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A B S T R A C T   

Smart architectures are increasingly being used in current software development. Smart user interfaces, smart 
homes, or smart buildings are becoming common examples in the new era of smart cities. Software architectures 
usually related to these domains need to be adapted and reconfigured at run-time, for example, to provide new 
services, react to user interaction, or due to changes decided from the business logic of the application. 
Component-based techniques are a suitable way to carry out this kind of adaptation, as dynamic reconfiguration 
operations can be applied to the architecture. In this paper, we address run-time generation of component-based 
applications, taking the abstract definitions of their architecture as a reference, in addition to a set of available 
components. The process calculates the best configuration of components from the abstract definition by 
applying a trading approach based on an adapted A* algorithm. This algorithm uses heuristics based on syntactic 
and semantic information obtained from the component definitions. A case study related to mashup user in
terfaces formed by coarse-grained components is also explained. In short, the results show the usefulness of 
heuristics and suitable execution times for building the best configurations.   

1. Introduction 

Smart Cities is a trend-setting research domain that is changing 
software design, implementation and use. There are many initiatives in 
related topics, such as service management, data access, application run- 
time, configuration tools, and so forth, but many open issues still present 
opportunities for research [1]. One of them is related to their dynamics, 
since these types of systems tend to change, evolve, adapt to users, be 
scaled up, etc., and therefore requires flexible management of their 
structure and behavior [2]. 

Component-Based Software Engineering (CBSE) has long been 
considered an appropriate option for dealing with smart environments, 
for example, by applying component models to integrate heterogeneous 
applications, or using component interface standards to describe each 
piece of a system. Today, this technology has regained strength [3] for 
solving certain problems that arise in emerging smart environments 
such as mashups [4,5], smartphones [6], smart homes [7,8], smart 
buildings [9], or smart cities [2]. Furthermore, component-based 
development is being applied in certain recent solutions related to the 
Internet of Things (IoT) [10,11] and the Web of Things (WoT) [12,13]. 

CBSE provides mechanisms for constructing applications by joining 
and connecting pieces. Some component-based software systems need to 
be able to dynamically manage elements of the applications, for 

example, to change structure, adapt behavior or modify functionality. In 
such cases, the components are used for constructing software applica
tions at run-time, as well as during design and construction. Components 
are used this way when applications are generated and adapted at run- 
time. As such, the most appropriate elements are selected from a set of 
available components at the time of adaptation. These mechanisms are 
used in software architectures that can be reconfigured by changing 
their structure and behavior, which are known in the literature as ar
chitectures of smart environments or smart architectures [1,2,14] 
regardless of whether the scope of application is smart cities, IoT systems 
or other such domains that require adaptation features. 

The selection of components involved in this type of adaptation re
quires accessible repositories which can be inspected and queried to 
calculate the best possible configuration. Furthermore, these re
positories might not remain static over time, since their components 
may be modified, either because existing components are deleted or due 
to the insertion of new resources (i.e., new components). Therefore, the 
selection process does not always generate the same solution from the 
same input, as the result depends on the components existing in those 
repositories (among other factors). 

Component repositories can be stored locally (managed internally by 
an organization), or if intended for public use can be shared by different 
organizations. Management of the repositories (queries, insertions, 
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deletions, etc.) may therefore come from different sources. This is the 
usual scenario in systems with applications constructed using compo
nents developed by third parties, such as Commercial Off-The-Shelf 
(COTS) components [15]. These repositories make up the existing 
component market that software is built from. 

These component repositories can be managed like a service direc
tory, which can be accessed by certain entities for offering services, and 
by other entities to make use of the available services. Trading tech
niques [16] are useful for facilitating execution of service export and 
import operations. Traditional trading approaches enable services to be 
discovered from service type definitions to solve an input specification, 
for example, by evaluating similarity [17]. Thus, trading mechanisms 
can be used to build component-based architectures from a reference 
architectural definition [18]. However, traditional mechanisms only 
focus on syntactic comparison of functional interfaces, and do not 
perform a semantic analysis of the interfaces (or other component 
parts). 

Modern trading and service discovery [19] approaches are not 
limited to solving the functional requirements and capabilities of a 
target architecture, because in some cases, functional and 
non-functional information must be combined to calculate the best 
component configuration [20,21]. Moreover, from an industrial point of 
view, current and mature technologies related to distributed systems 
(such as Eureka, confd, etcd, Consul or Zookeeper [22]) support the 
implementation of service discovery operations that can be enriched 
with semantic information and improved with custom solutions [23,24]. 
As a result of the above, a trading approach to component management 
should take both component definition syntactics and semantics into 
account. 

CBSE has been integrated into another kind of approaches apart from 
service-oriented applications [25], such as Mode-Based Engineering 
(MBE) [26]. This paradigm facilitates and supports the design, con
struction, deployment and reuse of software architectures, even more so 
in heterogeneous systems [27]. The use of Domain Specific Languages 
(DSLs) and other modeling techniques can be applied to formally 
describe the structure and behavior of the architectures or to generate 
the corresponding source code [28]. Furthermore, not only component 
descriptions and services can be achieved by using such models, but also 
the guidelines for designing different areas related to them, such as 
discovery or registration [23]. 

This paper presents STAS (Semantic Trading for smart Architectural 
Scenarios), a new version of a trading service based on semantic infor
mation for selecting components, evaluating their combination, and 
then constructing the software architectures with the best configura
tions. It therefore extends the traditional trading services applied in 
distributed processing by using CBSE to encapsulate the coarse-grained 
components that form part of the architecture, while benefiting from 
MBE to carry out the formal definitions and abstractions of both com
ponents and architectures. Furthermore, it executes a search algorithm 
to calculate the best component configuration, thus checking how well 
an architectural definition and each combination of components 
considered a possible solution match. Thealgorithm uses heuristics 
based on syntactic and semantic information described in 
eachdefinition. 

The following research questions are addressed: 

• (RQ1) What representation is appropriate for describing the com
ponents and architectures managed in our approach?  

• (RQ2) Can this approach be applied in different domains or scenarios 
of smart architectures?  

• (RQ3) How can a traditional trading service be extended to calculate 
the best configurations of components from a reference target 
architecture? 

• (RQ4) What is the most important syntactic and semantic informa
tion when searching for architectural configurations that must be 

included in a component definition and still be considered 
manageable?  

• (RQ5) How can the performance of this search be addressed to get 
suitable results at run-time? 

The STAS trading service proposed is part of a methodology for 
adapting software architectures at run-time [5,29], and there is back
ground research related to the definitions of components and architec
tures used as part of the fundamentals of our approach (RQ1). From 
these fundamentals, we can extract the prerequisites a scenario should 
have to be targeted by our methodology (RQ2). For RQ3, we studied 
whether a trading service could be adapted to build configurations of 
components at run-time. Then, we proposed new modules to generate 
these configurations by taking into account different conditions, such as 
the compliance of the architecture or the heuristics related to the com
ponents’ properties. The new trading service and its modules are based 
on our previous research work [30]. To address RQ4, we developed an 
adapted A* version of the search algorithm used to calculate the con
figurations. This takes into account a set of properties related to syn
tactic and semantic information to score each possible solution. An A* 
algorithm ensures that the optimal solution is found, which takes the 
form of a simple path in a graph without evaluating the entire state space 
[31,32]. As such, our adapted algorithm creates a graph with nodes 
representing a combination of components during the calculation of the 
best possible configuration at run-time (RQ5). Research questions RQ4 
and RQ5 are also addressed in a case study related to a specific scenario 
of smart architectures (mashup UIs) in which the best configurations are 
calculated from an input architecture and a set of available components. 

The remainder of this article is organized as follows. Section 2 pre
sents the context and fundamentals of our approach. Section 3 describes 
the semantic trading process developed for generating architectures at 
run-time. Section 4 explains the heuristics-based generation of config
urations. Next, Section 5 gives the most relevant aspects about the 
implementation of the proposed semantic trader. Section 6 evaluates our 
approach in a component-based user interface scenario. Section 7 dis
cusses the contributions with regard to the research questions. We re
view the related work in Section 8 and, finally, Section 9 outlines the 
conclusions and summarizes future work. 

2. Real industrial context of smart architectural scenarios 

Smart architectures are the structures (components, relations and 
properties) of a special type of component-based software that adapts its 
behavior depending on changes in the context. As mentioned above, 
reconfiguration of architectures enables this adaptation since compo
nent replacement and reconnection involve changes in the resulting 
software. However, component management and the calculation of new 
architectural configurations are not such simple tasks. Trading services 
can be used to manage component publication and search, thus allowing 
multiple implementations of real components related to the same 
component type. This enables to have multiple possible architectural 
solutions starting from a common initial architecture and from a change 
produced in the context information. 

The semantic trading process proposed in this article is part of a 
methodology for run-time adaptation of software architectures in two 
main steps (see Fig. 1). First, transformation, which adapts the abstract 
representation of the architectures that define the software structure in 
terms of coarse-grained components [5], i.e., it adapts the models which 
contain the architectural definitions by inserting new components, de
leting elements or modifying connections in the architecture. Second, 
semantic trading (STAS) resolves the architectural solutions with refer
ences to real components from the architectural definitions obtained in 
the previous phase. This second process is the focus of this article, but it 
requires some background knowledge for it to be properly understood. 

The software architecture shown in Fig. 1 is a short example which 
takes a closer look at this methodology. Suppose a user interacting with 
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an application composed of the following widgets: three maps, a clock 
and a social network. Then, due to a certain change in the context (e.g., 
the user triggers an event to remove the information not related to the 
maps), the transformation process removes two components (clock and 
twitter). Next, the STAS selects the best configuration of real compo
nents that best resolves the abstract level architecture. As a result, c1 and 
t8 are removed, map s6 replaces s7, w4 replaces w3, and r5 is not modi
fied. Finally, the adapted web application is deployed from the archi
tecture built. Although Fig. 1 shows an overall view of the methodology, 
this paper does not address transformation or deployment and visuali
zation of final applications. Nevertheless, this section describes (1) the 
principles that must be taken into account for our methodology to be 
applied, (2) the models managed by the whole approach, and (3) 
transformation, since it is the step before semantic trading. 

2.1. Prerequisites of the methodology 

The methodology developed for adapting component-based software 
systems is intended to be applied to different domains. Accordingly, the 
following conditions must be taken into account for constructing ar
chitectures that can be targeted by our proposal: 

(a) Components must be described by a specification which in
cludes functional and extra-functional information. Both parts 
are used in calculating the architectural configurations.  

(b) Component specifications must be stored in repositories and 
retrieved at run-time. Third-party developers can use these re
positories to publish new components, as in COTS approaches. 
Consequently, architectural solutions depend on the architectural 
definitions and components available in the repositories.  

(c) Platforms targeted for the deployment of the architectures must 
allow dynamic changes. The architectures must therefore be 

precompiled or interpreted so that their parts can be reconfigured 
at run-time. 

Some of the possible application domains of this approach are smart 
home environments [33], smart TV applications [34], smart cities [35], 
communication networks [36], fine-grained user interfaces [37], or 
mashup user interfaces [38]. Even though the methodology was devel
oped following a generalist approach, it is now being tested in the do
mains of smart home applications [39] and mashup UIs [5]. 

In the domain of smart homes, an installation made up of different 
devices can be developed as an architecture of components that 
communicate with each other. Fig. 2 shows an example of a smart home 
application we developed [39], which includes a TV, speakers, and a 
window with magnetic sensors. In addition, a smart watch measures the 
heart rate of one of the residents. The right-hand side of Fig. 2 shows the 
architecture of the application at a given moment. In this configuration, 
one software component shows the user’s heart rate on the smart watch. 
The TV is managed by an isolated component and an actuator receives 
the signal from the sensor, sounding an alarm on the speakers that the 
window is being opened. This is only an example of the possible con
figurations, since the TV or the smart watch could also be connected to 
the actuator to show alarm events, and so on. 

A mashup UI is a particular type of Graphical User Interface (GUI) 
operating in a web environment which is built by assembling coarse- 
grained components. Fig. 3 shows an example of a mashup UI from 
our previous research work as described in [5]. This client application is 
part of a Geographic Information System (GIS) and offers maps, histo
grams, pie charts, legends for information layers and social-network 
components, among others. The system was developed as part of the 

Fig. 1. Methodology for adapting software architectures at run-time.  

J. Criado et al.                                                                                                                                                                                                                                  

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time. 
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501



ENIA (Environmental Information Agent) research project and the cor
responding user interface is available online1. 

One of the main reasons for choosing this application domain is the 
presence of component dependencies. For example, the Histogram and 
Map components in Fig. 3 are dependent on each other. The first 
component shows some information related to the second one, and as a 
result, the histogram cannot operate properly without the map. Simi
larly, the Social component is connected to the Header component 
because it depends on it for information about the user. Components 
may also be isolated and have no relationship with any other 
component. 

2.2. Models involved 

From the MBE perspective, our semantic trading process uses four 
types of models to define abstract architectures, concrete architectures, 
abstract components and concrete components. Abstract and concrete 
concepts are related to the Cameleon reference framework [40]. In this 

framework, UIs have four possible representation levels: task and 
concept, abstract, concrete and final. The task and concept level is related 
to the Computation Independent Model (CIM) of the Model-Driven Ar
chitecture (MDA), the abstract level corresponds to the Platform Inde
pendent Model (PIM) and the concrete level correlates with the Platform 
Specific Model (PSM). The final level represents the real software which 
is executed or interpreted. 

We developed our methodology based on the levels mentioned 
above, but extending it to any software architecture complying with the 
prerequisites. Moreover, the concrete architectures are not built by 
executing a model-to-model or a model-to-text transformation, but by 
STAS actions and algorithms. The abstract level therefore identifies what 
should be present in the architecture, whereas the concrete level defines 
real objects forming part of an architectural solution (for an in-depth 
description of these levels see [5] and [29]). Both types of architec
tures (abstract and concrete) are described using the Domain-Specific 
Language (DSL) shown in the metamodel in Fig. 4. Metamodeling or 
the construction of a UML profile are the two classical approaches for 
defining a domain-specific modeling language. 

Our approach uses a new language instead of a UML profile with 
annotations for non-functional properties. This is because we pursued 

Fig. 2. Example of a smart home application [39].  

Fig. 3. Example of a mashup user interface [5].  

1 ENIA Mashup UI – http://acg.ual.es/enia/ui 
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the definition of a closed abstract syntax with a specific set of classes, 
properties and relations between them [41,42]. Other Architecture 
Description Languages (ADLs) could be also used in our approach (such 
as AADL, ACME, Darwin, etc.), but due to our application of MBE 
techniques for adaptation and reconfiguration purposes, we required an 
MOF-based description language and we chose to build a new language 
instead of adapting an existing one to our requirements [43,44]. 

Abstract Architectural Models (AAM) are used for describing the 
components present in the architectures and how they relate to each 
other through the dependencies between functional interfaces. Provided 
interfaces define the services offered by a component, whereas required 

interfaces represent the services that a component needs (i.e., func
tionality not belonging to the component and which must be accessed) 
to operate properly. Concrete Architectural Models (CAM) include the 
above information (derived from the inheritance relationship), but also 
describe the relationships between components in terms of ports and 
connectors. 

Ports and connectors are defined with regard to communication 
between components. The mechanism for invoking the operations 
described in a provided interface is as follows. Each operation is 
accessible through one input port. Operations which return information 
are also defined with an output port. In required interfaces, the 

Fig. 4. DSL for describing architectures in abstract and concrete levels.  

Fig. 5. Differences between an abstract architectural model (AAM) and a concrete architectural model (CAM).  
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representation of the operations is the opposite. Required interfaces 
have an output port to invoke the corresponding operation in a com
ponent’s provided interface. In addition, operations which return data 
are also defined with an input port. Fig. 5 shows an example of an ab
stract architectural model and a feasible concrete architectural model 
related to the abstract definition. The correlation (and the differences) 
between the two models can therefore be seen. 

The functionality of component B, defined in the AAM, is resolved by 
component B5 in the CAM. More specifically, the provided functional 
interface labeled b in the AAM corresponds to functional interface b in 
the CAM. Nevertheless, the provided interface in the CAM includes one 
more operation than the abstract definition. From the perspective of 
ports and connectors, the operation labeled method1 involves the pres
ence of corresponding input and output ports, since the operation 
returns information. The operation labeled method2 is defined using 
only one input port because no data is returned. 

The metamodel shown in Fig. 6 specifies the DSL used to describe the 
components contained in abstract and concrete architectural models. On 
one hand, an abstract component specification defines the set of features 
that a software component must include (i.e., similar to a component 
type). On the other, a concrete component specification describes the 
characteristics of a real software component (i.e., already implemented). 
As described above, abstract and concrete component concepts are 
matched to the ‘service type’ and ‘service’ concepts, used in distributed 
processing. The proposed metamodel was inspired by existing models 
for describing web services [45] and COTS [18]. 

In our approach, both abstract and concrete component definitions 
are divided into four parts: functional, extra-functional, packaging and 

marketing. The functional part describes functional features of pro
vided and required interfaces. Each functional interface is defined using 
the Web Services Description Language (WSDL) standard syntax [45]. 
This language was chosen because it enables correspondence between 
the portType concept in WSDL 1.1 (interface in WSDL 2.0) and the 
functional interfaces of the abstract and concrete components to be 
established. Furthermore, operations, as well as input and output types, 
can be defined in the syntax of this language. Thus, each interface is 
composed of a set of operations, and each operation consists of an input, 
and optionally, an output. Both the input and output can be made up of a 
set of elements, which are described by a name, a type and also multi
plicity. With this WSDL-based structure, interfaces can be defined in this 
language format. In such cases, a translation from this code to the cor
responding model fragment is necessary by extraction or text-to-model 
transformation [46]. 

The extra-functional part of the specification describes the prop
erties which are not defined in the functional part. That means this block 
contains any property other than the operations provided or required, 
including non-functional attributes and quality of service (QoS) fea
tures. Each property defines an attribute and the corresponding value an 
abstract component must have, or a concrete component implements. 
Component dependencies are also specified in this block. Each de
pendency determines which of the required interfaces are mandatory 
and must be resolved in an architecture to work properly. In our 
approach, required interfaces may or may not be mandatory. A non- 
mandatory required interface may remain unsolved, and the compo
nent will work. As such, required interfaces not included as de
pendencies participate in terms of complementary component 

Fig. 6. DSL for describing components on abstract and concrete levels..  
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functionality. 
In addition to the functional and extra-functional information, 

packaging and marketing data are valuable for characterizing com
ponents. Although such information is non-functional and could be 
included in the extra-functional block, it is described in two separate 
parts. Packaging defines certain information about the implementation 
and location of a component. Regarding implementation, a component 
can describe the programming language and the target platform type, 
and with regard to location, a specification can define information about 
the repository which stores the component. In addition, information 
about the URI and version can also be defined. The latter is only valid for 
concrete components, since an abstract component cannot specify this 
kind of data. Marketing includes information about the entity devel
oping the component and organization contact information. An example 
of a concrete component instance is available on the project website2. 

There are some differences in the multiplicity and mandatory nature 
of some parts and attributes regarding the specifications of these two 
types of components. For example, the instantiation of the packaging 
and marketing blocks is mandatory in the case of concrete components, 
whereas they are optional in abstract components. These kinds of syn
tactic constraints are checked and validated using the Object Constraint 
Language (OCL) [47]. 

2.3. Transformation step 

As mentioned, a transformation step related to the abstract level of 
the architectures, i.e., the AAM, is necessary before the STAS can be 
applied. This process consists of a model-to-model (M2M) trans
formation [46] to refactor an AAM at a specific point in time depending 
on three inputs: (a) the initial model, (b) the context information, and (c) 
a repository of M2M transformation rules. Fig. 7 shows an example of 
this transformation in an initial UI containing a map, a social media 
widget and a header component. Due to a change in the context (e.g., 
user interaction, proactive configuration, a system decision determined 
by the business logic, etc.), transformation adds a new component, 
namely a histogram showing geospatial information related to the map. 

The M2M transformation is the first stage performed by the meth
odology. This is a flexible and smart process, and therefore, the model 
transformation in each adaptation step is not fixed or pre-set. Each 
transformation is dynamically built up from a repository of rules, thus 
providing a powerful mechanism for modifying and improving the 
adaptation logic. More details about the transformation stage are 
described in [5,48] and additional resources related to the fundamentals 
of our approach are available on the project website3. Summarizing, the 
transformation process is as follows. A set of adaptation rules (see M2M 
rules in Fig. 7) is used to change the structure of the component 

architecture and their connections. Depending on the context informa
tion and the initial software architecture, this process selects a subset of 
transformation rules in the ATL language [49] and a new M2M trans
formation is built for adapting the architecture (i.e., the architectural 
model). The transformation provides an adapted architecture, but its 
representation is still on an abstract level. The second stage of the 
methodology regenerates these abstract architectures. The best config
urations of concrete components for this are calculated in the STAS 
trading process. 

3. Semantic trading at run-time 

This section explains our semantic trading approach (the second step 
in the background methodology). First, the concept of trading for 
managing architectures is introduced. Following this, the use of the 
semantic information for trading is defined. Finally, the search algo
rithm for building component configurations at run-time is described. 

3.1. Trading in software architectures 

Mediation, or trading, is a well-known mechanism for searching re
positories of services and locating the most appropriate operations for a 
specific input contract [50,51]. There are some proposals in the litera
ture addressing the use of such mechanisms for managing software 
components (in particular, third-party or COTS components) and 
assisting in the construction of software architectures at design time [18, 
52,53]. However, it must be possible for the trading process to manage 
the architectures in our methodology to be executed at run-time. This is 
because component configurations must be calculated dynamically 
when changes occur in the execution context. Accordingly, the proposal 
should deal with some time-related aspects. The main features of this 
process are described below. 

Proper handling of the specifications describing each of the elements 
involved in the process is an essential part of component and architec
ture management. As such, the object responsible for mediation (i.e., the 
trader) should be able to: (a) find components based on input parame
ters, (b) add/modify/delete component specifications, and (c) provide a 
mechanism for configuring the execution policies. These three main sets 
of features are related to the implementation of the functionality spec
ified by the (a) Lookup, (b) Register and (c) Admin interfaces in the 
reference model of distributed processing [16]. 

A trader implementing the three interfaces above is known as a 
standalone trading service. Our approach uses a trader of this type, but it 
extends the functionality of traditional approaches. The purpose of 
existing trading functions is to manage repositories of services and ser
vice types with regard to export and import operations. Consequently, 
producer objects publish their services in the trader and consumer ob
jects query the trader to obtain information about available services. 
Similarly, our methodology uses a trading service to manage compo
nents and component types. Component types correspond to abstract 
components, whereas components are equivalent to concrete ones. 

The proposed trading service provides a variety of features for 

Fig. 7. Transformation example.  

2 Examples of components – http://acg.ual.es/projects/cosmart/stas/ 
models/  

3 STAS approach (CoSmart project) – http://acg.ual.es/projects/cosm 
art/stas/ 

J. Criado et al.                                                                                                                                                                                                                                  

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time. 
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

http://acg.ual.es/projects/cosmart/stas/models/
http://acg.ual.es/projects/cosmart/stas/models/
http://acg.ual.es/projects/cosmart/stas/
http://acg.ual.es/projects/cosmart/stas/


handling the abstract and concrete component repositories (Repositor
yHandler). In addition, it implements the functionality needed to 
manage the three interfaces of the standalone service (InterfaceHandler). 
Moreover, the service proposed extends this functionality by incorpo
rating a module called Configs, which has the following features. First, 
candidates are selected by semantic matching of functional interfaces. 
Second, configurations are generated using a heuristic to find the best 
combination of components based on established criteria. Thus, a Se
mantic Trader for regenerating concrete architectures at run-time is ob
tained. The left hand side of Fig. 8 shows the proposed trader, which has 
the following functionalities:  

(i) Obtain the set of component specifications meeting certain DSL 
values (Lookup).  

(ii) Manage component specifications with create, update and delete 
operations (Register).  

(iii) Calculate configurations of concrete architectures from abstract 
architectures at run-time (Configs).  

(iv) Configure the number of component specifications returned by 
the operations of the Lookup module (Admin).  

(v) Define the maximum time permissible for building the concrete 
architecture that is chosen as the best solution for an abstract 
definition (Admin). 

(vi) Modify the configuration of matching performed when con
structing the concrete architectures (Admin). 

Once the trader object is designated, the objects with exporter and 
importer roles must be identified (see the right side of Fig. 8). Exporters 
are objects adding, modifying or removing specifications of components 
in the system. As a result, this role is played by any organization using 
the methodology, because it needs to manage the components in the 
repositories. In addition, third-party organizations involved in compo
nent development also act as exporters. However, objects that need to 
query and retrieve the components available in the repositories operate 
as importers. In this methodology, semantic trading (also called regen
eration) itself operates as an importer. In particular, operations in the 
Configs module are importer objects, since they obtain the information 
needed to generate the component configurations and build the archi
tectural solutions. 

3.2. Semantic trading 

As mentioned above, component functional interfaces (both abstract 
and concrete) are described in WSDL which, in general, is one of several 
possibilities for defining interfaces and, in particular, can be used as an 
Interface Description Language (IDL) to document COTS components, in 
particular. Thus, existing component models for describing COTS com
ponents make use of syntactic and semantic features to define their 
functional interfaces [55]. Syntactic information is therefore related to 
the way an interface is described, i.e., the attributes and operations that 
comprise its definition. One possible solution for semantic information is 
to define each individual operating behavior. 

This behavior is traditionally represented in formalities, such as 
algebraic equations, pre/post conditions and invariants, to provide 
detailed information about when an operation should be executed or 
what the state of the component is after its execution. Furthermore, such 
information is usually expressed in languages that can be analyzed 
automatically by software. However, the computation times necessary 
for management of potential interface matching together with incorrect 
combinations (mismatching) [56] suitable for the analysis of configu
rations at design time are inadmissible for building configurations and 
generating architectures at run-time. 

Our semantic trading approach is based on the assumption that the 
possible types which can be used to describe operation inputs and out
puts are limited. Accordingly, we created a namespace that groups all the 
possible types, identified as trader:typeName. These types are 
described using an XML schema , and referenced from the definition of 
interfaces, contained in a WSDL file or in the corresponding fragment of 
the model containing the specification of the component (see 
WSDLSpecification in Fig. 6). These types are equivalent to complex 
data types that provide information about: (a) the name, the type and 
the multiplicity of the elements in the complex data type, and (b) the 
operations using this data type and whether it is used as input or output. 

A type definition can be illustrated with the following example. An 
operation called loadLayer is part of the manageLayers interface on 
the component map, as shown in Fig. 9 (chosen from the mashup UI in 
Fig. 3). This operation enables the map to load geospatial information so 
it can be displayed as a visual layer. As input, this operation requires a 
parameter with the location of the service providing the geospatial data, 
and another with the identifier of the layer to be selected from the 
service. A complex type, trader:loadLayer, composed of two 

Fig. 8. Proposed trading service and its use in regenerating architectures.  
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elements is therefore defined: (1) layerID, which is an attribute of the 
String type; and (2) serviceOGC, which is an attribute of the anyURI 
type (see lines 15–20 in Fig. 9). As output, it returns a boolean value 
indicating whether the operation has been executed successfully. 
Accordingly, the complex type trader:loadLayerResponse, 
composed of this boolean element is also defined (lines 21–25). 

Definition of new complex types makes it possible to identify all the 
operations that match a description, as shown in the example above. As 
such, interfaces can be matched by using the semantic information 
related to operation input and output. An example of two equivalent 
interfaces is shown in Fig. 10. The names of interfaces and operations do 
not match, but they can be paired by operation type. In both interfaces, 
there is a layer loading operation and another one for removing them, 
and their semantic description is the same as indicated by the input and 
output types. 

The set of types defined conforms to a vocabulary of types used for 
managing synonyms during regeneration. This represents a limitation 
on the use of any type of data as input or output of the operations, since 
developers must know the types that exist before attempting to build the 
components. Nevertheless, this is a suitable solution for comparing 
components at run-time, taking semantic information about their func
tional interfaces into account. Note that this matching does not perform 
any calculations related to the operation execution order. This order is 
inherent in the business logic that implements each component, and the 
choreography of the operations is assumed to be carried out correctly. In 
addition to the description of interfaces, semantic information is present 
in the evaluation of components and architectures used in the search 
algorithm heuristics, as seenbelow. 

3.3. Generating configurations 

As mentioned above, one of the main functionalities of the semantic 
trader is construction of concrete architectures from abstract definitions. 
The Configs module calculates the best possible configurations of the 
concrete components available in the repository and verifies that they 
meet the requirements established in the abstract architecture. The 
module developed for generating the configurations includes an adapted 

A* algorithm and therefore limits the search space, always ensuring the 
best possible solution within the configurations analyzed. This module 
performs the following steps:  

(a) Select candidates. This operation is used to select (from the 
repository of concrete components) candidates to be included in 
the architecture. It checks which concrete components have at 
least one provided interface in common (i.e., that can be 
matched) with the set of provided interfaces in the abstract ar
chitecture. Interface matching is carried using the semantic 
operation information, so two operations are considered equiv
alent if they have the same input and output types. The required 
interfaces and the rest of the information in the component 
specifications are not taken into account in this selection. 

(b) Calculate configurations. In this operation, the different con
figurations that could be a solution of the abstract architecture 
are calculated from all the possible combinations of the candi
dates. Since this is a highly complex operation which cannot be 
performed at run-time, some limitation mechanisms must be 
included in the algorithms in this step. A configuration is 
considered a possible solution if it contains all the provided in
terfaces in the abstract architecture, and may also include any 
additional interfaces.  

(c) Closure of configurations. This operation is performed from the 
configurations considered possible solutions. The goal is to filter 
out incomplete solutions. A configuration is considered incom
plete when at least one of the components requires a component 
in addition to those defined in the abstract architecture. In such 
cases, the configuration is not closed. 

(d) Compliance of configurations. As in the case of closed config
urations, this operation is applied to configurations that are 
considered possible solutions. This process discards those config
urations which do not comply with the structure established by 
the abstract architecture, in other words, that have de
compositions or group elements that differ from the abstract 
definition. 

Fig. 9. WSDL specification of an example interface.  
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(e) Apply the heuristics. This operation scores each component 
configuration. Depending on the purpose, this score can be 
calculated from a configuration of components which may or may 
not be a solution of the abstract architecture. The targeted con
figurations therefore include those combinations of components 
consisting of partial solutions. This step relies on the guarantee of 
being able to determine a set of suitable score metrics related to 
the different software architecture domains [54].  

(f) Build the concrete architecture. Once the configuration of 
components that best matches the abstract architecture has been 
selected, the Configs module constructs the concrete architectural 
model. This model is used to deploy the final software 
application. 

In the following definitions, components and architectures are 
simplified to emphasize the functional part. To this end, a formal defi
nition of the main operators used in the proposal is provided below for 
Component, Closure, Replacement and Compliance. 

Definition 1. (Component) A component C can be described as C =
(R ,R ), where R is a set of provided interfaces and R is a set of required 
interfaces. Therefore, C.R represents the component’s provided 
interfaces. 

In a similar way, the expression AAM.R represents the provided 
interfaces of an abstract architecture, whereas AAM[i].R identifies the 
provided interfaces of the i-th component. The closure of configurations 
will discard these configurations having one or more required interfaces 
which are not provided by any other component. 

Definition 2. (Closure) A configuration is closed if it fulfills the 
expression ∪ Ci.R ⊆ ∪ Ci.R , i.e., the union of all the required interfaces 
is included in the union of all the provided interfaces. It is important to 
note that the subset operator (R 1⊆R 2) means that for all interfaces 
from R 1 (Ri

1 ∈ R 1) exists an interface in R 2 (Rj
2 ∈ R 2) and Ri

1 can be 
replaced by Rj

2. 

An interface can be replaced by another one if both offer the same 
services. In this sense, if an architecture is closed, all the required in
terfaces are provided by a certain component of it. The compliance of 
configurations will discard these configurations with a different struc
ture with regard to the abstract definition. 

Definition 3. (Replacement) A component C1 = (R 1,R 1) can be 
replaced by another component C2 = (R 2,R 2), denoted by C2⩽C1, if 
(C1.R 1⊆C2.R 2) ∧ (C2.R 2⊆C1.R 1). 

Definition 4. (Compliance) Let’s suppose an abstract architecture 
defined as AAM = {A1,A2,… An} and a configuration of a possible 
concrete architecture defined as CAM = {C1,C2,… Cm}, we established 
that CAM is compliant with AAM if ∀i ∈ {1.m},

∀j ∈ {1.n} • Ci.R ∩ Aj.R ∕= ∅⇒(Ci⩽Aj) ∧ (Aj⩽Ci). 

This means that component C2 provides all the services (it can in fact 

provide more) offered by component C1, and it requires the same ser
vices (and if need be less services) from other components. The 
constraint of compliance has been established to obtain a configuration 
with components that conform to the abstract specifications as well as 
match the structure defined in the AAM. 

To make it easier to understand closure and compliance, Fig. 11 
shows an example of an abstract architecture and four possible solu
tions. The four configurations of concrete components are not all suit
able for building the concrete architecture as a process output. The 
configurations that would result in CAM1 and CAM3 being acceptable, 
whereas CAM2 and CAM4 would not be. The CAM2 MapOther component 
has a required interface in addition to the abstract definition, meaning 
this configuration is not closed. The Header component in the abstract 
architecture is resolved by two components of CAM4 (UserLogOut and 
UserInfo) and causes structural mismatching that breaks with compli
ance. It should be mentioned that a required interface is mandatory if it 
is described as a dependency in the concrete component (see DSL for 
describing components in Fig. 6). 

Regarding application of the heuristics, note that the adapted A* 
algorithm only scores the configurations that are calculated during the 
exploration of the search tree. Thus, the possible solutions are checked 
to analyze if they are closed and compliant. 

4. Heuristics-based generation of configurations 

This section is focused on the explanation of the search process that is 
performed during the construction of the configurations. First, the al
gorithm applied in the process is defined. Then, the metrics and calcu
lations related to the heuristics used in this algorithm are described. 

4.1. Adapted A* search algorithm 

The algorithm implemented to generate the configurations of the 
Configs module is carried out by adapting the A* search algorithm [31]. 
In this type of algorithm, a graph represents the search space and its 
nodes identify the states to be advanced to in the search. The goal is to 
find the least-cost path to the target node from a starting node. This is 
calculated with an evaluation function f(x) = g(x)+ h′

(x). Function g(x)
represents a known distance (pre-calculated) between the starting node 
and the current node. Furthermore, h′

(x) identifies the estimated value 
of an admissible heuristic concerning the distance h(x) from the current 
node to the target node. To be admissible, the heuristic should not 
overestimate the real value of the distance calculated. 

This type of algorithm always finds a solution if there is one. In 
addition, the search process does not typically need to explore all the 
nodes in the graph to find this solution. The explored search space, and 
therefore, the complexity of the algorithm, depends on the quality of the 
heuristics. In the worst case, the order is exponential, whereas the order 
of the best case (where the estimated heuristic is close to optimal) is 
linear. This is the main reason for choosing this type of algorithm, since a 
greedy alternative for building configurations always results in an 

Fig. 10. Equivalent interfaces from a semantic perspective.  
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exponential execution order, because all the nodes in the search space 
must be evaluated. 

Another reason for choosing this type of algorithm is the run-time 
calculation of configurations. The exploration path always moves to
ward a solution closer to the target node than the previous state. As such, 
a reference to the last ‘best solution’ can be kept and made use of if 
regeneration is forced to finish the search (for example, due to time 
constraints or other restrictions). Nevertheless, if the selection of the 
best possible configuration in the search space must be ensured, the 
‘greedy mode’ of the adapted A* algorithm would be executed by 
establishing the value of g(x) as equal to 0.0. 

In this proposal, each graph node represents a configuration of 
concrete components, so that one node is adjacent to another if its 
configuration differs by one component. Thus, every iteration of the A* 
search algorithm is executed until a configuration that meets the 
architectural definition is found. Before executing the algorithm, 
candidate components are grouped by the information in the functional 
part to limit the search (Fig. 12). The clustering of candidate compo
nents is executed before the search algorithm starts, with the aim of 
improving the performance of our approach. The groups of candidates 
are inspected at different execution stages of the algorithm when new 
nodes of the exploration tree are created. If the clustering is not per
formed at the beginning, the algorithm will explore those branches with 
groups of candidates already selected faster. Each group is related to the 
operation of a component in the abstract architecture (architectural 

definition) and contains those concrete components which have at least 
one operation (belonging to a provided interface) in common. Accord
ingly, graph nodes do not contain more than one component of the same 
group. 

A generic A* search algorithm traverses a graph from a starting node 
and uses two main data structures, a set with the nodes to be evaluated 
(open nodes) and another set for knowledge about the nodes evaluated 
(closed nodes). In each step, the algorithm extracts a node from the open 
set and checks whether the new node can be considered as the goal. If 
the node is not the goal, it is included in the set of closed nodes, and its 
neighbors are added to the set of open nodes (if not already included). 
Each node added must be described by a score, which is obtained from 
the abovementioned evaluation function f(x) (representing the distance 
to the goal node). The node extracted from the open set in each iteration 
is therefore the one with the lowest score. Fig. 13 shows the pseudocode 
of the algorithm, an adapted A* search. 

Nodes represent configurations of concrete components and the goal 
node is a configuration where f(x) equals 0 and there can be as many 
goal nodes as configurations which constitute a possible solution of the 
architecture. The algorithm begins from a starting node (source) which is 
adjacent to every node created from the components of a group of 
candidates (Fig. 12). Those are the initial nodes on the graph, and the 
others are created dynamically when a new node is explored (line 28 of 
the algorithm). Furthermore, new neighbors are only created if the 
resulting configurations do not exceed the size of the abstract definition 

Fig. 11. Example of closure and compliance in concrete architectures.  

Fig. 12. Clustering candidates from matching of operations.  
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(line 25). This limits the algorithm’s search space and reduces the 
number of nodes for which the evaluation function f(x) is calculated. 

As mentioned, f(x) is the reference for managing the open node 
priority queue. The nodes explored in each iteration are selected from 
this queue (line 10). Focusing on both addends of f(x) (i.e., g(x) and 
h′

(x)), we can see that the default value of g(x) is 1.0, since one node 
differs from another in the incorporation of one concrete component. 
However, after evaluating the algorithm, some situations (e.g., when the 
number of candidate components is very large), in which g(x) equals 0.0, 
enable the architectural solution to be found faster. In such cases, the 
adapted A* algorithm is equivalent to a greedy search. This variation 
means that the implementation of the algorithm does not ensure an 
optimal solution (i.e., the one closest to the starting node). Other oper
ations are therefore responsible for checking that the algorithm does not 
add extra components to those defined in the abstract architecture. 
Moreover, g(x) can be configured by the Admin interface of the Semantic 
Trader. 

The value of h′

(x) is the distance between the configuration of con
crete components (associated with the current node) and the input AAM. 
This distance is calculated from the semantic information in the func
tional interfaces and must be 0.0 (lines 15 and 34) to consider a 
configuration a possible architectural solution. This decision ensures (at 
least) resolution of a valid configuration of the functional part in less 
time than if all the parts of the components were to be evaluated. 
Nevertheless, when a configuration fulfilling the functional part is found 
(lines 15 and 34), a full evaluation of the configuration is performed by 

calculating the distance from the AAM using all the component parts 
(including extra-functional information). This evaluation also checks 
that the configuration is (a) closed and (b) compliant with the abstract 
architecture. If different constraints are required to consider a configu
ration as being valid to resolve an abstract architecture, our approach 
should be modified for this evaluation function. For example, consid
ering the scenario shown in Fig. 11 in which CAM1 and CAM3 are not 
available, perhaps the best output to be obtained is an extended CAM2 
by including a new component that provides the additional required 
interface (i.e., parser). As a consequence, it is possible to modify the 
closure and compliance considerations in order to change the con
straints for valid architectures. 

4.2. Metrics for semantic trading 

The metrics applied in the adapted A* algorithm must be defined in 
more detail. The method employed for calculating the h′

(x) score is 
called heuristics (line 32 of the algorithm shown in Fig. 13). For this 
calculation, a macro-component containing all the information related 
to the functional specifications of the abstract architecture is created. 
Similarly, another macro-component gathering all the functional infor
mation of the concrete components that form part of the evaluated 
configuration is built. In both cases, there is a joining of the provided 
interfaces and the required interfaces which are mandatory (it entails a 
joining of the operations specified in each interface). The new specifi
cations of macro-components are compared to calculate the matching (i. 
e., the distance) between them. 

In the matching example of Fig. 14 the abstract architecture defines 
four provided interfaces (a, b, c and d) and two required interfaces (in 
this case, the same interface twice). The configuration being compared 
provides the interfaces a, b and d from the concrete components A3, B1 
and D1, respectively; and it also meets the required interfaces. However, 
the interface c is not provided and hence, the configuration mismatches 
the abstract architecture. As a consequence, the matching between them 
is partial and the value calculated for the heuristics function (that rep
resents the distance between the configuration and the estimated solu
tion) is greater that zero. 

For a better understanding of the matching calculation for the heu
ristics function, Fig. 15 represents a schematic representation of its 
behavior (top right). From the input parameters (i.e., the abstract 
architectural model AAM and the configuration which is evaluated), the 
concrete components are joined together in a macro-component, as 
mentioned before. After that, the matching between the functional parts 
of both components is calculated. 

This matching operation makes a distinction between the provided 
(MPI) and required (MRI) interfaces. Both values are described by a real 
number between 0 (no elements in common) and 1 (total matching) and 
are calculated from the division of the number of matched operations by 
the total of operations in the abstract definition. The bottom of Fig. 15 
summarizes the behavior for matching the provided interfaces. First, the 
operations of the abstract architecture are obtained. Second, we check if 
any operation in the evaluated configuration matches each operation in 
the AAM, thus increasing the value of matchedProvidedOp. Two opera
tions match if their semantic descriptions are the same (i.e., if their 
parameters and the returned value are equivalent), as explained in 
Subsection 3.2. 

The value of MPI factor is calculated from the division between 
matchedProvidedOp and acProvidedOp, where the divider represents the 
total number of provided operations in AAM. In addition to the matching 
values, the heuristics function stores certain information about which 
operations (and which interfaces they belong to) of a configuration 
resolve the operations of the abstract definition. This information is 
useful for optimizing performance when the concrete architecture is 
built (the last step in generating configurations). Furthermore, other 
complementary information is calculated to enable the analysis of the 
matching: (a) the type of intersection, and (b) the identification of which 

Fig. 13. Adapted A* algorithm for generating the configurations in STAS.  
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component has the larger part. This information is used to extend the 
information about the ratio of the matching but, for subsequent im
provements, it can be used for other purposes, such as hiding unwanted 
functionality, building a wrapper for the component, or fixing the 
unprovided operations, among other possible examples. 

Fig. 16 shows the possible combinations of the intersection and 
larger types. For example, when the evaluated part of the abstract 
component (AC) is larger than the corresponding part of the concrete 
component (CC) and the intersection is equal to the concrete compo
nent, the matching is lower than 1 because a certain part of the AC 

Fig. 14. Matching between an abstract architecture and a configuration.  

Fig. 15. Main class of the Heuristics microservice (top-left), heuristics and evaluateCAM operations (top-right), and matching of provided interfaces (bottom).  
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specification is not fulfilled. Otherwise, when the evaluated part of the 
AC is smaller than the corresponding part of the CC and the intersection 
is equivalent to the AC, there is a total match although the additional 
parts of the concrete component must be taken into account in order to 
avoid undesired behaviors. The optimal combinations with total 
matching occur when both parts are equal and the intersection is 
equivalent to AC or CC. When the intersection is identified as other, the 
matching value is lower than 1, and when it is empty the value is equal to 
0. 

The following expressions summarize the calculation of the matching 
related to the functional information (MF) performed in the heuristics 
method, and obtained from the matching of provided and required 
interfaces: 

MPI =
matchedProvidedOp

acProvidedOp
MRI =

matchedRequiredOp
acRequiredOp

MF =
MPI + MRI

2 

As a consequence, the distance value (or the evaluation function) is 
calculated from the matching value: 

h′

(x) = 1 − MF 

Architecture closure and compliance are calculated by the eval
uateCAM method (lines 19 and 38 of the algorithm in Fig. 13), which is 
executed when the evaluation function h′

(x) is equal to 0. This operation 
performs a new calculation of the matching. In this case, all parts of the 
component specification are taken into account (Fig. 15):  

(a) Functional information (MF). The heuristics method is executed to 
obtain the corresponding metrics.  

(b) Extra-functional information (MEF). Properties and dependencies 
are compared: 
(b.1) Properties. First, the properties meeting the abstract defi

nition are selected. Then, the matching value is calculated 
as a weighted sum of the three types of properties (i.e., high, 
normal or low priority). High-priority properties have 
greater weighting than low priority. 

(b.2) Dependencies. The type of intersection between the con
crete component and the corresponding abstract definition 
(with regard to dependencies) is considered. If there is no 

intersection and they are not empty, then there is a zero 
match. If there is intersection (see Fig. 16), depending on 
the type, there are three possibilities: (i) all concrete 
component dependencies (DCC) are within the set of ab
stract component dependencies (DAC), i.e., DAC contains 
DCC; (ii) DCC contains DAC; and (iii) there is intersection 
but no set contains the other. The corresponding formulas 
that use the number of paired dependencies (matchedDep) 
are shown below: 

(i) m =
matchedDep
card(DAC)

(ii) m =
matchedDep
card(DCC)

(iii) m =
matchedDep

card(DAC) + card(DCC)

(c) Packaging information (MP). The score calculated shows whether 
the components are implemented with the same technologies and 
whether they are stored in the same repository. 

Fig. 16. Possible combinations of the intersection and larger types during the matching between abstract and concrete components.  

Fig. 17. Example of matching scores for semantic trading.  
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(d) Marketing information (MM). The distance calculated shows 
whether the components were implemented by the same devel
opment team. 

All the metrics representing the matching values of the evaluateCAM 
method are described by a real number between 0 (no elements in 
common) and 1 (total matching). For all the subparts, the type of 
intersection and the identification of which component has the larger set 
of elements are also calculated (Fig. 16). Fig. 17 shows an example of 
three scored components. In this case, the component that best matches 
the abstract definition is CC3. However, there are differences in CC1 and 
CC2 which must be discussed. CC1 matches the functional information 
better, but the other parts are complied better in CC2. Moreover, the 
total area derived from the scores of CC2 is greater than the area related 
to the scores of CC1. In conclusion, a component is considered to match 
the abstract specification better than another depending on the impor
tance of each part. Therefore, the total value of the match is weighted 
using the following formula: 

matching = MF*factorMF + MEF*factorMEF + MP*factorMP

+ MM*factorMM 

The default values for the weighting factors are 0.8 (factorMF), 0.15 
(factorMEF), 0.025 (factorMP) and 0.025 (factorMM). These values were 
set based on the construction of quality models [54] which determined 
that while the functional information is the most important part, the 
extra-functional information is less important, but has a considerable 
impact on the matching score. At the same time packaging and mar
keting make up the remaining weight. Nevertheless, these values can be 
modified by using the Admin interface of the Semantic Trader whenever 
the sum of the factors is equal to 1. Furthermore, this interface enables 
the configuration of the minimum distances that must be accomplished 
to consider a configuration as a solution. For example, the distance for 
the extra-functional part can be set within the interval [0.0,0.2]if the 
minimum MEF matching score is modified to 0.8. 

5. Implementation of the semantic trader 

Repositories of components and architectures must be managed by 
an efficient persistence mechanism. When the size and the number of 
models used in an application is small, the load in the memory may be 
adequate, but if the number of models grows, they need to be stored 
persistently. In this case, some model (e.g., component specifications) 
export and import mechanisms must also be provided at run-time. As 
such, models of components and architectures are stored in a database. 

The proposed DSLs and their instances (i.e., models) were developed 
with the Eclipse Modeling Framework (EMF)4. In EMF, models are 

implemented as Java objects once they are loaded into the memory. 
Accordingly, they can be made persistent by applying Object-Relational 
Mapping (ORM) techniques, such as Java Persistence API (JPA). One of 
the most used JPAs implementations is Hibernate5, which enables 
mapping between objects and a relational database to be defined by 
annotations in the classes, or a file describing such associations. 

Mapping between the objects representing the models and the 
database can be done automatically with Teneo6, which generates the 
description files from the DSL metamodels (see Fig. 18). First, plugin 
Java classes used to manage the models are obtained from the meta
model. Then, mapping between the classes (which manage the models) 
along with the database are generated using Teneo. Third, the database 
schema is initialized and the tables are created using Hibernate. In the 
following operations, when the database is accessed (to execute opera
tions of query, insertion, update, deletion, etc.), the mapping and plugin 
classes are used to manage the models (steps 4 and 5 in Fig. 18). 

The implementation of the Semantic trader was designed for remote 
invocation of all its operations. Its functionality was therefore developed 
using a microservice approach [58]. Such services are accessible both 
internally by the system and externally by users or other processes via 
the web. An example of external processes are those acting as exporters 
and importers of components. With regard to internal processes, some 
examples are the calculation of configurations, or the management of 
trader policies. Functionality is divided into five microservices: Lookup, 
Register, Admin, Configs and Heuristics. The first three web services 
mentioned implement trader operations in a standalone mode. The 
Configs service implements the operations related to the calculation of 
configurations, and the Heuristics service includes those methods used to 
evaluate and score components and configurations. 

Fig. 19 shows the microservice-based architecture that implements 
our semantic trading proposal. The Lookup microservice is used by the 
Register, Configs and Heuristics microservices, because the first contains 
the operations for finding the components matching an input criterion, 
while the Configs module uses the Heuristics microservice for calculating 
the configuration scores. The Lookup microservice uses the Admin 
module because it must read trader policies, such as the maximum 
number of specifications returned by a query. In addition, the Configs 
module also uses the Admin microservices, for example, to read match 
factors or the minimum distances (if any) required for valid configura
tion, as mentioned above. 

Microservices are implemented as Spring Boot7 applications 
exposing their operations and resources through RESTful web services 
[59]. Ribbon and Feign are used for internal communication for 
accessing and load balancing, and Eureka for registering and discovering 
services [60]. This architecture makes semantic trading resilient to 

Fig. 18. Persistence of models of components and architectures.  

4 Eclipse Modeling Framework (EMF) – https://www.eclipse.org/modeling/e 
mf/ 

5 Hibernate – http://hibernate.org  
6 Teneo/Hibernate – http://wiki.eclipse.org/Teneo/Hibernate  
7 Spring Boot – https://spring.io/projects/spring-boot 
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change in the execution environment. For example, if a high demand for 
the Register microservice is detected (during insertion and updating of 
component specifications), then that microservice can be replicated to 
cover all requests. 

The implementation of the microservices is available in a GitHub 
repository8. The application of the STAS approach to other domains or 
architectures of smart environments is made possible by using the 
following guidelines. First, a new vocabulary of complex types for 
defining the inputs and outputs of the component operations must be 
developed. Second, the target scenario components must be modeled 
using the proposed languages. The two levels of representation (abstract 
and concrete) must be considered. Thus, each set of concrete compo
nents with functional interfaces in common would have a related ab
stract component specification. All the component specifications must 
be inserted into the repositories by using the Register microservice. 
Moreover, the Admin microservice can be used to modify the config
urable parameters. Before starting the resolution of the concrete archi
tecture, the abstract architecture used as input must be inserted into the 
database by using the Configs microservice. After that, the search algo
rithm can be executed to generate the resulting configuration and save 

the corresponding concrete architecture in the database. The Configs 
microservice uses the Heuristics and Lookup microservice to operate. 

6. Generating software architectures using the STAS approach: a 
case study for mashup UIs 

As discussed above, the Semantic Trader solution proposed can 
generate software architectures, thus enabling their adaptation at run- 
time. Examples of application domains are dynamic and flexible archi
tectures based on coarse-grained components, which are very useful in 
ecosystems related to smart city solutions, such as smart buildings, smart 
grids, smart homes or smart UIs. In this section, we apply our semantic 
trading approach to a particular domain of smart architectures, called 
mashup UIs. The scenario used for validation and evaluation experi
ments is related to the ENIA frontend, a mashup web-based user inter
face in an environmental GIS application (described in Section 2). 

This case study regenerates concrete architectures from an abstract 
definition formed by the following types of components: map, histo
gram, legend, header, storage, audio, video, recorder, social network 
and RSS reader (see Fig. 20). Architectures made up of mashup UIs in 
this domain may have component dependencies. For example, the 
recorder component requires some audio and video operations, and the 
social network component requires some user information provided by 
the header, whereas the RSS reader is an isolated component. The 

Fig. 19. Proposed architecture for semantic trading.  

Fig. 20. Example of an abstract architecture managed by the STAS.  

8 GitHub repository containing the implementation of the STAS approach – 
https://github.com/acgtic211/costrader 
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behavior of each component is not described, since the purpose here is to 
create a suitable scenario for validating our approach. 

All the abstract components in the case study have only one provided 
interface, but this contains a set of provided operations. For example, the 
provided interface in the header is formed by two operations, getUserInfo 
and login. All of the operations are mandatory except for the RSS (which 
can operate without resolving the exchangeNews interface) and twitter 
(which may or may not be connected to the manageImage interface) 
components. 

The set of concrete components used in the example scenario (200 
elements) makes it possible to analyze all the matching possibilities. As 
such, there are components with additional provided and/or required 
interfaces, or components with the same functional interface, but con
taining additional operations. We have also defined extra-functional, 
packaging and marketing information in some components. We per
formed tests with the different combinations of initial abstract archi
tectures that could be constructed with the components in Fig. 20, 
varying the size of the input architecture. Thus, when performance in 
resolving architectures with only one component is evaluated, the map 
is resolved. The component map, histogram and header are used when 
the architectures of three elements are evaluated, and the complete 
abstract architecture is used for experiments with ten elements. 

6.1. Calculation of alternative configurations 

In the tests conducted for this case study, 20 concrete specifications 
were defined for each of the component types shown in Fig. 20 (i.e., for 
each abstract component). This represents a total of 200 candidate 
components (10*20) for architectures made up of the 10 types of com
ponents. Clustering limits the search space to a combinatorial number of 

(
20
10

)

= 184756 configurations. This set of candidate components was 

inserted in a repository with another 10000 specifications of concrete 
components that were generated automatically (from the random 
combination of the previous 200 specifications). With these compo
nents, the regeneration process could be validated and evaluated for a 
significantly large scenario (1200 elements in total). Fig. 21 shows an 
example execution of semantic trading illustrating the behavior of the 
adapted A* search algorithm. 

The abstract architecture (i.e., the input architectural definition) is 
made up of four components (shown at the top of the table): a map, a 
histogram, a header, and a social network component. To execute this 
algorithm, the first step is to obtain the 90 candidate components (CC) 
extracted from the component repository (CCR) mentioned above. Note 
that abstract and concrete components are described schematically, 
listing only the provided (represented by the name of the interface, e.g., 
interfaceName) and the required interfaces (represented by the name of 
the interface with a line above it, e.g., interfaceName). In this example, all 
required interfaces are mandatory. 

Algorithm execution starts by evaluating the components located in 
one of the groups found in the candidate clusters (Iteration 1). As a result 
of this iteration, the node having the lowest evaluation function value 
(0.8 in this case) is the one formed by component map01. From this 
node, in Iteration 2, nodes are dynamically created adjacent to it. These 
new nodes are formed by the combination of component map01 with 
those concrete components belonging to a different group of candidates 
used in the previous iteration. Accordingly, adjacent nodes such as 
[map01,header01], [map01,header02], etc., are created from 
[map01]. Following this, the search algorithm selects the graph node 
with the lowest score (found by the evaluation function). In this case, the 

Fig. 21. Example of alternative configurations.  
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node selected is formed by components map01 and header14 which 
have a score of 0.7. 

The algorithm continues this way until it finds a node with a heuristic 
function equal to 0.0, at which point it proceeds to evaluate the 
configuration corresponding to that node. In the example, configuration 
checking is done after Iteration 4. In some cases, the configurations are 
discarded because any given component has additional dependencies 
and hence it is a not closed configuration (e.g., Iterations 4, 10 and 17). 
In other cases, the configurations analyzed are closed, but they do not 
conform to the architectural definition. For example, possible solutions 
analyzed in Iterations 5, 6, 7, 8 and 9, are discarded, because one of their 
components does not meet the minimum matching ratio for extra- 
functional properties. In Iteration 18, after excluding a total of 14 
possible solutions, the algorithm finds a configuration evaluated as the 
final solution. Based on this configuration (consisting of components 
map01, header14, histogram09 and twitter01), a concrete 
architectural model is constructed describing a UI which looks like the 
web application shown in Fig. 3. The left hand side of Fig. 21 shows the 
nodes evaluated by the algorithm. 

6.2. Scoring a possible solution 

The Heuristics microservice calculates the value of the evaluation 
function h′

(x) for each configuration of concrete components that need 
to be analyzed. In the ‘greedy mode’ of the adapted A* search (g(x) =

0.0), the configurations are complete (with regard to the abstract defi
nition) and are possible solutions. In the case of the normal behavior of 
the adapted A* search (g(x) = 1.0), the configurations may also be 
partial solutions of the architecture. In both cases, the score of a 
configuration is calculated from the individual matching scores for each 
of the concrete components forming the configuration. 

The XML code shown in Fig. 22 is the result returned by the opera
tion that calculated the match of a concrete component. In this example, 
the elements compared are the abstract component twitter and the 
concrete component twitter13. The functional information is only 
partially matched, because the provided interface matching is 1.0, 
whereas the required interface matching is 0.0. As such, the ratio of the 
functional part is 0.5=(1.0+0.0)/2. 

Regarding the extra-functional part, the operation returns matching 
scores for dependencies and properties. Since there is an equivalent 
dependency (because the identifier of the required interface matches), 
but the concrete component has an additional dependency, the match
ing value for dependencies is 0.5. In the case of properties, there is 
correspondence with one of them, whose priority is high (among the 
four properties). Thus, the matching value for properties is 0.52. As a 
result, the matching for the extra-functional part is 0.51=(0.5+0.52)/2.  

For the extra-functional part, the operation returns matching scores 
for dependencies and properties. There is an equivalent dependency 
(because the identifier of the required interface matches), but the con
crete component has an additional dependency. Consequently, the 
match value for dependencies is 0.5. One of the four properties, whose 
priority is high, matches the abstract component specification. Thus, the 
matching value for properties is 0.52, and as a result, the matching score 
for the extra-functional part is 0.51=(0.5+0.52)/2. The score for the 
packagingis 1.0, since the concrete component matches the location and 
implementation data described in the abstract component specification. 
There is no correlation with marketing information, and therefore, the 
score is 0.0. For these matching values, the total score is 
0.5265=0.85*0.5+0.15*0.51+0.025*1.0+0.025*0.0.  

Fig. 22. Example of matching score for a concrete component.  
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6.3. Performance 

As part of the scenario for the case study presented, different tests 
have been carried out to evaluate the performance of our approach. With 
regard to the operation for obtaining the candidate components, we 
tested our repository containing 1200 elements (200 manually con
structed candidates in addition to 1000 components randomly gener
ated from the candidates). This operation has a significant impact on 
performance because it is the first step before calculating the possible 
configurations. Fig. 23 (non-dashed line) shows the execution times for 
obtaining the candidates in the case of abstract definitions that vary 
from 1 to 10 components. The execution time grows in a linear fashion 
with a high value gradient and is not suitable for a trading process at 
run-time. For this reason, we reduced the execution time of this opera
tion by caching the repository of concrete components in the configu
ration file of the database access (see the bottom of Fig. 23). From this 
improvement, the execution time for obtaining the candidates from the 
database is reduced to a maximum of 264.2 milliseconds when there are 
10 components in the abstract architecture. 

The following experiments were related to the generation of concrete 
architectures from abstract definitions ranging in size from 1 to 10 
components. For each architecture size, the semantic trading process 
was executed 100 times and then we calculated the average obtained for 
the following data: (i) total time to obtain the final architectural solution 
(Fig. 24(a)), (ii) time when the first functional solution is obtained 
(Fig. 24(b)), and (iii) number of configurations discarded during the 
process (Fig. 24(c)). These tests were performed using an Eclipse 2019-03

framework on a 3.70 GHz Intel(R) Core(TM) i7-8700K machine with 16 
GB of main memory. 

The results in Fig. 24(a) can be approximated by a linear function 
when the number of components of the architecture is increased. Two 
types of executions of the search algorithm are shown. The dashed line 
shows the results when the search has a greedy behavior (g(x) = 0), 
whereas the normal line shows the results for the A* search algorithm 
when the distance function of the heuristics is increased by one for each 
additional component in the architecture (g(x) = 1). It is observed that 

the results obtained for the A* search are always better than the 
execution times obtained from the greedy exploration. 

The data in Fig. 24(b) offer a guarantee of how reliable the process is 
at obtaining at least one solution that has been matched in the functional 
part (there is a trend between linear and logarithmic when the size of the 
architecture is increased). Similarly to the results for the final solution, 
the A* search finds the first functional solution in a better time than the 
search with a greedy behavior. Between the first functional solution and 
the final solution, invalid configurations are discarded, reaching values 
of almost 30 discarded configurations for architectures of 10 compo
nents (see Fig. 24(c)). The number of discarded configurations is greater 
for the normal execution of the search algorithm from a certain number 
of components. This result is due to the higher number of possible so
lutions than the algorithm evaluates to decide if a valid configuration 
has been found; i.e., while a greedy search is exploring paths and nodes 
to find a solution, the search based on an A* algorithm is validating and 
discarding potential solutions. 

The configuration of the Semantic Trader for these experiments is the 
most restrictive, i.e., the matching distance calculated in the algorithm 
must be 0.0 for all parts of the components in the architecture. This 
maximizes the total time to obtain a final architecture, in order to 
validate the process correctly. The highest times are around 0.3 seconds 
for interfaces with 10 components, which are acceptable times because 
mashup UIs do not usually consist of a large number of components at 
once (since these coarse-grained components encapsulate the function
ality of a mini-application). Apart from mashup UIs, the obtained 
execution times are suitable for most of the systems that require 
reconfiguration of architectures at run-time. Nevertheless, these times 
may not be suitable for other environments that require a higher speed 
during the process of adaptation, such as robotic architectures running 
time-critical tasks. 

7. Discussion 

This section discusses the benefits of the approach by analyzing the 
achievement of the proposed research question. Additionally, the 

Fig. 23. Cache strategy to get the candidates by pre-fetching the concrete components..  
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possible threats to validity and the drawbacks are described.  

What representation is appropriate for describing the components and 
architectures managed in our approach? 

Focusing on the specific domain of architectures of coarse-grained 
components that support dynamic changes at run-time, the created 
DSLs provide a specific set of concepts and relations adequate for 
resolving software architectures by applying a trading process. Since 
these languages are also required by the transformation process which is 
part of our adaptation methodology [5,48], we chose to use them in the 
process that is executed after it, i.e., the presented semantic trading 
approach. 

Consequently, the DSLs have been proved to be more than capable of 
describing components and architectures in our approach, but we 

cannot state with certainty that these languages are the most appro
priate representations. In the current state of this research, there is a lack 
of comparison with other languages, such as UML profiles or other 
existing ADLs. The use of better-known languages may not affect the 
performance of the process, but it could be of benefit for improving 
understanding and reuse by the community. 

Can this approach be applied in different domains or scenarios of smart 
architectures? 

The approach can be useful for those types of architectures that meet 
certain specific requirements related to structure, functional definition, 
extra-functional properties, communication and dynamic changes. With 
regard to the last issue, we propose to apply our process to a subset of 
software architectures that need to be adapted or reconfigured at run- 
time, thus requiring a process of calculating new configurations that 
are built conforming to new input specifications, i.e., reference abstract 
architectures. 

From our point of view, this adaptation in general and the resolution 
of new configurations in particular involve a kind of intelligence, even if 
it is considered as a low-level type of smart behavior. During the 
explanation of the context of our approach, we illustrated its application 
to different domains, such as smart cities, smart homes, or user in
terfaces. Moreover, we validated and evaluated our approach with 
mashup UIs, a particular domain of smart architectures. As a conse
quence, we can state that our STAS approach can be applied to different 
smart architectures. 

How can a traditional trading service be extended to calculate the best 
configurations of components? 

Supported by the results of previous research work [18,30], we have 
described how a traditional trading service can be adapted to manage 
component specifications and to calculate component configurations. 
The proposed extension is focused on a new module in charge of 
calculating architectural solutions from a repository of component 
specifications and a target reference architecture. The calculation of 
configurations requires the development of additional functionality to 
select the candidates, calculate the distance from a configuration to the 
pursued solution, evaluate whether or not a configuration is valid for 
resolving the established abstract architecture, and build the concrete 
architecture when a configuration of components has been evaluated. 

The main contribution of this paper is related to the heuristics-based 
generation of configurations. This process is supported by an adapted A* 
search algorithm because it ensures a solution will be found if one exists, 
without having to explore all the possible configurations to find this 
solution. Thus, we proposed an extension of a trading service which 
includes only one type of search algorithm. Although this algorithm can 
be configured to partially modify its behavior (for example to execute a 
greedy search), the generation of configurations can be improved in 
future versions by implementing new search algorithms or different 
heuristics alternatives. 

What is the most important syntactic and semantic information when 
searching for architectural configurations that must be included in a 
component definition and still be considered manageable? 

This research question is resolved by a general point of view in the 
literature, since the functional part of a component is the most impor
tant. Our approach uses complex types for ensuring the semantic 
matching of input parameters and the output value of operations. In 
addition to the functional interfaces, the extra-functional properties are 
essential for ensuring the fulfillment of non-functional attributes and 
QoS features. Due to the previous research work related to COTS com
ponents, we included additional parts in the component definition to 
describe some relevant packaging and marketing information. For 
example, a component included in the abstract architecture to be 
resolved, can be explicitly specified to have been developed by a 
particular contact of an entity or company. 

Fig. 24. Execution times of (a) calculating the final architectural solution, and 
(b) calculating the first functional solutions. Number of configurations dis
carded during the process of calculating the final solution (b).. 

J. Criado et al.                                                                                                                                                                                                                                  

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time. 
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501



With regard to the particular considerations that must be taken into 
account from the point of view of a specific domain, the search process 
and the calculation of the matching between architectures can be 
enriched by determining a set of suitable score metrics related to this 
domain, for example, building a quality model as in the case of our 
application domain of ENIA mashup UIs [54]. 

How can the performance of this search be addressed to get suitable results at 
run-time? 

The search process developed in the STAS approach ensures the 
calculation of a configuration that fulfills the reference architecture (if 
the solution exists and can be constructed from the repository of com
ponents). Furthermore, the execution of the process must be finalized 
within a time that allows the resolution of the architecture at run-time. 
The performed evaluation shows a maximum execution time lower than 
0.3 seconds which is a valid time for our purpose of adapting mashup 
user interfaces. For other domains running time-critical tasks, the 
execution times may not be suitable. In this regard, the selection of our 
approach as a solution for building smart architectures at run-time de
pends on the following trade-off analysis. If the maximum time allowed 
for the resolution of the architecture is greater than 300 milliseconds 
and the number of components is not greater than 10, our proposal is 
valid for these scenarios. However, if the maximum time allowed for the 
resolution is lower than 300 ms, the maximum number of components 
varies. For example, if the time required for the construction of the ar
chitectures is less than 200 ms, acceptable times can only be ensured for 
architectures with 6 components or less. 

The obtained execution times are quite low, but it is noteworthy to 
remark the following two considerations: (a) once the concrete archi
tectural model is constructed, the deployment of the corresponding 
components (thus rendered by the client or the server side) must be 
accomplished; and (b) the resolution process performed by the STAS 
process belongs to a methodology for adapting software architectures at 
run-time in which a transformation phase is executed before the STAS 
process. For this reason, we have optimized the STAS approach to 
minimize the execution times. 

The results cannot assure that the obtained performance is the best 
one possible. For that purpose, we should implement different search 
algorithms or different heuristics alternatives. In our case, we can state 
that our approach ensures suitable results to resolve an architecture at 
run-time. Furthermore, we do not compare the current implementation 
of the STAS process to the previous trading approach presented in [30]. 
The reason is that the previous approach used different heuristics and a 
recursive algorithm with the behavior of an exhaustive search. Never
theless, in our evaluation process, we included the execution times when 
our adapted A* search is configured to be executed in a greedy mode, 
thus demonstrating the better results of our approach. 

8. Related work 

The use of COTS components for building smart software architec
tures is one of the main elements of our proposal. In this construction, 
selection and evaluation processes are considered as key operations 
[61]. An example of work in which these processes are addressed is the 
Off-The-Shelf Option (OTSO) [62]. In such an approach, a hierarchical 
evaluation criteria analyzes the characteristics of the components based 
on other factors such as organizational infrastructure or the availability 
of libraries. In [63], the DesCOTS system proposes a methodology based 
on a quality model which divides up the characteristics of the compo
nents for their evaluation. 

The study presented in [64] evaluated the components and ranked 
them in terms of performance and according to multiple criteria. In [65], 
the authors perform a management of dependencies between compo
nents using goal-oriented models as the basis for component selection. A 
proposal for selecting COTS components in large repositories is 
described in [66]. That approach made use of the ‘integrator’ concept 

instead of mediation or trading services. Unlike our proposal, the ap
proaches mentioned above do not support component selection or 
calculation of configurations at run-time. 

The trading service described in [18] forms the basis of the present 
research work. The paper presented a mediation process for managing 
COTS components and building configurations at design-time. Our 
approach is based on the model proposed for specifying COTS compo
nents, but our regeneration process is designed to build architectures at 
run-time. Apart from [18], there are other possible approaches for the 
characterization of COTS components, such as the proposals described 
in [67] and [68]. Our proposal characterizes and validates components 
and architectures using MBE techniques incorporating semantic infor
mation for their run-time analysis. 

In [69], the authors describe a semi-automatic process for the iden
tification and classification of components which is based on a taxonomy 
and some input semantic information. The work presented in [55] also 
points out taxonomies and ontologies as an option to provide semantic 
information in the process of identifying COTS components. In our case, 
establishing a vocabulary of types that can be used to describe properties 
of the components, makes possible the construction of a classification 
such as a taxonomy of types or an ontology of synonyms. More recent 
research work is also related to the use of ontologies for querying 
coarse-grained components [70]. ONTOCOTS is an ontology-based 
recommender system which uses the Analytic Hierarchy Process 
(AHP) to rank COTS components when a new query process is executed. 
However, such a process was intended to help developers find the 
components for software development, and hence is not suitable for 
adapting architectures at run-time. 

Software component reuse mechanisms can be applied to web ser
vices, since both artifacts encapsulate its implementation and expose it 
through interfaces [71]. In this regard, approaches related to the se
lection of web services can be used to improve the selection of compo
nents, for example, by considering non-functional features [72]. 
Furthermore, discovery mechanisms related to web services can be 
applied to get software elements based on functional and non-functional 
requirements by using a keyword as an input [73]. In the web services 
domain, semantic information can be used to improve the selection and 
discovery operations mentioned [74]. Our proposal is inspired by such 
approaches that adapt certain web service mechanisms to COTS 
component trading, for instance, simplifying the discovery of candidates 
using a keyword to filter components with a pertinent specification. 

With regard to the construction of architectural configurations, al
gorithms based on heuristic functions are a suitable option for the 
exploration and evaluation of possible solutions [75]. Nevertheless, 
these types of algorithms are general-purpose searching operations, 
usually applied to the calculation of paths and trajectories [57]. In our 
case, a generic A* search algorithm [31,32] was adapted for optimizing 
the process and incorporating specific operations which enable the 
evaluation and construction of architectural solutions at run-time. 

Other approaches are specifically focused on the composition and 
adaptation of software architectures by applying other heuristics-based 
search processes different from the one proposed in this article. For 
example, an optimization is applied in [76] to select the system archi
tecture from a finite set of candidate components that better fulfill the 
required attributes. Such a process uses a mixed approach of meta
heuristics search techniques relying on the SCA-ASM service-oriented 
component model [77]. In this sense, the application of heuristics in 
these types of processes requires the specification and matching of 
functional and non-functional aspects for the correct calculation of the 
scores for each possible configuration of components [78]. 

The correctness of these types of search and optimization processes 
based on heuristics (e.g., Depth First Search, Best First Search, A*, etc.) 
and metaheuristics (e.g., Tabu Search, Variable Neighborhood Search, 
Guided Local Search, etc.) is accepted as a valid solution in the literature 
for the construction of component-based systems which requires a 
combinatorial analysis of their configurations [79,80]. The main reason 
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for adapting an A* search is that it always finds a solution if one exists 
and keeps the best solution at all times for the execution of the algo
rithm. The configuration of heuristics h′

(x) and distance g(x) is used for 
adapting its behavior to the specific domain of our abstract and concrete 
architectures. Furthermore, A* can be adapted and executed like other 
path-finding algorithms by changing the heuristics it uses and how it 
evaluates each node. For example, as we have stated in this paper, the A* 
algorithm can be executed as a greedy search by setting g(x) as equals to 
0.0 [81]. 

9. Conclusions and future work 

This paper presented STAS, an approach for resolving software ar
chitectures at run-time by applying semantic trading. This process is 
responsible for building architectures represented on a concrete level (i. 
e., architectural solutions) from architectures described on an abstract 
level (i.e., architectural definitions) and a set of available components. 
Such architectures on two levels of abstraction are an appropriate way to 
describe different domains and scenarios and to enable their manage
ment (research questions RQ1 and RQ2). The proposed trading service 
manages the specifications of components and architectures and also 
calculates the best configurations of candidates. This calculation extends 
a traditional trading service to enable the construction of a software 
architecture from a reference specification (RQ3). 

The calculation of configurations is supported by an adapted A* 
search algorithm. The greedy mode of this algorithm could explore the 
entire search space by analyzing all the combinations of candidate 
components. It ensures the best configuration among all the possible 
solutions is always found but it results in worse execution times if there 
is a large amount of candidate components to be combined. For this 
reason, our adapted A* search algorithm includes a set of operations to 
find the optimal solution without evaluating the entire search space. The 
proposed search process based on the A* algorithm enables the gener
ation of configurations in a suitable time to build software architectures 
at run-time. To do this, the search space is represented by a graph and 
each node describes a configuration of components. As such, the optimal 
solution is the simple path that starts from an initial component and ends 
in the configuration formed by the components that best fulfill the ab
stract definition of the architecture (RQ5). Furthermore, the trading 
service makes use of semantic and syntactic information about the 
components to (1) select the candidates, and (2) evaluate the possible 
configurations with a heuristic relying on this information (R4). 

The application domains of the STAS approach are smart scenarios 
that can be developed and deployed as coarse-grained architectures. We 
focus on this kind of architecture because our proposal is valid in terms 
of building configurations of less than twenty elements, together with 
the fact that smart scenarios are a good target to execute dynamic 
reconfigurations on their architectures. We have validated and evalu
ated the approach with a case study applied to the domain of mashup 
UIs, as an example of these types of architectures. 

Some research lines remain open as future work. We plan to improve 
the performance of the semantic trading process in general and of the 
search algorithm in particular. Examples of this could be parallelizing 
part of the execution or incorporating new techniques of heuristics and 
metaheuristics to calculate the distance between components and ar
chitectures. Furthermore, we plan to develop a mechanism to facilitate 
the management of component types, as well as input and output types 
of the operations. We should develop a set of metrics related to the 
composition of components for those scenarios in which the establish
ment of a specific hierarchy is needed. In addition, execution times 
should be improved for domains requiring a faster response time. We 
plan to apply our approach to the IoT scenarios that we are developing in 
the field of smart cities [39,82]. Finally, the evaluation results could 
include an analysis based on the opinion of users to improve the vali
dation of the approach. 
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