
Heuristics-based mediation for building smart architectures at run-time

Javier Criado *, Luis Iribarne , Nicolás Padilla
Applied Computing Group, University of Almería, Spain

A R T I C L E I N F O

Keywords:
Dynamic software architectures
Heuristics
Trading
A* search
Model-based engineering

A B S T R A C T

Smart architectures are increasingly being used in current software development. Smart user interfaces, smart
homes, or smart buildings are becoming common examples in the new era of smart cities. Software architectures
usually related to these domains need to be adapted and reconfigured at run-time, for example, to provide new
services, react to user interaction, or due to changes decided from the business logic of the application.
Component-based techniques are a suitable way to carry out this kind of adaptation, as dynamic reconfiguration
operations can be applied to the architecture. In this paper, we address run-time generation of component-based
applications, taking the abstract definitions of their architecture as a reference, in addition to a set of available
components. The process calculates the best configuration of components from the abstract definition by
applying a trading approach based on an adapted A* algorithm. This algorithm uses heuristics based on syntactic
and semantic information obtained from the component definitions. A case study related to mashup user in
terfaces formed by coarse-grained components is also explained. In short, the results show the usefulness of
heuristics and suitable execution times for building the best configurations.

1. Introduction

Smart Cities is a trend-setting research domain that is changing
software design, implementation and use. There are many initiatives in
related topics, such as service management, data access, application run-
time, configuration tools, and so forth, but many open issues still present
opportunities for research [1]. One of them is related to their dynamics,
since these types of systems tend to change, evolve, adapt to users, be
scaled up, etc., and therefore requires flexible management of their
structure and behavior [2].

Component-Based Software Engineering (CBSE) has long been
considered an appropriate option for dealing with smart environments,
for example, by applying component models to integrate heterogeneous
applications, or using component interface standards to describe each
piece of a system. Today, this technology has regained strength [3] for
solving certain problems that arise in emerging smart environments
such as mashups [4,5], smartphones [6], smart homes [7,8], smart
buildings [9], or smart cities [2]. Furthermore, component-based
development is being applied in certain recent solutions related to the
Internet of Things (IoT) [10,11] and the Web of Things (WoT) [12,13].

CBSE provides mechanisms for constructing applications by joining
and connecting pieces. Some component-based software systems need to
be able to dynamically manage elements of the applications, for

example, to change structure, adapt behavior or modify functionality. In
such cases, the components are used for constructing software applica
tions at run-time, as well as during design and construction. Components
are used this way when applications are generated and adapted at run-
time. As such, the most appropriate elements are selected from a set of
available components at the time of adaptation. These mechanisms are
used in software architectures that can be reconfigured by changing
their structure and behavior, which are known in the literature as ar
chitectures of smart environments or smart architectures [1,2,14]
regardless of whether the scope of application is smart cities, IoT systems
or other such domains that require adaptation features.

The selection of components involved in this type of adaptation re
quires accessible repositories which can be inspected and queried to
calculate the best possible configuration. Furthermore, these re
positories might not remain static over time, since their components
may be modified, either because existing components are deleted or due
to the insertion of new resources (i.e., new components). Therefore, the
selection process does not always generate the same solution from the
same input, as the result depends on the components existing in those
repositories (among other factors).

Component repositories can be stored locally (managed internally by
an organization), or if intended for public use can be shared by different
organizations. Management of the repositories (queries, insertions,

* Corresponding author.
E-mail addresses: javi.criado@ual.es (J. Criado), luis.iribarne@ual.es (L. Iribarne), npadilla@ual.es (N. Padilla).

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

mailto:javi.criado@ual.es
mailto:luis.iribarne@ual.es
mailto:npadilla@ual.es
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2020.103501
https://doi.org/10.1016/j.csi.2020.103501
https://doi.org/10.1016/j.csi.2020.103501
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2020.103501&domain=pdf

deletions, etc.) may therefore come from different sources. This is the
usual scenario in systems with applications constructed using compo
nents developed by third parties, such as Commercial Off-The-Shelf
(COTS) components [15]. These repositories make up the existing
component market that software is built from.

These component repositories can be managed like a service direc
tory, which can be accessed by certain entities for offering services, and
by other entities to make use of the available services. Trading tech
niques [16] are useful for facilitating execution of service export and
import operations. Traditional trading approaches enable services to be
discovered from service type definitions to solve an input specification,
for example, by evaluating similarity [17]. Thus, trading mechanisms
can be used to build component-based architectures from a reference
architectural definition [18]. However, traditional mechanisms only
focus on syntactic comparison of functional interfaces, and do not
perform a semantic analysis of the interfaces (or other component
parts).

Modern trading and service discovery [19] approaches are not
limited to solving the functional requirements and capabilities of a
target architecture, because in some cases, functional and
non-functional information must be combined to calculate the best
component configuration [20,21]. Moreover, from an industrial point of
view, current and mature technologies related to distributed systems
(such as Eureka, confd, etcd, Consul or Zookeeper [22]) support the
implementation of service discovery operations that can be enriched
with semantic information and improved with custom solutions [23,24].
As a result of the above, a trading approach to component management
should take both component definition syntactics and semantics into
account.

CBSE has been integrated into another kind of approaches apart from
service-oriented applications [25], such as Mode-Based Engineering
(MBE) [26]. This paradigm facilitates and supports the design, con
struction, deployment and reuse of software architectures, even more so
in heterogeneous systems [27]. The use of Domain Specific Languages
(DSLs) and other modeling techniques can be applied to formally
describe the structure and behavior of the architectures or to generate
the corresponding source code [28]. Furthermore, not only component
descriptions and services can be achieved by using such models, but also
the guidelines for designing different areas related to them, such as
discovery or registration [23].

This paper presents STAS (Semantic Trading for smart Architectural
Scenarios), a new version of a trading service based on semantic infor
mation for selecting components, evaluating their combination, and
then constructing the software architectures with the best configura
tions. It therefore extends the traditional trading services applied in
distributed processing by using CBSE to encapsulate the coarse-grained
components that form part of the architecture, while benefiting from
MBE to carry out the formal definitions and abstractions of both com
ponents and architectures. Furthermore, it executes a search algorithm
to calculate the best component configuration, thus checking how well
an architectural definition and each combination of components
considered a possible solution match. Thealgorithm uses heuristics
based on syntactic and semantic information described in
eachdefinition.

The following research questions are addressed:

• (RQ1) What representation is appropriate for describing the com
ponents and architectures managed in our approach?

• (RQ2) Can this approach be applied in different domains or scenarios
of smart architectures?

• (RQ3) How can a traditional trading service be extended to calculate
the best configurations of components from a reference target
architecture?

• (RQ4) What is the most important syntactic and semantic informa
tion when searching for architectural configurations that must be

included in a component definition and still be considered
manageable?

• (RQ5) How can the performance of this search be addressed to get
suitable results at run-time?

The STAS trading service proposed is part of a methodology for
adapting software architectures at run-time [5,29], and there is back
ground research related to the definitions of components and architec
tures used as part of the fundamentals of our approach (RQ1). From
these fundamentals, we can extract the prerequisites a scenario should
have to be targeted by our methodology (RQ2). For RQ3, we studied
whether a trading service could be adapted to build configurations of
components at run-time. Then, we proposed new modules to generate
these configurations by taking into account different conditions, such as
the compliance of the architecture or the heuristics related to the com
ponents’ properties. The new trading service and its modules are based
on our previous research work [30]. To address RQ4, we developed an
adapted A* version of the search algorithm used to calculate the con
figurations. This takes into account a set of properties related to syn
tactic and semantic information to score each possible solution. An A*
algorithm ensures that the optimal solution is found, which takes the
form of a simple path in a graph without evaluating the entire state space
[31,32]. As such, our adapted algorithm creates a graph with nodes
representing a combination of components during the calculation of the
best possible configuration at run-time (RQ5). Research questions RQ4
and RQ5 are also addressed in a case study related to a specific scenario
of smart architectures (mashup UIs) in which the best configurations are
calculated from an input architecture and a set of available components.

The remainder of this article is organized as follows. Section 2 pre
sents the context and fundamentals of our approach. Section 3 describes
the semantic trading process developed for generating architectures at
run-time. Section 4 explains the heuristics-based generation of config
urations. Next, Section 5 gives the most relevant aspects about the
implementation of the proposed semantic trader. Section 6 evaluates our
approach in a component-based user interface scenario. Section 7 dis
cusses the contributions with regard to the research questions. We re
view the related work in Section 8 and, finally, Section 9 outlines the
conclusions and summarizes future work.

2. Real industrial context of smart architectural scenarios

Smart architectures are the structures (components, relations and
properties) of a special type of component-based software that adapts its
behavior depending on changes in the context. As mentioned above,
reconfiguration of architectures enables this adaptation since compo
nent replacement and reconnection involve changes in the resulting
software. However, component management and the calculation of new
architectural configurations are not such simple tasks. Trading services
can be used to manage component publication and search, thus allowing
multiple implementations of real components related to the same
component type. This enables to have multiple possible architectural
solutions starting from a common initial architecture and from a change
produced in the context information.

The semantic trading process proposed in this article is part of a
methodology for run-time adaptation of software architectures in two
main steps (see Fig. 1). First, transformation, which adapts the abstract
representation of the architectures that define the software structure in
terms of coarse-grained components [5], i.e., it adapts the models which
contain the architectural definitions by inserting new components, de
leting elements or modifying connections in the architecture. Second,
semantic trading (STAS) resolves the architectural solutions with refer
ences to real components from the architectural definitions obtained in
the previous phase. This second process is the focus of this article, but it
requires some background knowledge for it to be properly understood.

The software architecture shown in Fig. 1 is a short example which
takes a closer look at this methodology. Suppose a user interacting with

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

an application composed of the following widgets: three maps, a clock
and a social network. Then, due to a certain change in the context (e.g.,
the user triggers an event to remove the information not related to the
maps), the transformation process removes two components (clock and
twitter). Next, the STAS selects the best configuration of real compo
nents that best resolves the abstract level architecture. As a result, c1 and
t8 are removed, map s6 replaces s7, w4 replaces w3, and r5 is not modi
fied. Finally, the adapted web application is deployed from the archi
tecture built. Although Fig. 1 shows an overall view of the methodology,
this paper does not address transformation or deployment and visuali
zation of final applications. Nevertheless, this section describes (1) the
principles that must be taken into account for our methodology to be
applied, (2) the models managed by the whole approach, and (3)
transformation, since it is the step before semantic trading.

2.1. Prerequisites of the methodology

The methodology developed for adapting component-based software
systems is intended to be applied to different domains. Accordingly, the
following conditions must be taken into account for constructing ar
chitectures that can be targeted by our proposal:

(a) Components must be described by a specification which in
cludes functional and extra-functional information. Both parts
are used in calculating the architectural configurations.

(b) Component specifications must be stored in repositories and
retrieved at run-time. Third-party developers can use these re
positories to publish new components, as in COTS approaches.
Consequently, architectural solutions depend on the architectural
definitions and components available in the repositories.

(c) Platforms targeted for the deployment of the architectures must
allow dynamic changes. The architectures must therefore be

precompiled or interpreted so that their parts can be reconfigured
at run-time.

Some of the possible application domains of this approach are smart
home environments [33], smart TV applications [34], smart cities [35],
communication networks [36], fine-grained user interfaces [37], or
mashup user interfaces [38]. Even though the methodology was devel
oped following a generalist approach, it is now being tested in the do
mains of smart home applications [39] and mashup UIs [5].

In the domain of smart homes, an installation made up of different
devices can be developed as an architecture of components that
communicate with each other. Fig. 2 shows an example of a smart home
application we developed [39], which includes a TV, speakers, and a
window with magnetic sensors. In addition, a smart watch measures the
heart rate of one of the residents. The right-hand side of Fig. 2 shows the
architecture of the application at a given moment. In this configuration,
one software component shows the user’s heart rate on the smart watch.
The TV is managed by an isolated component and an actuator receives
the signal from the sensor, sounding an alarm on the speakers that the
window is being opened. This is only an example of the possible con
figurations, since the TV or the smart watch could also be connected to
the actuator to show alarm events, and so on.

A mashup UI is a particular type of Graphical User Interface (GUI)
operating in a web environment which is built by assembling coarse-
grained components. Fig. 3 shows an example of a mashup UI from
our previous research work as described in [5]. This client application is
part of a Geographic Information System (GIS) and offers maps, histo
grams, pie charts, legends for information layers and social-network
components, among others. The system was developed as part of the

Fig. 1. Methodology for adapting software architectures at run-time.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

ENIA (Environmental Information Agent) research project and the cor
responding user interface is available online1.

One of the main reasons for choosing this application domain is the
presence of component dependencies. For example, the Histogram and
Map components in Fig. 3 are dependent on each other. The first
component shows some information related to the second one, and as a
result, the histogram cannot operate properly without the map. Simi
larly, the Social component is connected to the Header component
because it depends on it for information about the user. Components
may also be isolated and have no relationship with any other
component.

2.2. Models involved

From the MBE perspective, our semantic trading process uses four
types of models to define abstract architectures, concrete architectures,
abstract components and concrete components. Abstract and concrete
concepts are related to the Cameleon reference framework [40]. In this

framework, UIs have four possible representation levels: task and
concept, abstract, concrete and final. The task and concept level is related
to the Computation Independent Model (CIM) of the Model-Driven Ar
chitecture (MDA), the abstract level corresponds to the Platform Inde
pendent Model (PIM) and the concrete level correlates with the Platform
Specific Model (PSM). The final level represents the real software which
is executed or interpreted.

We developed our methodology based on the levels mentioned
above, but extending it to any software architecture complying with the
prerequisites. Moreover, the concrete architectures are not built by
executing a model-to-model or a model-to-text transformation, but by
STAS actions and algorithms. The abstract level therefore identifies what
should be present in the architecture, whereas the concrete level defines
real objects forming part of an architectural solution (for an in-depth
description of these levels see [5] and [29]). Both types of architec
tures (abstract and concrete) are described using the Domain-Specific
Language (DSL) shown in the metamodel in Fig. 4. Metamodeling or
the construction of a UML profile are the two classical approaches for
defining a domain-specific modeling language.

Our approach uses a new language instead of a UML profile with
annotations for non-functional properties. This is because we pursued

Fig. 2. Example of a smart home application [39].

Fig. 3. Example of a mashup user interface [5].

1 ENIA Mashup UI – http://acg.ual.es/enia/ui

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

http://acg.ual.es/enia/ui

the definition of a closed abstract syntax with a specific set of classes,
properties and relations between them [41,42]. Other Architecture
Description Languages (ADLs) could be also used in our approach (such
as AADL, ACME, Darwin, etc.), but due to our application of MBE
techniques for adaptation and reconfiguration purposes, we required an
MOF-based description language and we chose to build a new language
instead of adapting an existing one to our requirements [43,44].

Abstract Architectural Models (AAM) are used for describing the
components present in the architectures and how they relate to each
other through the dependencies between functional interfaces. Provided
interfaces define the services offered by a component, whereas required

interfaces represent the services that a component needs (i.e., func
tionality not belonging to the component and which must be accessed)
to operate properly. Concrete Architectural Models (CAM) include the
above information (derived from the inheritance relationship), but also
describe the relationships between components in terms of ports and
connectors.

Ports and connectors are defined with regard to communication
between components. The mechanism for invoking the operations
described in a provided interface is as follows. Each operation is
accessible through one input port. Operations which return information
are also defined with an output port. In required interfaces, the

Fig. 4. DSL for describing architectures in abstract and concrete levels.

Fig. 5. Differences between an abstract architectural model (AAM) and a concrete architectural model (CAM).

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

representation of the operations is the opposite. Required interfaces
have an output port to invoke the corresponding operation in a com
ponent’s provided interface. In addition, operations which return data
are also defined with an input port. Fig. 5 shows an example of an ab
stract architectural model and a feasible concrete architectural model
related to the abstract definition. The correlation (and the differences)
between the two models can therefore be seen.

The functionality of component B, defined in the AAM, is resolved by
component B5 in the CAM. More specifically, the provided functional
interface labeled b in the AAM corresponds to functional interface b in
the CAM. Nevertheless, the provided interface in the CAM includes one
more operation than the abstract definition. From the perspective of
ports and connectors, the operation labeled method1 involves the pres
ence of corresponding input and output ports, since the operation
returns information. The operation labeled method2 is defined using
only one input port because no data is returned.

The metamodel shown in Fig. 6 specifies the DSL used to describe the
components contained in abstract and concrete architectural models. On
one hand, an abstract component specification defines the set of features
that a software component must include (i.e., similar to a component
type). On the other, a concrete component specification describes the
characteristics of a real software component (i.e., already implemented).
As described above, abstract and concrete component concepts are
matched to the ‘service type’ and ‘service’ concepts, used in distributed
processing. The proposed metamodel was inspired by existing models
for describing web services [45] and COTS [18].

In our approach, both abstract and concrete component definitions
are divided into four parts: functional, extra-functional, packaging and

marketing. The functional part describes functional features of pro
vided and required interfaces. Each functional interface is defined using
the Web Services Description Language (WSDL) standard syntax [45].
This language was chosen because it enables correspondence between
the portType concept in WSDL 1.1 (interface in WSDL 2.0) and the
functional interfaces of the abstract and concrete components to be
established. Furthermore, operations, as well as input and output types,
can be defined in the syntax of this language. Thus, each interface is
composed of a set of operations, and each operation consists of an input,
and optionally, an output. Both the input and output can be made up of a
set of elements, which are described by a name, a type and also multi
plicity. With this WSDL-based structure, interfaces can be defined in this
language format. In such cases, a translation from this code to the cor
responding model fragment is necessary by extraction or text-to-model
transformation [46].

The extra-functional part of the specification describes the prop
erties which are not defined in the functional part. That means this block
contains any property other than the operations provided or required,
including non-functional attributes and quality of service (QoS) fea
tures. Each property defines an attribute and the corresponding value an
abstract component must have, or a concrete component implements.
Component dependencies are also specified in this block. Each de
pendency determines which of the required interfaces are mandatory
and must be resolved in an architecture to work properly. In our
approach, required interfaces may or may not be mandatory. A non-
mandatory required interface may remain unsolved, and the compo
nent will work. As such, required interfaces not included as de
pendencies participate in terms of complementary component

Fig. 6. DSL for describing components on abstract and concrete levels..

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

functionality.
In addition to the functional and extra-functional information,

packaging and marketing data are valuable for characterizing com
ponents. Although such information is non-functional and could be
included in the extra-functional block, it is described in two separate
parts. Packaging defines certain information about the implementation
and location of a component. Regarding implementation, a component
can describe the programming language and the target platform type,
and with regard to location, a specification can define information about
the repository which stores the component. In addition, information
about the URI and version can also be defined. The latter is only valid for
concrete components, since an abstract component cannot specify this
kind of data. Marketing includes information about the entity devel
oping the component and organization contact information. An example
of a concrete component instance is available on the project website2.

There are some differences in the multiplicity and mandatory nature
of some parts and attributes regarding the specifications of these two
types of components. For example, the instantiation of the packaging
and marketing blocks is mandatory in the case of concrete components,
whereas they are optional in abstract components. These kinds of syn
tactic constraints are checked and validated using the Object Constraint
Language (OCL) [47].

2.3. Transformation step

As mentioned, a transformation step related to the abstract level of
the architectures, i.e., the AAM, is necessary before the STAS can be
applied. This process consists of a model-to-model (M2M) trans
formation [46] to refactor an AAM at a specific point in time depending
on three inputs: (a) the initial model, (b) the context information, and (c)
a repository of M2M transformation rules. Fig. 7 shows an example of
this transformation in an initial UI containing a map, a social media
widget and a header component. Due to a change in the context (e.g.,
user interaction, proactive configuration, a system decision determined
by the business logic, etc.), transformation adds a new component,
namely a histogram showing geospatial information related to the map.

The M2M transformation is the first stage performed by the meth
odology. This is a flexible and smart process, and therefore, the model
transformation in each adaptation step is not fixed or pre-set. Each
transformation is dynamically built up from a repository of rules, thus
providing a powerful mechanism for modifying and improving the
adaptation logic. More details about the transformation stage are
described in [5,48] and additional resources related to the fundamentals
of our approach are available on the project website3. Summarizing, the
transformation process is as follows. A set of adaptation rules (see M2M
rules in Fig. 7) is used to change the structure of the component

architecture and their connections. Depending on the context informa
tion and the initial software architecture, this process selects a subset of
transformation rules in the ATL language [49] and a new M2M trans
formation is built for adapting the architecture (i.e., the architectural
model). The transformation provides an adapted architecture, but its
representation is still on an abstract level. The second stage of the
methodology regenerates these abstract architectures. The best config
urations of concrete components for this are calculated in the STAS
trading process.

3. Semantic trading at run-time

This section explains our semantic trading approach (the second step
in the background methodology). First, the concept of trading for
managing architectures is introduced. Following this, the use of the
semantic information for trading is defined. Finally, the search algo
rithm for building component configurations at run-time is described.

3.1. Trading in software architectures

Mediation, or trading, is a well-known mechanism for searching re
positories of services and locating the most appropriate operations for a
specific input contract [50,51]. There are some proposals in the litera
ture addressing the use of such mechanisms for managing software
components (in particular, third-party or COTS components) and
assisting in the construction of software architectures at design time [18,
52,53]. However, it must be possible for the trading process to manage
the architectures in our methodology to be executed at run-time. This is
because component configurations must be calculated dynamically
when changes occur in the execution context. Accordingly, the proposal
should deal with some time-related aspects. The main features of this
process are described below.

Proper handling of the specifications describing each of the elements
involved in the process is an essential part of component and architec
ture management. As such, the object responsible for mediation (i.e., the
trader) should be able to: (a) find components based on input parame
ters, (b) add/modify/delete component specifications, and (c) provide a
mechanism for configuring the execution policies. These three main sets
of features are related to the implementation of the functionality spec
ified by the (a) Lookup, (b) Register and (c) Admin interfaces in the
reference model of distributed processing [16].

A trader implementing the three interfaces above is known as a
standalone trading service. Our approach uses a trader of this type, but it
extends the functionality of traditional approaches. The purpose of
existing trading functions is to manage repositories of services and ser
vice types with regard to export and import operations. Consequently,
producer objects publish their services in the trader and consumer ob
jects query the trader to obtain information about available services.
Similarly, our methodology uses a trading service to manage compo
nents and component types. Component types correspond to abstract
components, whereas components are equivalent to concrete ones.

The proposed trading service provides a variety of features for

Fig. 7. Transformation example.

2 Examples of components – http://acg.ual.es/projects/cosmart/stas/
models/

3 STAS approach (CoSmart project) – http://acg.ual.es/projects/cosm
art/stas/

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

http://acg.ual.es/projects/cosmart/stas/models/
http://acg.ual.es/projects/cosmart/stas/models/
http://acg.ual.es/projects/cosmart/stas/
http://acg.ual.es/projects/cosmart/stas/

handling the abstract and concrete component repositories (Repositor
yHandler). In addition, it implements the functionality needed to
manage the three interfaces of the standalone service (InterfaceHandler).
Moreover, the service proposed extends this functionality by incorpo
rating a module called Configs, which has the following features. First,
candidates are selected by semantic matching of functional interfaces.
Second, configurations are generated using a heuristic to find the best
combination of components based on established criteria. Thus, a Se
mantic Trader for regenerating concrete architectures at run-time is ob
tained. The left hand side of Fig. 8 shows the proposed trader, which has
the following functionalities:

(i) Obtain the set of component specifications meeting certain DSL
values (Lookup).

(ii) Manage component specifications with create, update and delete
operations (Register).

(iii) Calculate configurations of concrete architectures from abstract
architectures at run-time (Configs).

(iv) Configure the number of component specifications returned by
the operations of the Lookup module (Admin).

(v) Define the maximum time permissible for building the concrete
architecture that is chosen as the best solution for an abstract
definition (Admin).

(vi) Modify the configuration of matching performed when con
structing the concrete architectures (Admin).

Once the trader object is designated, the objects with exporter and
importer roles must be identified (see the right side of Fig. 8). Exporters
are objects adding, modifying or removing specifications of components
in the system. As a result, this role is played by any organization using
the methodology, because it needs to manage the components in the
repositories. In addition, third-party organizations involved in compo
nent development also act as exporters. However, objects that need to
query and retrieve the components available in the repositories operate
as importers. In this methodology, semantic trading (also called regen
eration) itself operates as an importer. In particular, operations in the
Configs module are importer objects, since they obtain the information
needed to generate the component configurations and build the archi
tectural solutions.

3.2. Semantic trading

As mentioned above, component functional interfaces (both abstract
and concrete) are described in WSDL which, in general, is one of several
possibilities for defining interfaces and, in particular, can be used as an
Interface Description Language (IDL) to document COTS components, in
particular. Thus, existing component models for describing COTS com
ponents make use of syntactic and semantic features to define their
functional interfaces [55]. Syntactic information is therefore related to
the way an interface is described, i.e., the attributes and operations that
comprise its definition. One possible solution for semantic information is
to define each individual operating behavior.

This behavior is traditionally represented in formalities, such as
algebraic equations, pre/post conditions and invariants, to provide
detailed information about when an operation should be executed or
what the state of the component is after its execution. Furthermore, such
information is usually expressed in languages that can be analyzed
automatically by software. However, the computation times necessary
for management of potential interface matching together with incorrect
combinations (mismatching) [56] suitable for the analysis of configu
rations at design time are inadmissible for building configurations and
generating architectures at run-time.

Our semantic trading approach is based on the assumption that the
possible types which can be used to describe operation inputs and out
puts are limited. Accordingly, we created a namespace that groups all the
possible types, identified as trader:typeName. These types are
described using an XML schema , and referenced from the definition of
interfaces, contained in a WSDL file or in the corresponding fragment of
the model containing the specification of the component (see
WSDLSpecification in Fig. 6). These types are equivalent to complex
data types that provide information about: (a) the name, the type and
the multiplicity of the elements in the complex data type, and (b) the
operations using this data type and whether it is used as input or output.

A type definition can be illustrated with the following example. An
operation called loadLayer is part of the manageLayers interface on
the component map, as shown in Fig. 9 (chosen from the mashup UI in
Fig. 3). This operation enables the map to load geospatial information so
it can be displayed as a visual layer. As input, this operation requires a
parameter with the location of the service providing the geospatial data,
and another with the identifier of the layer to be selected from the
service. A complex type, trader:loadLayer, composed of two

Fig. 8. Proposed trading service and its use in regenerating architectures.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

elements is therefore defined: (1) layerID, which is an attribute of the
String type; and (2) serviceOGC, which is an attribute of the anyURI
type (see lines 15–20 in Fig. 9). As output, it returns a boolean value
indicating whether the operation has been executed successfully.
Accordingly, the complex type trader:loadLayerResponse,
composed of this boolean element is also defined (lines 21–25).

Definition of new complex types makes it possible to identify all the
operations that match a description, as shown in the example above. As
such, interfaces can be matched by using the semantic information
related to operation input and output. An example of two equivalent
interfaces is shown in Fig. 10. The names of interfaces and operations do
not match, but they can be paired by operation type. In both interfaces,
there is a layer loading operation and another one for removing them,
and their semantic description is the same as indicated by the input and
output types.

The set of types defined conforms to a vocabulary of types used for
managing synonyms during regeneration. This represents a limitation
on the use of any type of data as input or output of the operations, since
developers must know the types that exist before attempting to build the
components. Nevertheless, this is a suitable solution for comparing
components at run-time, taking semantic information about their func
tional interfaces into account. Note that this matching does not perform
any calculations related to the operation execution order. This order is
inherent in the business logic that implements each component, and the
choreography of the operations is assumed to be carried out correctly. In
addition to the description of interfaces, semantic information is present
in the evaluation of components and architectures used in the search
algorithm heuristics, as seenbelow.

3.3. Generating configurations

As mentioned above, one of the main functionalities of the semantic
trader is construction of concrete architectures from abstract definitions.
The Configs module calculates the best possible configurations of the
concrete components available in the repository and verifies that they
meet the requirements established in the abstract architecture. The
module developed for generating the configurations includes an adapted

A* algorithm and therefore limits the search space, always ensuring the
best possible solution within the configurations analyzed. This module
performs the following steps:

(a) Select candidates. This operation is used to select (from the
repository of concrete components) candidates to be included in
the architecture. It checks which concrete components have at
least one provided interface in common (i.e., that can be
matched) with the set of provided interfaces in the abstract ar
chitecture. Interface matching is carried using the semantic
operation information, so two operations are considered equiv
alent if they have the same input and output types. The required
interfaces and the rest of the information in the component
specifications are not taken into account in this selection.

(b) Calculate configurations. In this operation, the different con
figurations that could be a solution of the abstract architecture
are calculated from all the possible combinations of the candi
dates. Since this is a highly complex operation which cannot be
performed at run-time, some limitation mechanisms must be
included in the algorithms in this step. A configuration is
considered a possible solution if it contains all the provided in
terfaces in the abstract architecture, and may also include any
additional interfaces.

(c) Closure of configurations. This operation is performed from the
configurations considered possible solutions. The goal is to filter
out incomplete solutions. A configuration is considered incom
plete when at least one of the components requires a component
in addition to those defined in the abstract architecture. In such
cases, the configuration is not closed.

(d) Compliance of configurations. As in the case of closed config
urations, this operation is applied to configurations that are
considered possible solutions. This process discards those config
urations which do not comply with the structure established by
the abstract architecture, in other words, that have de
compositions or group elements that differ from the abstract
definition.

Fig. 9. WSDL specification of an example interface.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

(e) Apply the heuristics. This operation scores each component
configuration. Depending on the purpose, this score can be
calculated from a configuration of components which may or may
not be a solution of the abstract architecture. The targeted con
figurations therefore include those combinations of components
consisting of partial solutions. This step relies on the guarantee of
being able to determine a set of suitable score metrics related to
the different software architecture domains [54].

(f) Build the concrete architecture. Once the configuration of
components that best matches the abstract architecture has been
selected, the Configs module constructs the concrete architectural
model. This model is used to deploy the final software
application.

In the following definitions, components and architectures are
simplified to emphasize the functional part. To this end, a formal defi
nition of the main operators used in the proposal is provided below for
Component, Closure, Replacement and Compliance.

Definition 1. (Component) A component C can be described as C =
(R ,R), where R is a set of provided interfaces and R is a set of required
interfaces. Therefore, C.R represents the component’s provided
interfaces.

In a similar way, the expression AAM.R represents the provided
interfaces of an abstract architecture, whereas AAM[i].R identifies the
provided interfaces of the i-th component. The closure of configurations
will discard these configurations having one or more required interfaces
which are not provided by any other component.

Definition 2. (Closure) A configuration is closed if it fulfills the
expression ∪ Ci.R ⊆ ∪ Ci.R , i.e., the union of all the required interfaces
is included in the union of all the provided interfaces. It is important to
note that the subset operator (R 1⊆R 2) means that for all interfaces
from R 1 (Ri

1 ∈ R 1) exists an interface in R 2 (Rj
2 ∈ R 2) and Ri

1 can be
replaced by Rj

2.

An interface can be replaced by another one if both offer the same
services. In this sense, if an architecture is closed, all the required in
terfaces are provided by a certain component of it. The compliance of
configurations will discard these configurations with a different struc
ture with regard to the abstract definition.

Definition 3. (Replacement) A component C1 = (R 1,R 1) can be
replaced by another component C2 = (R 2,R 2), denoted by C2⩽C1, if
(C1.R 1⊆C2.R 2) ∧ (C2.R 2⊆C1.R 1).

Definition 4. (Compliance) Let’s suppose an abstract architecture
defined as AAM = {A1,A2,… An} and a configuration of a possible
concrete architecture defined as CAM = {C1,C2,… Cm}, we established
that CAM is compliant with AAM if ∀i ∈ {1.m},

∀j ∈ {1.n} • Ci.R ∩ Aj.R ∕= ∅⇒(Ci⩽Aj) ∧ (Aj⩽Ci).

This means that component C2 provides all the services (it can in fact

provide more) offered by component C1, and it requires the same ser
vices (and if need be less services) from other components. The
constraint of compliance has been established to obtain a configuration
with components that conform to the abstract specifications as well as
match the structure defined in the AAM.

To make it easier to understand closure and compliance, Fig. 11
shows an example of an abstract architecture and four possible solu
tions. The four configurations of concrete components are not all suit
able for building the concrete architecture as a process output. The
configurations that would result in CAM1 and CAM3 being acceptable,
whereas CAM2 and CAM4 would not be. The CAM2 MapOther component
has a required interface in addition to the abstract definition, meaning
this configuration is not closed. The Header component in the abstract
architecture is resolved by two components of CAM4 (UserLogOut and
UserInfo) and causes structural mismatching that breaks with compli
ance. It should be mentioned that a required interface is mandatory if it
is described as a dependency in the concrete component (see DSL for
describing components in Fig. 6).

Regarding application of the heuristics, note that the adapted A*
algorithm only scores the configurations that are calculated during the
exploration of the search tree. Thus, the possible solutions are checked
to analyze if they are closed and compliant.

4. Heuristics-based generation of configurations

This section is focused on the explanation of the search process that is
performed during the construction of the configurations. First, the al
gorithm applied in the process is defined. Then, the metrics and calcu
lations related to the heuristics used in this algorithm are described.

4.1. Adapted A* search algorithm

The algorithm implemented to generate the configurations of the
Configs module is carried out by adapting the A* search algorithm [31].
In this type of algorithm, a graph represents the search space and its
nodes identify the states to be advanced to in the search. The goal is to
find the least-cost path to the target node from a starting node. This is
calculated with an evaluation function f(x) = g(x)+ h′

(x). Function g(x)
represents a known distance (pre-calculated) between the starting node
and the current node. Furthermore, h′

(x) identifies the estimated value
of an admissible heuristic concerning the distance h(x) from the current
node to the target node. To be admissible, the heuristic should not
overestimate the real value of the distance calculated.

This type of algorithm always finds a solution if there is one. In
addition, the search process does not typically need to explore all the
nodes in the graph to find this solution. The explored search space, and
therefore, the complexity of the algorithm, depends on the quality of the
heuristics. In the worst case, the order is exponential, whereas the order
of the best case (where the estimated heuristic is close to optimal) is
linear. This is the main reason for choosing this type of algorithm, since a
greedy alternative for building configurations always results in an

Fig. 10. Equivalent interfaces from a semantic perspective.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

exponential execution order, because all the nodes in the search space
must be evaluated.

Another reason for choosing this type of algorithm is the run-time
calculation of configurations. The exploration path always moves to
ward a solution closer to the target node than the previous state. As such,
a reference to the last ‘best solution’ can be kept and made use of if
regeneration is forced to finish the search (for example, due to time
constraints or other restrictions). Nevertheless, if the selection of the
best possible configuration in the search space must be ensured, the
‘greedy mode’ of the adapted A* algorithm would be executed by
establishing the value of g(x) as equal to 0.0.

In this proposal, each graph node represents a configuration of
concrete components, so that one node is adjacent to another if its
configuration differs by one component. Thus, every iteration of the A*
search algorithm is executed until a configuration that meets the
architectural definition is found. Before executing the algorithm,
candidate components are grouped by the information in the functional
part to limit the search (Fig. 12). The clustering of candidate compo
nents is executed before the search algorithm starts, with the aim of
improving the performance of our approach. The groups of candidates
are inspected at different execution stages of the algorithm when new
nodes of the exploration tree are created. If the clustering is not per
formed at the beginning, the algorithm will explore those branches with
groups of candidates already selected faster. Each group is related to the
operation of a component in the abstract architecture (architectural

definition) and contains those concrete components which have at least
one operation (belonging to a provided interface) in common. Accord
ingly, graph nodes do not contain more than one component of the same
group.

A generic A* search algorithm traverses a graph from a starting node
and uses two main data structures, a set with the nodes to be evaluated
(open nodes) and another set for knowledge about the nodes evaluated
(closed nodes). In each step, the algorithm extracts a node from the open
set and checks whether the new node can be considered as the goal. If
the node is not the goal, it is included in the set of closed nodes, and its
neighbors are added to the set of open nodes (if not already included).
Each node added must be described by a score, which is obtained from
the abovementioned evaluation function f(x) (representing the distance
to the goal node). The node extracted from the open set in each iteration
is therefore the one with the lowest score. Fig. 13 shows the pseudocode
of the algorithm, an adapted A* search.

Nodes represent configurations of concrete components and the goal
node is a configuration where f(x) equals 0 and there can be as many
goal nodes as configurations which constitute a possible solution of the
architecture. The algorithm begins from a starting node (source) which is
adjacent to every node created from the components of a group of
candidates (Fig. 12). Those are the initial nodes on the graph, and the
others are created dynamically when a new node is explored (line 28 of
the algorithm). Furthermore, new neighbors are only created if the
resulting configurations do not exceed the size of the abstract definition

Fig. 11. Example of closure and compliance in concrete architectures.

Fig. 12. Clustering candidates from matching of operations.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

(line 25). This limits the algorithm’s search space and reduces the
number of nodes for which the evaluation function f(x) is calculated.

As mentioned, f(x) is the reference for managing the open node
priority queue. The nodes explored in each iteration are selected from
this queue (line 10). Focusing on both addends of f(x) (i.e., g(x) and
h′

(x)), we can see that the default value of g(x) is 1.0, since one node
differs from another in the incorporation of one concrete component.
However, after evaluating the algorithm, some situations (e.g., when the
number of candidate components is very large), in which g(x) equals 0.0,
enable the architectural solution to be found faster. In such cases, the
adapted A* algorithm is equivalent to a greedy search. This variation
means that the implementation of the algorithm does not ensure an
optimal solution (i.e., the one closest to the starting node). Other oper
ations are therefore responsible for checking that the algorithm does not
add extra components to those defined in the abstract architecture.
Moreover, g(x) can be configured by the Admin interface of the Semantic
Trader.

The value of h′

(x) is the distance between the configuration of con
crete components (associated with the current node) and the input AAM.
This distance is calculated from the semantic information in the func
tional interfaces and must be 0.0 (lines 15 and 34) to consider a
configuration a possible architectural solution. This decision ensures (at
least) resolution of a valid configuration of the functional part in less
time than if all the parts of the components were to be evaluated.
Nevertheless, when a configuration fulfilling the functional part is found
(lines 15 and 34), a full evaluation of the configuration is performed by

calculating the distance from the AAM using all the component parts
(including extra-functional information). This evaluation also checks
that the configuration is (a) closed and (b) compliant with the abstract
architecture. If different constraints are required to consider a configu
ration as being valid to resolve an abstract architecture, our approach
should be modified for this evaluation function. For example, consid
ering the scenario shown in Fig. 11 in which CAM1 and CAM3 are not
available, perhaps the best output to be obtained is an extended CAM2
by including a new component that provides the additional required
interface (i.e., parser). As a consequence, it is possible to modify the
closure and compliance considerations in order to change the con
straints for valid architectures.

4.2. Metrics for semantic trading

The metrics applied in the adapted A* algorithm must be defined in
more detail. The method employed for calculating the h′

(x) score is
called heuristics (line 32 of the algorithm shown in Fig. 13). For this
calculation, a macro-component containing all the information related
to the functional specifications of the abstract architecture is created.
Similarly, another macro-component gathering all the functional infor
mation of the concrete components that form part of the evaluated
configuration is built. In both cases, there is a joining of the provided
interfaces and the required interfaces which are mandatory (it entails a
joining of the operations specified in each interface). The new specifi
cations of macro-components are compared to calculate the matching (i.
e., the distance) between them.

In the matching example of Fig. 14 the abstract architecture defines
four provided interfaces (a, b, c and d) and two required interfaces (in
this case, the same interface twice). The configuration being compared
provides the interfaces a, b and d from the concrete components A3, B1
and D1, respectively; and it also meets the required interfaces. However,
the interface c is not provided and hence, the configuration mismatches
the abstract architecture. As a consequence, the matching between them
is partial and the value calculated for the heuristics function (that rep
resents the distance between the configuration and the estimated solu
tion) is greater that zero.

For a better understanding of the matching calculation for the heu
ristics function, Fig. 15 represents a schematic representation of its
behavior (top right). From the input parameters (i.e., the abstract
architectural model AAM and the configuration which is evaluated), the
concrete components are joined together in a macro-component, as
mentioned before. After that, the matching between the functional parts
of both components is calculated.

This matching operation makes a distinction between the provided
(MPI) and required (MRI) interfaces. Both values are described by a real
number between 0 (no elements in common) and 1 (total matching) and
are calculated from the division of the number of matched operations by
the total of operations in the abstract definition. The bottom of Fig. 15
summarizes the behavior for matching the provided interfaces. First, the
operations of the abstract architecture are obtained. Second, we check if
any operation in the evaluated configuration matches each operation in
the AAM, thus increasing the value of matchedProvidedOp. Two opera
tions match if their semantic descriptions are the same (i.e., if their
parameters and the returned value are equivalent), as explained in
Subsection 3.2.

The value of MPI factor is calculated from the division between
matchedProvidedOp and acProvidedOp, where the divider represents the
total number of provided operations in AAM. In addition to the matching
values, the heuristics function stores certain information about which
operations (and which interfaces they belong to) of a configuration
resolve the operations of the abstract definition. This information is
useful for optimizing performance when the concrete architecture is
built (the last step in generating configurations). Furthermore, other
complementary information is calculated to enable the analysis of the
matching: (a) the type of intersection, and (b) the identification of which

Fig. 13. Adapted A* algorithm for generating the configurations in STAS.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

component has the larger part. This information is used to extend the
information about the ratio of the matching but, for subsequent im
provements, it can be used for other purposes, such as hiding unwanted
functionality, building a wrapper for the component, or fixing the
unprovided operations, among other possible examples.

Fig. 16 shows the possible combinations of the intersection and
larger types. For example, when the evaluated part of the abstract
component (AC) is larger than the corresponding part of the concrete
component (CC) and the intersection is equal to the concrete compo
nent, the matching is lower than 1 because a certain part of the AC

Fig. 14. Matching between an abstract architecture and a configuration.

Fig. 15. Main class of the Heuristics microservice (top-left), heuristics and evaluateCAM operations (top-right), and matching of provided interfaces (bottom).

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

specification is not fulfilled. Otherwise, when the evaluated part of the
AC is smaller than the corresponding part of the CC and the intersection
is equivalent to the AC, there is a total match although the additional
parts of the concrete component must be taken into account in order to
avoid undesired behaviors. The optimal combinations with total
matching occur when both parts are equal and the intersection is
equivalent to AC or CC. When the intersection is identified as other, the
matching value is lower than 1, and when it is empty the value is equal to
0.

The following expressions summarize the calculation of the matching
related to the functional information (MF) performed in the heuristics
method, and obtained from the matching of provided and required
interfaces:

MPI =
matchedProvidedOp

acProvidedOp
MRI =

matchedRequiredOp
acRequiredOp

MF =
MPI + MRI

2

As a consequence, the distance value (or the evaluation function) is
calculated from the matching value:

h′

(x) = 1 − MF

Architecture closure and compliance are calculated by the eval
uateCAM method (lines 19 and 38 of the algorithm in Fig. 13), which is
executed when the evaluation function h′

(x) is equal to 0. This operation
performs a new calculation of the matching. In this case, all parts of the
component specification are taken into account (Fig. 15):

(a) Functional information (MF). The heuristics method is executed to
obtain the corresponding metrics.

(b) Extra-functional information (MEF). Properties and dependencies
are compared:
(b.1) Properties. First, the properties meeting the abstract defi

nition are selected. Then, the matching value is calculated
as a weighted sum of the three types of properties (i.e., high,
normal or low priority). High-priority properties have
greater weighting than low priority.

(b.2) Dependencies. The type of intersection between the con
crete component and the corresponding abstract definition
(with regard to dependencies) is considered. If there is no

intersection and they are not empty, then there is a zero
match. If there is intersection (see Fig. 16), depending on
the type, there are three possibilities: (i) all concrete
component dependencies (DCC) are within the set of ab
stract component dependencies (DAC), i.e., DAC contains
DCC; (ii) DCC contains DAC; and (iii) there is intersection
but no set contains the other. The corresponding formulas
that use the number of paired dependencies (matchedDep)
are shown below:

(i) m =
matchedDep
card(DAC)

(ii) m =
matchedDep
card(DCC)

(iii) m =
matchedDep

card(DAC) + card(DCC)

(c) Packaging information (MP). The score calculated shows whether
the components are implemented with the same technologies and
whether they are stored in the same repository.

Fig. 16. Possible combinations of the intersection and larger types during the matching between abstract and concrete components.

Fig. 17. Example of matching scores for semantic trading.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

(d) Marketing information (MM). The distance calculated shows
whether the components were implemented by the same devel
opment team.

All the metrics representing the matching values of the evaluateCAM
method are described by a real number between 0 (no elements in
common) and 1 (total matching). For all the subparts, the type of
intersection and the identification of which component has the larger set
of elements are also calculated (Fig. 16). Fig. 17 shows an example of
three scored components. In this case, the component that best matches
the abstract definition is CC3. However, there are differences in CC1 and
CC2 which must be discussed. CC1 matches the functional information
better, but the other parts are complied better in CC2. Moreover, the
total area derived from the scores of CC2 is greater than the area related
to the scores of CC1. In conclusion, a component is considered to match
the abstract specification better than another depending on the impor
tance of each part. Therefore, the total value of the match is weighted
using the following formula:

matching = MF*factorMF + MEF*factorMEF + MP*factorMP

+ MM*factorMM

The default values for the weighting factors are 0.8 (factorMF), 0.15
(factorMEF), 0.025 (factorMP) and 0.025 (factorMM). These values were
set based on the construction of quality models [54] which determined
that while the functional information is the most important part, the
extra-functional information is less important, but has a considerable
impact on the matching score. At the same time packaging and mar
keting make up the remaining weight. Nevertheless, these values can be
modified by using the Admin interface of the Semantic Trader whenever
the sum of the factors is equal to 1. Furthermore, this interface enables
the configuration of the minimum distances that must be accomplished
to consider a configuration as a solution. For example, the distance for
the extra-functional part can be set within the interval [0.0,0.2]if the
minimum MEF matching score is modified to 0.8.

5. Implementation of the semantic trader

Repositories of components and architectures must be managed by
an efficient persistence mechanism. When the size and the number of
models used in an application is small, the load in the memory may be
adequate, but if the number of models grows, they need to be stored
persistently. In this case, some model (e.g., component specifications)
export and import mechanisms must also be provided at run-time. As
such, models of components and architectures are stored in a database.

The proposed DSLs and their instances (i.e., models) were developed
with the Eclipse Modeling Framework (EMF)4. In EMF, models are

implemented as Java objects once they are loaded into the memory.
Accordingly, they can be made persistent by applying Object-Relational
Mapping (ORM) techniques, such as Java Persistence API (JPA). One of
the most used JPAs implementations is Hibernate5, which enables
mapping between objects and a relational database to be defined by
annotations in the classes, or a file describing such associations.

Mapping between the objects representing the models and the
database can be done automatically with Teneo6, which generates the
description files from the DSL metamodels (see Fig. 18). First, plugin
Java classes used to manage the models are obtained from the meta
model. Then, mapping between the classes (which manage the models)
along with the database are generated using Teneo. Third, the database
schema is initialized and the tables are created using Hibernate. In the
following operations, when the database is accessed (to execute opera
tions of query, insertion, update, deletion, etc.), the mapping and plugin
classes are used to manage the models (steps 4 and 5 in Fig. 18).

The implementation of the Semantic trader was designed for remote
invocation of all its operations. Its functionality was therefore developed
using a microservice approach [58]. Such services are accessible both
internally by the system and externally by users or other processes via
the web. An example of external processes are those acting as exporters
and importers of components. With regard to internal processes, some
examples are the calculation of configurations, or the management of
trader policies. Functionality is divided into five microservices: Lookup,
Register, Admin, Configs and Heuristics. The first three web services
mentioned implement trader operations in a standalone mode. The
Configs service implements the operations related to the calculation of
configurations, and the Heuristics service includes those methods used to
evaluate and score components and configurations.

Fig. 19 shows the microservice-based architecture that implements
our semantic trading proposal. The Lookup microservice is used by the
Register, Configs and Heuristics microservices, because the first contains
the operations for finding the components matching an input criterion,
while the Configs module uses the Heuristics microservice for calculating
the configuration scores. The Lookup microservice uses the Admin
module because it must read trader policies, such as the maximum
number of specifications returned by a query. In addition, the Configs
module also uses the Admin microservices, for example, to read match
factors or the minimum distances (if any) required for valid configura
tion, as mentioned above.

Microservices are implemented as Spring Boot7 applications
exposing their operations and resources through RESTful web services
[59]. Ribbon and Feign are used for internal communication for
accessing and load balancing, and Eureka for registering and discovering
services [60]. This architecture makes semantic trading resilient to

Fig. 18. Persistence of models of components and architectures.

4 Eclipse Modeling Framework (EMF) – https://www.eclipse.org/modeling/e
mf/

5 Hibernate – http://hibernate.org
6 Teneo/Hibernate – http://wiki.eclipse.org/Teneo/Hibernate
7 Spring Boot – https://spring.io/projects/spring-boot

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://hibernate.org
http://wiki.eclipse.org/Teneo/Hibernate
https://spring.io/projects/spring-boot

change in the execution environment. For example, if a high demand for
the Register microservice is detected (during insertion and updating of
component specifications), then that microservice can be replicated to
cover all requests.

The implementation of the microservices is available in a GitHub
repository8. The application of the STAS approach to other domains or
architectures of smart environments is made possible by using the
following guidelines. First, a new vocabulary of complex types for
defining the inputs and outputs of the component operations must be
developed. Second, the target scenario components must be modeled
using the proposed languages. The two levels of representation (abstract
and concrete) must be considered. Thus, each set of concrete compo
nents with functional interfaces in common would have a related ab
stract component specification. All the component specifications must
be inserted into the repositories by using the Register microservice.
Moreover, the Admin microservice can be used to modify the config
urable parameters. Before starting the resolution of the concrete archi
tecture, the abstract architecture used as input must be inserted into the
database by using the Configs microservice. After that, the search algo
rithm can be executed to generate the resulting configuration and save

the corresponding concrete architecture in the database. The Configs
microservice uses the Heuristics and Lookup microservice to operate.

6. Generating software architectures using the STAS approach: a
case study for mashup UIs

As discussed above, the Semantic Trader solution proposed can
generate software architectures, thus enabling their adaptation at run-
time. Examples of application domains are dynamic and flexible archi
tectures based on coarse-grained components, which are very useful in
ecosystems related to smart city solutions, such as smart buildings, smart
grids, smart homes or smart UIs. In this section, we apply our semantic
trading approach to a particular domain of smart architectures, called
mashup UIs. The scenario used for validation and evaluation experi
ments is related to the ENIA frontend, a mashup web-based user inter
face in an environmental GIS application (described in Section 2).

This case study regenerates concrete architectures from an abstract
definition formed by the following types of components: map, histo
gram, legend, header, storage, audio, video, recorder, social network
and RSS reader (see Fig. 20). Architectures made up of mashup UIs in
this domain may have component dependencies. For example, the
recorder component requires some audio and video operations, and the
social network component requires some user information provided by
the header, whereas the RSS reader is an isolated component. The

Fig. 19. Proposed architecture for semantic trading.

Fig. 20. Example of an abstract architecture managed by the STAS.

8 GitHub repository containing the implementation of the STAS approach –
https://github.com/acgtic211/costrader

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

https://github.com/acgtic211/costrader

behavior of each component is not described, since the purpose here is to
create a suitable scenario for validating our approach.

All the abstract components in the case study have only one provided
interface, but this contains a set of provided operations. For example, the
provided interface in the header is formed by two operations, getUserInfo
and login. All of the operations are mandatory except for the RSS (which
can operate without resolving the exchangeNews interface) and twitter
(which may or may not be connected to the manageImage interface)
components.

The set of concrete components used in the example scenario (200
elements) makes it possible to analyze all the matching possibilities. As
such, there are components with additional provided and/or required
interfaces, or components with the same functional interface, but con
taining additional operations. We have also defined extra-functional,
packaging and marketing information in some components. We per
formed tests with the different combinations of initial abstract archi
tectures that could be constructed with the components in Fig. 20,
varying the size of the input architecture. Thus, when performance in
resolving architectures with only one component is evaluated, the map
is resolved. The component map, histogram and header are used when
the architectures of three elements are evaluated, and the complete
abstract architecture is used for experiments with ten elements.

6.1. Calculation of alternative configurations

In the tests conducted for this case study, 20 concrete specifications
were defined for each of the component types shown in Fig. 20 (i.e., for
each abstract component). This represents a total of 200 candidate
components (10*20) for architectures made up of the 10 types of com
ponents. Clustering limits the search space to a combinatorial number of

(
20
10

)

= 184756 configurations. This set of candidate components was

inserted in a repository with another 10000 specifications of concrete
components that were generated automatically (from the random
combination of the previous 200 specifications). With these compo
nents, the regeneration process could be validated and evaluated for a
significantly large scenario (1200 elements in total). Fig. 21 shows an
example execution of semantic trading illustrating the behavior of the
adapted A* search algorithm.

The abstract architecture (i.e., the input architectural definition) is
made up of four components (shown at the top of the table): a map, a
histogram, a header, and a social network component. To execute this
algorithm, the first step is to obtain the 90 candidate components (CC)
extracted from the component repository (CCR) mentioned above. Note
that abstract and concrete components are described schematically,
listing only the provided (represented by the name of the interface, e.g.,
interfaceName) and the required interfaces (represented by the name of
the interface with a line above it, e.g., interfaceName). In this example, all
required interfaces are mandatory.

Algorithm execution starts by evaluating the components located in
one of the groups found in the candidate clusters (Iteration 1). As a result
of this iteration, the node having the lowest evaluation function value
(0.8 in this case) is the one formed by component map01. From this
node, in Iteration 2, nodes are dynamically created adjacent to it. These
new nodes are formed by the combination of component map01 with
those concrete components belonging to a different group of candidates
used in the previous iteration. Accordingly, adjacent nodes such as
[map01,header01], [map01,header02], etc., are created from
[map01]. Following this, the search algorithm selects the graph node
with the lowest score (found by the evaluation function). In this case, the

Fig. 21. Example of alternative configurations.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

node selected is formed by components map01 and header14 which
have a score of 0.7.

The algorithm continues this way until it finds a node with a heuristic
function equal to 0.0, at which point it proceeds to evaluate the
configuration corresponding to that node. In the example, configuration
checking is done after Iteration 4. In some cases, the configurations are
discarded because any given component has additional dependencies
and hence it is a not closed configuration (e.g., Iterations 4, 10 and 17).
In other cases, the configurations analyzed are closed, but they do not
conform to the architectural definition. For example, possible solutions
analyzed in Iterations 5, 6, 7, 8 and 9, are discarded, because one of their
components does not meet the minimum matching ratio for extra-
functional properties. In Iteration 18, after excluding a total of 14
possible solutions, the algorithm finds a configuration evaluated as the
final solution. Based on this configuration (consisting of components
map01, header14, histogram09 and twitter01), a concrete
architectural model is constructed describing a UI which looks like the
web application shown in Fig. 3. The left hand side of Fig. 21 shows the
nodes evaluated by the algorithm.

6.2. Scoring a possible solution

The Heuristics microservice calculates the value of the evaluation
function h′

(x) for each configuration of concrete components that need
to be analyzed. In the ‘greedy mode’ of the adapted A* search (g(x) =

0.0), the configurations are complete (with regard to the abstract defi
nition) and are possible solutions. In the case of the normal behavior of
the adapted A* search (g(x) = 1.0), the configurations may also be
partial solutions of the architecture. In both cases, the score of a
configuration is calculated from the individual matching scores for each
of the concrete components forming the configuration.

The XML code shown in Fig. 22 is the result returned by the opera
tion that calculated the match of a concrete component. In this example,
the elements compared are the abstract component twitter and the
concrete component twitter13. The functional information is only
partially matched, because the provided interface matching is 1.0,
whereas the required interface matching is 0.0. As such, the ratio of the
functional part is 0.5=(1.0+0.0)/2.

Regarding the extra-functional part, the operation returns matching
scores for dependencies and properties. Since there is an equivalent
dependency (because the identifier of the required interface matches),
but the concrete component has an additional dependency, the match
ing value for dependencies is 0.5. In the case of properties, there is
correspondence with one of them, whose priority is high (among the
four properties). Thus, the matching value for properties is 0.52. As a
result, the matching for the extra-functional part is 0.51=(0.5+0.52)/2.

For the extra-functional part, the operation returns matching scores
for dependencies and properties. There is an equivalent dependency
(because the identifier of the required interface matches), but the con
crete component has an additional dependency. Consequently, the
match value for dependencies is 0.5. One of the four properties, whose
priority is high, matches the abstract component specification. Thus, the
matching value for properties is 0.52, and as a result, the matching score
for the extra-functional part is 0.51=(0.5+0.52)/2. The score for the
packagingis 1.0, since the concrete component matches the location and
implementation data described in the abstract component specification.
There is no correlation with marketing information, and therefore, the
score is 0.0. For these matching values, the total score is
0.5265=0.85*0.5+0.15*0.51+0.025*1.0+0.025*0.0.

Fig. 22. Example of matching score for a concrete component.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

6.3. Performance

As part of the scenario for the case study presented, different tests
have been carried out to evaluate the performance of our approach. With
regard to the operation for obtaining the candidate components, we
tested our repository containing 1200 elements (200 manually con
structed candidates in addition to 1000 components randomly gener
ated from the candidates). This operation has a significant impact on
performance because it is the first step before calculating the possible
configurations. Fig. 23 (non-dashed line) shows the execution times for
obtaining the candidates in the case of abstract definitions that vary
from 1 to 10 components. The execution time grows in a linear fashion
with a high value gradient and is not suitable for a trading process at
run-time. For this reason, we reduced the execution time of this opera
tion by caching the repository of concrete components in the configu
ration file of the database access (see the bottom of Fig. 23). From this
improvement, the execution time for obtaining the candidates from the
database is reduced to a maximum of 264.2 milliseconds when there are
10 components in the abstract architecture.

The following experiments were related to the generation of concrete
architectures from abstract definitions ranging in size from 1 to 10
components. For each architecture size, the semantic trading process
was executed 100 times and then we calculated the average obtained for
the following data: (i) total time to obtain the final architectural solution
(Fig. 24(a)), (ii) time when the first functional solution is obtained
(Fig. 24(b)), and (iii) number of configurations discarded during the
process (Fig. 24(c)). These tests were performed using an Eclipse 2019-03

framework on a 3.70 GHz Intel(R) Core(TM) i7-8700K machine with 16
GB of main memory.

The results in Fig. 24(a) can be approximated by a linear function
when the number of components of the architecture is increased. Two
types of executions of the search algorithm are shown. The dashed line
shows the results when the search has a greedy behavior (g(x) = 0),
whereas the normal line shows the results for the A* search algorithm
when the distance function of the heuristics is increased by one for each
additional component in the architecture (g(x) = 1). It is observed that

the results obtained for the A* search are always better than the
execution times obtained from the greedy exploration.

The data in Fig. 24(b) offer a guarantee of how reliable the process is
at obtaining at least one solution that has been matched in the functional
part (there is a trend between linear and logarithmic when the size of the
architecture is increased). Similarly to the results for the final solution,
the A* search finds the first functional solution in a better time than the
search with a greedy behavior. Between the first functional solution and
the final solution, invalid configurations are discarded, reaching values
of almost 30 discarded configurations for architectures of 10 compo
nents (see Fig. 24(c)). The number of discarded configurations is greater
for the normal execution of the search algorithm from a certain number
of components. This result is due to the higher number of possible so
lutions than the algorithm evaluates to decide if a valid configuration
has been found; i.e., while a greedy search is exploring paths and nodes
to find a solution, the search based on an A* algorithm is validating and
discarding potential solutions.

The configuration of the Semantic Trader for these experiments is the
most restrictive, i.e., the matching distance calculated in the algorithm
must be 0.0 for all parts of the components in the architecture. This
maximizes the total time to obtain a final architecture, in order to
validate the process correctly. The highest times are around 0.3 seconds
for interfaces with 10 components, which are acceptable times because
mashup UIs do not usually consist of a large number of components at
once (since these coarse-grained components encapsulate the function
ality of a mini-application). Apart from mashup UIs, the obtained
execution times are suitable for most of the systems that require
reconfiguration of architectures at run-time. Nevertheless, these times
may not be suitable for other environments that require a higher speed
during the process of adaptation, such as robotic architectures running
time-critical tasks.

7. Discussion

This section discusses the benefits of the approach by analyzing the
achievement of the proposed research question. Additionally, the

Fig. 23. Cache strategy to get the candidates by pre-fetching the concrete components..

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

possible threats to validity and the drawbacks are described.

What representation is appropriate for describing the components and
architectures managed in our approach?

Focusing on the specific domain of architectures of coarse-grained
components that support dynamic changes at run-time, the created
DSLs provide a specific set of concepts and relations adequate for
resolving software architectures by applying a trading process. Since
these languages are also required by the transformation process which is
part of our adaptation methodology [5,48], we chose to use them in the
process that is executed after it, i.e., the presented semantic trading
approach.

Consequently, the DSLs have been proved to be more than capable of
describing components and architectures in our approach, but we

cannot state with certainty that these languages are the most appro
priate representations. In the current state of this research, there is a lack
of comparison with other languages, such as UML profiles or other
existing ADLs. The use of better-known languages may not affect the
performance of the process, but it could be of benefit for improving
understanding and reuse by the community.

Can this approach be applied in different domains or scenarios of smart
architectures?

The approach can be useful for those types of architectures that meet
certain specific requirements related to structure, functional definition,
extra-functional properties, communication and dynamic changes. With
regard to the last issue, we propose to apply our process to a subset of
software architectures that need to be adapted or reconfigured at run-
time, thus requiring a process of calculating new configurations that
are built conforming to new input specifications, i.e., reference abstract
architectures.

From our point of view, this adaptation in general and the resolution
of new configurations in particular involve a kind of intelligence, even if
it is considered as a low-level type of smart behavior. During the
explanation of the context of our approach, we illustrated its application
to different domains, such as smart cities, smart homes, or user in
terfaces. Moreover, we validated and evaluated our approach with
mashup UIs, a particular domain of smart architectures. As a conse
quence, we can state that our STAS approach can be applied to different
smart architectures.

How can a traditional trading service be extended to calculate the best
configurations of components?

Supported by the results of previous research work [18,30], we have
described how a traditional trading service can be adapted to manage
component specifications and to calculate component configurations.
The proposed extension is focused on a new module in charge of
calculating architectural solutions from a repository of component
specifications and a target reference architecture. The calculation of
configurations requires the development of additional functionality to
select the candidates, calculate the distance from a configuration to the
pursued solution, evaluate whether or not a configuration is valid for
resolving the established abstract architecture, and build the concrete
architecture when a configuration of components has been evaluated.

The main contribution of this paper is related to the heuristics-based
generation of configurations. This process is supported by an adapted A*
search algorithm because it ensures a solution will be found if one exists,
without having to explore all the possible configurations to find this
solution. Thus, we proposed an extension of a trading service which
includes only one type of search algorithm. Although this algorithm can
be configured to partially modify its behavior (for example to execute a
greedy search), the generation of configurations can be improved in
future versions by implementing new search algorithms or different
heuristics alternatives.

What is the most important syntactic and semantic information when
searching for architectural configurations that must be included in a
component definition and still be considered manageable?

This research question is resolved by a general point of view in the
literature, since the functional part of a component is the most impor
tant. Our approach uses complex types for ensuring the semantic
matching of input parameters and the output value of operations. In
addition to the functional interfaces, the extra-functional properties are
essential for ensuring the fulfillment of non-functional attributes and
QoS features. Due to the previous research work related to COTS com
ponents, we included additional parts in the component definition to
describe some relevant packaging and marketing information. For
example, a component included in the abstract architecture to be
resolved, can be explicitly specified to have been developed by a
particular contact of an entity or company.

Fig. 24. Execution times of (a) calculating the final architectural solution, and
(b) calculating the first functional solutions. Number of configurations dis
carded during the process of calculating the final solution (b)..

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

With regard to the particular considerations that must be taken into
account from the point of view of a specific domain, the search process
and the calculation of the matching between architectures can be
enriched by determining a set of suitable score metrics related to this
domain, for example, building a quality model as in the case of our
application domain of ENIA mashup UIs [54].

How can the performance of this search be addressed to get suitable results at
run-time?

The search process developed in the STAS approach ensures the
calculation of a configuration that fulfills the reference architecture (if
the solution exists and can be constructed from the repository of com
ponents). Furthermore, the execution of the process must be finalized
within a time that allows the resolution of the architecture at run-time.
The performed evaluation shows a maximum execution time lower than
0.3 seconds which is a valid time for our purpose of adapting mashup
user interfaces. For other domains running time-critical tasks, the
execution times may not be suitable. In this regard, the selection of our
approach as a solution for building smart architectures at run-time de
pends on the following trade-off analysis. If the maximum time allowed
for the resolution of the architecture is greater than 300 milliseconds
and the number of components is not greater than 10, our proposal is
valid for these scenarios. However, if the maximum time allowed for the
resolution is lower than 300 ms, the maximum number of components
varies. For example, if the time required for the construction of the ar
chitectures is less than 200 ms, acceptable times can only be ensured for
architectures with 6 components or less.

The obtained execution times are quite low, but it is noteworthy to
remark the following two considerations: (a) once the concrete archi
tectural model is constructed, the deployment of the corresponding
components (thus rendered by the client or the server side) must be
accomplished; and (b) the resolution process performed by the STAS
process belongs to a methodology for adapting software architectures at
run-time in which a transformation phase is executed before the STAS
process. For this reason, we have optimized the STAS approach to
minimize the execution times.

The results cannot assure that the obtained performance is the best
one possible. For that purpose, we should implement different search
algorithms or different heuristics alternatives. In our case, we can state
that our approach ensures suitable results to resolve an architecture at
run-time. Furthermore, we do not compare the current implementation
of the STAS process to the previous trading approach presented in [30].
The reason is that the previous approach used different heuristics and a
recursive algorithm with the behavior of an exhaustive search. Never
theless, in our evaluation process, we included the execution times when
our adapted A* search is configured to be executed in a greedy mode,
thus demonstrating the better results of our approach.

8. Related work

The use of COTS components for building smart software architec
tures is one of the main elements of our proposal. In this construction,
selection and evaluation processes are considered as key operations
[61]. An example of work in which these processes are addressed is the
Off-The-Shelf Option (OTSO) [62]. In such an approach, a hierarchical
evaluation criteria analyzes the characteristics of the components based
on other factors such as organizational infrastructure or the availability
of libraries. In [63], the DesCOTS system proposes a methodology based
on a quality model which divides up the characteristics of the compo
nents for their evaluation.

The study presented in [64] evaluated the components and ranked
them in terms of performance and according to multiple criteria. In [65],
the authors perform a management of dependencies between compo
nents using goal-oriented models as the basis for component selection. A
proposal for selecting COTS components in large repositories is
described in [66]. That approach made use of the ‘integrator’ concept

instead of mediation or trading services. Unlike our proposal, the ap
proaches mentioned above do not support component selection or
calculation of configurations at run-time.

The trading service described in [18] forms the basis of the present
research work. The paper presented a mediation process for managing
COTS components and building configurations at design-time. Our
approach is based on the model proposed for specifying COTS compo
nents, but our regeneration process is designed to build architectures at
run-time. Apart from [18], there are other possible approaches for the
characterization of COTS components, such as the proposals described
in [67] and [68]. Our proposal characterizes and validates components
and architectures using MBE techniques incorporating semantic infor
mation for their run-time analysis.

In [69], the authors describe a semi-automatic process for the iden
tification and classification of components which is based on a taxonomy
and some input semantic information. The work presented in [55] also
points out taxonomies and ontologies as an option to provide semantic
information in the process of identifying COTS components. In our case,
establishing a vocabulary of types that can be used to describe properties
of the components, makes possible the construction of a classification
such as a taxonomy of types or an ontology of synonyms. More recent
research work is also related to the use of ontologies for querying
coarse-grained components [70]. ONTOCOTS is an ontology-based
recommender system which uses the Analytic Hierarchy Process
(AHP) to rank COTS components when a new query process is executed.
However, such a process was intended to help developers find the
components for software development, and hence is not suitable for
adapting architectures at run-time.

Software component reuse mechanisms can be applied to web ser
vices, since both artifacts encapsulate its implementation and expose it
through interfaces [71]. In this regard, approaches related to the se
lection of web services can be used to improve the selection of compo
nents, for example, by considering non-functional features [72].
Furthermore, discovery mechanisms related to web services can be
applied to get software elements based on functional and non-functional
requirements by using a keyword as an input [73]. In the web services
domain, semantic information can be used to improve the selection and
discovery operations mentioned [74]. Our proposal is inspired by such
approaches that adapt certain web service mechanisms to COTS
component trading, for instance, simplifying the discovery of candidates
using a keyword to filter components with a pertinent specification.

With regard to the construction of architectural configurations, al
gorithms based on heuristic functions are a suitable option for the
exploration and evaluation of possible solutions [75]. Nevertheless,
these types of algorithms are general-purpose searching operations,
usually applied to the calculation of paths and trajectories [57]. In our
case, a generic A* search algorithm [31,32] was adapted for optimizing
the process and incorporating specific operations which enable the
evaluation and construction of architectural solutions at run-time.

Other approaches are specifically focused on the composition and
adaptation of software architectures by applying other heuristics-based
search processes different from the one proposed in this article. For
example, an optimization is applied in [76] to select the system archi
tecture from a finite set of candidate components that better fulfill the
required attributes. Such a process uses a mixed approach of meta
heuristics search techniques relying on the SCA-ASM service-oriented
component model [77]. In this sense, the application of heuristics in
these types of processes requires the specification and matching of
functional and non-functional aspects for the correct calculation of the
scores for each possible configuration of components [78].

The correctness of these types of search and optimization processes
based on heuristics (e.g., Depth First Search, Best First Search, A*, etc.)
and metaheuristics (e.g., Tabu Search, Variable Neighborhood Search,
Guided Local Search, etc.) is accepted as a valid solution in the literature
for the construction of component-based systems which requires a
combinatorial analysis of their configurations [79,80]. The main reason

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

for adapting an A* search is that it always finds a solution if one exists
and keeps the best solution at all times for the execution of the algo
rithm. The configuration of heuristics h′

(x) and distance g(x) is used for
adapting its behavior to the specific domain of our abstract and concrete
architectures. Furthermore, A* can be adapted and executed like other
path-finding algorithms by changing the heuristics it uses and how it
evaluates each node. For example, as we have stated in this paper, the A*
algorithm can be executed as a greedy search by setting g(x) as equals to
0.0 [81].

9. Conclusions and future work

This paper presented STAS, an approach for resolving software ar
chitectures at run-time by applying semantic trading. This process is
responsible for building architectures represented on a concrete level (i.
e., architectural solutions) from architectures described on an abstract
level (i.e., architectural definitions) and a set of available components.
Such architectures on two levels of abstraction are an appropriate way to
describe different domains and scenarios and to enable their manage
ment (research questions RQ1 and RQ2). The proposed trading service
manages the specifications of components and architectures and also
calculates the best configurations of candidates. This calculation extends
a traditional trading service to enable the construction of a software
architecture from a reference specification (RQ3).

The calculation of configurations is supported by an adapted A*
search algorithm. The greedy mode of this algorithm could explore the
entire search space by analyzing all the combinations of candidate
components. It ensures the best configuration among all the possible
solutions is always found but it results in worse execution times if there
is a large amount of candidate components to be combined. For this
reason, our adapted A* search algorithm includes a set of operations to
find the optimal solution without evaluating the entire search space. The
proposed search process based on the A* algorithm enables the gener
ation of configurations in a suitable time to build software architectures
at run-time. To do this, the search space is represented by a graph and
each node describes a configuration of components. As such, the optimal
solution is the simple path that starts from an initial component and ends
in the configuration formed by the components that best fulfill the ab
stract definition of the architecture (RQ5). Furthermore, the trading
service makes use of semantic and syntactic information about the
components to (1) select the candidates, and (2) evaluate the possible
configurations with a heuristic relying on this information (R4).

The application domains of the STAS approach are smart scenarios
that can be developed and deployed as coarse-grained architectures. We
focus on this kind of architecture because our proposal is valid in terms
of building configurations of less than twenty elements, together with
the fact that smart scenarios are a good target to execute dynamic
reconfigurations on their architectures. We have validated and evalu
ated the approach with a case study applied to the domain of mashup
UIs, as an example of these types of architectures.

Some research lines remain open as future work. We plan to improve
the performance of the semantic trading process in general and of the
search algorithm in particular. Examples of this could be parallelizing
part of the execution or incorporating new techniques of heuristics and
metaheuristics to calculate the distance between components and ar
chitectures. Furthermore, we plan to develop a mechanism to facilitate
the management of component types, as well as input and output types
of the operations. We should develop a set of metrics related to the
composition of components for those scenarios in which the establish
ment of a specific hierarchy is needed. In addition, execution times
should be improved for domains requiring a faster response time. We
plan to apply our approach to the IoT scenarios that we are developing in
the field of smart cities [39,82]. Finally, the evaluation results could
include an analysis based on the opinion of users to improve the vali
dation of the approach.

CRediT authorship contribution statement

Javier Criado: Conceptualization, Methodology, Software, Investi
gation, Writing - original draft. Luis Iribarne: Formal analysis, Re
sources, Writing - review & editing, Supervision. Nicolás Padilla:
Validation, Data curation, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work has been funded by the EU ERDF and the Spanish Ministry
of Economy and Competitiveness (MINECO) under the research project
CoSmart (ref. TIN2017-83964-R), and by the regional project (ref. CEIJ-
C01.2) coordinated from UAL-UCA universities and funded by the CEI
MAR consortium.

References

[1] E.F.Z. Santana, A.P. Chaves, M.A. Gerosa, F. Kon, D.S. Milojicic, Software platforms
for smart cities: concepts, requirements, challenges, and a unified reference
architecture, ACM Comput. Surv. 50 (2017) 1–37, https://doi.org/10.1145/
3124391.

[2] E. Palomar, X. Chen, Z. Liu, S. Maharjan, J. Bowen, Component-based modelling
for scalable smart city systems interoperability: a case study on integrating energy
demand response systems, Sensors 16 (2016) 1810, https://doi.org/10.3390/
s16111810.

[3] K.K. Lau, From formal methods to software components: back to the future?. Lect.
Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics) Springer Verlag, 2017, pp. 10–14, https://doi.org/10.1007/978-3-
319-57666-4_2.

[4] M. Krug, F. Wiedemann, M. Gaedke, Smartcomposition: A component-based
approach for creating multi-screen mashups, Lect. Notes Comput. Sci. (Including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8541 (2014) 236–253,
https://doi.org/10.1007/978-3-319-08245-5_14.

[5] J. Criado, D. Rodríguez-Gracia, L. Iribarne, N. Padilla, Toward the adaptation of
component-based architectures by model transformation: behind smart user
interfaces, Softw. Pract. Exp 45 (2015) 1677–1718, https://doi.org/10.1002/
spe.2306.

[6] J. Perchat, M. Desertot, S. Lecomte, Component based framework to create mobile
cross-platform applications. Procedia Comput. Sci., Elsevier B.V., 2013,
pp. 1004–1011, https://doi.org/10.1016/j.procs.2013.06.140.

[7] M.J. O’Grady, C. Muldoon, M. Dragone, R. Tynan, G.M.P. O’Hare, Towards
evolutionary ambient assisted living systems, J. Ambient Intell. Humaniz. Comput.
1 (2010) 15–29, https://doi.org/10.1007/s12652-009-0003-5.

[8] A. Bejarano, B. Fernandez, M. Jimeno, A. Salazar, P. Wightman, Towards the
evolution of smart home environments: asurvey, Int. J. Autom. Smart Technol. 6
(2016) 105–136, https://doi.org/10.5875/ausmt.v6i3.1039.

[9] E. Taktak, I.B. Rodriguez, Energy consumption adaptation approach for smart
buildings. Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl., AICCSA, IEEE Computer
Society, 2018, pp. 1370–1377, https://doi.org/10.1109/AICCSA.2017.205.

[10] A. Agirre, J. Parra, A. Armentia, E. Estévez, M. Marcos, Qos aware middleware
support for dynamically reconfigurable component based iot applications, Int. J.
Distrib. Sens. Networks. 12 (2016) 2702789, https://doi.org/10.1155/2016/
2702789.

[11] G.S. Ramachandran, N. Matthys, W. Daniels, W. Joosen, D. Hughes, Building
dynamic and dependable component-based internet-of-things applications with
dawn. Proc. - 2016 19th Int. ACM SIGSOFT Symp. Component-Based Softw. Eng.
CBSE 2016, Institute of Electrical and Electronics Engineers Inc., 2016, pp. 97–106,
https://doi.org/10.1109/CBSE.2016.18.

[12] A. Ruppen, J. Pasquier, S. Meyer, A. Rúedlinger, A component based approach for
the web of things. Proc. 6th Int. Work. Web Things, Association for Computing
Machinery, New York, NY, USA, 2015, https://doi.org/10.1145/
2834791.2834792.

[13] L. Médini, M. Mrissa, E.M. Khalfi, M. Terdjimi, N.L. Sommer, P. Capdepuy, J.
P. Jamont, M. Occello, L. Touseau, Building a web of things with avatars: a
comprehensive approach for concern management in WoT applications. Manag.
Web Things Link. Real World to Web, Elsevier Inc., 2017, pp. 151–180, https://doi.
org/10.1016/B978-0-12-809764-9.00007-X.

[14] C. Herring, S. Kaplan, Component-based software systems for smart environments,
IEEE Pers. Commun. 7 (2000) 60–61, https://doi.org/10.1109/98.878541.

[15] D. Carney, F. Long, What do you mean by COTS? finally, a useful answer, IEEE
Softw. 17 (2000) 83–86, https://doi.org/10.1109/52.841700.

[16] ISO/IEC, ITU-T, ISO/IEC 13235-1:1998 - Information technology — Open
Distributed Processing — Trading function: Specification — Part 1 (1998)

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

https://doi.org/10.1145/3124391
https://doi.org/10.1145/3124391
https://doi.org/10.3390/s16111810
https://doi.org/10.3390/s16111810
https://doi.org/10.1007/978-3-319-57666-4_2
https://doi.org/10.1007/978-3-319-57666-4_2
https://doi.org/10.1007/978-3-319-08245-5_14
https://doi.org/10.1002/spe.2306
https://doi.org/10.1002/spe.2306
https://doi.org/10.1016/j.procs.2013.06.140
https://doi.org/10.1007/s12652-009-0003-5
https://doi.org/10.5875/ausmt.v6i3.1039
https://doi.org/10.1109/AICCSA.2017.205
https://doi.org/10.1155/2016/2702789
https://doi.org/10.1155/2016/2702789
https://doi.org/10.1109/CBSE.2016.18
https://doi.org/10.1145/2834791.2834792
https://doi.org/10.1145/2834791.2834792
https://doi.org/10.1016/B978-0-12-809764-9.00007-X
https://doi.org/10.1016/B978-0-12-809764-9.00007-X
https://doi.org/10.1109/98.878541
https://doi.org/10.1109/52.841700

[Online], Available: https://www.iso.org/standard/21470.html (accessed August
13, 2020).

[17] P. Plebani, B. Pernici, URBE: Web service retrieval based on similarity evaluation,
IEEE Trans. Knowl. Data Eng. 21 (2009) 1629–1642, https://doi.org/10.1109/
TKDE.2009.35.

[18] L. Iribarne, A trading service for COTS components, Comput. J. 47 (2004)
342–357, https://doi.org/10.1093/comjnl/47.3.342.

[19] OMG, services directory specification version 1.0 (2014). [Online], Available: http
s://www.omg.org/spec/ServD/ (accessed August 13, 2020).

[20] K. Kritikos, D. Plexousakis, Towards combined functional and non-functional
semantic service discovery. Lect. Notes Comput. Sci., Springer, Cham, 2016,
pp. 102–117, https://doi.org/10.1007/978-3-319-44482-6_7.

[21] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, M. Mucientes, An integrated semantic
web service discovery and composition framework, IEEE Trans. Serv. Comput. 9
(2016) 537–550, https://doi.org/10.1109/TSC.2015.2402679.

[22] P. Jamshidi, C. Pahl, N.C. Mendonca, J. Lewis, S. Tilkov, Microservices: the journey
so far and challenges ahead, IEEE Softw. 35 (2018) 24–35, https://doi.org/
10.1109/MS.2018.2141039.

[23] S. Haselböck, R. Weinreich, G. Buchgeher, Decision guidance models for
microservices: service discovery and fault tolerance. Proc. Fifth Eur. Conf. Eng.
Comput. Syst., Association for Computing Machinery, New York, NY, USA, 2017,
https://doi.org/10.1145/3123779.3123804.

[24] K. Jander, A. Pokahr, L. Braubach, J. Kalinowski, Service discovery in megascale
distributed systems, Stud. Comput. Intell 737 (2017) 273–284, https://doi.org/
10.1007/978-3-319-66379-1_24.

[25] S. Capelli, P. Scandurra, A framework for early design and prototyping of service-
oriented applications with design patterns, Comput. Lang. Syst. Struct. 46 (2016)
140–166, https://doi.org/10.1016/j.cl.2016.07.001.

[26] T. Vale, I. Crnkovic, E.S. De Almeida, P.A.D.M.S. Neto, Y.C. Cavalcanti, S.R.D.
L. Meira, Twenty-eight years of component-based software engineering, J. Syst.
Softw. 111 (2016) 128–148, https://doi.org/10.1016/j.jss.2015.09.019.

[27] J. Fitzgerald, P.G. Larsen, J. Woodcock, Foundations for model-based engineering
of systems of systems, in: M. Aiguier, F. Boulanger, D. Krob, C. Marchal (Eds.),
Complex Syst. Des. Manag., Springer International Publishing, Cham, 2014,
pp. 1–19, https://doi.org/10.1007/978-3-319-02812-5_1.

[28] C. Rieger, H. Kuchen, A process-oriented modeling approach for graphical
development of mobile business apps, Comput. Lang. Syst. Struct. 53 (2018)
43–58, https://doi.org/10.1016/j.cl.2018.01.001.

[29] J. Vallecillos, J. Criado, N. Padilla, L. Iribarne, A cloud service for COTS
component-based architectures, Comput. Stand. Interfaces. 48 (2016) 198–216,
https://doi.org/10.1016/j.csi.2015.11.008.

[30] J. Criado, L. Iribarne, N. Padilla, Resolving platform specific models at runtime
using an MDE-based trading approach. Lect. Notes Comput. Sci. 8186, Springer,
Berlin, Heidelberg, 2013, pp. 274–283, https://doi.org/10.1007/978-3-642-
41033-8_36.

[31] N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill Pub.
Co., 1971.

[32] R. Dechter, J. Pearl, Generalized best-first search strategies and the optimality of
A*, J. ACM 32 (1985) 505–536, https://doi.org/10.1145/3828.3830.

[33] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic computing through reuse of
variability models at runtime: the case of smart homes, Computer (Long Beach
Calif) 42 (2009) 37–43, https://doi.org/10.1109/MC.2009.309.

[34] N. Gui, V. De Florio, T. Holvoet, Transformer: an adaptation framework supporting
contextual adaptation behavior composition, Softw. Pract. Exp. 43 (2013)
937–967, https://doi.org/10.1002/spe.2137.

[35] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, J.M. Jezequel, A dynamic
component model for cyber physical systems. Proc. 15th ACM SIGSOFT Symp.
Compon. Based Softw. Eng., Association for Computing Machinery, New York, NY,
USA, 2012, pp. 135–144, https://doi.org/10.1145/2304736.2304759.

[36] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, P. Steenkiste, Rainbow:
architecture-based self-adaptation with reusable infrastructure, Computer (Long
Beach Calif) 37 (2004) 46–54, https://doi.org/10.1109/MC.2004.175.

[37] J. Grundy, J. Hosking, Developing adaptable user interfaces for component-based
systems, Interact. Comput. 14 (2002) 175–194, https://doi.org/10.1016/S0953-
5438(01)00049-2.

[38] F. Daniel, M. Matera, Mashups: Concepts, models and architectures, Springer-
Verlag Berlin Heidelberg, 2014, https://doi.org/10.1007/978-3-642-55049-2.

[39] J. Criado, J. Asensio, N. Padilla, L. Iribarne, Integrating cyber-physical systems in a
component-based approach for smart homes, Sensors 18 (2018) 2156, https://doi.
org/10.3390/s18072156.

[40] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt,
A unifying reference framework for multi-target user interfaces, Interact. Comput.
15 (2003) 289–308, https://doi.org/10.1016/S0953-5438(03)00010-9.

[41] B. Selic, A systematic approach to domain-specific language design using UML.
Proc. - 10th IEEE Int. Symp. Object Component-Oriented Real-Time Distrib.
Comput. ISORC 2007, 2007, pp. 2–9, https://doi.org/10.1109/ISORC.2007.10.

[42] A.D. Brucker, J. Doser, Metamodel-based UML notations for domain-specific
languages, in: J.M. Favre, D. Gasevic, R. Lämmel, A. Winter (Eds.), 4th Int. Work.
Softw. Lang. Eng., (ATEM 2007), Nashville, USA, 2007, pp. 1–15.

[43] A. Butting, R. Heim, O. Kautz, J.O. Ringert, B. Rumpe, A. Wortmann,
A Classification of dynamic reconfiguration in component and connector
architecture Description Languages. 4th Int. Work. Interplay Model. Component-
Based Softw. Eng. ModComp, CEUR-WS, 2017, pp. 1–7.

[44] D.D. Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, A. Pierantonio, Developing
next generation ADLs through MDE techniques, Int. Conf. Softw. Eng. (2010)
85–94, https://doi.org/10.1145/1806799.1806816.

[45] S. Graham, G. Daniels, D. Davis, Y. Nakamura, S. Simeonov, P. Brittenham,
P. Fremantle, D. Koenig, C. Zentner, Building web services with Java: making sense
of XML. SOAP, WSDL, and UDDI, SAMS publishing, 2004.

[46] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in
practice, Morgan & Claypool Publishers LLC (2012), https://doi.org/10.2200/
s00441ed1v01y201208swe001.

[47] J. Cabot, M. Gogolla, Object constraint language (OCL): a definitive guide. Lect.
Notes Comput. Sci. 7320, Springer, Berlin, Heidelberg, 2012, pp. 58–90, https://
doi.org/10.1007/978-3-642-30982-3_3.

[48] D. Rodríguez-Gracia, J. Criado, L. Iribarne, N. Padilla, C. Vicente-Chicote, Runtime
adaptation of architectural models: an approach for adapting user interfaces. Lect.
Notes Comput. Sci. 7602, Springer, Berlin, Heidelberg, 2012, pp. 16–30, https://
doi.org/10.1007/978-3-642-33609-6_4.

[49] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, Sci.
Comput. Program. 72 (2008) 31–39, https://doi.org/10.1016/j.scico.2007.08.002.

[50] Y. Hoffner, A. Schade, Co-operation,contracts,contractual match-making and
binding. Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, Institute
of Electrical and Electronics Engineers Inc., 1998, pp. 75–86, https://doi.org/
10.1109/EDOC.1998.723244.

[51] M. Merz, K. Mueller, W. Lamersdorf, Service trading and mediation in distributed
computing systems. Proc. - Int. Conf. Distrib. Comput. Syst., IEEE, 1994,
pp. 450–457, https://doi.org/10.1109/icdcs.1994.302452.

[52] L. Iribarne, J.M. Troya, A. Vallecillo, Selecting software components with multiple
interfaces. Conf. Proc. EUROMICRO, 2002, pp. 26–32, https://doi.org/10.1109/
EURMIC.2002.1046129.

[53] L. Chung, K. Cooper, Matching, ranking, and selecting components: aCOTS-aware
requirements engineering and software architecting approach. Int. Work. Model.
Process. Eval. COTS Components (MPEC 2004)” W7S Work. - 26th Int. Conf. Softw.
Eng., 2004, pp. 41–44, https://doi.org/10.1049/ic:20040432.

[54] J. Criado, S. Martínez-Fernández, D. Ameller, L. Iribarne, N. Padilla, A. Jedlitschka,
Quality-aware architectural model transformations in adaptive mashups user
interfaces, Fundam. Informaticae 162 (2018) 283–309, https://doi.org/10.3233/
FI-2018-1726.

[55] A. Cechich, A. Réquilé-Romanczuk, J. Aguirre, J.M. Luzuriaga, Trends on COTS
component identification. Proc. - Fifth Int. Conf. Commer. (COTS)-Based Softw.
Syst., 2006, pp. 90–99, https://doi.org/10.1109/ICCBSS.2006.31.

[56] X. Li, Y. Fan, F. Jiang, A classification of service composition mismatches to
support service mediation. Proc. 6th Int. Conf. Grid Coop. Comput. GCC 2007,
2007, pp. 315–321, https://doi.org/10.1109/GCC.2007.1.

[57] F. Duchon, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, L. Jurǐsica, Path
planning with modified a star algorithm for a mobile robot. Procedia Eng., Elsevier
Ltd, 2014, pp. 59–69, https://doi.org/10.1016/j.proeng.2014.12.098.

[58] S. Newman, Building microservices: designing fine-grained systems, O’Reilly
Media, Inc., 2015.

[59] C. Pautasso, RESTful web services: Principles, patterns, emerging technologies.
Web Serv. Found., Springer New York, 2014, pp. 31–51, https://doi.org/10.1007/
978-1-4614-7518-7_2.

[60] M. Macero, Learn microservices with spring boot, Apress, 2017, https://doi.org/
10.1007/978-1-4842-3165-4.

[61] A. Mohamed, G. Ruhe, A. Eberlein, COTS selection: past, present, and future. Proc.
Int. Symp. Work. Eng. Comput. Based Syst., 2007, pp. 103–112, https://doi.org/
10.1109/ECBS.2007.28.

[62] J. Kontio, G. Caldiera, V.R. Basili, Defining factors, goals and criteria for reusable
component evaluation. Proc. 1996 Conf. Cent. Adv. Stud. Collab. Res.,
CASCON’96, IBM Press, 1996, pp. 21–32.

[63] G. Grau, J.P. Carvallo, X. Franch, C. Quer, DesCOTS: a software system for selecting
COTS components. Conf. Proc. EUROMICRO, 2004, pp. 118–126, https://doi.org/
10.1109/eurmic.2004.1333363.

[64] H.J. Shyur, COTS Evaluation using modified TOPSIS and ANP, Appl. Math.
Comput. 177 (2006) 251–259, https://doi.org/10.1016/j.amc.2005.11.006.

[65] X. Franch, N.A.M. Maiden, Modelling component dependencies to Inform Their
Selection. Lect. Notes Comput. Sci. 2580, Springer Verlag, 2003, pp. 81–91,
https://doi.org/10.1007/3-540-36465-x_8.

[66] J. Clark, C. Clarke, S. De Panfilis, G. Granatella, P. Predonzani, A. Sillitti, G. Succi,
T. Vernazza, Selecting components in large COTS repositories, J. Syst. Softw. 73
(2004) 323–331, https://doi.org/10.1016/j.jss.2003.09.019.

[67] M. Morisio, M. Torchiano, Definition and Classification of COTS: A Proposal, in:
Lect. Notes Comput. Sci. 2255, Springer Verlag, 2002, pp. 165–175, https://doi.
org/10.1007/3-540-45588-4_16.

[68] S.B. Sassi, L.L. Jilani, H.H.B. Ghezala, COTS characterization model in a COTS-
based development environment. Tenth Asia-Pacific Softw. Eng. Conf. 2003, 2003,
pp. 352–361, https://doi.org/10.1109/APSEC.2003.1254389.

[69] M. Sjachyn, L. Beus-Dukic, Semantic component selection - semaCS, Proc. - Fifth
Int. Conf. Commer. (COTS)-Based Softw. Syst. (2006) 83–89, https://doi.org/
10.1109/ICCBSS.2006.25.

[70] N. Yanes, S.B. Sassi, H. Hajjami, B. Ghezala, Ontology-based recommender system
for COTS components, J. Syst. Softw. 132 (2017) 283–297, https://doi.org/
10.1016/j.jss.2017.07.031.

[71] Y. Yu, J. Lu, J. Fernandez-Ramil, P. Yuan, Comparing Web services with other
software components. IEEE Int. Conf. Web Serv. (ICWS 2007), 2007, pp. 388–397,
https://doi.org/10.1109/ICWS.2007.64.

[72] Z. Zheng, H. Ma, M.R. Lyu, I. King, Qos-aware web service recommendation by
collaborative filtering, IEEE Trans. Serv. Comput. 4 (2011) 140–152, https://doi.
org/10.1109/TSC.2010.52.

[73] J. Ma, Q.Z. Sheng, K. Liao, Y. Zhang, A.H.H. Ngu, WS-finder: a framework for
similarity search of web services, in: C. Liu, H. Ludwig, F. Toumani, Q. Yu (Eds.),

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

https://www.iso.org/standard/21470.html
https://doi.org/10.1109/TKDE.2009.35
https://doi.org/10.1109/TKDE.2009.35
https://doi.org/10.1093/comjnl/47.3.342
https://www.omg.org/spec/ServD/
https://www.omg.org/spec/ServD/
https://doi.org/10.1007/978-3-319-44482-6_7
https://doi.org/10.1109/TSC.2015.2402679
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1145/3123779.3123804
https://doi.org/10.1007/978-3-319-66379-1_24
https://doi.org/10.1007/978-3-319-66379-1_24
https://doi.org/10.1016/j.cl.2016.07.001
https://doi.org/10.1016/j.jss.2015.09.019
https://doi.org/10.1007/978-3-319-02812-5_1
https://doi.org/10.1016/j.cl.2018.01.001
https://doi.org/10.1016/j.csi.2015.11.008
https://doi.org/10.1007/978-3-642-41033-8_36
https://doi.org/10.1007/978-3-642-41033-8_36
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0031
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0031
https://doi.org/10.1145/3828.3830
https://doi.org/10.1109/MC.2009.309
https://doi.org/10.1002/spe.2137
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1016/S0953-5438(01)00049-2
https://doi.org/10.1016/S0953-5438(01)00049-2
https://doi.org/10.1007/978-3-642-55049-2
https://doi.org/10.3390/s18072156
https://doi.org/10.3390/s18072156
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.1109/ISORC.2007.10
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0042
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0042
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0042
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0043
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0043
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0043
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0043
https://doi.org/10.1145/1806799.1806816
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0045
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0045
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0045
https://doi.org/10.2200/s00441ed1v01y201208swe001
https://doi.org/10.2200/s00441ed1v01y201208swe001
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-33609-6_4
https://doi.org/10.1007/978-3-642-33609-6_4
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1109/EDOC.1998.723244
https://doi.org/10.1109/EDOC.1998.723244
https://doi.org/10.1109/icdcs.1994.302452
https://doi.org/10.1109/EURMIC.2002.1046129
https://doi.org/10.1109/EURMIC.2002.1046129
https://doi.org/10.1049/ic:20040432
https://doi.org/10.3233/FI-2018-1726
https://doi.org/10.3233/FI-2018-1726
https://doi.org/10.1109/ICCBSS.2006.31
https://doi.org/10.1109/GCC.2007.1
https://doi.org/10.1016/j.proeng.2014.12.098
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0058
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0058
https://doi.org/10.1007/978-1-4614-7518-7_2
https://doi.org/10.1007/978-1-4614-7518-7_2
https://doi.org/10.1007/978-1-4842-3165-4
https://doi.org/10.1007/978-1-4842-3165-4
https://doi.org/10.1109/ECBS.2007.28
https://doi.org/10.1109/ECBS.2007.28
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0062
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0062
http://refhub.elsevier.com/S0920-5489(20)30388-3/sbref0062
https://doi.org/10.1109/eurmic.2004.1333363
https://doi.org/10.1109/eurmic.2004.1333363
https://doi.org/10.1016/j.amc.2005.11.006
https://doi.org/10.1007/3-540-36465-x_8
https://doi.org/10.1016/j.jss.2003.09.019
https://doi.org/10.1007/3-540-45588-4_16
https://doi.org/10.1007/3-540-45588-4_16
https://doi.org/10.1109/APSEC.2003.1254389
https://doi.org/10.1109/ICCBSS.2006.25
https://doi.org/10.1109/ICCBSS.2006.25
https://doi.org/10.1016/j.jss.2017.07.031
https://doi.org/10.1016/j.jss.2017.07.031
https://doi.org/10.1109/ICWS.2007.64
https://doi.org/10.1109/TSC.2010.52
https://doi.org/10.1109/TSC.2010.52

Lect. Notes Comput. Sci., Springer Berlin Heidelberg, 2012, pp. 313–327, https://
doi.org/10.1007/978-3-642-34321-6_21.

[74] J. Chen, Z. Feng, S. Chen, K. Huang, W. Tan, J. Zhang, A novel lifecycle framework
for semantic web service annotation assessment and optimization. 2015 IEEE Int.
Conf. Web Serv., 2015, pp. 361–368, https://doi.org/10.1109/ICWS.2015.55.

[75] R.E. Korf, Real-time heuristic search, Artif. Intell. 42 (1990) 189–211, https://doi.
org/10.1016/0004-3702(90)90054-4.

[76] R. Mirandola, P. Potena, P. Scandurra, Adaptation space exploration for service-
oriented applications, Sci. Comput. Program. 80 (2014) 356–384, https://doi.org/
10.1016/j.scico.2013.09.017.

[77] E. Riccobene, P. Potena, P. Scandurra, Reliability Prediction for Service Component
Architectures with the SCA-ASM Component Model. 2012 38th Euromicro Conf.
Softw. Eng. Adv. Appl., 2012, pp. 125–132, https://doi.org/10.1109/
SEAA.2012.53.

[78] V. Cortellessa, R. Mirandola, P. Potena, Managing the evolution of a software
architecture at minimal cost under performance and reliability constraints, Sci.
Comput. Program. 98 (2015) 439–463, https://doi.org/10.1016/j.
scico.2014.06.001.

[79] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and
conceptual comparison, ACM Comput. Surv. 35 (2003) 268–308, https://doi.org/
10.1145/937503.937505.

[80] F. Rosenberg, M.B. Múller, P. Leitner, A. Michlmayr, A. Bouguettaya, S. Dustdar,
Metaheuristic optimization of large-scale QoS-aware service compositions. 2010
IEEE Int. Conf. Serv. Comput., 2010, pp. 97–104, https://doi.org/10.1109/
SCC.2010.58.

[81] A.R. Soltani, H. Tawfik, J.Y. Goulermas, T. Fernando, Path planning in construction
sites: performance evaluation of the dijkstra, A*, and GA search algorithms, Adv.
Eng. Informatics 16 (2002) 291–303, https://doi.org/10.1016/S1474-0346(03)
00018-1.

[82] J.A. Asensio, J. Criado, N. Padilla, L. Iribarne, Emulating home automation
installations through component-based web technology, Futur. Gener. Comp. Syst.
93 (2019) 777–791, https://doi.org/10.1016/j.future.2017.09.062.

Javier Criado is an Assistant Professor at the Department of
Informatics, University of Almería (Spain). In 2009, he joined
the Applied Computing Group (TIC-211. Since then, he has
participated in four national research projects (refs. TIN2007-
61497, TIN2010-15588, TIN2013-41576-R and TIN2017-
83964-R) and a regional research project (ref. P10-TIC6114).
From 2011–2015, he was supported by an FPU grant
(ref. AP2010-3259). He received his Ph.D. (2015) in Computer
Science from the University of Almería. His research interests
include: Model-Based Engineering, Component-Based Software
Engineering, Model Transformations, Model-Driven Develop
ment for User Interfaces, COTS components, Trading,
Ontology-Driven Engineering, Internet of Things and the Web
of Things.

Luis Iribarne is an Associate Professor at the Department of
Informatics, University of Almería (UAL), Spain. He received
the Ph.D. degree in Computer Science from the UAL. From
1991 to 1993, he worked as a Lecturer at the University of
Granada, and collaborated as IT Service Analyst at the Uni
versity School of Almería. Since 1993, he has served as a
Lecturer at the UAL and worked in several national and inter
national research projects. In 2007, he has founded the Applied
Computing Group (ACG). His main research interests include
simulation and modeling, model-driven engineering, machine
learning, and software technologies and engineering.

Nicolás Padilla received his Ph.D. degree in Computer Science
from the University of Almería. From 1991 to 1993 he served as
Associate Professor at the University of Granada. Today, he
serves as a Professor in the University of Almería. He has
participated as a researcher in different national research
projects (refs. TIN2006-06698, TIN2007-61497, TRA2009-
0309, TIN2010-15588, TIN2013-41576-R, and TIN2017-
83964-R) and a regional research project (ref. P10-TIC-6114)
since 2006. His research interests include Model-Driven Engi
neering (MDE), Component-based Software Engineering (CSE),
Smart Cities, Home Automation and Digital Home.

J. Criado et al.

J. Criado, L. Iribarne, N. Padilla.(2021)Heuristics-based mediation for building smart architectures at run-time.
Computer Standards & Interfaces. Elsevier, Volume 75, April 2021, 103501.ISSN: 0920-5489

https://doi.org/10.1016/j.csi.2020.103501

https://doi.org/10.1007/978-3-642-34321-6_21
https://doi.org/10.1007/978-3-642-34321-6_21
https://doi.org/10.1109/ICWS.2015.55
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/j.scico.2013.09.017
https://doi.org/10.1016/j.scico.2013.09.017
https://doi.org/10.1109/SEAA.2012.53
https://doi.org/10.1109/SEAA.2012.53
https://doi.org/10.1016/j.scico.2014.06.001
https://doi.org/10.1016/j.scico.2014.06.001
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1109/SCC.2010.58
https://doi.org/10.1109/SCC.2010.58
https://doi.org/10.1016/S1474-0346(03)00018-1
https://doi.org/10.1016/S1474-0346(03)00018-1
https://doi.org/10.1016/j.future.2017.09.062

	Heuristics-based mediation for building smart architectures at run-time
	1 Introduction
	2 Real industrial context of smart architectural scenarios
	2.1 Prerequisites of the methodology
	2.2 Models involved
	2.3 Transformation step

	3 Semantic trading at run-time
	3.1 Trading in software architectures
	3.2 Semantic trading
	3.3 Generating configurations

	4 Heuristics-based generation of configurations
	4.1 Adapted A∗ search algorithm
	4.2 Metrics for semantic trading

	5 Implementation of the semantic trader
	6 Generating software architectures using the STAS approach: a case study for mashup UIs
	6.1 Calculation of alternative configurations
	6.2 Scoring a possible solution
	6.3 Performance

	7 Discussion
	undefined
	What representation is appropriate for describing the components and architectures managed in our approach?
	Can this approach be applied in different domains or scenarios of smart architectures?
	How can a traditional trading service be extended to calculate the best configurations of components?
	What is the most important syntactic and semantic information when searching for architectural configurations that must be ...
	How can the performance of this search be addressed to get suitable results at run-time?

	8 Related work
	9 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

