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Abstract

In this paper we present results of unsupervised cross-lingual speaker adapta-

tion applied to text-to-speech synthesis. The application of our research is the

personalisation of speech-to-speech translation in which we employ a HMM sta-

tistical framework for both speech recognition and synthesis. This framework

provides a logical mechanism to adapt synthesised speech output to the voice

of the user by way of speech recognition. In this work we present results of

several different unsupervised and cross-lingual adaptation approaches as well

as an end-to-end speaker adaptive speech-to-speech translation system. Our

experiments show that we can successfully apply speaker adaptation in both

unsupervised and cross-lingual scenarios and our proposed algorithms seem to
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generalise well for several language pairs. We also discuss important future

directions including the need for better evaluation metrics.

Keywords: Speech-to-speech translation, Cross-lingual speaker adaptation,

HMM-based speech synthesis, Speaker adaptation, Voice conversion

1. Introduction

One of the most elementary and crucial elements of human communication

– spoken language – remains a fundamental barrier to economic, cultural and

policy exchange both in domestic and international relations. It is clear that

a key to breaking down this language barrier is through computer assisted in-

teraction, but the ideal solution in which cross-lingual spoken interaction is

instantaneously and seamlessly facilitated by an unobtrusive automated assis-

tant, still remains only a vision for the future. Even so, the critical elements that

would comprise such a system – automatic speech recognition (ASR), machine

translation (MT) and text-to-speech synthesis (TTS) – have made dramatic

leaps in performance in the last decade and progress in these fields will continue

to bring such a device closer to reality.

Several research and commercially based speech-to-speech translation efforts

have been pursued in recent years, to mention only a few: Verbmobil a long-

term project of the German Federal Ministry of Education, Science, Research

and Technology, Technology and Corpora for Speech to Speech Translation (TC-

STAR) FP6 European project, and the Spoken Language Communication and

Translation System for Tactical Use (Transtac) DARPA initiative. Ranging

from constrained, mobile applications to ambitious systems demanding consid-

erable computing power, these efforts demonstrate that there is a strong demand

for such technology across a broad spectrum of applications. One aspect which

we take for granted in spoken communication that is largely missing from cur-

rent technology is a means to facilitate the personal nature of spoken dialog.

That is; state-of-the-art approaches lack or are limited in their ability to be

personalised in an effective and unobtrusive manner, and so act as a barrier to
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natural communication. The authors of this paper are collaborating in an on-

going FP7 European project, Effective Multilingual Interaction In Mobile Envi-

ronments (EMIME), the goal of which is the personalisation of speech-to-speech

translation (SST) systems.

The EMIME project aims to achieve its goal of personalised speech-to-speech

translation through the use of hidden Markov model based ASR and TTS.

Within the last two decades, ASR technology has almost completely converged

around this single paradigm and more recently HMM-based TTS is likewise

showing a strong concentration of interest from both researchers and industry

[1, 2, 3]. The use of a common framework for ASR and TTS provides several

interesting research opportunities in the framework of SST, including the de-

velopment of unified approaches for the modelling of speech for recognition and

synthesis that will need to adapt across languages to each user’s speaking char-

acteristics. Thus, a core goal of EMIME is the development of unsupervised

cross-lingual speaker adaptation for HMM-based TTS.

In this paper we present results from our first experiments on the develop-

ment of cross-lingual adaptation methods. This work represents a consolida-

tion of several individual research directions currently under investigation by

EMIME partners across several targeted language pairs. We show that, using

the HMM framework, SST can be posed in two ways: the traditional ‘pipeline’

approach, where speech input follows a path through independent ASR, MT

and TTS modules, or in a ‘unified’ approach in which ASR and TTS mod-

ules are tightly coupled. We present results of cross-lingual speaker adaptation

using both pipeline and unified approaches also comparing performance in su-

pervised and unsupervised scenarios. We also present results obtained using a

complete end-to-end speaker adaptive SST system. An important conclusion

that can be drawn from this work is that conventional speaker adaptation al-

gorithms, long employed by the ASR community and more recently for TTS,

are inherently robust when employed in an unsupervised context and provide

consistent performance across the language pairs that is only marginally worse

than intra-lingual adaptation.
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The remainder of the paper is organised as follows: Section 2 we provide a

brief overview of speech-to-speech translation with a focus on the pipeline and

unified frameworks. Following this, in Section 3 we detail speaker adaptation

for HMM-based TTS, drawing together recent work on unsupervised and cross-

lingual adaptation. Sections 4 and 5 present our experimental studies to date

and a discussion of these results, respectively. Finally, in Section 6 we conclude

the paper with a summary of our findings and future directions.

2. Speech-to-speech translation with hidden Markov models

Speech-to-speech translation typically comprises three component technolo-

gies: ASR to convert speech in the input language into text in the input lan-

guage; MT to convert text in the input language into text in the output lan-

guage; and TTS to convert text in the output language into speech in the output

language. Personalisation of SST implies that an additional component is nec-

essary in order to carry out cross-lingual speaker adaptation (CLSA) of the

TTS.

In the EMIME project, the major focus of our work is on the personalisa-

tion of speech-to-speech translation using HMM-based ASR and TTS, which

involves the development of unifying techniques for ASR and TTS as well as

the investigation of methods for unsupervised and cross-lingual modelling and

adaptation for TTS. Thus, machine translation forms the ‘glue’ that allows us

to link ASR and TTS modules, but is not a subject of investigation in itself. We

have developed a modular research framework that can be used to test differ-

ent configurations of SST systems. The framework accepts modules for feature

extraction (FE), ASR, TTS, MT, and CLSA as illustrated in Figure 1. Two typ-

ical configurations are what we call the pipeline and unified SST frameworks,

which we detail in the remainder of this section, but first we provide a brief

overview of the HMM-based ASR and TTS.
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Figure 1: Block diagram of the research system. Blue signifies modules, orange signifies file

exchange between modules, and green signifies system input/output files.

2.1. HMM-based ASR and TTS

The central element of our work is the common statistical HMM-framework

employed for both ASR and TTS. The adoption of a common modelling ap-

proach can be misleading in that it implies a straight-forward means to inte-

grate ASR and TTS. To the contrary, despite the common statistical model the

two normally differ significantly [4]. The main differences of consequence to this

paper lie at the interfaces between the modules of our SST framework – that

is, the acoustic feature extraction and acoustic modelling (see [4] for further

details):

Acoustic features

For ASR we normally employ conventional ASR features based on low

dimensional short term spectral representations [5, 6] where as in TTS

acoustic feature extraction includes mel-cepstrum features derived from

STRAIGHT spectrum [7, 8] plus log-pitch and band-limited aperiodic
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features for mixed excitation.

Acoustic modelling

ASR acoustic models normally employ a basic HMM topology using pho-

netic decision tree state tying of triphone context dependent models [9]

with Gaussian mixture model (GMM) state emission pdfs. By contrast,

TTS acoustic models use multiple stream, single Gaussian state emission

pdfs with decision tree state tying of full context models that use a range

of contextual information for the prediction of prosodic patterns [10].

2.2. Pipeline translation framework

In the pipeline framework ASR, MT and TTS modules operate largely inde-

pendently of one another. Figure 1 essentially describes the basis of a possible

pipeline configuration in which on the input language side both ASR and TTS

modules are used – ASR is necessary to extract text for the machine transla-

tor and TTS front-end is required in order to adapt TTS models to the user’s

voice characteristics (for further details see Section 3.1.1). On the output lan-

guage side, TTS is once again employed to synthesise the output of the machine

translation with voice characteristics of the user. An advantage of the pipeline

approach is that it enables simpler integration of components and does not

involve any compromises to performance by attempting to combine ASR and

TTS modelling. On the other hand, there is a large degree of redundancy in

the system.

2.3. Unified translation framework

In contrast to the pipeline approach, a unified translation framework at-

tempts to use common modules for both ASR and TTS. Such a framework is

illustrated in Figure 2. It can be seen that the system is conceptually simpler

with a minimum of redundancy with respect to feature extraction and acoustic

models. Cross-lingual speaker adaptation of TTS is implicit to the ASR, thus a

TTS front-end is not required on the input language side (also see Sections 3.1.2

and 3.1.3). The development of such a framework implies the use of common
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feature extraction and acoustic modelling techniques for ASR and TTS, how-

ever, such unified modelling may come at the expense of reduced performance

for ASR and/or TTS. We refer to our previous work on unified modelling for

HMM-based ASR and TTS, which show that this is currently the case [11, 12, 4].
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Figure 2: Unified approach to speech-to-speech translation. ASR and TTS modules use the

same acoustic features and shared acoustic models (not shown in this diagram).

3. Speaker adaptation for HMM-based TTS

Ideally, in order to build an HMM-based speech synthesizer of high quality

for a particular speaker, it is necessary to collect a large amount of speech data

from the speaker as training data. Unfortunately, this is often unfeasible as

the data collection and annotation is extremely time-consuming and expensive.

Speaker adaptation has been proposed as an alternative to overcome this prob-

lem by requiring as little as some tens of utterances from a particular speaker

as adaptation data. Firstly, an average voice (or speaker-independent) model

set is trained on an appropriate multi-speaker speech corpus. Then the average
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voice model is transformed to that of the target speaker using utterances read by

the particular speaker. Typically, the transofmration of the model is performed

using linear transformations estimated by means of maximum likelihood linear

regression [13] and/or maximum a posteriori (MAP) adaptation [14]. Such an

adapted model set can resemble, to a great extent, a speaker-specific model set

[15, 16, 17].

Speaker adaptation plays two key roles in speech-to-speech translation. On

the ASR side, it can considerably increase the recognition accuracy, which pro-

vides more correct text input for the subsequent machine translation. On the

TTS side, it can also be used to personalise the speech synthesised in the output

language. We are mostly interested in this latter aspect, i.e., personalisation of

output speech.

As mentioned in Section 1, the core of our work is the development of un-

supervised cross-lingual speaker adaptation for HMM-based TTS. This implies

that we are facing two main challenges: unsupervised adaptation and cross-

lingual adaptation of TTS. It follows that in the context of SST, adaptation

must normally be performed using the output of the speech recognition system,

however, the output of a speech recogniser does not provide the full-context la-

bels [18] normally used for the adaptation of TTS. As a result, TTS models can

not be adapted directly from ASR using conventional techniques as mentioned

in [19]. Similarly, for cross-lingual adaptation we need to consider how to adapt

TTS models of the output language using speech data from the input language.

These two challenges will be elaborated in the two remainder of this section.

3.1. Unsupervised adaptation

HMM-based TTS is a parametric approach to speech synthesis, so that

we can apply mature and widely used speaker adaptation algorithms from the

HMM-based ASR community, for instance, maximum likelihood linear regres-

sion (MLLR) or maximum a-posteriori (MAP), and apply them to HMM-based

TTS directly. We can achieve unsupervised adaptation of TTS through the

use of ASR either by using the noisy text transcription of the speech data with
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standard TTS adaptation approaches or using methods that more closely couple

ASR and TTS models in so called ‘unified’ frameworks. These three approaches

are described in further detail below.

3.1.1. Using TTS front-end

This is the most straight-forward approach – a combination of a word-based

large-vocabulary continuous speech recognition and conventional speaker adap-

tation for HMM-based TTS. The speech recognition provides word-level recog-

nition results, which are then translated into full-context labels by a TTS front-

end. With these full-context labels and corresponding input speech data, adapt-

ing the voice identity of TTS models is carried out. The main drawback of such

an approach is caused by the noisy text. Full-context labels generated by a TTS

front-end may contain many errors due to recognition errors. For instance [20]

reports significant differences observed for the quality of synthetic speech using

a TTS front-end despite the use of a state-of-the-art six-pass LVCSR systems

and confidence scores calculated from confusion networks using word posteri-

oris [21, 22]. Such adaptation is synonymous with the pipeline SST approach

previously described since the ASR is largely decoupled from the adaptation of

TTS.

3.1.2. Two-pass decision tree construction

In this approach, full-context models are clustered using a decision tree to

enable robust estimation of their parameters [23, 24, 10]. Note that the deci-

sion tree may have questions related to prosody or lingustic information, which

are normally not used for ASR. By imposing constraints upon the decision tree

structure, multiple-component triphone mixture models may be derived from

single-component full-context models [12]. This constrained decision tree con-

struction process is illustrated in Figure 3.

The first stage, indicated as Pass 1 in Figure 3, uses only questions relating

to left, right and central phonemes to construct a phonetic decision tree. This

decision tree is used to generate a set of tied triphone contexts, which are easily

9



C
-N

a
sa

l?L
-V

o
w

el
?

L
-V

o
w

el
?

C
-V

o
w

el
?

… C
-N

a
sa

l?

L
-V

o
w

el
?

C
-V

o
w

el
?

… C
-N

a
sa

l?

R
-s

tr
es

se
d

?

2
 s

y
ll

a
b

le
s 

in
 u

tt
?

…

P
a

ss
 1

P
a

ss
 2

R
-s

tr
es

se
d

?

2
3

C
-N

a
sa

l?L
-V

o
w

el
?

2
 s

y
ll

a
b

le
s 

in
 u

tt
?

1
4

5

C
-N

a
sa

l?L
-V

o
w

el
?

5
4

3
2

1

F
u

ll
 c

o
n
te

x
t 

m
o

d
el

s 

(s
in

g
le

-c
o

m
p

o
n

en
t)

T
ri

p
h

o
n

e
m

o
d

el
s

(m
u

lt
i-

co
m

p
o

n
en

t)

M
ap

p
in

g
In

v
er

se

m
ap

p
in

g

M
o

d
el

m
a

p
p

in
g

Figure 3: Two-pass decision tree construction. Mapping functions permit sharing of full-

context models for TTS and triphone models for ASR.

integrated into the ASR. Pass 2 extends the decision tree constructed in Pass

1 by introducing additional questions relating to supra-segmental information.

The output of Pass 2 is an extended decision tree that defines a set of tied

full contexts. After this two-pass decision tree construction, single-component
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Gaussian state output distributions are estimated for the tied full contexts as-

sociated with each leaf node of the extended decision tree. These models are

then used for speech synthesis.

A mapping from the single-component full-context models to multiple-component

triphone models is defined as follows. Each leaf node of the extended decision

tree has a unique ‘triphone ancestor’ node, namely its ancestor leaf node of the

Pass 1 decision tree. Each set of Gaussian components associated with the same

‘triphone ancestor’ is grouped as components of a multiple-component mixture

distribution to model the context defined by the ‘triphone ancestor’. The de-

rived triphone models are illustrated at the bottom of Figure 3. The weight

of each mixture component is calculated from the occupancies associated with

components of the Pass 2 leaf node contexts. The inverse mapping from triphone

models to full-context models is obtained by associating each Gaussian compo-

nent with its original full context. Given this mapping between full-context and

triphone models, unsupervised adaptation of full-context acoustic models may

be simply achieved via adaptation of triphone models: Triphone models derived

from full-context models are used to estimate triphone-level transcriptions of

adaptation data. The estimated transcriptions are then used to adapt the tri-

phone models. The adapted triphone models are subsequently mapped back to

full-context models using the inverse mapping to enable adaptation of the TTS

models without the use of full-context labels.

3.1.3. Decision tree marginalisation

Decision tree marginalization [11] allows the derivation of triphone context

models from a full-context speech synthesis model such that the marginalised

models can be used in ASR and unsupervised adaptation. Hence, the first stage

involves the training of a conventional HMM-based speech synthesis system

where each HMM state emission distribution is typically composed of a single

Gaussian PDF.

Conventionally, generating a previously unseen model for synthesis is car-

ried out by traversing the decision tree according to the full-context label and
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eventually assigning one leaf node to each state of the new model. Decision tree

marginalization generates a triphone recognition model from the full context

decision tree in almost the same manner. The difference lies in the cases where

the questions associated with intermediate nodes are irrelevant to the triphone

context. In such cases both children of the intermediate node are traversed,

effictively marginalising out contexts associated with that question. A triphone

model is thus associated with more than one leaf node resulting in a state emis-

sion distribution of multiple Gaussian components. In other words, a triphone

model constructed by decision tree marginalization of a synthesis model set

can be viewed as a weighted sum of full-context single Gaussian emission dis-

tributions whose mixture weights are calculated based on their corresponding

occupancies. See Figure 4 for an example.

R_fricative?

Yes

No

R_unvoiced?

L_plosive?Syllable_stressed?

G1

G2 G3

G4 G5

r-ih+z

Figure 4: An example of decision tree marginalization, showing how a new recognition model

“r-ih+z” is derived from a decision tree of a speech synthesis system (“L ” / “R ”: left/right

phone; “G?”: full-context state emission PDFs)

Once the marginalised triphone models are obtained, transforms are esti-

mated from the adaptation data using the regression class tree of the full-context

synthesis model. Thus, subsequent adaptation of the full-context synthesis mod-

els involves straight-forward application of the transforms obtained from adap-

tation of the marginalised triphone models. The decision tree marginalization

process described is actually a special case. It can be extended such that any
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subset of the full-context labels can be marginalized out. For instance, we can

create tonal monophone models by marginalizing out all the contexts that are

unrelated to the base phone context and tone information.

3.1.4. Differences between two-pass decision tree construction and decision tree

marginalisation

It should be evident from the descriptions in Sections 3.1.2 and 3.1.3 that

two-pass and marginalisation approaches are closely related and in fact two-pass

is a special case. In light of these similarities it is also worth noting the dif-

ferences that distinguish the two and possible practical implications. The most

evident difference is that two-pass tree construction first clusters HMM param-

eters according to ASR contexts and then follows with TTS clustering whereas

the marginalisation approach, as it has been described, performs the contrary.

We may expect then, that the two-pass approach may favour ASR performance

over TTS performance and visa-versa for the marginalisation approach.

3.2. Cross-lingual adaptation

Cross-lingual speaker adaptation for HMM-based TTS shares some similari-

ties with the development of ASR systems for resource-poor languages – in both

cases well-trained model sets are in a language different from that of given adap-

tation/training data requiring a means to bridge the gap between the languages

of the models and data. Current cross-lingual speaker adaptation can be viewed

as being largely based on mapping methods [25] – trying to find correspondence

between two different languages, either on the phoneme level using phonetic

knowledge or on the HMM state level using data driven approaches. Previous

work has shown data driven approaches appear to give better results and as

such they have been pursued in this work [26, 27].

3.2.1. State-mapping based approaches to cross-lingual adaptation

Wu et al. [27] proposed the state-level mapping approach for cross-lingual

speaker adaptation. Establishing state-level mapping rules consists of two steps.

Firstly, two average voice models are trained in two languages (say, s and g),

13



respectively. Secondly, each HMM state, Ωs
k (k = 1, . . . , Ns), in the language

s is associated with a HMM state Ωg
j (j = 1, . . . , Ng) that is the most similar

among all the states in the language g. Ns and Ng are the total number of the

states in the two respective languages.

Cross-lingual adaptation can then be applied by mapping either the data or

speaker transforms. In the transform mapping approach, intra-lingual adapta-

tion is first carried out in the input language. Following this, the transforms

are applied to the states of the output language acoustic model using the state

mappings derived such that the transform associate with states in the input

language are applied to their respective mapped state in the output language.

Alternatively, a data mapping approach was proposed in which states belonging

to the input language acoustic model are replaced by states belonging to the

output language acoustic model according to the derived state mapping. The

‘data mapped’ acoustic model may then be adapted in the usual intra-lingual

manner and the resulting transformed state emission pdfs can be directly used

for synthesis in the output language.

3.2.2. KLD-based state mapping

Since single Gaussian mixture models are used here, let us denote parameters

of each state model Ωs
k including a self-transition probability ask, a mean vector

µs
k and a covariance matrix Σs

k. Similarly, we denote the corresponding self-

transition probability, mean vector and covariance matrix of the input language

as agj , µ
g
j and Σg

j , respectively.

For each state model Ωg
j in the input language, we want to find a nearest

state model Ωs
k in the output language, which has the minimum KLD with Ωg

j .

In the case of single Gaussian mixture models, the upper bound of KLD [28]

between two state models is calculated as

DKL(Ω
g
j ,Ω

s
k) ⩽

DKL

(
Gs

k||G
g
j

)
1− ask

+
DKL

(
Gg

j ||Gs
k

)
1− agj

+
(ask − agj ) log(a

s
k/a

g
j )

(1− ask)(1− agj )
(1)

where Gs
k denote the Gaussian distribution related to the state model Ωs

k, which

includes the mean vector µs
k and covariance matrix Σs

k, and the KLD between
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two Gaussian distributions is calculated as

DKL

(
Gs

k||G
g
j

)
=

1

2
ln

(∣∣Σg
j

∣∣
|Σs

k|

)
− D

2
+

1

2
tr
(
Σg

j
−1

Σs
k

)
+
1

2

(
µg

j − µs
k

)⊤
Σg

j
−1 (

µg
j − µs

k

)
(2)

Since we only focus on the distribution of a state model, we ignore the effect of

transition probabilities, and calculate the KLD between two state models as

DKL(Ω
s
k,Ω

g
j ) ≈ DKL

(
Gs

k||G
g
j

)
+DKL

(
Gg

j ||G
s
k

)
(3)

Based on the above KLD measurement, the nearest state model Ωs
k′ in the

output language for each state model Ωg
j in the input language is calculated as

k′j = argmin
k

DKL(Ω
g
j ,Ω

s
k). (4)

Finally, we map all the state models in the input language to the state models

in the output language, which can be formulated as

Ωg
j ⇒ Ωs

k′
j
, j = 1, . . . , Ng. (5)

Here we establish a state mapping from the model space of an input lan-

guage to that of an output language. In this case, all the state models in the

input language have a mapped state model in the output language. However, it

should be noted that not all the state models in the output language have a cor-

responding state model in the input language, and that the mapping direction

can be reversed, namely, from the model space of an output language to that of

an input language. The KLD-based transform mapping process is illustrated in

Figure 5.

3.2.3. Probabilistic state mapping

The state mapping approaches previously described generate a determin-

istic mapping between HMM states in the input and output languages. An

alternative is to derive a stochastic mapping which could take the form of a

mapping between states, P (Ωg
j |Ωs

k), or from states directly to the adaptation

15



Figure 5: The state-mapping is learned by searching for pairs of states that have minimum

KLD between input and output language HMMs. Linear transforms estimated with respect

to the input language HMMs are applied to the output language HMMs, using the mapping

to determine which transform to apply to which state in the output language HMMs.

data, P (Ωs
k|o

g
t ), where ogt is an observation from input language g at time t.

The simplest such way of deriving this mapping is by performing ASR on the

adaptation data using an acoustic model of the output language. The resulting

sequence of recognised phonemes provides the mapping from data in the input

language to states in the output language, though the phoneme sequence itself

is meaningless.

4. Experimental studies

The HMM-based speaker adaptation techniques presented in the previous

section provide the necessary means to achieve personalised speech-to-speech

translation. More specifically, through the combination of unsupervised and

cross-lingual adaptation we are able to realise either pipeline or unified SST

frameworks. The experiments presented in this section describe independent

studies that investigate SST in the context of different combinations of the

above approaches. The number of possible combinations is quite significant,
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hence, each study concentrates only on a subset as briefly summarised in Table

1.

Table 1: Summary of experimental studies. US: unsupervised adaptation (1: TTS front-end,

2: two-pass decision tree, 3: decision tree marginalisation). CLSA (TM: transform mapping,

DM: data mapping, PM: probabilistic mapping)

Study Frameworka Adaptation CLSA

S US1 US2 US3 TM DM PM

1 Unified

2 Unified

3 Pipeline

a Only system 3 investigates an end-to-end SST framework. Studies 1 and

2 are focused on the speaker adaptation component only.

Our aim in presenting these studies is to show the range of techniques that

have been developed and evaluated to date and to discuss their relative benefits

and disadvantages. In so doing we are primarily concerned with assessing the

preservation of speaker identity in the speech output. This could also include

consideration of complex issues including the human perception of speaker iden-

tity, further compounded by the cross-lingual scenario. Such considerations lie

outside the scope of our initial investigations and are discussed in more detail

elsewhere [25].

We have not set out to provide an exhaustive comparative study, thereby

discovering which is the ‘best’ approach. However, it would also not be appro-

priate to make direct comparisons of results of systems presented in different

studies, thus we instead aim to characterise the effectiveness of the approaches

presented with respect to three main criteria using conventional objective and

subjective metrics:

Generality across languages

We would like to know whether CLSA performs equivalently across lan-
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guages or if some languages are more challenging than others.

Supervised vs unsupervised adaptation

Personalised SST not only relies on ASR to provide input to the MT, but

also for unsupervised speaker adaptation of the TTS. Hence, we should

know whether the use of noisy transcripts is detrimental to CSLA.

Cross-lingual versus intra-lingual adaptation

Several cross-lingual adaptation schemes have been proposed in the course

of our work. We would like to know which of these shows the most promise

and compare this against intra-lingual adaptation.

4.1. Study 1: Finnish – English

In this study we use a simple unsupervised probabilistic mapping technique

using two-pass decision tree construction that avoids the need to train synthesis

models in the input language.

4.1.1. Setup

Full context English average voice models are estimated using speaker adap-

tive training (SAT, [16]) and the Wall Street Journal (WSJ) SI84 dataset.

Acoustic features used are STRAIGHT-analysed Mel-cepstral coefficients [8],

fundamental frequency, band aperiodicity measurements, and the first and sec-

ond order temporal derivatives of all features. The acoustic models use explicit

duration models [29] and multi-space probability distributions [30].

Decision trees (one per state and stream combination) are constructed using

the two-pass technique of Section 3.1.2. Adapted TTS systems are derived

from the average voice models using the two-pass decision tree method ([31])

and constrained maximum likelihood linear regression. Speech utterances are

generated from models via feature sequence generation [32] and resynthesis of

a waveform from the feature sequence [8].
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4.1.2. Adaptation and evaluation datasets

The adaptation datasets comprise 94 utterances from a corpus of parallel

text of European parliament proceedings [33]. English and Finnish versions of

this dataset are recorded in identical acoustic environments by a native Finnish

speaker also competent in English. Statistics relating to these datasets are pro-

vided in Table 2. The evaluation dataset comprises English utterances (distinct

Language # utterances # minutes # words

English 94 12.3 1546

Finnish 94 10.9 1066

Table 2: Europarl adaptation datasets.

from the adaptation utterances) from the same Europarl corpus.

4.1.3. Evaluation details

The following systems are evaluated.

• System A: average voice.

• System B: unsupervised cross-lingual adapted.

• System C: unsupervised intralingual adapted.

• System D: supervised intralingual adapted.

• System E: vocoded natural speech.

System B is the result of applying unsupervised cross-lingual adaptation to

the average voice models using the Finnish adaptation dataset. System C results

from unsupervised adaptation using the English adaptation dataset. System D

is identical to System C with the exception that the correct transcription is

used during adaptation. System E analyses and resynthesises the evaluation

utterances using STRAIGHT[8].

All systems were evaluated by listening to synthesised utterances via a web

browser interface, as used in the Blizzard Challenge 2007. The evaluation com-

prised four sections. In the first pair of sections, listeners judged the naturalness
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of an initial set of synthesised utterances. In the second pair of sections, lis-

teners judged the similarity of a second set of synthesised utterances to the

target speaker’s speech. Four of the target speaker’s natural English utterances

were available for comparison. Each synthetic utterance was judged using a five

point psychometric response scale, where ‘5’ and ‘1’ are respectively the most

and least favourable responses.

Twenty-four native English and sixteen native Finnish speakers conducted

the evaluation. Different Latin squares were used for each section to define the

order in which systems were judged. Each listener was assigned a row of each

Latin square, and judged five different utterances per section, each synthesised

by a different system.

4.1.4. Results

Figure 6 summarises listener judgements of ‘similarity to target speaker’ and

‘naturalness’ using boxplots [34] while Table 3 displays the average mean opinion

scores (MOS) of these judgements for each system in the columns labelled ‘av’.

Analysis of these judgements by listener native language is provided in the

columns labelled ‘En’ and ‘Fi’, respectively denoting English and Finnish.

Sys

Source

Sup?

MOS MOS

lang. similarity naturalness

En Fi av En Fi av

A - - 1.2 1.1 1.1 2.3 2.4 2.3

B Fi N 2.3 1.5 2.0 2.4 2.4 2.4

C En N 2.6 1.7 2.2 2.6 2.7 2.7

D En Y 2.7 2.0 2.4 2.5 2.8 2.6

E - - 4.6 4.6 4.6 3.7 4.1 3.8

Table 3: Mean opinion scores of evaluated systems.
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Figure 6: Listener opinion scores for similarity to target speaker and naturalness.

4.2. Study 2: Chinese – English

This study is concerned with comparing different cross-lingual speaker adap-

tation schemes in supervised and unsupervised settings. Unsupervised adapta-

tion is achieved using the decision tree marginalisation method. Decision tree

marginalisation is also used to perform supervised cross-lingual adaptation using

only the output language acoustic models. Rather than adapting pitch stream

using decision tree marginalisation, we use simple mean shift of the pitch ac-

cording to the input speech.

4.2.1. Setup

The experiments were conducted using the Mandarin Chinese - English lan-

guage pair. We trained two average voice, single Gaussian synthesis model sets

on the corpora SpeeCon (Mandarin) and WSJ SI84 (English) [35]. We collected

bilingual adaptation data from two Chinese students (H and Z) who also spoke

English well. The Mandarin and English test prompts, which were not included

in the training data, were also selected from SpeeCon and WSJ, respectively.

Mandarin and English were defined as input (L1) and output (L2) languages,

respectively, throughout our experiments.
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We evaluated four different cross-lingual adaptation schemes each in super-

vised and unsupervised modes, making a total of eight systems. These systems

(S2, S1-M, S1-T, S1-D, U2, U1-M, U1-T and U1-D) are described as follows,

according to the labelling scheme in Table 4:

S2 purely built on the English side

S1-M We marginalized out all the English-specific contexts first. As a result,

a Mandarin full-context label was associated with more than one English

state-cluster. Then Mandarin adaptation data could be treated as English

data for “intra-lingual” speaker adaptation.

S1-T & S1-D as described in Section 3.2.1

U2 purely built on the English side; as described in Section 3.1.3

U1-M We marginalized out all the non-triphone contexts and then recognized

Mandarin adaptation data with English models. Mandarin adaptation

data was thus associated with the English average voice model set.

U1-T & U1-D Combination of unsupervised adaptation with transform and

data KLD-based mapping

3 Speech features were 39th-order mel-cepstra, logF0, five dimensional band

aperiodicity, and their delta and delta-delta coefficients. The CSMAPLR [16]

algorithm and 40 adaptation utterances were used. Global variances were cal-

culated on adaptation data. A simple phoneme loop was adopted as a language

model for recognition. The average phoneme error rate was around 75%.

4.2.2. Results

We first evaluated system performance using objective metrics. For this

we calculated RMSE of mel-cepstrum (MCEP) and F0, as well as correlation

coefficients and voicing error rates of F0. See Table 5.

Our formal listening test consisted of two sections: naturalness and speaker

similarity. In the naturalness section, a listener was requested to listen to a
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System name format: (S/U) (1/2) - (D/T/M)

S/U supervised / unsupervised

1/2 cross-lingual / intra-lingual

D/T data/transform version of HMM state mapping

M Decision tree marginalization was used instead of HMM

state mapping. The average voice model set of Mandarin

(L1) was therefore unnecessary.

Table 4: Labelling of CLSA systems for Study 2

natural utterance first and then utterances synthesized by the eight systems

each as well as vocoded speech in a random order. Having listened to each

synthesized utterance, the listener was requested to score what he/she heard

on a 5-point scale of 1 through 5, where 1 meant “completely unnatural” and

5 meant “completely natural”. The speaker similarity section was designed in

the same fashion, except that a listener was requested to listen to one more

utterance which was synthesized directly by the average voice models and the

5-point scale was such that 1 meant “sounds like a totally different person” and

5 meant “sounds like exactly the same person”. Twenty listeners participated

in our listening test. Because of the anonymity of our listening test, only two

native English speakers can be confirmed. The results are shown in Figures 7 –

10.

4.3. Study 3: English – Japanese

Although our focus up until now has been on the evaluation of cross-lingual

speaker adaptation, we have also performed some experiments with an end-to-

end speech-to-speech translation system.

4.3.1. Setup

We performed experiments on unsupervised English-to-Japanese speaker

adaptation for HMM-based speech synthesis. An English speaker-independent

model for ASR and average voice model for TTS were trained on the pre-defined
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MCEP F0

RMSE (/frm) RMSE (Hz/frm) CorrCoef

H Z H Z H Z

AV 1.39 1.43 26.0 35.9 0.46 0.49

S2 1.04 1.04 11.8 9.6 0.46 0.56

U2 1.06 1.08 13.0 14.0 0.47 0.54

S1-T 1.23 1.22 20.0 12.6 0.47 0.51

U1-T 1.24 1.26 21.1 16.5 0.48 0.53

S1-D 1.13 1.14 19.5 12.6 0.47 0.51

U1-D 1.13 1.13 22.7 17.3 0.48 0.55

S1-M 1.10 1.11 25.9 22.3 0.48 0.54

U1-M 1.10 1.11 25.1 21.0 0.48 0.53

Table 5: Objective evaluation results (“AV” means “average voice”)

training set “SI-84” comprising 7.2k sentences uttered by 84 speakers included

in the “short term” subset of the WSJ0 database (15 hours of speech). A

Japanese average voice model for TTS was trained on 10k sentences uttered by

86 speakers from the JNAS database (19 hours of speech). One male and one

female American English speaker, not included in the training set, were chosen

from the “long term” subset of the WSJ0 database as target speakers. The

adaptation data comprised 5, 50, or 2000 sentences selected arbitrarily from the

2.3k sentences available for each of the target speakers.

Speech signals were sampled at a rate of 16 kHz and windowed by a 25 ms

Hamming window with a 10 ms shift for ASR and by an F0-adaptive Gaus-

sian window with a 5 ms shift for TTS. ASR feature vectors consisted of 39-

dimensions: 13 PLP features and their dynamic and acceleration coefficients.

TTS feature vectors comprised 138-dimensions: 39-dimension STRAIGHT mel-

cepstral coefficients (plus the zeroth coefficient), logF0, 5 band-filtered aperiod-

icity measures, and their dynamic and acceleration coefficients. We used 3-state

left-to-right triphone HMMs for ASR and 5-state left-to-right context-dependent
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Figure 7: Naturalness score (speaker H)

multi-stream MSD-HSMMs for TTS. Each state had 16 Gaussian mixture com-

ponents for ASR and a single Gaussian for TTS. For speaker adaptation, the

linear transforms Wi had a tri-block diagonal structure, corresponding to the

static, dynamic, and acceleration coefficients. Since automatically transcribed

labels for unsupervised adaptation contain errors, we adjusted a hyperparam-

eter (τb in [16]) of CSMAPLR to higher-than-usual value of 10000 in order to

place more importance on the prior (which is a global transform that is less

sensitive to transcription errors).

4.3.2. Results

Synthetic stimuli were generated from 7 models: the average voice model and

supervised or unsupervised adapted models each with 5, 50, or 2000 sentences

of adaptation data. 10 Japanese native listeners participated in the listening

test. Each listener was presented with 12 pairs of synthetic Japanese speech

samples in random order: the first sample in each pair was a reference original

utterance from the database and the second was a synthetic speech utterance

generated from one of the 7 models. For each pair, listeners were asked to give

an opinion score for the second sample relative to the first (DMOS), expressing

how similar the speaker identity was. Since there were no Japanese speech data
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Figure 8: Naturalness score (speaker Z)

available for the target English speakers, the reference utterances were English.

The text for the 12 sentences in the listening test comprised 6 written Japanese

news sentences randomly chosen from the Mainichi corpus and 6 spoken English

news sentences from the English adaptation data that had been recognized using

ASR then translated into Japanese text using MT. The average WERs of these

recognized English sentences were 11.3%, 10.0%, and 11.4% when using 25, 50,

and 100 sentences of adaptation data, respectively.

Figure 11 shows the average DMOS and their 95% confidence intervals. First

of all, we can see that the adapted voices are judged to sound more similar to

target speaker than the average voice. Next, we can see that the differences

between supervised and unsupervised adaptation are very small. This is a very

pleasing result. However, the effect of the amount of adaptation data is also

small, contrary to our expectations.

Figure 12 shows the average scores using Japanese news texts from the corpus

and English news texts recognized by ASR and translated by MT. It appears

that the speaker similarity scores are affected by the text of the sentences.
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Figure 9: Similarity score (Mandarin reference uttered by speaker H)

5. Discussion

Based on the three studies we have conducted we can draw several conclu-

sions concerning unsupervised cross-lingual adaptation of TTS and its applica-

tion to personalised speech-to-speech translation.

5.1. Unsupervised versus supervised adaptation

In our three studies we compared supervised and unsupervised adaptation

using several approaches. All three studies showed that the adapted voices

sound more similar to the target speaker than the average voice and that dif-

ferences between supervised and unsupervised cross-lingual speaker adaptation

are small. In study 2 we note that differences in perceived speaker similarity

between supervised and unsupervised adaptation were generally larger when

the reference speech was in the same language as the synthesised speech and

this also varied depending on the cross-lingual speaker adaptation approach. It

appears that the probabilistic mapping approaches from studies 1 and 2 show

the least difference between supervised and unsupervised adaptation.
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Figure 10: Similarity score (English reference uttered by speaker H)

5.2. Cross-lingual versus intra-lingual adaptation

In study 2 we conducted a comparison of various unsupervised CLSA ap-

proaches, including KLD based mappings (both transform and data) and prob-

abilistic mapping based on decision tree marginalisation. We provide both ob-

jective and subjective measures. The objective measures indicate that data

mapping and probabilistic mapping provide the best results, close to that of in-

tralingual adaptation with transform mapping trailing somewhat behind. This

is confirmed by the subjective results for both naturalness and speaker similar-

ity, though we note that when reference speech was in the output language the

intra-lingual adaptation was perceived as being somewhat better. In study 1

a different probabilistic mapping-based cross-lingual adaptation approach was

undertaken, but similar results were observed.

5.3. Generality across languages

In these three studies we have presented results for three language pairs:

Finnish – English, Chinese – English and English – Japanese. Despite the

distinct differences between these languages we see that overall unsupervised

cross-lingual adaptation has been successful in all cases. Thus we can hypothe-

sise that personalisation of SST based on HMM-adaptation is relatively robust
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Figure 11: Experimental results (English - Japanese): comparison of supervised and unsu-

pervised speaker adaptation. “0 sentences” means the unadapted average voice model for the

output language.

although it may be that some CLSA methods may be more or less susceptible

to language differences than others.

5.4. End-to-end system evaluation

In study 3 an end-to-end speech-to-speech system was evaluated. The results

from this experiment show that overall speaker similarity is likewise maintained

in the end-to-end system compared to the more controlled experiments con-

ducted in studies 1 and 2, though some additional observations could be made

with the inclusion of the recognition and machine translation errors in the syn-

thesised output. Most significantly, it appears that the speaker similarity scores

are affected by the text of the sentences and the gap between the translated

and source language text increases with more adaptation data. These issues

will require further investigation.

5.5. Regarding evaluation criteria

In these studies we have used conventional evaluation metrics to judge speaker

similarity and naturalness of unsupervised cross-lingual adaptation. It is clear

to the authors that further effort also needs to be devoted to the development
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of alternative and more effective evaluation for this type of work. For instance,

our current evaluation framework only compares the synthesised output to a

given reference – we can imagine that a more appropriate measure might ask

listeners to assess speaker similarity in terms of a speaker line up where other

competing test utterances would be presented. Our initial results from study

2 that demonstrated the importance of the language of the reference speech on

the perception of speaker similarity also highlights the SST application of CLSA

may be less demanding that than more general evaluation scenarios where we

can provide reference speech in the same language of the synthesised speech.

6. Conclusions

We have presented detailed experiments on cross-lingual speaker adapta-

tion for speech-to-speech translation. Our results show that using HMM-based

ASR and TTS we can personalise speech-to-speech translation systems and the

challenges of adapting HMM-based TTS in an unsupervised and cross-lingual

setting can be addressed using both conventional and novel adaptation frame-
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works. Most importantly, speaker similarity is preserved compared to conven-

tional supervised intra-lingual TTS.

Our work towards a new unified translation approach has also shown good

progress, with adaptation of TTS showing similar performance to conventional

pipeline approaches, though without the additional overhead and complexity.

We still need to extend our work on unified models to the analysis of ASR

performance.

Finally, our results provide insights into new research directions. Two impor-

tant directions include the development of better subjective evaluation metrics

and also the investigation of methods to adapt supra-segmental speaker prop-

erties including pitch and duration statistics, since our studies to date have

concentrated mostly adapting the spectrum.
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