that BRS is a916

well suited and powerful formalism for modeling these systems. Regarding the static structure of cloud systems, the917

proposed model uses BRS sorts and controls to describe different cloud entities such as services (considering their918

specific features), SLAs, end-users, and providers. Regarding the dynamic behavior, the approach focuses on the SLA919

lifecycle. More precisely, it introduces different bigraphical reaction rules that details the interaction and changing920

states of the different cloud entities during a defined four-stages SLA lifecycle. To the best of our knowledge, this is921

the first work to address the SLA and its lifecycle management using BRS. In the second phase of this approach, we922

verify the correctness of interaction behaviors of the different cloud entities. This phase consists of three steps. First,923

the obtained BRS models are translated to SMV descriptions. Then, we define a set of liveness and safety properties924

representing the interaction behaviors and we use LTL and CTL formulas to specify them. Finally, the NuSMV model925

checker verifies the resulting SMV descriptions against the defined properties. The feasibility of our approach is926

illustrated using a case study.927

32

Although promising, the proposed approach can be enhanced regarding different limitations that we will address in928

future researches. The number and complexity of aspects addressed in both phases (modeling and verification) depend929

on the type and complexity of the properties we want to check. The use of sites allows us to focus on our necessities930

alleviating the model complexity. However, the increasing number of cloud platforms and their heterogeneity (differ-931

ent service models, QoS, properties, SLAs, etc.) lead to an increasing number of aspects to be considered during these932

phases. Therefore, we intend to hide this complexity by developing different tools offering Graphical User Interface933

(GUI) to simplify, for instance, the specification of requirements and offerings (including services, their properties934

and also the different scalability and elasticity rules), and also the generation of different reaction rules used during935

the monitoring stage of SLA. Moreover, the BRS-SMV mapping is currently done manually. Automating this task is936

very important since such task of mapping and transformation is error prone and time consuming.937

We believe that, relying on the matching techniques developed in this theory, the proposed BRS models, introduced938

in this work to describe services and their properties, would play an important role in the area of services discovery939

and composition. In addition, adopting the models@runtime approach [75] would be also helpful especially for the940

management of SLA and its lifecycle. Finally, we are working on the transformation of the proposed BRS-based941

descriptions to different description standards including TOSCA [41] and OCCI [42] with the aim that these standards942

were accepted by the industry to enable features such as the automatic SLA enforcement or, at least, to offer enough943

information so users may enable this enforcement automatically.944

Acknowledgements945

This study was funded in part by the Spanish Ministry of Science and Innovation under Grants RTI2018-093608-946

B-C32, and also by the JCCM regional project SBPLY/17/180501/ 000276/1. All these projects are co-financed by947

the European Union FEDER Funds.948

Data Availability949

We have deposited the obtained data, supporting the findings of this research, in the Mendeley repository (https:950

//data.mendeley.com/datasets/vz7v9cgsrr/draft?a=ad29394f-d170-4321-8948-43f9e2acaca0). A DOI951

reference will be provided over acceptance of the paper.952

References953

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging it platforms: Vision, hype, and reality for954

delivering computing as the 5th utility, Future Generation Computer Systems 25 (2009) 599 – 616.955

[2] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges, Journal of Internet Services and Applications 1956

(2010) 7–18.957

[3] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, B. Hu, Everything as a service (xaas) on the cloud: Origins, current and future trends, in:958

2015 IEEE 8th International Conference on Cloud Computing, pp. 621–628.959

[4] P. M. Mell, T. Grance, Sp 800-145. the nist definition of cloud computing (2011).960

[5] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg, M. Wimmer, G. Kappel, F. Leymann, A systematic review of cloud961

modeling languages, ACM Computing Surveys (CSUR) 51 (2018) 1–38.962

[6] P. Patel, A. H. Ranabahu, A. P. Sheth, Service level agreement in cloud computing (2009).963

[7] F. Faniyi, R. Bahsoon, A systematic review of service level management in the cloud, ACM Computing Surveys (CSUR) 48 (2016) 43.964

[8] L. Wu, R. Buyya, Service level agreement (SLA) in utility computing systems, CoRR abs/1010.2881 (2010).965

[9] K. Lu, R. Yahyapour, P. Wieder, E. Yaqub, M. Abdullah, B. Schloer, C. Kotsokalis, Fault-tolerant service level agreement lifecycle manage-966

ment in clouds using actor system, Future Generation Computer Systems 54 (2016) 247 – 259.967

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above968

the Clouds: A Berkeley View of Cloud Computing, Technical Report UCB/EECS-2009-28, EECS Department, University of California,969

Berkeley, 2009.970

[11] Z. Ye, X. Zhou, A. Bouguettaya, Genetic algorithm based qos-aware service compositions in cloud computing, in: International Conference971

on Database Systems for Advanced Applications, Springer, pp. 321–334.972

[12] Z. Ye, S. Mistry, A. Bouguettaya, H. Dong, Long-term qos-aware cloud service composition using multivariate time series analysis, IEEE973

Transactions on Services Computing 9 (2016) 382–393.974

[13] R. Karim, C. Ding, A. Miri, M. S. Rahman, Incorporating service and user information and latent features to predict qos for selecting and975

recommending cloud service compositions, Cluster Computing 19 (2016) 1227–1242.976

33

https://data.mendeley.com/datasets/vz7v9cgsrr/draft?a=ad29394f-d170-4321-8948-43f9e2acaca0
https://data.mendeley.com/datasets/vz7v9cgsrr/draft?a=ad29394f-d170-4321-8948-43f9e2acaca0
https://data.mendeley.com/datasets/vz7v9cgsrr/draft?a=ad29394f-d170-4321-8948-43f9e2acaca0

[14] R. Retter, C. Fehling, D. Karastoyanova, F. Leymann, D. Schleicher, Combining horizontal and vertical composition of services, Service977

Oriented Computing and Applications 6 (2012) 117–130.978

[15] J. O. Gutierrez-Garcia, K. M. Sim, Agent-based cloud service composition, Applied intelligence 38 (2013) 436–464.979

[16] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, R. Ranjan, A taxonomy and survey of cloud resource orchestration techniques,980

ACM Computing Surveys (CSUR) 50 (2017) 1–41.981

[17] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G. Neiat, S. Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati,982

X. Liu, H. Wang, D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, Y. Wang, B. Blake, S. Dustdar, F. Leymann, M. Papazoglou, A983

service computing manifesto: The next 10 years, Commun. ACM 60 (2017) 64–72.984

[18] L. Lamport, Proving the correctness of multiprocess programs, IEEE transactions on software engineering (1977) 125–143.985

[19] R. Milner, The Space and Motion of Communicating Agents, Cambridge University Press, New York, NY, USA, 1st edition, 2009.986

[20] R. Milner, Pure bigraphs: Structure and dynamics, Information and Computation 204 (2006) 60 – 122.987

[21] E. Clarke, O. Grumberg, D. A. Peled, Model checking the mit press, Cambridge, Massachusetts, London, UK (1999).988

[22] C. Baier, J.-P. Katoen, Principles of model checking, MIT press, 2008.989

[23] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, Nusmv: a new symbolic model checker, International Journal on Software Tools for990

Technology Transfer 2 (2000) 410–425.991

[24] C. Tsigkanos, T. Kehrer, C. Ghezzi, Modeling and verification of evolving cyber-physical spaces, in: Proceedings of the 2017 11th Joint992

Meeting on Foundations of Software Engineering, ACM, pp. 38–48.993

[25] Y. Cao, Z. Huang, C. Ke, J. Xie, J. Wang, A topology-aware access control model for collaborative cyber-physical spaces: Specification and994

verification, Computers & Security (2019).995

[26] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, H. Niss, Bigraphical models of context-aware systems, in: International Conference on996

Foundations of Software Science and Computation Structures, Springer, pp. 187–201.997

[27] L. Yu, W.-T. Tsai, G. Perrone, Testing context-aware applications based on bigraphical modeling, IEEE Transactions on Reliability 65 (2016)998

1584–1611.999

[28] M. Calder, A. Koliousis, M. Sevegnani, J. Sventek, Real-time verification of wireless home networks using bigraphs with sharing, Science1000

of Computer Programming 80 (2014) 288–310.1001

[29] M. Calder, M. Sevegnani, Modelling ieee 802.11 csma/ca rts/cts with stochastic bigraphs with sharing, Formal Aspects of Computing 261002

(2014) 537–561.1003

[30] Z. Benzadri, F. Belala, C. Bouanaka, Towards a formal model for cloud computing, in: International Conference on Service-Oriented1004

Computing, Springer, pp. 381–393.1005

[31] O. Kamel, A. Chaoui, M. Gharzouli, Cloud service composition modeling using bigraphical reactive systems, in: Proceedings of the 21st1006

International Database Engineering & Applications Symposium, ACM, pp. 40–48.1007

[32] E. Elsborg, T. T. Hildebrandt, D. Sangiorgi, Type systems for bigraphs, in: C. Kaklamanis, F. Nielson (Eds.), Trustworthy Global Computing,1008

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 126–140.1009

[33] J. J. Leifer, R. Milner, Transition systems, link graphs and petri nets, Mathematical Structures in Computer Science 16 (2006) 989–1047.1010

[34] S. Benford, M. Calder, T. Rodden, M. Sevegnani, On lions, impala, and bigraphs: modelling interactions in physical/virtual spaces, ACM1011

Transactions on Computer-Human Interaction 23 (2016).1012

[35] R. Milner, Bigraphs and their algebra, Electronic Notes in Theoretical Computer Science 209 (2008) 5–19.1013

[36] A. J. Glenstrup, T. C. Damgaard, L. Birkedal, E. Højsgaard, An implementation of bigraph matching, IT University of Copenhagen (2007)1014

22.1015

[37] G. Perrone, S. Debois, T. T. Hildebrandt, A model checker for bigraphs, in: Proceedings of the 27th Annual ACM Symposium on Applied1016

Computing, SAC ’12, ACM, New York, NY, USA, 2012, pp. 1320–1325.1017

[38] A. J. Faithfull, G. Perrone, T. T. Hildebrandt, Big red: A development environment for bigraphs, Electronic Communications of the EASST1018

61 (2013).1019

[39] M. Sevegnani, M. Calder, Bigrapher: rewriting and analysis engine for bigraphs, in: International Conference on Computer Aided Verifica-1020

tion, Springer, pp. 494–501.1021

[40] A. Souri, N. J. Navimipour, A. M. Rahmani, Formal verification approaches and standards in the cloud computing: a comprehensive and1022

systematic review, Computer Standards & Interfaces 58 (2018) 1–22.1023

[41] Oasis standard: Topology and orchestration specification for cloud applications version 1.0, https://www.oasis-open.org/1024

committees/tc_home.php?wg_abbrev=tosca, 2013.1025

[42] R. Nyren, A. Edmonds, A. Papaspyrou, T. Metsch, B. Parák, Open cloud computing interface - core, https://occi-wg.org/, 2016.1026

[43] M. Behrendt, B. Glasner, P. Kopp, R. Dieckmann, G. Breiter, S. Pappe, H. Kreger, A. Arsanjani, Introduction and architecture overview ibm1027

cloud computing reference architecture 2.0, Draft Version V 1 (2011).1028

[44] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, V. Munteanu, An analysis of mosaic ontology for cloud resources annotation, in: 20111029

federated conference on computer science and information systems (FedCSIS), IEEE, pp. 973–980.1030

[45] W.-T. Tsai, X. Sun, J. Balasooriya, Service-oriented cloud computing architecture, in: 2010 seventh international conference on information1031

technology: new generations, IEEE, pp. 684–689.1032

[46] Y. Kouki, T. Ledoux, R. Sharrock, Cross-layer sla selection for cloud services, in: 2011 First International Symposium on Network Cloud1033

Computing and Applications, IEEE, pp. 143–147.1034

[47] Z. Ye, A. Bouguettaya, X. Zhou, Economic model-driven cloud service composition, ACM Trans. Internet Techn. 14 (2014) 20:1–20:19.1035

[48] R. Ranjan, B. Benatallah, S. Dustdar, M. P. Papazoglou, Cloud resource orchestration programming: overview, issues, and directions, IEEE1036

Internet Computing 19 (2015) 46–56.1037

[49] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr, T. Ledoux, J. Lejeune, J. Sopena, L. Arantes, P. Sens, Sla guarantees for cloud1038

services, Future Generation Computer Systems 54 (2016) 233–246.1039

[50] B. Shojaiemehr, A. M. Rahmani, N. N. Qader, Cloud computing service negotiation: A systematic review, Computer Standards & Interfaces1040

55 (2018) 196–206.1041

34

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://occi-wg.org/

[51] H. Sahli, N. Hameurlain, F. Belala, A bigraphical model for specifying cloud-based elastic systems and their behaviour, International Journal1042

of Parallel, Emergent and Distributed Systems 32 (2017) 593–616.1043

[52] K. Khebbeb, N. Hameurlain, F. Belala, H. Sahli, Formal modelling and verifying elasticity strategies in cloud systems, IET Software 131044

(2018) 25–35.1045

[53] A. G. Garcı́a, I. B. Espert, V. H. Garcı́a, Sla-driven dynamic cloud resource management, Future Generation Computer Systems 31 (2014)1046

1–11.1047

[54] I. V. Paputungan, A. F. M. Hani, M. F. Hassan, V. S. Asirvadam, Real-time and proactive sla renegotiation for a cloud-based system, IEEE1048

Systems Journal 13 (2018) 400–411.1049

[55] T. Labidi, A. Mtibaa, H. Brabra, Cslaonto: a comprehensive ontological sla model in cloud computing, Journal on Data Semantics 5 (2016)1050

179–193.1051

[56] R. Trapero, J. Modic, M. Stopar, A. Taha, N. Suri, A novel approach to manage cloud security sla incidents, Future Generation Computer1052

Systems 72 (2017) 193–205.1053

[57] D. K. Nguyen, F. Lelli, M. P. Papazoglou, W.-J. Van Den Heuvel, Blueprinting approach in support of cloud computing, Future Internet 41054

(2012) 322–346.1055

[58] Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune, C. PrudHomme, T. Ledoux, Come4acloud: An end-to-end framework for autonomic cloud1056

systems, Future Generation Computer Systems 86 (2018) 339–354.1057

[59] F. Amato, F. Moscato, Exploiting cloud and workflow patterns for the analysis of composite cloud services, Future Generation Computer1058

Systems 67 (2017) 255–265.1059

[60] L. Sun, J. Ma, H. Wang, Y. Zhang, J. Yong, Cloud service description model: an extension of usdl for cloud services, IEEE Transactions on1060

Services Computing 11 (2015) 354–368.1061

[61] S. Ghazouani, Y. Slimani, Towards a standardized cloud service description based on usdl, Journal of Systems and Software 132 (2017)1062

1–20.1063

[62] M. Graiet, L. Hamel, A. Mammar, S. Tata, A verification and deployment approach for elastic component-based applications, Formal Aspects1064

of Computing 29 (2017) 987–1011.1065

[63] S. Jlassi, A. Mammar, I. Abbassi, M. Graiet, Towards correct cloud resource allocation in foss applications, Future Generation Computer1066

Systems 91 (2019) 392–406.1067

[64] A. G. Garcı́a, I. Blanquer, Cloud services representation using sla composition, Journal of Grid Computing 13 (2015) 35–51.1068

[65] K. Boukadi, R. Grati, H. Ben-Abdallah, Toward the automation of a qos-driven sla establishment in the cloud, Service Oriented Computing1069

and Applications 10 (2016) 279–302.1070

[66] R. B. Uriarte, R. De Nicola, V. Scoca, F. Tiezzi, Defining and guaranteeing dynamic service levels in clouds, Future Generation Computer1071

Systems 99 (2019) 27–40.1072

[67] S. El Kafhali, K. Salah, Efficient and dynamic scaling of fog nodes for iot devices, The Journal of Supercomputing 73 (2017) 5261–5284.1073

[68] F. Al-Haidari, M. Sqalli, K. Salah, Impact of cpu utilization thresholds and scaling size on autoscaling cloud resources, in: 2013 IEEE 5th1074

International Conference on Cloud Computing Technology and Science, volume 2, IEEE, pp. 256–261.1075

[69] P. Calyam, S. Rajagopalan, S. Seetharam, A. Selvadhurai, K. Salah, R. Ramnath, Vdc-analyst: Design and verification of virtual desktop1076

cloud resource allocations, Computer Networks 68 (2014) 110–122.1077

[70] S. El Kafhali, K. Salah, Stochastic modelling and analysis of cloud computing data center, in: 2017 20th Conference on Innovations in1078

Clouds, Internet and Networks (ICIN), IEEE, pp. 122–126.1079

[71] Z. Benzadri, C. Bouanaka, F. Belala, Big-caf: a bigraphical-generic cloud architecture framework, International Journal of Grid and Utility1080

Computing 8 (2017) 222–240.1081

[72] R. Moudjari, Z. Sahnoun, F. Belala, Towards a fuzzy bigraphical multi agent system for cloud of clouds elasticity management, International1082

Journal of Approximate Reasoning 102 (2018) 86–107.1083

[73] O. Kamel, A. Chaoui, M. Gharzouli, Towards a formal modeling of cloud services during the life-cycle of service level agreement, in:1084

Proceedings of the International Conference on Big Data and Internet of Thing, ACM, pp. 115–119.1085

[74] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (2003) 41–50.1086

[75] G. Blair, N. Bencomo, R. B. France, Models@ run. time, Computer 42 (2009) 22–27.1087

Author biographies1088

Oussama Kamel is an Assistant Professor in the faculty of medicine, University Salah boub-
nider Constantine 3, Algeria, since 2012. He is currently a Ph.D. candidate at the Modelling
and Implementation of Complex Systems laboratory (MISC) in Department of Computer Sci-
ence and its Applications (DIFA) of New Information and Communication technologies Faculty,
University Constantine 2 Abdelhamid Mehri, Algeria. His research focuses on cloud computing,
Service-oriented Architecture, service composition, formal modeling and verification.

35

Allaoua Chaoui is a full Professor of Computer science at the University Constantine 2 Abdel-
hamid Mehri, Algeria. Actually, he is the Head of the Department of Computer Science and its
Applications, Faculty of NTIC. He is also the head of the research Team Software Engineering
and Formal Methods, MISC Laboratory. He received his Master degree in Computer science
from the University of Constantine (in cooperation with the University of Glasgow, Scotland) in
1992 and his PhD degree from the University of Constantine (in cooperation with the CEDRIC
Laboratory of CNAM in Paris, France) in 1998. He has served as associate Professor in Philadel-
phia University in Jordan for five years and University Mentoury Constantine for many years.

During his career he has designed and taught courses in Software Engineering and Formal Methods. Prof Allaoua
Chaoui has published many peer-reviewed scientific papers in International Journals and Conferences. He supervised
many Master and PhD students. His research interests include Model Driven Engineering, Mobile Computing, formal
specification and verification of distributed systems, and graph transformations and their correctness.

Gregorio Dı́az is an associated Professor at the University of Castilla-La Mancha within the ReT-
iCS research group with tenure distinction since 2011, published more than 17 journal papers,
from which 15 are indexed by the JCR index, participated in 38 international and national confer-
ences, main researcher of 3 FEDER projects. His research goals are aimed to make software more
reliable, secure, and easier to design. He has supervised more than 24 master theses, including
4 in research areas and 2 PhD thesis. He has taught in several courses related to undergrad-
uate and postgraduate studies awarded with the quality award Euro-Inf Bachelor by EQANIE.
(http://orcid.org/0000-0002-9116-9535)

Mohamed Gharzouli was born in Constantine (Algeria). He received his BS degree in Com-
puter Science from Mentouri University of Constantine in 2002 and Magister degree in Com-
puter Science from Larbi Tebessi University of Tebessa (Algeria) in 2004. He has completed his
PhD degree in Advanced Information systems from Mentouri University in September 2011. He
received his habilitation qualifications (Accreditation to supervise research) from Abdelhamid

Mehri University in 2015. Currently, he is an Associate Professor in faculty of new technologies of information and
communication, university of Abdelhamid Mehri, Algeria. Also, he is a member of Formal Methods for Software En-
gineering team of MISC Laboratory, in the same university. He published many articles in international conferences
and journals. His researches interests include service-oriented architectures, Web applications, and use of information
technologies in different fields like Business and Education.

36

	Introduction
	Background
	Modeling static structure: bigraphs
	Place graph
	Link graph

	Formal representations
	Algebra of bigraphs
	Bigraphical sorting discipline
	Modeling dynamic structure: BRS

	Approach overview
	Structural modeling
	Cloud service description
	Cloud Actors
	Service Interaction
	SLA-driven Modeling
	Modeling services, end-users and SLA states

	Behavior modeling
	Negotiation
	Establishment
	Monitoring
	Service level degradation
	SLA violation
	SLA violation treatment

	Termination

	Verification
	Mapping BRS to SMV descriptions
	Properties specification
	NuSMV checking

	Use case
	BRS modeling
	NuSMV-based verification and execution scenarios
	Verification results

	Related work
	General approaches
	Cloud SLA management
	BRS_based approaches

	Conclusion

