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Abstract

T he paralinguistic information in a speech signal includes clues to the geographical

and social background of the speaker. This thesis is concerned with automatic extraction

of this information from a short segment of speech. A state-of-the-art Language Iden-

tification (ID) system, which is obtained by fusing variant of Gaussian mixture model

and support vector machines, is developed and evaluated on the NIST 2003 and 2005

Language Recognition Evaluation (LRE) tasks. This system is applied to the problems

of regional accent recognition for British English, and ethnic group recognition within

a particular accent. We compare the results with human performance and, for accent

recognition, the ‘text dependent’ ACCDIST accent recognition measure. For the four-

teen regional accents of British English in the ABI-1 corpus (good quality read speech),

our language ID system achieves a recognition accuracy of 86.4%, compared with 95.18%

for our best ACCDIST-based system and 58.24% for human listeners. The “Voices across

Birmingham” corpus contains significant amounts of telephone conversational speech for

the two largest ethnic groups in the city of Birmingham (UK), namely the ‘Asian’ and

‘White’ communities. Our language ID system distinguishes between these two groups

with an accuracy of 94.3% compared with 90.24% for human listeners. Although direct

comparison is difficult, it seems that our language ID system performs much better on

the standard twelve class NIST 2003 Language Recognition Evaluation task or the two

class ethnic group recognition task than on the fourteen class regional accent recognition

task. We conclude that automatic accent recognition is a challenging task for speech



technology, and that the use of natural conversational speech may be advantageous for

these types of paralinguistic task.

One issue with conventional approaches to language ID that use high-order Gaussian

Mixture Models (GMMs) and high-dimensional feature vectors is the amount of comput-

ing power that they require. Currently, multi-core Graphics Processing Units (GPUs)

provide a possible solution at very little cost. In this thesis we also explore the appli-

cation of GPUs to speech signal and pattern processing, using language ID as a vehicle

to demonstrate their benefits. Realisation of the full potential of GPUs requires both

effective coding of predetermined algorithms, and, in cases where there is a choice, selec-

tion of the algorithm or technique for a specific function that is most able to exploit the

properties of the GPU. We demonstrate these principles using the NIST LRE 2003 task,

which involves processing over 600 hours of speech. We focus on two parts of the sys-

tem, namely the acoustic classifier, which is based on a 2048 component GMM, and the

acoustic feature extraction process. In the case of the latter we compare a conventional

FFT-based analysis with an FIR filter bank, both in terms of their ability to exploit the

GPU architecture and language ID performance. With no increase in error rate our GPU

based system, with an FIR-based front-end, completes the full NIST LRE 2003 task in

16 hours, compared with 180 hours for the more conventional FFT-based system on a

standard CPU (a speed up factor of more than 11).

Keywords: Language Identification, Gaussian Mixture Model, Support Vector Ma-

chine, GMM Tokenization, Graphical Processing Units, Speech Spectral Analysis, Feature

Extraction, Accent Identification, British English, Ethnic Groups Identification.
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Chapter 1

Introduction

This chapter is an overview of the research presented in this thesis, highlighting the

research questions that will be addressed. A brief literature review with references to

relevant existing work is also presented.

1.1 Research questions

The title of this thesis is human and computer recognition of regional accents and ethnic

groups of British English speech. From this title, many research questions can be formed.

The key questions of this research are:

1. It is known in language identification (ID) that the most successful approaches are

those which exploit differences between the distributions of sounds in different lan-

guages, and those which exploit language differences in the sequences in which these

sounds occur. Based on this, to what extent can differences between the distribu-

tions and sequences of sounds be used for accent and ethnic group identification?

In other words, how well does a state-of-the-art language ID system performs for

regional accent and ethnic group identification?
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2. How well do these approaches from language ID perform compared with human

listeners?

3. In the case of of accent identification, specialist techniques have been described in

the literature. How well do language ID techniques perform compared with these

specialist techniques?

4. Like many other speech processing applications, language ID requires intensive

computation. Multi-core Graphics Processing Units (GPUs) have been successfully

used to speedup computation in a number of applications. To what extent can

computation in language ID be accelerated using GPUs?

5. Turning to front-end signal processing, to what extent can the best language ID

performance, in terms of both accuracy and use of computer resources, be achieved

not only by optimizing the mapping of spectral analysis algorithms onto the GPU

architecture, but also by choosing a spectral analysis technique where a high degree

of optimization can be realized?

1.2 Implementation plan

In order to answer all of the above research questions, we developed and implemented a

state-of-the-art language recognition system on the NIST 2003 and 2005 language recog-

nition evaluations and we applied it to accent and ethnic group recognition. Two human

perceptual experiments for accent and ethnic group recognition were also conducted to

compare the performance of automatic systems with human listeners.

For investigating the effectiveness of using GPUs for language ID, the most computa-
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tionally expensive components are optimized and implemented for running on the GPU.

In addition, different spectral analysis algorithms are optimized and implemented for

language recognition using GPUs.

1.3 Language, dialect and accents in speech and lan-

guage technology

A speech signal contains a wealth of information over and above its linguistic content,

including clues to the geographical, social and ethnic background of the speaker. In the

case of British English, most native listeners would be more or less aware of the speaker’s

regional accent, and a listener from the same region might also be aware of the speaker’s

social or geographical ‘subgroup’ within the region. In the first volume of “Accents

of English”, Wells defines ‘accent of English’ as “a pattern of pronunciation used by a

speaker for whom English is the native language or, more generally, by the community or

social grouping to which he or she belongs” [1]. This is different from ‘dialect’ which also

includes the use of words that are characteristic of those regions. So, for example, when a

speaker from Yorkshire in the North of England pronounces “bath” with the same vowel

quality as “cat” rather than “cart” he or she is exhibiting a Yorkshire (or at least north

of England) accent, but use of the word “lug” to mean “ear” or “flag” to mean “paving

stone” are examples of Yorkshire dialect [2, 3].

In recent years the topics of ‘accent’ and ‘dialect’ recognition have become more

common in speech and language technology research. A search of the Interspeech 2010

proceedings for the word ‘dialect’ returns 74 references, of which 64 refer to some extent
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to work concerned with variations caused by dialect or accent (this is approximately 8%

of the total number of papers presented at Interspeech). Of these, 40% are concerned

with speech science, referring to ‘dialect’ in the contexts of 18 different languages, and

60% with technology. In speech technology the most common references are to dialect as

a source of variability in speech recognition, however five papers address the problem of

dialect recognition directly. There is some ambiguity in the speech technology literature

between the terms ‘dialect’ and ‘accent’ and some authors also use the term ‘variety’ (for

example, Koller, Abad, Trancoso and Viana discuss varieties of Portuguese in [4]).

In these terms, most speech technology is concerned with accent. A search for the word

‘accent’ returns 1771 instances in 117 documents in the Interspeech 2010 proceedings,

but of course, accent certainly has more than one meaning in the context of speech and

language science.

Automatic accent recognition from speech has a number of potential applications.

Accent is a major source of variability for Automatic Speech Recognition (ASR) [5, 6, 7],

and recognizing a speaker’s accent prior to ASR could enable a system to accommodate

this variation more effectively, for example by choosing appropriate acoustic and lexical

models. However, even within a ‘homogeneous’ population of subjects who were born

in the same town or city and have lived there all of their lives, and therefore notion-

ally speak with the same regional accent, there are likely to be significant differences.

Typically these will include speakers whose accent is close to standard British English

and other variations in accented speech associated with different social, geographical or

ethnic groups. Therefore a more interesting challenge is to develop a continuous space

representation of speakers and accent, such that subjects who are close in this space speak
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in a similar manner and, from the perspective of automatic speech recognition, can be

characterized by similar sets of model parameters.

Coupled with a capability to synthesize regionally accented speech (for example, [8]),

automatic accent recognition could also be used to select appropriately accented synthetic

speech in the context of an interactive dialogue system.

Much of the existing work on automatic accent recognition takes its lead from Lan-

guage ID, and as in language ID the different approaches can usefully be partitioned into

acoustic methods, which exploit differences between the distributions of sounds in differ-

ent accents, and ‘phonotactic’ approaches which exploit accent-dependent differences in

the sequences in which these sounds occur [9]. An early example of the latter is Ziss-

man’s work [10] on the application of Phone Recognition followed by Language Modelling

(PRLM) to accent recognition. The performance of PRLM can be further improved by

the use of discriminative methods that focus on phones or phone sequences that are char-

acteristic of an accent [7, 11]. Another technique borrowed from language ID is the use of

Gaussian Mixture Models (GMMs) and Support Vector Machines (SVMs) to model the

acoustic properties of accented speech, and this has also achieved some success (for exam-

ple [11]). Other acoustic-based approaches include the use of phone durations and average

cepstra [12], phone and word-level Hidden Markov Models (HMMs) [13, 14, 15, 16], and

stochastic trajectory models [17].

Some more recent research has exploited specific properties of accents. The approach

described in [7] uses the fact that, at least to a first approximation, accents share the

same phoneme inventory, but the realization of these phonemes may differ. They report

improved performance compared with a conventional utterance level GMM-SVM system
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by using phoneme-dependent GMMs and creating ‘supervectors’ at the phoneme level.

Huckvale [18] took this a step further with his ACCDIST (Accent Characterization by

Comparison of Distances in the Inter-segment Similarity Table) measure, by exploiting the

fact that British English accents can be characterized by the similarities and differences

between the realizations of vowels in specific words [1, 19]. For example, for our speaker

from Yorkshire the distance between the realizations of the vowels in “bath” and “cat”

is small, but it is large between those in “bath” and “cart”, whereas for a subject with a

Southern English accent the opposite is the case. Huckvale reported an accent recognition

accuracy of 92.3% on the 14 accents of British English in the ABI-1 corpus [18].

Studies of human accent recognition, and the effects of the linguistic backgrounds of

the listeners involved, have been reported for six regional accents of French [20], three

regional accents of British English [21], and non-native accented English [13]. The abil-

ity of human listeners to distinguish between African American English and Standard

American English has also been studied [22, 23].

The comparison of different approaches to accent recognition is difficult because of the

absence of standard corpora or evaluation methodologies. Corpora that have been used

include various collections of non-native English [13, 14, 16, 17], British and American

English [15], different corpora of regional accents of British English [16, 18, 21, 24], five

varieties of spoken Arabic [7], and six regional French accents [20].

In this research we apply a state-of-the-art language ID system to extract two types

of paralinguistic information from English1 speech, namely the speaker’s regional accent

and, in the case of Birmingham accented speech, the ethnic group to which the speaker

1Unless otherwise stated, in this paper ‘English’ refers to ‘British English’ speech.
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belongs. As well as measuring the overall performances of our language ID system,

we report the performance of its acoustic and phonotactic subsystems on these tasks.

These are compared with human listener performance, and in the case of regional accent

recognition, with two systems based on Huckvale’s ACCDIST measure [18].

1.4 Computational load

Automatic language ID is a very expensive computational task. In language ID, the

feature vectors that represent the acoustic speech signal, are considered to be independent

of each other. This means that the elements of the sequence of speech frames can be

processed in parallel. For these types of tasks, parallel computation based processors

outperform modern central process units (CPU). This encourages the use of GPUs to

speedup the computation. Hence, one of the goals of this thesis is to investigate the

implementation of language ID systems on a GPU.

GPUs provide a huge amount of processing power for very little cost. This alone

justifies the growing interest in their use in a wide range of scientific and engineering

disciplines. For many years, engineers have struggled against the limitations imposed by

the cost and availability of powerful processors, and this has discouraged the exploration

of algorithms of high complexity. There are of course exceptions. For example Atal

and Schroeder’s [25] first code excited linear prediction (CELP) algorithm ran at about

100 times real-time on a Cray 1, a processor capable of up to 250 MFlops. Due to

simplification of the algorithm and the availability of more powerful processors CELP

has become the standard coding technique used in mobile phones, with several billion

instantiations. Optimal performance was achieved by handcrafting algorithms in machine
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code on processors designed to execute digital signal processing algorithms, such as the

Texas Instruments TMS 320 family.

Over the last five years the situation has changed as PC-based computer games play-

ers have demanded and obtained increasingly more powerful processors to enhance the

realism of their games. This has led to the development of multiprocessor graphics cards

with arrays of processors, each capable of performing more than 1000 Mflops. Over

the last 30 years the price of one megaflop of computing power has fallen from $36,000

to about 0.035c, a factor of 108. It has been suggested that this is the third wave of

change in the semiconductor/computer industry following the first wave, the integrated

microprocessor, and the second, the digital signal processor [26].

GPU capabilities have been explored in different areas which need intensive compu-

tations and real time operation, such as computer vision and signal processing, including

speech processing technology. In computer vision Fung [27] uses the GPU to speed up

signal processing algorithms such as low-pass filtering, blurring and downsampling. By

using a GPU they achieved factor of 3.5 (or 3.5×) speedup over the CPU implementa-

tion. In [28], Erra implemented a fractal image compression on an NVidia GeForces FX

6800 GPU and achieved a 280× speedup over the CPU implementation. Many other

applications and algorithms implemented on the GPU, such as geometric computations,

collision detection, and particle tracking, are discussed in [29]. These results motivate

the use of GPUs to speedup the computation in our language ID system.

In this research we investigate the potential impact of the GPU on language ID by

examining their impact on the problem of probability calculation and speech-spectrum

estimation in the context of automatic language ID. Language ID systems, typically
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comprise several algorithmic units of which two normally absorb the majority of the

computer’s resources. These are spectral analysis and the calculation of the conditional

probability of the input speech given some pre-trained acoustic model, typically a GMM.

Several papers [30, 31, 32, 33] have already considered the use of a GPU to calculate these

conditional probabilities. This calculation is a weighted sum of Gaussian Probability

Density Function (PDF) calculations, and while rearrangement of the algebra is possible

the algorithm used is fixed. Training these systems usually involves an iterative technique

such as the Expectation Maximization (EM) algorithm, which dominates the use of the

computer resources.

The optimizations for this calculation and the spectral analysis calculation are dis-

cussed at length in chapter 9.

1.5 Organization of the thesis

The remainder of the thesis is organized as follows:

Chapter 2 provides an overview of language ID systems. Chapter 3 describes in

detail the process of extracting cepstral features for language ID, with a focus on four

different algorithms for spectral analysis. Four feature normalization techniques, which

could help to remove unwanted distortion while keeping important speech information,

are also discussed in chapter 3.

Chapter 4 and 5 describe the theory and implementation of the main components of

our phonotactic and acoustic language ID systems. Four score normalization techniques

are also described in chapter 5. This chapter also describes a powerful technique to

compensate for inter-session variability within a single language.
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Chapter 6 discusses popular methods of fusing the outputs of several different lan-

guage ID systems to improve performance. It also presents our complete language ID

system which is the fusion of a number of phonotactic and acoustic sub-systems.

Chapter 7 describes all of the the speech data used in this research. It describes the

NIST and CallFriend corpora which are used in all of the language ID experiments, the

Accents of the British Isles (ABI) corpus, which is used in all of our accent recognition

experiments, and finally the “Voices across Birmingham” (VaB) corpus which is used for

the ethnic group ID.

Chapter 8 describes the development and evaluation of our language ID systems on

the NIST 2003 and 2005 language recognition evaluations task. In this chapter, phone

recognizers trained on different languages are used to build phonotactic language ID sys-

tems. Different combination of the acoustic features, and feature and score normalization

techniques are examined experimentally to find the best configuration for the language

ID task. In addition, inter-session compensation techniques are applied to both GMM

and SVM acoustic systems. The results in this chapter set up a baseline system for the

work described in this thesis and demonstrate that it achieves a level of performance

comparable with the state-of-the-art [34, 35].

Chapter 9 describes the development and optimization of various algorithms to speed

up computation for language ID. The probability computation is optimized for running

on a CPU and on a GPU using Matlab, GPUmat and the NVidia CUDA toolkits. This

chapter also investigates alternative spectral analysis algorithms for language ID and the

optimization process for mapping each algorithm onto the GPU. Four algorithms, namely

FFT, FIR, IIR and LPC, are investigated in terms of computational speed and language
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ID performance.

Chapter 10 investigates the effectiveness of standard state-of-the-art techniques

from language ID for accent recognition on fourteen regional accents of British English.

The performances of these systems are compared with variations of the text-dependent

ACCDIST-based method proposed by Huckvale [18] and also with the performance of

human listeners.

Chapter 11 investigates whether techniques used for language and accent ID are able

to distinguish between speakers from different social (or ethnic) groups within a single

regional accent. Specifically, ’White’ and second generation ‘Asian’ groups in the city

of Birmingham. These groups are well represented in the “Voices across Birmingham”

corpus of recordings of telephone conversational speech between individuals in the city.

In this chapter we apply the techniques developed in the previous chapters for language

and accent ID to ethnic group ID. Obviously we are not recognizing ethnicity, but the

pattern of speech for the two ethnic groups. The performance of the automatic systems

is compared with human listeners on this task.

Chapter 12 highlights the achievements of the thesis with respect to the language,

accent and ethnic groups ID from speech. It also discusses opportunities and directions

for future work.

1.6 Major contribution

The research described in this thesis provides original contributions to the field of auto-

matic recognition of speaker language, regional accent, and ethnic group within a single

accent, based on a short segment of speech. The major contributions can be summarised
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as follows:

• First investigation of the effectiveness of the standard language ID techniques for

identifying regional accents of British English, and for identifying the two main

ethnic groups within the Birmingham accent in the “voices across Birmingham”

corpus. Refer to the publications (III), (II) and (IV) in the next section.

• Extension of Huckvale’s ACCDIST system to use vowel tri-phones (phone-vowel-

phone) instead of a complete word context, which removes the need for subjects’

speech to correspond to the same text. Improved accent recognition performance by

modeling ACCDIST speaker distance tables with SVMs. Refer to the publications

(III) and (IV) in the next section.

• Implementation of GMM conditional probability computation and inter-session

compensation for language ID with multi-core GPUs. This allows new techniques

to be tried (such as Multi-Language Model (MLM)) which would otherwise not be

possible due to their high computational load. Refer to the publication (V) in the

next section.

• Comparison of four spectral analysis algorithms for language ID, in terms of com-

patibility with GPU, and language ID performance. A filter bank with Finite

Impulse Response (FIR) filters has been found to outperform the classical Fourier

transform-based front-end in terms of computational speed on the GPUs and with

no degradation of language ID performance. Refer to the publication (V) in the

next section.

• The first use of discriminative weighting with a GMM tokenization technique for lan-
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guage, accent and ethnic groups identification. The proposal of the Multi-Language

Model (MLM) for building an efficient language-independent GMM tokenizer. Refer

to the publication (I) in the next section.
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Natural Paralinguistics, August 2011.

(V) A. Hanani, M. Carey and M. Russell, “Language Recognition Using Multi-core
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(VI) M. Russell, A. Hanani, and M. Carey, “Some Thoughts on Language, Dialect

and Accents in Speech and Language Technology”, IEEE Speech and Language

Technical Committee (SLTC) Newsletter, February 2011.

(VII) M. J. Carey, A. Hanani and M. J. Russell ,“The Next Big Thing in Computing”,

IEEE Speech and Language Technical Committee (SLTC) Newsletter, July 2011.

1.8 Summary

In this chapter,the research focus of the thesis was introduced with a list of research

questions and the implementation plan of the research. A brief literature review covering

the main topics of the thesis was presented.

The organization and the major contributions of the thesis were also outlined. The

papers which are already published and and which will be published were also listed.
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Chapter 2

Background

Spoken language ID, or language recognition, is a technique which recognizes the lan-

guage of speaker from his or her speech. Although the target of the language recognition

task is different from speech and speaker recognition, which aims to recognize the lin-

guistic contents of a speech signal and the speaker identity respectively, many of the

techniques are similar. In this chapter some background knowledge on language ID will

be introduced, including the most common and successful approaches to language ID.

2.1 Language Identification

The language ID problem can be viewed as a language recognition or a language detection

(or verification) task. The objective of language recognition is to identify the language

being spoken from a short sample of speech by an unknown speaker, whereas the task

of language detection is to decide if the claimed language is the true language from a

short speech sample. Therefore, the evaluation metric for the two tasks is different. The

percentage accuracy, the percentage of total utterances correctly classified, is usually

used as a performance measure for a language recognition system. The Detection Error

Trade-off (DET) curve [36], Receiver Operation Characteristic (ROC) [37] and the Equal
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Error Rate (EER), where miss and false alarm probabilities are equal, are usually used

as a performance measure for language detection (or verification). In the context of this

thesis, language ID is done by machine, therefore it is automatic. Throughout this thesis,

the two terms language ID and language recognition carry the same meaning and unless

otherwise stated they refer to language detection.

As for speech recognition, humans are more accurate than machines in recognizing

the languages that they know (or speak) but much less accurate with languages they do

not know, or are less familiar with [38, 39]. In general, there are a variety of cues that

humans and machines can use to distinguish between different languages [9]. We know

that the following characteristics differ from language to language:

• Phonetics : a phone is an abstract representation of a basic sound unit in speech. A

phoneme in language, is an equivalence class of phones which are not contrastively

significant in that language. For example, the phones /b/ and /p/ are different

phonemes in English because they distinguish between words like “bet” and “pet”,

but in Arabic /b/ and /p/ are allophones of the same phoneme. The sets of phones

differs from one language to another, but many languages share a common subset

of phones. Phone frequencies may differ, i.e., a phone may occur in two languages,

but it may be more frequent in one language than in the other.

• Phonotactics : In each language there are different rules governing the allowable

sequences of phones. Therefore the statistics of phoneme combination or sequence

can also be used to distinguish languages. Some combinations that occur frequently

in one language are illegal in another.

• Morphology : Each language has its own vocabulary, and its own manner of forming
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words.

• Syntax : The sentence patterns are different among different languages.

• Prosody : duration characteristics, pitch and stress patterns are different from one

language to another.

Most current automatic language identification systems take advantage of one or more of

these characteristics in discriminating between languages.

The applications of language identification mainly fall into three fields. Its use by

national security services for monitoring communications is probably the most dominant.

The main focus is to route the call to an appropriate large vocabulary speech recognition

(LVCSR) system, keyword spotting (KWS) system, or an appropriate human listener.

Language ID is also used in the domains of Information Retrieval (IR), automatic trans-

lation services and education services. Alternatively, language ID might be used to route

an incoming telephone calls to human switchboard operator fluent who is in the detected

language.

2.1.1 Structure of the language ID system

There are many approaches to language ID. In general, the structure of the most common

approaches (figure 2.1) can be described as follows:

• Front-end signal processing– The main aim of front-end processing is to extract

from a speech signal a stream of features that can be used to distinguish between

languages. These features should capture the salient aspects of the speech signal

and be perceptually meaningful, if possible. They also should be robust in the sense
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that the language ID task should not be affected by the distortions that can appear,

due to among other things environmental aspects or the transmission medium.

• Classification– There are lot of approaches to language recognition. Generally, a

state-of-the-art language ID system is obtained by fusing the outputs of a number of

subsystems. These subsystems are normally of two types, acoustic and phonotactic.

In a phonotactic system the test speech signal is first processed by a phone recog-

nizer, whose output is passed to a set of statistical phone-level language models,

one for each language, resulting in a set of candidate language probabilities. Often

several such systems are run in parallel and their outputs fused. This is the Parallel

Phone Recognition Language Modeling (PPRLM) approach from [9]. A detailed

description about the phonotactic language ID systems is found in chapter 4. The

acoustic component of a language ID system is based on the assumption that the

distributions of acoustic feature vectors in each candidate language are different.

Acoustic language ID systems typically use GMMs to characterize these distribu-

tions, or SVMs to discriminate between them, or, most likely, a combination of

both. More details about the acoustic language ID systems are found in chapter 5.

• Thresholding and decision is used for making hard decisions. This is “true”

or “false” in the case of detection task, or the hypothesized language in the case of

recognition task.
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Figure 2.1: General Language ID Structure

2.2 NIST evaluation metric

The National Institute of Standards and Technology (NIST)1 runs regular Language

Recognition Evaluations (LRE), so that systems from different laboratories can be evalu-

ated on common data. The first NIST LRE took place in 1996 and the second evaluation

was in 2003. After that NIST conducted evaluations every two years.

The performance of language ID system is evaluated separately for test segments of

three durations, 3s, 10s and 30s according to NIST [40, 41] per-language. A standard DET

curve [36] is evaluated as a plot of the probability of false alarms against the probability

of misses, with the detection threshold as parameter and equal priors for target and

non-target languages. The EER is the point where these probabilities are equal. NIST

recognizes two overall EERs. The ‘pooled’ EER is the average of the language-dependent

EERs, and the ’average’ EER is the weighted average of the language-dependent EERs,

where the weights are the language priors.

During this research, DET curves, ‘average’ EER percentage with 90% confidence

interval and (occasionally) the accuracy rate (i.e. percentage of correctly classified tests)

1http://www.nist.gov
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are used as a measure of classification performance.

2.3 Summary

This chapter presented background knowledge on language ID. The main clues and char-

acteristics that can be used to distinguish between languages are discussed, together

with the main existing and potential applications for automatic language ID systems.

The general structure of a typical language recognition system was also introduced with

a brief explanation of each component. The most popular and successful approaches to

language ID, particularly phonotactic and acoustic systems, were also introduced in this

chapter. The evaluation metric proposed by NIST for language recognition evaluation

was presented.
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Chapter 3

Front-end Analysis

Front-end analysis is the first stage in most of speech applications, whereby the input

speech signal is converted to a sequence of acoustic feature vectors which contain informa-

tion necessary for the recognition task. This chapter will present the theory and methods

of extracting features vectors which have been shown empirically to be an effective for

language ID. Since language recognition and speech recognition are two different tasks,

the front-end of the two tasks is also different. With more focus on the acoustic features

for acoustic language recognition, the front-end of state-of-the-art language and speech

recognition systems will be presented in this chapter. The front-end for speech recogni-

tion will be used in building a phone recognizer, the basic component in the phonotactic

language ID systems.

3.1 Overview

Speech signals have time varying spectra occupying a 10 kHz bandwidth. In telephony,

the speech is low-pass filtered to restrict the bandwidth to 4 kHz and sampled at 8kHz.

The spectrum is assumed to be quasi-stationary over 10 to 20 ms periods. The power

envelope of the speech signal occupies a band of frequencies from approximately 0 Hz
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Figure 3.1: Block diagram of language ID feature extraction process

to 50 Hz. Hence information can be extracted by spectral analysis at a frame rate of

between 50 and 100 Hz.

The basic process of feature extraction in language ID is shown in figure 3.1. The

following sections give details about each block in figure 3.1.

3.2 µ-law → linear

In the applications considered in this thesis, the speech data are usually stored in NIST

SPHERE format (SPH), 16-bit µ-law PCM [42]. The first step in feature extraction is to

convert the µ-law PCM to linear PCM encoding. The speech waveform is then partitioned

into a sequence of overlapping frames defined by a set window size, typically 20-25ms.

The window size is chosen based on the understanding of the human speech production

system, where the vocal tract is considered to be relatively constant for the duration of

the window resulting in a relatively constant frequency spectrum. In addition, the length

of the window should be short enough to give the required time resolution and also should

22



be long enough to provide adequate frequency resolution. The overlap between windows

is typically set to half the window size, e.g. a 10ms interval between 20ms windows to

produce 100 feature vectors per second.

3.2.1 Spectral analysis

In any pattern recognition task, the objective of feature extraction is to convert the

raw patterns into feature vectors which emphasise the information that is relevant for

classification and attenuate that which is not. In the case of speech, knowledge of the

human speech production system and the perceptual auditory system suggest that a key

stage in this process is spectral analysis.

The purpose of the ‘spectral analysis’ stage in figure 3.1 is to convert the speech wave-

form into a sequence of feature vectors, whose entries represent the energies in particular

frequency bands. It has been shown that performance improves if the the frequency scale

is linear up to about 1 kHz and logarithmic from 1 kHz to the upper frequency limit,

with a commensurate increase in the frequency band width to match the critical bands

of the human auditory system. This is referred to as the Mel scale [43].

This can be achieved in two ways. Either the spectrum is estimated ( for example,

using Discrete Fourier Transform (DFT) or Linear Prediction (LP)) and the frequency

axis is quantized, with quantization bins defined according to a mel scale, or the speech

is passed through a bank of filters whose centre frequencies and bandwidths are defined

according to mel scale.

Thus there are several algorithms to perform these analyses, but in this thesis we

chose the following algorithms:
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1. Infinite Impulse Response (IIR) Filter Bank,

2. Finite Impulse Response (FIR) Filter Bank,

3. Discrete (Fast) Fourier Transform (DFT),

4. Linear Prediction.

Each of the above algorithms outputs a vector from which the Mel scale power spec-

trum of the speech can be estimated.

3.2.1.1 The IIR filter bank

The individual analogue filters in the original filter banks had Butterworth or Bessel

responses [44]. The equivalent digital form is usually realised as a recursive filter, which

can be designed using the bilinear transform on the coefficients of the analogue filter.

Each filter is typically a fourth order Bessel filter, realised using the following recurrence

relation

Y (n) =
I∑
i=1

aiY (n− i) +
J∑
j=0

bjX(n− j), (3.1)

where X and Y are the input and filtered signal, respectively, and a1, . . . , aI and bj, . . . , bJ

are the filter coefficients. The stages in the processing for a single channel are shown in

figure 3.5(b). The recursive nature of the algorithm causes restrictions on the computa-

tion, since each calculation of the output cannot complete until all its predecessors have

been calculated.

The filtering operation is followed by inputting the absolute value of the samples

into a two-stage single pole filter to produce a smoothed estimate of the instantaneous

channel power. The output of this filter is then decimated by sub-sampling from the
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Figure 3.2: Mel-scaled IIR filter bank.

speech sampling rate to the frame rate of 100 frames per second. A bank of IIR filters

(channels) is shown in figure 3.2.

3.2.1.2 FIR filter bank

Unlike the recursive filter described above, the outputs of a non-recursive, FIR can each

be computed independently of the others. Figure 3.5(d) shows a single channel of the

FIR filter bank. It comprises two linear phase non-recursive filters, the first of which has

an In-phase response (I) while the second has a Quadrature response (Q). Each filter has

a maximum impulse response of length w. The output of each filter is computed in w
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window and the sum of the squares of the outputs of the in-phase and quadrature filters

are computed. To give a smoothed energy estimate, successive pairs of outputs are added

together. If a single filter only is used the output is sensitive to the relative phase of the

input and the filter.

FIR filters are normally equiripple filters designed using an optimization technique,

the Remez exchange algorithm [45]. However, while this works extremely well when the

filter required has a pass band which is a significant fraction of the sampling frequency, it

does not produce good results when the filter pass band is relatively narrow, as is the case

in this application. A window-based technique was therefore used to design the filters.

Samples of a pair of sinusoids with a frequency equal to the filter centre frequency are

multiplied by a window function to give the I and Q sets of filter coefficients, hi(n) and

hq(n) as follows:

p(n) = cos(kn) (3.2)

q(n) = sin(kn) (3.3)

where k = 2πfc
fs

, fc is the centre frequency of the filter, fs is the sampling frequency and

n = N
2

+ 1, . . . , N , where N is the filter order. For symmetry p(n) = p(N − n + 1) and

antisymmetry, q(n) = −q(N − n+ 1), n = 1, . . . , N
2

. then

hi(n) = p(n)w(n) (3.4)

hq(n) = q(n)w(n) (3.5)

Gaussian [46], Hamming [47] and Kaiser [48] windows were used in the filter design but

no significant performance differences were apparent. Consequently a Hamming window

was retained for subsequent experiments. Figure 3.3 shows the frequency response of FIR
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filter bank consisting of seventeen channels.

Figure 3.3: Mel-scaled FIR filter bank.

3.2.1.3 DFT filter bank

An alternative way of estimating the power spectral density of the speech signal is to

use a DFT. This has become the standard approach because it has a highly optimized

implementation, namely the Fast Fourier Transfer (FFT)[49]. The FFT filter bank is

illustrated in figure 3.5(c).

The log amplitude of the FFT is then computed to produce the log power spectrum of

each speech frame. Davis and Mermelstein [43] implemented a Mel scale filter bank using

the spectral power estimates over a limited part of the frequency range to approximate to

the power outputs of one of the filters in the filter bank. Each filter output is calculated

as a triangular weighted sum of the spectral power coefficients, where the triangular
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Figure 3.4: Mel-scaled DFT filter bank with 19 triangular filters.

windows are equally spaced on a Mel frequency scale [43], as shown in figure 3.4. The

ith Mel frequency spectral power coefficient, mi, of the ith window, wini, with spectral

power s is calculated as follow:

mi =
∑
f

wini(f)s(f) (3.6)

3.2.1.4 Linear prediction

Linear Prediction (LP) is another way to estimate the spectral power coefficients form

speech signal. Given a speech samples at time n , S(n) can be modeled as a linear

combination of the past p speech samples, such that:
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S(n) ≈ Ŝ(n) =

p∑
k=1

ap(k)S(n− p+ k − 1), (3.7)

where, Ŝ(n) is the estimate or prediction of S(n), and ap = ap(1), . . . , ap(p) are un-

known LP coefficients. The Levinson-Durbin algorithm [50] is used to compute the pre-

diction coefficients, ap, for LP analysis (figure 3.5(e)) of the autocorrelation sequence of

speech samples. The Levinson-Durbin algorithm provides solution to the linear equations

through a recursive procedure that exploits the symmetry property. A cepstral represen-

tation is derived from the linear prediction coefficients [51] of every speech frame:

c(k) = ap(k)−
k∑
i=1

−1(1− 1

k
)ap(i)c(k − i), k = 1, . . . , p, (3.8)

where c(k) is the kth cepstral coefficient, but in the linear frequency scale.

An alternative to the cepstral representation above is Perceptual Linear Prediction

(PLP) [52]. PLP is successfully incorporates a non-linear frequency scale, which is very

similar to MFCC analysis.

Although it is not as commonly used in language recognitions as MFCCs, PLP is

frequently used in state-of-the-art speech recognition systems, therefore, it is used in

building our phone recognizer for the phonotactic language ID systems which will be

described later in chapter 10.

3.3 Voice activity detection (VAD)

A speech recording contains many non-speech (silence) periods which usually include

environmental and channel noise only. Detecting these non-speech periods and excluding

them from some parts of speech processing (e.g. language ID processing) improves the
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(a) The stages of Spectral Analysis

(b) IIR Filter Bank

(c) FFT Filter Bank

(d) FIR Filter Bank

(e) Linear Prediction

Figure 3.5: Schematics Diagrams of a) The stages of spectral analysis, b) IIR Filter Bank,

c) FFT Filter Bank , d) FIR Filter Bank and e) Linear Prediction.
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recognition performance and reduces the computation overhead. There are two ways

to exclude the non-speech periods. One way is by determining the speech/non-speech

periods in the speech waveform, removing non-speech periods and then re-concatenating

the speech periods to get a ‘speech-only’ waveform prior to the front-end processing. The

second way is by labeling the feature vectors constructed from the whole speech waveform

(including non-speech) as speech or non-speech and discarding the non-speech vectors at

the end of the front-end processing. The later way is essential when calculating delta and

shifted-delta cepstra which will be described in section 3.5, whereas, the earlier way has

the advantage of reducing front-end computation load. There are many algorithms for

voice (or speech) activity detection including those which depend on an energy threshold

[53],

threshold =
1

α×N

N∑
i=1

(Ei + β × Emin) (3.9)

where,

Emin = minNi=1Ei.

Ei is the energy of the ith frame, N is the total number of frames in a given utterance,

and α and β are constants estimated experimentally. The energy of each frame is then

compared with the energy threshold which is calculated for each utterance. Frames with

energy below the threshold are labeled as non-speech and frames with energy above than

the threshold are labeled as speech frames.

The alternative to energy based VAD is to use pitch [54] or Zero-Crossing Rate (ZCR)

[55]. The ZCR is defined by the average number of times the speech signal crosses the

zero line, therefore, it can be calculated by the number of times the speech signal changes
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its polarity, as shown below:

ZCR =
1

N

N−1∑
n=0

|sgn(s(n))− sgn(s(n− 1))| (3.10)

where,

sgn(s(n)) =


1, s(n) ≥ 0

−1, s(n) ≤ 0

The ZCR of each frame is compared with thresholds tuned empirically, and frames

with very high or very low zero-crossing rate are labeled as non-speech.

3.4 Discrete Cosine Transform (DCT)

Unfortunately for all of the spectral analysis techniques in section 3.2.1, the filter bank

outputs are highly correlated, hence the components of the GMMs in the subsequent

pattern-processing stage, which will be described in chapter 5, require full covariance

matrices to ensure that the probability estimates are accurate. In addition to increasing

the computation required to calculate the Gaussian probabilities, more data is required

to estimate the model parameters. This can be avoided if the power spectrum estimates

are used to calculate a set of cepstral coefficients by means of a DCT.

Coefficients so formed are referred to as Mel Frequency Cepstral Coefficients (MFCCs).

It can be assumed that the covariance matrix of the MFCCs is diagonal. The use of

MFCC’s has two further advantages, the higher MFCC’s do not need to be retained

since discarding them reduces the pitch induced variability in the spectra and this in

turn reduces the feature length of the MFCC vector and the concomitant computation

required.
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3.5 Shifted-Delta Cepstra (SDC)

For most speech classification tasks the MFCCs are augmented with their delta (velocity),

∆, and double-delta (acceleration), ∆∆, parameters [56] which provide local information

about feature dynamics. For language ID it is shown in [57] that improved performance

can be achieved by incorporating broader temporal information using SDC.

SDC coefficients are obtained by concatenating the delta cepstra computed across

multiple frames of speech, as shown in figure 3.6. The SDC features are specified by a

set of four parameters, namely N -d-P -k, where N is the number of cepstral coefficients

computed at each frame, d represents the time advance and delay for the delta compu-

tation, k is the number of blocks whose delta coefficients are concatenated to form the

final feature vector, and P is the time shift between consecutive blocks. Accordingly, the

SDC coefficients for a cepstral frame i at time t, are computed as follow:

∆SDCcn(t, i) = cn(t+ iP + d)− cn(t+ iP − d) (3.11)

n = 0 · · ·N − 1, i = 0 · · · k − 1,

where, n is the nth cepstral coefficient and i = 0 · · · k − 1 is the SDC block number.

The final SDC feature vector is obtained by concatenation of k blocks of N parameters.

For example, setting N -d-P -k to 7-1-3-7 [57, 58] results in a sequence of 49-dimensional

SDC features. A block diagram in figure 3.6 illustrates the process of computing the SDC

coefficients.

SDC coefficients are then concatenated with the static cepstral coefficients.
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Figure 3.6: SDC coefficients (7-1-3-7) calculation

3.6 Removes Silence

The frame labels, speech or silence, which are generated by VAD are used to discard the

silence frames, as they do not carry any useful information.

3.7 Feature normalization

When the speech is collected from the telephone or cellular networks, it may contain

noise and distortion due to channel effects and interference. The noise and channel effects

have a great impact on all speech technology fields, including language recognition. To
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reduce the effect of noise and channel from the feature vectors generated from the front-

end processing, a number of techniques are typically applied to the raw features before

classification. The most commonly used techniques include Cepstral Mean Normalization

(CMN) [59], RASTA filtering [60], Mean and Variance Normalization (MVN) [61] and

Feature Warping (Gaussianization) [62].

1. Cepstral Mean Normalization (CMN): If we assume that most channel distor-

tions are stationary (for example that caused by different microphones, telephone

handsets and audio channels), or at least slowly time-varying, then the effect of

the channel appears as convolutive noise in the time domain and hence becomes an

additive constant in the log cepstral domain. Hence, subtracting the mean of each

cepstral coefficient over the whole utterance removes the channel induced offset

and any other stationary speech components. CMN can also be applied to variable

lengths of speech to remove the varying channel effects within an utterance, such

as change of microphone positions.

2. RASTA filtering: RASTA relies on the fact that the rate of change of non-

linguistic components in speech often lies outside of the typical rate of change of

the vocal tract shape. So, RASTA suppresses the spectral components that change

more slowly or quickly than the typical range of change of speech. RASTA is very

similar to the CMN for stationary noise, but in addition it filters noise in the high

frequency range (i.e. smooths the feature waveform). RASTA can be thought of as

a band-pass filter, as shown in figure 3.7 and given in equation 3.12, which filters
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out the very low frequency, including DC offset, and the very high frequency.

H(z) = 0.1× 2 + z−1 − z−3 − 2z−4

z−4(1− 0.98z−1)
(3.12)

Figure 3.7: Frequency Response of RASTA bandpass filter

3. Mean and variance normalization: Mean and Variance Normalization (MVN)

[61] is the same as cepstral mean subtraction, but in addition each feature coefficient

is normalized by the estimated variance of that feature over the whole utterance. By

subtracting the mean and dividing by the variance, the distribution of the features

will be zero mean and unit variance. This is to remove different cepstral coefficient

distributions due to variable channel distortions.

4. Feature warping: Applying CMN on cepstral features is proven to provide a

robustness against convultive noise such as linear effects of the channel. In addition,
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RASTA filters out the low frequency noise and some of the high frequency noise.

However, under additive noise conditions, the cepstral feature estimates degrade

significantly. Mapping the raw features to a predetermined distribution, such as

the standard normal distribution, appears to be a good way to make the features

more robust to different channel and noise effects. This can be done via cumulative

distribution function (CDF) matching, which warps a given feature so that its

CDF matches a desired distribution [62], e.g. standard normal distribution with

zero mean and unit variance, N(0, 1). The warping can be viewed as a nonlinear

transformation from the original feature, x, to a warped feature, x̂. This method

is performed separately for each cepstral coefficient and assumes that the features

of the MFCC vector are independent. CDF matching is performed over a sliding

window, of length N . Only the central frame, the point in the middle, of the window

is warped based on CDF matching. The features in a given window of the utterance

are sorted in descending order. Suppose the central frame has a rank R (between

1 and N). Its corresponding CDF value is approximated as

Φ =
N + 1

2
−R

N
. (3.13)

Then the warped value x̂ should satisfy

Φ =

∫ x̂

z=− inf

f(z)dz, (3.14)

where f(z) is is the probability density function of standard normal distribution.

The value of x̂ can be quickly found by lookup in a standard normal CDF table.

The sliding window is advanced one frame and a new entry is calculated, and so

on.
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In our experiments, this warping technique was found to be most efficient when

applied over a sliding window of 3 seconds, which is consistent with the result re-

ported in [62]. Feature warping is applied on short segments (typically 3s) based

on the assumption that the underlying distribution is known (typically standard

normal distribution) and any deviation is due to a distortion that requires normal-

ization. A possible reason for this assumption is that the distribution of cepstral

features extracted from clean speech over 3 seconds window, which corresponds

to a period of one sentence, is approximately similar to the normal (or Gaussian)

distribution. Noise and channel effects distort the shape of the cepstral feature

distribution, therefore, normalizing the distribution removes the distortion caused

by noise and channel.

In addition to mean and variance, feature warping normalizes the flatness and

skewness of the feature distribution (see figure 3.8).

Figure 3.8: Histogram of raw and warped cepstral feature
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3.8 Summary

This chapter introduced the basic techniques used in front-end processing of speech.

Cepstral feature vectors were introduced as the most commonly used parametric repre-

sentation of speech signals. The process of extracting cepstral features for language ID

is described, with a focus on four different algorithms for spectral analysis. Although

spectral analysis with DFT is the most widely used algorithm in speech technology, other

algorithms are investigated because of their potential advantages for GPU implementa-

tion.

Silence does not carry useful information to discriminate between languages. Thus,

labeling the input frames as speech or silence with VAD was described in this chapter.

The method of calculating SDC coefficients, which have been proven to improve the

performance of the language ID systems, was also described.

In real life the speech signal is usually accompanied by noise which distorts the speech

cepstral features, and hence, degrades the performance of language ID systems. Different

recording equipments such as microphones or handsets and communications channels such

as landlines or wireless can cause different kinds of distortion. Ambient noise can also

lead to corrupted speech and hence affect the extracted cepstral features. Some feature

normalization techniques, which could help to remove unwanted distortion while keeping

important speech information, were discussed.
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Chapter 4

Phonotactic language ID systems

The Phonotactic approach is an essential part of most state-of-the-art language ID sys-

tems. It exploits language-dependent differences in the sequences of sounds in different

languages. This chapter presents our phonotactic language ID system by describing in de-

tail its main components, including ‘tokenization’, ‘vectorization’ and building Language

Models (LMs) with SVMs.

4.1 Overview

Every language has a characteristic set of basic sounds – phonemes– such that each word

of that language can be expressed as a sequence of phonemes from that set. Different

languages have different phone sets, all are subset of the International phonetic Alphatic

(IPA) 1. The structure of phone sequences is determined by the words and syntax of the

language, and hence contains useful information for language ID.

1http://www.langsci.ucl.ac.uk/ipa/handbook.html
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Figure 4.1: A simple phonotactic language ID system.

4.2 General framework

A typical structure of the phonotactic language ID system is shown in figure 4.1. A

description of each component in the diagram is presented in the following sub-sections.

4.2.1 Tokenization

In order to extract the discriminative phonotactic information from speech signals and

use it to distinguish between languages, a tokenizer is required to produce a sequence

of symbols from the sequence of feature vectors. In a conventional PRLM approach the

symbols are phones and the tokenizer is a phone recognizer, but other configurations are

possible (for example, the GMM- n-gram systems in section 5.8).

Ideally, using a language-independent phone recognizer which incorporates the total

set of phones in all languages as a tokenizer is the best for language ID, however a phone

recognizer trained on any language can be used to label sections of speech with phones of

that language. This is possible because, in principle, a good phone recognizer trained on

a particular language will produce a systematic error for the phones which do not exist
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in that language, and hence capture useful phonotactic differences between languages.

The problem of using a language-dependent phone recognizer is that it is limited by the

phones used in that language,and therefore it can not model unknown phones which are

used in the other languages. One way to overcome this limitation is by using multiple

phone recognizers trained on different languages in parallel to generate a set of phone

sequences. If some phones are not defined in one phone recognizer, there is a possibility

that they may be defined in the other phone recognizers. The output sequences are then

used to build a statistical model for each language.

4.2.2 Vectorization and weighting

The sequence of symbols is then used to estimate the probabilities of a predefined set of n-

grams. The n-gram components of the sequence of symbols generated from an utterance

Utt can be represented as a D-dimensional vector p = (p1, p2, . . . , pD) where, D is the

number of n-grams, Cj is the jth n-gram and the probability pj of Cj is estimated using

counts of n-grams,

pj =
Count(Cj)∑
iCount(Ci)

(4.1)

where sum in 4.1 is performed over all n-grams and Count(Cj) is the number of times the

n-gram Cj occurs in the symbol sequence produced from the utterance. The result of the

tokenization and ‘vectorization’ processes is that each utterance of speech is converted to

a D-dimensional vector.

Each probability in the resulting vector is then weighted according to the utility of

the corresponding n-gram for classification. In [63] the Inverse Document Frequency

(IDF) used in Information Retrieval (IR), and the Log-Likelihood Ratio (LLR) weighting
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proposed in [64] are applied at the phone and word levels. According to [65], the LLR

weighting technique outperformed IDF, and therefore is used in our systems.

The LLR weighting is applied to the n-gram probabilities in order to emphasize the

most discriminative components (i.e. those which are common in one language but not

in others), and de-emphasize the n-grams that are common in all languages. The weight

wj for the jth n-gram component Cj is given by:

wj = gj(
1

p(Cj|All)
), (4.2)

where gj is a function used to smooth and compress the dynamic range (for example,

gj =
√
x) and p(Cj|All) is the probability of n-gram component Cj across all languages

(i.e. the prior probability of Cj).

The n-gram components which have zero occupancy in the training data of all lan-

guages are removed since they do not carry any useful information. A benefit of discarding

these non-visited components is that it reduces the feature dimension dramatically, par-

ticularly for the high order n-gram system, as the dimension of the n-gram increases

exponentially (Sn) where S is the total number of symbols (or phones).

Those n-gram components which have a very small probability have a very high

weighting, allowing a minority of components to dominate the scores. To prevent this, a

maximum threshold T1 on the weighting wj is applied. According to Zipfs law, the rank-

frequency distribution of words in a typical document follows a decaying exponential.

The high ranking words with high probability are not useful for discrimination because

they appear in most of the documents. Conversely, the low-rank words are too rare to

gather useful statistical information. The area of interest is somewhere in the middle.

This motivates us to apply a second, minimum, threshold T2 on the weighting vector

43



to de-emphasise the common components. The values of T1 = 200 and T2 = 40 were

determined empirically on development data set.

4.2.3 SVM LM

The traditional PRLM approach, which is very popular in language ID, uses a phone

recognizer as a tokenizer followed by a set of language-specific n-gram LMs to capture

language specific sound patterns. These n-gram LMs are typically trained with the ML

criterion. They compromise the conditional probabilities of a phone given the history of

the n−1 previous phones. Therefore the LM for a given language can be built by collecting

n-gram statistics (counts) from 1-best phone strings and computing their conditional

probabilities. Furthermore, Gauvain [66] showed, that n-gram statistics can be computed

from the n-gram posterior probabilities taken from the phone lattices generated by the

phone recognizer. This way, alternative phone recognition paths are taken into account,

giving better estimates of the n-gram probabilities and improving the performance.

However, it has been shown in [67] that using SVMs to learn a discriminatively trained

n-gram model is very effective for automatic language ID and outperforms the traditional

n-gram approach. Therefore, the weighted n-gram probability vectors from utterances in

the training sets are used to train a set of SVM n-gram LMs, one SVM for each language.

In recognition, a symbol (or phone) sequence is extracted from the test utterance; an

n-gram probability vector is computed and weighted with the weight factor above. Then

the weighted n-gram vector is evaluated using the SVMs for the different languages.

It has been shown previously (for example [9]) that using parallel PRLM systems with

multiple phone recognizers trained on different languages and combining them in the back
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end improves the performance of language, dialect and accent ID systems. Therefore we

have adapted this approach in our language ID system.

4.3 Summary

This chapter described the structure of our phonotactic language ID system. First, the

‘tokenizer’ converts the speech waveform into a sequence of symbols. In a conventional

phonotactic language ID system the symbols are phones and the tokenizer is a phone

recognizer. In vectorization this sequence is used to estimate a vector of probabilities

of a predefined set of symbol n-grams. Each probability is weighted according to the

utility of the corresponding n-gram for classification using LLR weighting. Finally, a set

of SVM n-gram LMs is trained on the vectors from utterances in the training sets, using

one SVM for each language.
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Chapter 5

Acoustic Language ID Systems

In this chapter the theory of the acoustic-based language ID will be presented, with a

focus on the most two popular and successful methods: GMMs and SVMs. Then some

important techniques used in language ID, such as score normalization and language

adaptation, will be introduced. Finally, state-of-the-art techniques which have been de-

veloped recently and successfully applied to language ID will be described.

5.1 Overview

Acoustic modeling methods have so far been proved to be among the most successful

classification methods in speech technology, including language ID. Acoustic language

ID systems are based on an assumption that the distributions of the acoustic features of

languages are different. Therefore, the difference between these distributions for different

languages can be used to distinguish between languages. The acoustic features extracted

from speech signals in the front-end pre-processing are used to build an acoustic model

for each language. The parameters of these models are estimated from a set of training

speech data from that language. The language-dependent acoustic models are then used

to produce a set of scores which can be used in recognition.
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The acoustic features for language ID are often derived from short-term spectra,

their time trajectories or SDC features (see chapter 3), prosodic information such as

fundamental frequency, intensity, intonation and other possible features. GMMs which

are extensively used in speech and speaker recognition, have also been successfully applied

to language ID [34, 35, 68, 69, 70]. Recently other techniques have also been successfully

used to discriminate between the acoustic information for language ID, such as SVMs

[34, 58, 71, 72] and language models built on GMM tokenization [65, 67, 73, 74].

5.2 Theory of GMM

A GMM is a weighted sum of M Gaussian distributions called the components of the

GMM, where each component distribution has a different mean, µ and covariance ma-

trix, Σ. Provided that there are a sufficient number of mixture components, any shape of

distribution for a specific language can be approximated very closely by the combination

of these Gaussian mixture components. By assuming that observation vectors are inde-

pendent, the probability that a specific language GMM model, λl, generates the sequence

of T observation vectors X = x1, x2, . . . , xT , p(X|λl) can be defined as

p(X|λl) =
T∏
t=1

p(xt|λl), (5.1)

p(xt|λl) =
M∑
i=1

wiG(xt;µi; Σi) (5.2)

where G is D-dimensional Gaussian function of the form

G(xt;µi; Σi) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(xt − µi)TΣ−1i (xt − µi)

}
(5.3)

with mean vector µi and covariance matrix Σi. The mixture weights wi satisfy the

constraint that
∑M

i=1wi = 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . ,M . The complete Gaussian
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mixture density with M components is parameterized by the mean vectors, covariance

matrices and mixture weights from all components. These parameters are collectively

represented by λ = {wi, µi,Σi}, i = 1, . . . ,M .

GMMs are used in state-of-the-art language ID system to model the distribution

of acoustic feature vectors in a given language. For example, thousands of Gaussian

components can be trained for each language on features which provide information for

discriminating between languages, usually static cepstra with SDC features .

While the general model form supports full covariance matrices, i.e., a covariance

matrix with all its elements, we use only diagonal covariance matrices in all of our systems.

This is done for three reasons. First, the density modeling of an M th order full covariance

GMM can equally well be achieved using a larger order diagonal covariance GMM. Second,

diagonal-matrix GMMs are more computationally efficient than full covariance GMMs for

training, since repeated inversions of a D×D matrix are not required. Third, estimating

full covariances required more training data.

Given training speech from a language, the goal of acoustic language model training

is to estimate the parameters of the GMM, λ, which in some sense best matches the

distribution of the training feature vectors. There are several optimization criteria for

estimating the GMM parameters [75]. However, the most popular and well-established

technique is Maximum Likelihood (ML) estimation. The aim of ML estimation is to find

model parameters which maximize the likelihood of the GMM, given the training data.

The GMM likelihood of a sequence of T training vectors X = x1, . . . , xT , as shown in

equation 5.1, is a nonlinear function of the parameters λ and direct maximization is not

possible. However, ML parameter estimates can be obtained iteratively using a special
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case of the Expectation-Maximization (EM) algorithm [76].

The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a

new model λ̄, such that p(X|λ̄) ≥ p(X|λ). The new model then becomes the initial model

for the next iteration and these two steps, expectation and maximization, are repeated

until some convergence threshold is reached. On each EM iteration, the following re-

estimation formulae are used, which guarantee an increase (or at least no decrease) in

the model’s likelihood value:

Mixture weights:

wi =
1

T

T∑
t=1

P (i|xt, λ) (5.4)

Means:

µi =

∑T
t=1 P (i|xt, λ)xt∑T
t=1 P (i|xt, λ)

(5.5)

Variances:

Σ2
i =

∑T
t=1 P (i|xt, λ)x2t∑T
t=1 P (i|xt, λ)

− µ̄2
i , (5.6)

Where A posteriori probability for a GMM component i is given by

P (i|xt, λ) =
wiG(xt, µi,Σi)∑M
k=1wkG(xt, µk,Σk)

(5.7)

There are two critical factors in the ML training of GMMs; selecting the number of

Gaussian components, M , and initializing the model parameters prior to application of

the EM algorithm. The number of GMM components is dependent on the amount of

training data. Particularly in the NIST LREs, 2048 to 4096 components are usually used

and the GMM parameters are initialized with several iterations of the k-means cluster

algorithm [77].
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The conventional ML training technique has two main drawbacks: first, it may con-

verge to a local optimum point rather than to the global optimum and second, because

each language model is trained independently of the others, it cannot obtain model pa-

rameters which explicitly minimize classification errors. A solution for the second of these

ML drawbacks is to use discriminative training techniques, which focus on the boundaries

between languages by taking into account data from the competing languages, as well as

the target language. This is related to optimizing the posterior probability of languages

given all training data. SVMs, Minimum Classification Error (MCE) and Maximum Mu-

tual Information (MMI) are among the most popular discriminative training techniques

[35, 78, 79]. In our study, we focused on the conventional ML training technique and

SVM discriminative training, which is described in the following sections.

5.3 Maximum A Posterior (MAP) adaptation

Training a high order GMM for each language requires a large amount of training data

from each language and extensive computation. For this reason, the approach of train-

ing one Universal Background Model (UBM), using training data from all languages (a

language-independent model), and adapting it to create language-dependent GMMs using

a more modest amount of language-dependent training data, is taken from speaker iden-

tification and successfully applied to the language ID application. MAP, or Bayesian,

adaptation [80], with relevance factor, is one of the most common techniques used to

adapt the UBM GMM parameters to language-dependent GMMs.

Like the EM algorithm, MAP adaptation is a two step estimation process. The

first step is identical to the expectation step of the EM algorithm for GMMs, where
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estimates of the statistics of the language-dependent training data are computed for each

component in the GMM. Unlike the second step of the EM algorithm, for adaptation

these new statistic estimates are then combined with the old statistics from the UBM

parameters using data-dependent mixing coefficients. These coefficients are designed so

that the GMM components with high occupancy of training data for the language rely

more on the new statistics for final parameter estimation, while components with low

occupancy of data rely more on the UBM for final estimation of language-dependent

GMMs, as shown in the following equations [81]:

ŵi = (αwi wi + (1− αwi )wubmi )γ (5.8)

µ̂i = αmi µi + (1− αmi )µubmi (5.9)

Σ̂2
i = αviΣ

2
i + (1− αvi )(Σ

(ubm)2
i + µ

(ubm)2
i )− µ̂2

i , (5.10)

where, αwi , α
m
i , α

v
i are the adaptation coefficients controlling the balance between old

and new estimates for the weights, means and variances, respectively. The scale factor,

γ, is computed over all adapted GMM weights to ensure they sum to unity. ŵ, µ̂ and Σ̂2

are the adapted parameters, where w, µ and Σ2 are the estimated parameters as shown

in equations (5.4 - 5.6), and wubm, µubm and Σ(ubm)2 are the UBM weights, means and

covariance, respectively.

For each GMM component and each parameter, a data-dependent adaptation coeffi-
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cient αρi , ρ ∈ {w,m, v} is used in the above equations. This is defined as

αρi =
P (i|xt, λ)

P (i|xt, λ) + rρ
, (5.11)

where, rρ is a fixed ‘relevance factor’ [81] for parameter ρ, and P (i|xt, λ) is the posteriori

probability for a component i of GMM (λ).

5.4 GMM-UBM language ID system

In a GMM-UBM language ID system, a UBM is built using utterances from the combined

training sets of all languages.

Language-dependent GMMs are obtained by MAP adaptation of the UBM parameters

using language specific training data. We have found experimentally that there is only

a minor gain of in using parameter-dependent adaptation coefficients. Therefore, our

GMM-UBM system uses a single adaptation coefficient factor for all parameters (αwi =

αmi = αvi ) with a relevance factor. We have also found experimentally that there is no

benefit of adapting the covariance parameter, therefore in our GMM-UBM system, we

adapt means and weights only. The result is one UBM and L language-dependent GMMs

which are used to score the feature vectors of the unknown utterance. The resulting scores

are then used in identifying the language of the unknown utterance, which could be a

recognition or detection task, as explained in chapter 2.

5.5 SVMs

SVMs [82], which are a popular tool for discriminative classification [78], have recently

been introduced for language ID [83]. An SVM is a discriminative binary (two-class)
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classifier. Unlike other classification approaches, which consider all feature vectors to

model the probability distributions of the languages (generative classifiers), SVM only

considers those feature vectors at the boundary between, for example a language and a

set of impostor languages as they contain more discriminative information (discriminative

classifier).

5.5.1 Basics

Since SVM is a binary classifier, the training data should have labels identifying training

data for each class. Suppose the size of the training data is N with dimensionality of D,

and the two classs labels are either −1 or +1. I.e. the form of the training data is as

follow: {xi, yi}, where i = 1, 2, . . . , N , and yi ∈ {−1,+1}, x ∈ <D. If we assume the data

is linearly separable, a line can be drawn to separate the two classes in two dimensional

data and hyperplane for higher dimensions (D > 2). A hyperplane can be described by

the general equation: w.x+ b = 0 where, w is normal vector to the hyperplane specifying

the orientation of the hyperplane, and the bias constant b determines the distance from

the origin. Although many hyperplanes might be found separating the two classes, SVM

aims to find the hyperplane which has the maximum margin. The SVM margin is the

separating hyperplane’s equidistance from the two boundary hyperplanes (d1 and d2 in

figure 5.1).

For simplicity, if we look at the two dimensional data example in figure 5.1, we will

see that the training data can be described by:

yi(xi.w + b)− 1 ≥ 0 ∀i (5.12)

The data points which lie close to the separating hyperplane are called support vectors
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Figure 5.1: SVM — two-dimensional data illustration

(shown in circles in the diagram). In order to orientate the hyperplane to be as far

from the support vectors as possible, geometrically the margins (d1 and d2) need to be

maximized. Since the geometric margin is proportional to 1
‖w‖ , maximizing the margin is

same as minimizing ‖w‖ such that yi(xi.w + b) − 1 ≥ 0 ∀i. The simplest way to solve

this optimization problem with this constraint is by introducing Lagrange multipliers αi,

where αi ≥ 0 as in the following equation [78]:

Lp ≡
1

2
‖w‖2 −

N∑
i=1

αi[yi(xi.w + b)− 1] (5.13)

Equation 5.13 is well-known as the primal form of the SVM. Now the target is to find

w and b which minimize αi (keeping αi ≥ 0) and maximize this prime equation (5.13).

One way of solving this optimization is by differentiating Lp with respect to w and to b

and set the derivatives to zero.
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∂Lp
∂w

= 0→ w =
N∑
i=1

αiyixi (5.14)

∂Lp
∂b

= 0→
N∑
i=1

αiyi = 0 (5.15)

This indicates that the vector w is a linear combination of the support vectors. By

substituting the optimum value of w into the prime form (Lp) above, we will get the dual

form, LD, of the primal form:

LD ≡
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi.xj s.t. αi ≥ 0 ∀i,
N∑
i=1

αiyi = 0 (5.16)

As we see in the dual form above, two constraints should be kept: αi ≥ 0 and the new

constraint for the optimum bias,
∑N

i=1 αiyi = 0 . Another important thing to note in the

dual form is that only the dot product of the input vectors is required to be calculated.

xi.xj = xTi xj = k(xi, xj)

where, k(xi, xj) is calledKernelFunction (k(xi, xj) = xTi xj is known as a LinearKernel).

The only variables available in the dual form are the Lagrange multipliers αi, so the

target now is to find the values of these variables which maximize the dual form LD, and

keep the two constraints. The best way to solve this quadratic optimization is by using

Quadratic Programming (QP). By finding the optimal value of αi, the w vector can be

found using equation 5.14, and the scalar b can be found using ys(xs.w+ b) = 1 where xs

is a support vector satisfying constraint in 5.15. The SVM parameters, w and b are only

required to specify the maximal margin separating hyperplane, and therefore, are used

to define the SVM cost function which is used to classify new input data, x′,(test data
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points):

f(x′) = x′.w + b =
N∑
i=1

αiyik(x′, xi) + b, (5.17)

where, xi is the support vector and k(x′, xi) = x′Txi is a linear kernel function. The

more positive the value of f(x′) the more likely x′ belongs to the target class (+1), and

conversely, the more negative f(x′), the more likely x′ belongs to the background class

(−1).

In most cases, the situation is not as simple as described above. Particularly in speech

applications, acoustic features are not linearly separable, so the linear SVM cannot be

used as described above. To deal with the data that is not linearly separable, there are

two methods; the first one is by introducing a slack factor which relaxes the constraints

of SVM slightly allowing for misclassified points, and then trading-off between the slack

variable and the size of margin. The second way of dealing with non-linearly separable

data is by projecting the data points into a high-dimensional space in which the data

becomes linearly separable, hence a linear SVM can be applied. This means that if the

kernel function can be recast into a higher dimensionality space by some potentially non-

linear feature mapping function x → φ(x), only inner products of the mapped input

data points in the high-dimensional space need to be determined, without needing to

explicitly calculate φ. This is useful because in some practical classification problems,

such as language ID, the classes are not linearly separable in the input feature vectors,

but they might be linearly separable in a higher dimensionality feature domain given a

suitable mapping function x→ φ(x). Thus, the SVM cost function in equation 5.17 can

be written as:

f(x′) =
N∑
i=1

αiyik(φ(x′), φ(xi)) + b, (5.18)
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Not any function can be used as kernel function. The Kernel function must satisfy

a specific condition called the Mercer condition, which guarantees convergence to the

iterative QP process for optimizing the dual form in equation 5.16. The Mercer condition

is that the kernel matrix, whose entries are the evaluation values of the kernel function

for all input feature vector pairs, must be a positive definite matrix. The Radial Basis

Kernel, Polynomial Kernel and Sigmoidal Kernel are among the most popular non-linear

kernel functions which satisfy the Mercer condition. All of the SVM models in this thesis

were trained and evaluated using the SVM-KM SVM MATLAB toolbox [84].

5.5.2 SVM for language ID

Since language ID is a multi-class problem, SVM (two-class classifier) can not be used di-

rectly. There are normally two strategies to address this problem. Firstly, the one-to-one

strategy can be used, where for every two languages an SVM is trained to identify one

language from the other. Secondly, the one-against-others strategy can be used, where

for every language an SVM is trained to separate it from the others. The second strategy

requires fewer SVMs and it is more efficient than the first strategy while achieving com-

parable performance. The training process for the English language using this strategy

is depicted in figure 5.2.

The second issue for applying SVMs to the language ID task is choosing a kernel

to handle the sequence of acoustic feature vectors. A sequence kernel, k(xai , x
b
i), is a

kernel that compares the two sequences of feature vectors xai and xbi . The main issues in

constructing a kernel are: making the kernel a relevant comparison between two sequences

and satisfying the Mercer condition described earlier.
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Figure 5.2: SVM training strategy — English SVM model

One way of constructing a sequence kernel for speech applications is by training on

one sequence and testing on another one. This idea is firstly developed by Campbell

in [83, 85] and leads to a sequence kernel named the Generalized Linear Discriminant

Sequence (GLDS) Kernel. The GLDS kernel achieves promising results in language ID

experiments.

Another way of handling this situation is by training statistical models from the input

sequences, and defining the kernel as a similarity between the two estimated distributions.

The Kullback divergence [86, 87] and Bhattacharyya affinity [88] are of this kind. The

main drawback of this kind of kernels is that the usual shortness of test sequences (no

more than 30 seconds) prevents a robust estimation of distribution parameters. The most

successful approaches of this type are those which use GMMs to model the two input

sequences, as described in the following sub-section.

5.5.3 GMM-SVM language ID system

The basic idea of this approach is to model the sequence of acoustic feature vectors of

every utterance with a GMM, and then to find a kernel function that measures the sim-
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ilarity between the GMMs and satisfies the Mercer conditions. For simplicity, the GMM

parameters are usually combined into one high dimensional vector called a ‘supervector’.

Since the acoustic features of a single utterance are usually not sufficient to train

a GMM, MAP adaptation is used to adapt UBM GMM parameters, in the same way

described for the GMM-UBM language ID system in section 5.3, but per utterance rather

than per language. Adapting the GMM weights, wi, and covariances, Σi, does not show

any gain for language ID performance [65], therefore only GMM mean vectors, µi, are

adapted and concatenated to form supervectors. Consequently, if we assume M is the

number GMM components and D is the dimensionality of the acoustic feature vectors,

the dimensionality of the supervectors will be M ×D. Figure 5.3 illustrates the process

of constructing supervector from GMM mean vectors.

Figure 5.3: An illustration for constructing supervectors from GMM means

One possible way of measuring the similarity between the GMMs is the KL-divergence.

Unfortunately, the KL-divergence does not satisfy the conditions to be a SVM kernel

because a matrix of kernel distances directly based on symmetric KL divergence does

not satisfy the Mercer conditions, i.e., it is not a positive definite matrix. However, an

approximation of the KL-divergence which represents the distance between two GMMs
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can be used as a kernel function [87], as shown in the following equations.

k(utta, uttb) =
M∑
i=1

wiµ
a
iΣ
−1
i µbi (5.19)

=
M∑
i=1

(
√
wiΣ

− 1
2µai )

t(
√
wiΣ

− 1
2µbi) (5.20)

= φ(utta)
Tφ(uttb) (5.21)

where, µai and µbi are the adapted means of GMM component i, with utterances utta

and uttb respectively, wi and Σi are weights and variances of the UBM, k(., .) is the kernel

function. The resulting supervectors are then used with the kernel defined above to train

one SVM for each language with the one-against-others strategy.

During recognition, each test utterance is mapped into the supervector domain by

MAP adapting the UBM means. The resulting supervector is then input to each of the

language-dependent SVM models, and a score is calculated with the SVM cost function

shown in equation 5.17. Positive output scores indicate that the test utterance belongs

to the target language, and negative scores that the utterance belongs to the non-target

(background) languages. Thus, SVM output scores can be interpreted as log-likelihood

scores (i.e. GMM scores) and the same score normalization techniques can be applied.

We refer to this as GMM-SVM language ID system from here onwards.

5.6 GMM-SVM-GMM language ID system

Recently the possibility of transferring the SVM parameters back to a GMM which is

then used for scoring, has been explored [72, 89]. The challenge in this paradigm is to

understand the exact role of the SVM parameters in GMM scoring.

60



Campbell and Karam in [90] illustrated the connection between SVM scoring and

GMM scoring in the context of GMM-SVM language ID system described in the previous

section, and showed that GMM scoring yielded better results. As we have seen earlier,

SVM depends on the support vectors at the boundary of the target and background

classes for discriminating between them. We also know that support vectors in GMM-

SVM system are in the supervector domain, i.e. a concatenation of GMM mean vectors.

Therefore, weighted average of both the target, m+
sv, and background, m−sv, support

vectors can be split into a set of mean vectors (reverse operation in figure 5.3) which are

then used to create target, λtarget, and background, λbackground, GMMs. UBM weights

and covariance vectors are used for the the two GMMs.

m+
sv =

1∑
{i|yi>0} αi

∑
{i|yi>0}

αixi (5.22)

m−sv =
1∑

{i|yi<0} αi

∑
{i|yi<0}

αixi (5.23)

where, xi is the support vectors, αi is the Lagrange multiplier, and yi is the data

labels (+1 or −1). xi and αi are obtained from SVM training.

The result of this technique is two GMMs, λtarget and λbackground, for each language,

which are used to calculate a score:

score =
∑
t

log p(xt|λtarget)−
∑
t

log p(xt|λbackground) (5.24)

where, xt is acoustic feature vector of test utterance at time t. We refer to this as

a ‘GMM-SVM-GMM’ language ID system from here onwards, to distinguish it from our

previous GMM-SVM language ID system.
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5.7 Inter-session compensation (ISC)

Amongst the most significant factors that impact on the performance of speech classifica-

tion applications, particularly language ID, are variability caused by changes in channel,

speaker and noise.

There are many techniques in speech technology that are specifically used to compen-

sate variability between channel conditions, such as the feature normalization techniques

described in chapter 3. Another technique was proposed by Reynolds in [91]. The main

idea of this technique is that channel mismatch can be reduced by estimating a model to

represent each type of channel (e.g. handset type carbon-button or electrets for landline,

cellular network; GSM analogue or digital etc). This estimation can be done by building

a channel-independent model (root model) and then adapting it to each channel type

by using labeled training data for each channel. In recognition, the channel type of the

test segment is identified first by comparing the scores of the channel-dependent models.

The channel-dependent model which gives the maximum score is selected and used in

the evaluation. The drawback of this method is that each utterance in the training data

should be labeled with the channel type, which is not easy to get.

In addition, there are other techniques for dealing with inter-speaker variability within

a single language, such as Vocal Tract Length Normalization (VLTN) [92], and for com-

pensating for noise such as noise masking [93] and Parallel Model Combination (PMC)

[94].

Recently, in state-of-the-art language ID systems, a powerful technique called Inter-

Session Compensation (ISC) has been proven to improve language ID performance dra-

matically [95]. For the perspective of language ID, inter-session variability can be defined
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as anything that makes one utterance in a particular language different from another.

Many factors can cause inter-session variability within a single language. The most im-

portant factors include inter-speaker variability, channel conditions, background noise

and length of utterances. The basic idea behind this technique is that the distortions due

to inter-session variability in the high-dimensional supervector space can be summarized

by a small number of parameters in a lower dimensional subspace, which are called the

channel factors [96]. The ISC technique can be applied in the model domain and in the

acoustic features domain. In the case of the GMM-UBM approach, model domain com-

pensation is done by shifting the means of the UBM and all of the language-dependent

GMMs towards the inter-session variability direction estimated from the test utterance

as shown in equation 5.25

µ̂sv = µsv + UXc (5.25)

where µ̂sv and µsv are the compensated and the original means of UBM and all language-

dependent GMMs in the supervector domain. Xc is an R-dimensional vector comprising

the channel factors for the test utterance. U is a low rank matrix projecting the channel

factors Xc from low-dimensional inter-session variability domain to the high-dimensional

supervector domain. U is called the ‘Eigen-channel subspace matrix’.

Eigen-channel subspace estimation : We adopted the term eigen-channel as used

in Speaker Recognition Evaluation (SRE) from Kenny [96]. It was introduced to the

NIST SRE by Spescom Datavoice (SDV) in 2004 [97], revisited by Kenny and Vogt [98]

in NIST SRE 2005, and again by several sites in various forms.

Before eigen-channel adaptation can be applied, we must identify directions in which a

supervector is mostly affected by inter-session variation. These directions (eigen-vectors),
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are defined by the columns of an MD×R matrix U , where M,D and R are the number

of GMM components, the dimension of the feature vectors and the chosen number of

eigen-vectors that represent major directions of inter-session variability (R is usually

≥50), respectively. The matrix U is given by R eigen-vectors of an average within class

covariance matrix, where each class is represented by supervectors estimated on different

utterances spoken in the same language.

For each language, l, and each of its conversations, {j = 1, . . . , Jl}, the UBM is

adapted to obtain a supervector, slj . The corresponding average language supervector

given by

s̄l =
1

Jl

Jl∑
j=1

slj (5.26)

is subtracted from each supervector, slj , and the resulting vectors form columns of

an MD × J matrix S, where J is the number of all conversations from all languages,

J =
∑

l Jl. The assumption is that when s̄l is subtracted from slj, the resulting vector is

due to inter-session variability. The columns of matrix U are given by the R eigen-vectors

of the (MD ×MD) covariance matrix SST corresponding to the R largest eigenvalues.

Unfortunately, for our system, where supervectors are very high dimensional vectors

(e.g. MD = 4096 × 68 = 278528), using Principal Component Analysis (PCA) directly

to compute these eigen-vectors is unfeasible. A possible solution is to use an iterative

algorithm which estimates U matrix from the eigen-vectors of J × J matrix STS.

Eigen-channel adaptation : Once the eigen-channels are identified, a GMM for each

language (or UBM) can be adapted to the channel of the test utterance by shifting its

supervector in the directions given by eigen-channels, to better fit the test utterance data.

Mathematically, this can be expressed as finding the channel factors, Xc, that maximize
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the following MAP criterion:

p(X|s+ UXc)N(X; 0; I), (5.27)

where s is the supervector representing the model to be adapted, p(X|s+UXc) is the

likelihood of the test utterance, X, given the adapted supervector (model) and N(; 0; I)

denotes a standard multivariate Gaussian. Assuming fixed occupation of Gaussian mix-

ture components by the test utterance frames, X = x1, x2, . . . , xT , it can be shown [97]

that the value of Xc that maximizes the criterion (Equation 5.27) is given by:

Xc = A−1
M∑
i=1

UT
i

T∑
t=1

γi(t)
xt − µi
σi

, (5.28)

where Ui is theD×R part of the U matrix corresponding to the ith mixture component,

γi(t) is the probability of occupation mixture component i at time t, µi and σi are the

mixture components mean and standard deviation vectors and

A = I +
M∑
i=1

UT
i Ui

T∑
t=1

γi(t). (5.29)

In our implementation, the occupation probabilities, γi(t), are computed using the

UBM and assumed to be fixed for a given test utterance. This allows the matrix A−1 to

be pre-computed only once for each test utterance.

This method uses a very simple scheme of modeling channel variability that affects

only the recognition phase. It cannot be applied to a GMM-UBM language ID system

with different number of mixture components because a new U matrix needs to be es-

timated, nor to other language ID systems such as GMM-SVM or GMM-SVM-GMM.

However, ISC technique can be applied in the acoustic feature domain.

The adaptation of a feature vector x̂t is obtained by subtracting a weighted sum of
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compensation offset values from the original feature vector xt according to:

x̂t = xt −
M∑
i=1

γi(t)UiXc (5.30)

where Ui and xc are estimated in the same way as for the adaptation in the model

domain. ISC can be applied to all acoustic feature vectors as a part of front end before

different types of language ID.

5.8 GMM Tokenization

GMMs, which are generally employed to measure the acoustic match between the input

feature vectors, X = x1, x2, . . . , xT , and the language l, can also be used to act as speech

tokenizers [65, 67, 73, 74], i.e. to convert the acoustic vector stream into a discrete symbol

stream. This is done by replacing each vector xt of X by the label of the Gaussian

component which produces the highest contribution in equation 5.1. This then makes

it possible to apply phonotactic approaches to the language ID problem at the acoustic

level by replacing the sequence of linguistic tokenizing symbols (phones) by a sequence

of GMM component indices.

The resulting sequence is used to train n-gram LMs for each language using SVMs,

as described in chapter 4 and depicted in figure 4.1. Compared with the PRLM system

described in chapter 4, the phone recognizers are replaced by a language-independent

GMM which produces a sequence of Gaussian component indices instead of a sequence

of phones. The other parts of these two types of system are the same, including the use

of discriminative weighting to emphasize the GMM component n-grams which represent

the language specific features and de-emphasize the components which represent features
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that are common in all languages [65]. To the best of our knowledge this is the first use of

LLR weighting in a GMM tokenization system. We refer to this system as ‘GMM-n-gram’

throughout the rest of this thesis.

The advantage of the GMM tokenizer is that it does not require phonetically tran-

scribed data, and it can be trained on the same acoustic data that is used to train the

acoustic-based language recognition system. This is computationally less intensive than

the phone recognizer.

There are two ways to use a GMM as a tokenizer for the GMM-n-gram system. The

first way is to use a language-independent GMM (e.g. UBM) trained on the data of

all languages, as a tokenizer, and the second way is to use multiple language-dependent

GMMs, trained individually on the language specific training data, as tokenizers and then

combine them together at the back end.

We suggest that the most discriminative n-gram components are common in one

language and rare in others. Increasing the order of GMM allows these features to

occupy separate components. We achieve this with low computational cost and less

training data by replacing the traditional UBM with a Multi-Language Model (MLM),

which is a concatenation of multiple language-dependent GMMs, as described in the

following section.

5.8.1 Multi-Language Model (MLM)

We hypothesize that increasing the number of UBM components will cause language-

specific information to be represented in separate components. In n-gram systems these

components contain the most discriminative information. This is the motivation for

67



our high order MLM. For a conventional EM-trained UBM, increasing the model order

necessitates more training data and computation. These problems are alleviated in our

MLM.

The MLM model is a concatenation of language-dependent GMMs, each trained sep-

arately on language specific training data using the EM algorithm. The resulting GMMs

are combined to form a single large MLM. The MLM gives more space to represent lan-

guage specific information, which is emphasized with the discriminative LLR weighting,

where the common information is de-emphasized. Each language-dependent GMM can

be of different order, depending on the available enrollment data. Training a MLM also

requires less computation than training a comparable UBM.

If we assume λl = {wl, µl,Σl} are the GMM parameters for language l, the MLM

model is formed by concatenating the parameters of all language-dependent GMMs,

λMLM =

{
[w1, . . . , wL]

L
, [µ1, . . . , µL], [Σ1, . . . ,ΣL]

}
(5.31)

where λMLM is the set of MLM model parameters and L is the total number of language-

dependent models. To date we have built gender dependent MLMs of order up to 24,576.

5.9 Score normalization

An important issue in the statistical approaches to language ID is score normalization,

which scales the log-likelihood score’s distribution. Scaling the score distributions of

different languages is used to find a global language independent threshold for the decision

making process, and to reduce the unwanted environmental effects.

There are several commonly used score normalization techniques such as Zero Normal-
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ization (Z-Norm) and Test Normalization (T-Norm) which have been successfully applied

to speaker identification [99]. In Z-Norm, the mean and standard deviation of the impos-

tor scores are estimated off-line, and then the estimated mean is subtracted from each

score, which is then divided by the estimated standard deviation. The normalization has

the form:

Ŝl =
Sl − µI
σI

(5.32)

where, µI and σI are the estimated impostor parameters for language model l. Sl is the

log-likelihood score and the Ŝl is the Z normalized score.

T-Norm also depends on mean and variance estimation for distribution scaling. Dur-

ing testing, a set of impostor models is used to estimate the impostor log-likelihood

scores for a test utterance, and the mean and variance parameters are estimated from

these scores. These parameters are then used to perform the score normalization by using

the formula in equation 5.32.

However, unlike speaker identification, in language ID there are not sufficient impos-

tor models to estimate the parameters required for T-norm (in our case only 11 impostor

languages are available for each target language). Alternatively, a score calibration and

normalization technique called log-likelihood ratio, has been proven to be useful for lan-

guage recognition [58].

Ŝl = Sl − log

(
1

L− 1

∑
j 6=l

eSj

)
(5.33)

where L is the total number of target languages. A similar method to this normalization

technique is the ‘max-loglikelihood’ score normalization, which has also been applied

successfully to language ID systems [90]. In this normalization, the log-likelihood score

of each target language is normalized with the score of the most competitive language
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model, instead of the average score of all competitor (impostor) languages.

Ŝl = Sl −maxi6=lSi (5.34)

5.10 Summary

This chapter presented the acoustic modelling methods which are typically used in state-

of-the-art language ID systems. A brief theoretical description of the probabilistic models,

GMMs and the discriminative models, SVMs, and a combination of both were presented.

Three components of our language ID system, GMM-UBM, GMM-SVM and GMM-

SVM-GMM were described in this chapter. The GMM-UBM approach adapts a language-

independent model, the UBM, to language-dependent GMMs using MAP adaptation.

The GMM-SVM approaches uses the UBM and MAP adaptation to map each utter-

ance of the target languages from the acoustic feature vector sequence domain to a high

dimensional supervector domain where an SVM is used to find the best separating hyper-

plane between each target language and its impostor languages. The resulting language-

dependent SVM models are used to evaluate the GMM-SVM sub-system. They are also

‘pushed back’ from supervector domain to the GMM domain to form the GMM-SVM-

GMM sub-system.

Using GMMs in a different way, called GMM tokenization, was also presented in this

chapter. The idea of GMM tokenization is to use a language-independent GMM as a

tokenizer to produce a sequence of GMM component indices from the feature vectors.

This allows a system similar to the phonotactic language ID system described in chapter

4 to be built, by using a GMM instead of phone recognizer as a tokenizer. The resulting

system is called GMM-n-gram which is another component of our language ID system.
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A powerful technique to compensate the inter-session variability within a single lan-

guage, called ISC, was described in detail in this chapter together with four different

techniques to normalize the score distributions.
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Chapter 6

Fusion

State-of-the-art language ID systems typically make use of several acoustic and phono-

tactic sub-systems. Combining the outputs of these sub-systems generally improves the

language ID performance. This chapter gives a brief description about the most common

fusion techniques used in language ID, and the general structure of our fused systems.

6.1 Overview

Combining disparate systems which use different features or different modeling approaches

has proven to be a very successful and popular method in language ID.

The term ‘fusion’ has been widely used to refer to the method of combining different

systems together. In most cases, ‘fusion’ simply refers to a more specific category, namely

‘score fusion’, which produces a new set of likelihood scores from the original likelihood

scores produced by the existing individual language ID systems.
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Figure 6.1: Within-class Linear fusion

6.2 Fusion techniques

Multi-class classifiers can be fused in two possible ways: within-class fusion and cross-

class fusion. Within-class fusion means that the output fused scores are obtained by

fusing scores of the corresponding classes from all classifiers (see figure 6.1), whereas in

the cross-class fusion, the output scores are obtained by fusing the scores of all classes

from all classifiers. These two fusion methods can be linear or non-linear.

Linear fusion is one of the most widely used techniques in language ID [100]. The

output fused score, s′, as shown in figure 6.1, is a linear combination of the scores, s,
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produced by the individual sub-systems. Assuming the final fused system consists of K

sub-systems, with L classes, the fused score, s′i is calculated as:

s′i = a0 +
K∑
j=1

ajsji (6.1)

where, aj, (j = 1, . . . , K) is the weighting coefficients for output scores of classifier j, a0 is

a bias coefficient, and sji is the score of class i of classifier j. The problem now is finding

the optimal weighting coefficients, aj, which optimizes the system performance. There

are many ways to solve this problem. Assuming there are sufficient training examples, the

weighting coefficients can be calculated with linear algebra based on the Least Squared

Error (LSE). Assuming we have N training utterances. Each utterance will produce

K × L scores. Ideally, the output scores of the fused system are L-dimensional vectors

of zeros, for the impostor classes and ones, for the true classes. By adding a vector of

L ones to the classifier’s scores, the linear relationship between the input scores and the

fused scores can be written in matrix notation in terms of the unknown coefficients,

STA = S ′ (6.2)

where, S is a matrix of scores of dimension L ×N × (K + 1), S ′ is an L ×N matrix of

output scores and A is a vector of K+ 1 coefficients ak. Therefore, the direct solution for

this linear equation is A = S−1S ′, where S−1 is the inverse of ST matrix. Unfortunately,

S is not, in general a square matrix or invertible, so that the inverse cannot be calculated

directly. However, A can be estimated by minimizing
∑N

n=1 ||snA − s′n||2, which can be

solved with the pseudo inverse of ST , S†

A ≈ S†S ′ (6.3)

Brummer in [101] suggested that replacing the linear activation function, g1 in figure
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6.1, by an exponential function such as logistic regression function, g2 in figure 6.1, de-

emphasises the large scores, and is more sensitive to the boundary scores, which are more

important for fusion. This technique is called linear logistic regression [101, 102]. A

toolkit known as the FoCal Multi-class toolkit 1that implements linear logistic regression

fusing is available and very popular in language ID. Therefore, it was used to do all fusion

in this thesis.

The system depicted in figure 6.1 is an example of a Multilayer Perceptron (MLP).

Hence, the weighting coefficients can be estimated using the standard training algorithms

for the MLP. However, due to the limited amount of available training examples, this of-

ten results in non-robust estimates of the weightings parameters. One possible solution

for this is to approximate the distribution of the scores, S, by a particular parametric

distribution, for example a Gaussian distribution, and to estimate the distribution pa-

rameters. The weights can then be calculated in terms of the distribution parameters

[103]. In other words, correctly estimating approximate distributions often yields better

results than approximating exact distributions.

Besides the commonly-used linear logistic regression technique, another popular fusion

technique is GMM fusion [34]. In GMM fusion , a GMM with a small number of mixture

components classifier for each class is deployed for score fusion. The input vector consists

of the output scores from all individual language ID systems. For each class, the GMM is

trained on score vectors produced by the individual systems using the development data.

Given a new vector for an unknown test utterance, the class-dependent GMMs are used

to estimate the output likelihood scores, which are used for the final decision.

1http://niko.brummer.googlepages.com/focalmulticlass
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Recently, several score fusion techniques have been proposed for the language ID task,

including SVMs [104]. In this reference, a comparison of most of these techniques can be

found.

6.3 The fused language ID system

Our final language ID system is obtained by fusing a number of phonotactic and acoustic

language ID systems, as depicted in figure 6.2.

Figure 6.2: Phonotactic and acoustic fused language ID system.

The different phonotactic systems are built by either changing the tokenizer (e.g.

phone recognizer trained on different languages) or modeling the sequence of symbols

generated by a particular tokenizer with different order of n-grams (usually n=1,2,3 and
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4). If we assume Np is the number of tokenizers, Np × 4 different phonotactic systems

can be built with 1, 2, 3, 4-grams. In our system Np = 3 and the different languages are

Czech, Hungarian and Russian. Fusing these phonotactic sub-systems together gives our

phonotactic fused language ID system (phonotactic fused block in figure 6.2).

The second category of language ID systems is the acoustic based systems. As de-

scribed in chapter 5, using the same acoustic features, the differences between the dis-

tributions of these features for different languages can be exploited for language ID with

methods such as GMMs and SVMs. In our system we use GMM-UBM, GMM-SVM,

GMM-SVM-GMM , GMM-uni-gram and GMM-bi-gram sub-systems. Fusing these five

acoustic sub-systems together gives our acoustic fused language ID system (acoustic fused

block in figure 6.2).

Our final fused language ID system is obtained by fusing all the phonotactic and acous-

tic sub-systems together (this is the ‘acoustic-phonotactic fused’ block in figure 6.2). The

best fusion coefficients are obtained by linear logistic regression training using develop-

ment data.

6.4 Summary

A single language ID system is less capable of providing robust and accurate performance

than the fusion of multiple systems. Using different features (or a different tokenizer in

the case of phonotactic systems) or modeling particular features with different approaches

results in different language ID systems, which might lead to improved performance when

fused together. The most popular fusing techniques for language ID were briefly presented

in this chapter. A diagram (figure 6.2) depicting the different components of our language
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ID systems, the fused phonotactic and acoustic sub-systems, and the overall fused system

were also presented in this chapter.
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Chapter 7

Speech Corpora

In this thesis, three different classification tasks are conducted: language ID, regional

accent ID and ethnic group ID. The speech data used in training and evaluating those

three classifiers are described in this chapter.

7.1 CallFriend and NIST data

7.1.1 CallFriend corpus

The CallFriend corpus1 of telephone speech was collected by Linguistic Data Consortium

(LDC)2 in 1996, primarily to support projects on language recognition and was sponsored

by the U.S. Department of Defense. There are fifteen languages and dialects (see table 7.1)

with conversations lasting around 30 minutes. The CallFriend corpus consists of three

sets; train, development and evaluation. Each set contains twenty two-sided conversations

for each of the fifteen languages and dialects. English, Mandarin and Spanish have two

dialects. All speakers were aware that they were being recorded but they were given

no guidelines concerning what they should talk about. Once a caller was recruited to

1http://www.ldc.upenn.edu/catalog
2http://www.ldc.upenn.edu
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participate, he or she was given a free choice of whom to call. Most participants called

family members or close friends. Unless otherwise stated, both the train and development

sets are used as training data for the language ID experiments in this thesis. The data

of the two dialects of English, Mandarin and Spanish are combined and used to build

one model for each of the corresponding languages. This means that each of these three

languages has 80 conversations for training whereas the other nine languages each has

only 40 conversations for training.

7.1.2 NIST 1996 data set

The NIST 1996 data set 3 is used as a development data set for our language ID systems.

This data set consists of two subsets – development and evaluation sets consisting of the

12 languages shown in table 7.1, and 3, 10 and 30 second audio files. The development

subset consists of approximately 1200 files for each of the three evaluation durations

(3s,10s and 30s), with roughly 160 files each for English, Mandarin, and Spanish and 80

for each of the other nine languages. The evaluation subset consists of approximately

1500 files for each of the three durations: 480 for English, 160 each for Mandarin and

Spanish, and 80 for each of the other nine languages. English messages were obtained

from both the CallFriend corpus (160) and other English corpora (320) [34]. The NIST

1996 evaluation set (lid96e1) is used for fusing different language ID systems together,

and NIST 1996 development set (‘lid96d1’) was used for estimating the parameters which

are required for the Z-norm score normalization, and for tunning some other parameters.

3http://www.itl.nist.gov/iad/mig/tests/lre/1996
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English (South and North

USA)

Arabic French Farsi

German Hindi Japanese Korean

Mandarin (Mainland and

Taiwan)

Spanish (Caribean and non-

Caribean)

Tamil Vietnamese

Table 7.1: Twelve target languages with two dialects for three languages

7.1.3 NIST 2003 LRE data set

This data set [40] consists of 80 segments with duration of 3, 10 and 30 seconds in each

of 12 target languages (table 7.1). This data comes from conversations collected for the

CallFriend Corpus, described in section 7.1.1, but not included in its publicly released

version. In addition, there are four additional sets of 80 segments of each duration selected

from other LDC supplied conversational speech sources, namely Russian conversations

of CallFriend type, Japanese conversations from the CallHome Corpus, English from the

Switchboard-1 Corpus and cellular English from the Switchboard Cellular Corpus. The

NIST 2003 30-second subset was mainly used to evaluate our language ID systems and

to present comparative results for some useful techniques common in the language ID.

7.1.4 NIST 2005 LRE data set

The NIST 2005 LRE 4 data set contains test segments with three nominal durations of

speech: 3 , 10 , and 30 seconds, from a set of 7 languages and two dialects (English-

American, English-Indian, Hindi, Japanese, Korean, Mandarin-Mainland, Mandarin-

4NIST 2005 Language Recognition Evaluation: http://www.nist.gov/speech/tests/lang/2005
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Taiwan, Spanish and Tamil) 5. For the NIST 2005 language ID evaluation, we do not

distinguish between English-American and English-Indian or Mandarin–Mainland and

Mandarin-Taiwan. Actual speech durations varied, but were constrained to be within

the ranges of 2-4 seconds, 7-13 seconds, and 25-35 seconds of actual speech contained in

segments, respectively. However, only the 30 seconds subset was used to evaluate our

language ID systems. This subset consists of about 3662 speech segments, with around

360 segments for each the target languages and dialects.

7.2 The “Accents of the British Isles” (ABI-1) cor-

pus

The Accents of British Isles (ABI-1) speech corpus [24] was used in all of our regional

accent recognition experiments reported in chapter 10. The ABI-1 speech recordings

represent 13 different regional accents of the British Isles , plus standard British English.

These were made on location in 13 different regions as shown in Figure 7.1.

Table 7.2 shows the fourteen regional accents and their abbreviations that will be

used through out this thesis. In each case, twenty people were recorded (normally ten

women and ten men) who were born in the region and had lived there for all of their lives.

The standard southern English speakers were selected by a phonetician. Each subject

read twenty prompt texts, ranging from ‘task oriented’ texts which are representative of

generic applications of automatic speech recognition, to ‘phonetic’ texts chosen for their

phonetic content. The later includes the “Sailor Passage” [105], which was split into three

5All of these languages and dialects are subset of the CallFriend languages and dialects except Indian

English
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parts of approximately equal length. The first section, referred to as SPA (Sailor Passage

A) comprised ninety-two words and its recordings varied between 30 and 45 seconds

in duration. The ABI-1 corpus also includes recordings of a list of /hVd/ syllables,

where each syllable begins with ‘h’ and ends with ‘d’ and the vowel ‘V’ varies. This

list of syllables, referred to as “Careful Words”, was read five times by the participants.

Word-level transcriptions, aligned at the sentence level, are available for all of the ABI-1

recordings.

Accent Abbrev. Accent Abbrev.

Birmingham brm Liverpool lvp

Truro (Cornwall) crn Newcastle ncl

Lowestoft (East Anglia) ean Denbigh (North Wales) nwa

Hull (East Yorkshire) eyk Dublin (Republic of Ireland) roi

Glasgow gla Elgin (Scottish Highlands) shl

Inner London ilo Standard Southern English sse

Burnley (Lancashire) lan Belfast (Ulster) uls

Table 7.2: Accents of the ABI corpus and corresponding abbreviations

The ABI-1 recordings were made using head mounted and desk microphones, and

sampled at 22.05kHz. For the accent recognition experiments reported here, the head-

mounted microphone recordings were bandpass filtered (0.23 - 3.4 KHz) to simulate a

telephone channel, and downsampled to 8KHz. The speakers were divided into three

subsets; two with 93 and one with 94 speakers. Gender and accent were distributed

equally in each subset. A “jackknife” training procedure was used in which two subsets

were used for training and the remaining subset for testing. This procedure was repeated
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Figure 7.1: ABI regional accents of British Isles

three times with different training and test sets, so that each ABI-1 speaker was used for

testing, and no speaker appeared simultaneously in the training and test sets.

Two separate evaluations of the text-independent accent recognition systems were

conducted, one using 30-seconds extracts from all test recordings, and the other using the

SPA utterances. The first test set, 1504 30-second cuts from all speakers in the ABI-1 test

sets, was used to enable comparison with standard language identification performance

on the NIST 2003 and 2005 evaluation sets (where we also used 30s test utterances).

The second test set, comprising approximately 280 SPA utterances, was used to evaluate

and compare the text-independent and text-dependent automatic systems, and human
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listeners on the accent identification task.

7.3 The “Voices across Birmingham” (VaB) corpus

The “Voices across Birmingham” (VaB) corpus was used in the “ethnic group” recog-

nition experiments reported in chapter 11. The goal of the VaB project is to capture

variations in conversational speech across the people of the city of Birmingham in the

UK. It currently comprises approximately 175 hours of recordings of telephone conversa-

tional speech between participants who were born in or around the city. Each participant

made up to one hour of free telephone calls, which were routed through an Aculab Prosody

X telephony card for automatic recording. Both participants in the call were aware that

they were being recorded and of the purpose of the recording.

Significant immigration into Birmingham from Asia began in the 1960s. According

to the 2001 census of England and Wales, which included questions about the ethnicity

of residents6, approximately 70.4% of Birmingham’s population categorized themselves

as ‘White’ and 19.5% as ‘Asian’. Twenty nine percent of Birmingham’s British Asian

population gave their ethnicity as Indian, 53% as Pakistani, 11% as Bangladeshi and the

remaining 7% as ‘Other Asian’. The VaB project asked its participants similar questions

about ethnicity. For the ‘White’ and ‘Asian’ groups there is sufficient data to conduct an

experiment to study whether or not an individual can be classified automatically into the

correct ethnic group from his or her speech (the VaB corpus does not distinguish between

the different ethnic subgroups within the Asian community).

The Asian group can be further sub-divided into those subjects who were born in

62001 Population Census in Birmingham (http://www.birmingham.gov.uk/community)
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Birmingham (second generation) and those who were not. Only recordings from White

and second generation Asian participants were included in the current experiments. The

recordings from these two groups were divided into training and test sets. The training

set consists of recordings from 242 different speakers (165 Asian and 77 White). The test

set consists of 315 utterances from different speakers, each with maximum duration of 40

seconds. Of these, 175 are Asian (69 male, 106 female) and 140 are White (53 male, 87

female).

All of the speech corpora described above are summarized in table 7.3.

Corpus CallFriend NIST NIS NIS ABI-1 VaB

LRE 1996 LRE2003 LRE2005

Style Conv. Conv. Conv. Conv. Read Conv.

Channel Telephone Telephone Telephone Telephone Head mic Telephone

Sample rate 8kHz 8kHz 8kHz 8kHz 22.05kHz 8kHz

(resamp. 8kHz)

Classes 12 12 12 7 14 accents 2 ethnic

languages languages British Eng. groups

Use LID LID LID LID Accent ID Ethnic group

training development testing testing training & ID training

testing & testing

Table 7.3: Summary of speech corpora used in the studies (Conv. = conversational

speech).
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7.4 Summary

All of the speech data used in this thesis was described in this chapter. The CallFriend

corpus consists of telephone conversations collected by LDC for twelve languages. The

training and development sets were used as training data for all of our language ID

systems presented in this thesis. The NIST 1996 data set was used for as development

data for our language ID systems, e.g. fusing different language ID systems together.

The NIST 2003 and 2005 evaluation data sets were used to develop and evaluate our

language ID systems.

The ABI-1 corpus is a read speech recordings collected from 13 different regions in

the British Isles plus standard British English. All of the recordings, with their word

level transcriptions, were used for all of our regional accent recognition experiments in

this thesis. Because the amount of ABI-1 speech data is not sufficient to be divided into

training, development and testing sets, three rounds of ‘jackknife’ procedure was used to

overcome this limitation.

The VaB corpus consists of around 175 hours of recordings of telephone conversational

speech between participants who were born in or around the city Birmingham in the UK.

The participants were asked to indicate their ethnicity. All recordings from the two main

ethnic groups in the city of Birmingham, ‘White’ and second generation ‘Asian’, were

used for all of our ethnic group ID experiments.
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Chapter 8

Language Recognition

Experiments

After evaluations in 1996, NIST LRE 2003 was the second evaluation NIST conducted

to establish a current baseline of performance capability for language recognition of con-

versational telephone speech [40]. The NIST LRE 2003 30-second subset was used to

develop our language ID systems and to study the effectiveness of different features and

techniques for language ID. Although NIST has released evaluation plans for 2005, 2007,

2009 and 2011, we used the NIST 2005 LRE data set to evaluate our language ID systems

because the main aim of this work is to study how well the standard techniques used in

language ID can be extended and used for recognizing the regional accents of British

Isles and the two main ethnic groups in the city of Birmingham which are described in

chapters 10 and 11.

This chapter describes the details of our language ID system and presents our results

of the NIST 2003 and 2005 language recognition evaluations.
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8.1 Language ID systems

8.1.1 Phonotactic systems

Our phonotactic language ID system uses three existing phone recognizers (Czech, Hun-

garian and Russian), borrowed from a toolkit developed by Brno University of Technol-

ogy 1 as tokenizers. These phone recognizers are used because it has been shown that

they provide good performance for language ID systems and they are available at no

cost. These phone recognizers were trained on the SpeechDat-E databases using a hybrid

approach based on Neural Networks and Viterbi decoding [106]. More details about these

phone recognizers can be found in [106].

For each of these phone recognizers and each target language, 1-gram, 2-gram, 3-

gram and 4-gram LMs were built with SVMs, as described in chapter 4. This results

in twelve phonotactic language ID subsystems (3 Tokenizers × 4 n-gram LMs). The

final dimensions, after removing the zero occupancy components, of n-gram probability

vectors of each subsystem are shown in table 8.1. For each order of n-gram (n = 1, . . . , 4),

the three phone recognizer dependent subsystems are fused together using LLR fusion

technique, which is described in chapter 6, trained on the NIST 1996 evaluation subset

(see chapter 7). Moreover, the twelve phonotactic systems are fused together in the same

way, and the result is our phonotactic language ID system.

The performance (EER[%]) of each individual subsystem on the NIST 2003 30-second

data set is reported in table 8.2, together with the performance of the fused systems.

The results in table 8.2 show that the phonotactic systems with the Russian phone

1www.fit.vutbr.cz/research/groups/speech/sw/phnrec/
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phone recognizer \ n-gram 1-gram 2-gram 3-gram 4-gram

Czech 42 1764 44377 422666

Hungarian 58 3364 76939 903069

Russian 52 2704 75844 895428

Table 8.1: Dimensions of n-gram vectors of each phone recognizer.

PRLM system uni-gram bi-gram tri-gram 4-gram

ALL
Czech 14.7 6.3 3.4 4.2

Hungarian 13.4 5.4 2.9 3.8

Russian 10.8 4.5 2.8 3.1

Fusion 7.8 2.6 1.6 2 1.48

Table 8.2: EER [%] of single n-gram (n = 1, . . . , 4) PRLMs and PPRLM on NIST 2003

LRE 30s evaluation.

recognizer outperform the other systems for each order of n-gram. It is also shown that by

increasing the order of the n-grams from 1 to 3, the performances of all systems improve

dramatically. However, the performance of all systems decreases with the 4-gram. A

possible explanation for this degradation is that in the case of 4-grams, more training

data is needed than is available. Another interesting observation from the results in

table 8.2 is that combining several phonotactic systems with different phone recognizers

outperforms all of the individual systems.

Table 8.3 gives a comparison of our results with the results of the best systems known

from the literature on NIST 2003 data. The Massachusetts Institute of Technology (MIT)

PPRLM system [34] (row 2) employs HMM phone recognizers trained on 6 languages from

OGI stories [107], and the result for the Brno University of Technology (BUT) PPRLM
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System NIST 1996 eval. data NIST 2003 eval. data

PPRLM MIT[34] 5.6 6.6

PPRLM BUT [106] 1.48 2.42

Our PPRLM 1.36 1.48

Table 8.3: Comparison of EER [%] on NIST 1996 and 2003 evaluations

system [106] (row 3) uses phone recognizers trained on four languages from SpeechDat-E

data (the same phone recognizers which we use in our experiments plus a Polish phone

recognizer).

Our best results (EER of 1.36% and 1.48% in table 8.3) are obtained by fusing 12

PRLM systems together. This result favorably compares to the PPRLM BUT system. In

spite of the fact that our system and the BUT system use the same phone recognizers, the

superiority of our system, probably, comes from the discriminative weighting technique

applied to the n-gram probability vectors during training and evaluation. In addition,

we use more data to train our systems.

We conclude that weighting the n-gram probability vectors with the LLR discrim-

inative technique is very useful for phonotactic language ID, because it emphasise the

n-gram components which have the most discriminative information to distinguish be-

tween languages and de-emphasise those which do not. We also conclude that fusing

multiple phonotactic systems with different phone recognizers improves the performance

of the language ID system.
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8.1.2 GMM-UBM acoustic system

8.1.2.1 Acoustic features

The most widely used features for language recognition are MFCCs. The extraction

process of MFCCs from a speech signal with different spectral analysis algorithms was

described earlier in chapter 3. The DFT based spectral analysis algorithm is used to

estimate the MFCCs which are used in all experiments described in this chapter.

In order to find the best configurations (parameters) of the front end analysis and

the best normalization techniques for our language ID system, several experiments were

conducted with our GMM-UBM systems (with 512 and 2048 GMM components) using

only the training set of the CallFriend corpus described in chapter 7. Silence frames

are labeled using energy based VAD and then discarded after calculating the temporal

coefficients.

For the MFCC35 and MFCC36 experiments (row 2 and 3 of table 8.4), the feature

vectors comprise 12 static MFCCs plus the corresponding delta, ∆, and second delta, ∆∆,

parameters computed with 5 frame windows. The final coefficients exclude or include c0,

resulting in 35 or 36 features. The purpose of these two experiments is to study the

influence of keeping or removing c0 from the cepstral features. It is evident from the

results in table 8.4 that keeping c0 improves the EER [%] of the GMM-UBM language

ID system with 512 and 2048 components by around 5% and 2.7%, respectively. The

MFCC57 features are the same as MFCC36 but they are calculated on 19 static MFCCs

plus the corresponding ∆ and ∆∆ parameters. The result of this experiment (row 4,

table 8.4) shows that increasing the number of MFCCs (and the corresponding temporal

information) from 12 to 19 slightly improves the system performance.
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# of Gauss

Feature c0 512 2048

MFCC35 – 29.4 25.9

MFCC36
√

28 25.2

MFCC57
√

27.6 24.8

SDC49
√

22.3 18.3

MFCC7+SDC49
√

20.5 17.4

MFCC12+SDC49
√

19.7 17

MFCC19+SDC49
√

19.6 16.7

Table 8.4: EER [%] comparison for different kind of features with the GMM-UBM lan-

guage ID system

In order to compare the conventional method of extracting the temporal information

(i.e. ∆ and ∆∆) with the SDC method, several language ID experiments were carried

out with different combinations of static MFCCs and the corresponding temporal features

calculated with the two methods. The SDC coefficients are calculated as described in

chapter 3, with N − d − P − k parameters. The same parameters reported in [57],

7 − 1 − 3 − 7, were found to be the best for our system, and therefore were used in

calculating SDC coefficients in all our experiments. These parameters result in a 49-

dimensional temporal feature vectors. Results of language ID are usually reported only

with SDC features, which do not include static coefficients. We studied the influence

of adding different number of static coefficients; 7, 12 and 19, to the SDC features. As

is shown from the results in table 8.4, adding the 19 MFCCs, including c0, to the 49-
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dimensional SDC coefficients (MFCC19+SDC49 ), which results in 68-dimensional feature

vectors, gives the best performance. Therefore, MFCC19+SDC49 features are used in

all of our subsequent experiments unless otherwise stated.

8.1.2.2 Gender Variability

The gender of the speaker is one of the sources of speaker variables that degrade the

performance of language ID systems. Several methods are used to normalize the gender

variability of the speakers. The most common methods are the Vocal Tract Length

Normalization (VTLN) [92] and building a gender identification systems followed by

gender-dependent language models. We used the latter method in all of our language

ID experiments reported in this chapter. This method is chosen because it is simple

and it does not require additional computation. In the gender identification system, two

background models (UBM) are trained; one on the conversations of male speakers and

one on those of female speakers of all languages. The conversations of male and female

speakers in the training data of each target language are then used to MAP adapt means

and weights of the corresponding background model, producing two gender and language

dependent GMMs for each language. This results in two UBMs and 24 GMMs for our

12 target languages in the CallFriend corpus. In recognition, the two gender-dependent

UBMs are used to identify the gender of the speaker first, then the corresponding language

dependent models are selected for language recognition.

In order to study the effect of gender variability on language ID, the experiment with

the best result in the previous section (row 8 and column 4 in table 8.4) was repeated

but with gender identification and gender-dependent models (i.e. two UBMs and 24
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language-dependent GMMs). The result of this experiment (EER = 14.3%) shows that

by removing the gender variability of the speakers, the performance of our GMM-UBM

language ID system (with 2048 components) improves by around 14%. This means that

modeling languages for each gender separately avoids the gender variability and improves

the language ID performance. Therefore, gender identification and gender-dependent

models are used in all of our subsequent experiments on language ID.

8.1.2.3 Feature normalization

In all of our previous results reported in this chapter, the speech frames (after removing

the silence frames with VAD) undergo channel normalization using CMN technique. As

explained earlier in chapter 3, there are other feature normalization techniques which

have been successfully used in language ID, such as RASTA filtering, MVN and feature

warping. To study the effect of these techniques on our language ID system, several ex-

periments were carried out with our GMM-UBM system, with 2048 Gaussian components

and 68-dimensional feature vectors,(MFCC19+SDC49 ).

The results of these experiments are reported in table 8.5. It shows the performance

comparison of the four feature normalization techniques. Normalizing the cepstral fea-

tures with CMN reduces the EER percentage dramatically by 45%. It is also shown

that RASTA filtering has a slight improvement over CMN because it not only normalizes

the mean but also filters the high frequency modulation within each component, which

may contain some noise. By normalizing the feature distribution with MVN and feature

warping, the performance of language ID system improves by 53% and 54%, respectively

corresponding to the system result with un-normalized features. In addition to mean and
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# of Gauss

Features CMS RASTA MVN Feature Warping 2048

MFCC19-SDC49

– – – – 26

√
– – – 14.3

–
√

– – 14

– –
√

– 12.3

– – –
√

11.88

–
√ √

– 11.7

–
√

–
√

11.37

Table 8.5: EER [%] comparison of different kind of feature normalization techniques on

CallFriend training set

variance, feature warping normalizes the skewness and flatness of the feature distribution

over a short period (3 seconds in our case), which improves the language ID perfor-

mance slightly more than MVN. By combining this with RASTA to filter out the high

frequency components, a further improvement is obtained with both MVN and feature

warping. The best performance (11.37% EER) is obtained by combining RASTA and

feature warping, therefore and unless otherwise mentioned, this combination are used in

all of our experiments.

8.1.2.4 Score normalization

In order to study the influence of score normalization techniques on language ID, the same

language ID system (row 7, table 8.5) was re-evaluated using different combinations of

Z-norm, T-norm, LLR and ‘max-LogLikelihood’ score normalization techniques described
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Score Normalization EER[%]

– 11.37

Z-norm 10.82

T-norm 10.68

ZT-norm 10.68

LLR norm 9.27

max-loglikelihood 8.35

Table 8.6: comparison of different score normalization techniques on GMM-UBM with

2048 components LID system

earlier in chapter 5. The NIST 1996 development data set (‘Lid96d1’) was used to esti-

mate the Z-norm parameters for each language. Table 8.6 shows the performances of the

language ID system using these score normalization techniques. These results show that

‘max-loglikelihood’ score normalization outperforms the other normalization techniques

by improving the system performance 27% relative to the performance without score nor-

malization. A possible explanation for this is that in ‘max-loglikehood’ we normalize the

score of every model with the score of the most competitive (impostor) model, whereas in

the other normalization techniques we normalize with the average of competitor impostor

scores. Unless stated otherwise, ‘max-loglikelihood’ score normalization is used in all of

the subsequent experiments in this thesis.
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8.1.2.5 Increasing the number of GMM components and amount of training

data

Training GMM with the EM algorithm requires specification of the number of Gaussian

components prior to the training process. Most GMM-based language ID systems use

2048 Gaussian components. Increasing the number of GMM components requires more

training data and more computation. However, in order to study the influence of increas-

ing the number of GMM components on the performance of language ID, a GMM-UBM

system with different number of Gaussian components (512, 1024, 2048 and 4096) are

trained on the train set of the CallFriend corpus and evaluated on the NIST 2003 30-sec

segments. Figure 8.1 shows the DET curves for all of these language ID systems. This

figure shows that by increasing the number of Gaussian components, the performance of

language ID system improves up to 2048 components. We also observe from the DET

curves that there is no improvement by increasing the number of components to 4096. A

possible reason is that the amount of training data is not enough to train a high order

GMM with 4096 components. To verify this and to study the influence of the amount of

training data on the system performance, both the training and development data sets

of CallFriend corpus were used (i.e. doubling training data) to re-train and re-evaluate

the language ID systems with 2048 and 4096 GMM components. The performances of

these two systems are shown in figure 8.2. As shown in this figure, doubling the amount

of training data improved the performance by about 30% (EER = 5.75%) when using

2048 Gaussian components compared with 38% (EER=5.19%) improvement when using

4096 Gaussian components . This confirms that increasing number of GMM components

improves the language ID performance but requires more training data.
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The best performance of our GMM-UBM language ID system (EER = 5.19%) is

obtained by using 4096 GMM components trained on both the training and development

data sets of the CallFriend corpus. This language ID system will be used as a baseline

for the other systems and other techniques described later in this chapter.

Figure 8.1: Performance (DET curves) of GMM based LID system with different number

of Gaussian components trained on Callfriend train set and evaluated on NIST 2003 LRE

30s segments

8.1.3 GMM-SVM and GMM-SVM-GMM acoustic systems

The best front-end parameters and normalization techniques for language ID which have

been found earlier in the previous sections with our GMM-UBM system, were also used in

our GMM-SVM and GMM-SVM-GMM systems, which were described earlier in chapter

5. The same UBMs used for our GMM-UBM systems of 2048 and 4096 components were

also used to map each utterance in the training and development data sets of CallFriend
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Figure 8.2: Performance (DET curves) of GMM based LID system with 2048 and 4096

Gaussian components trained on Callfriend train and dev sets and evaluated on NIST

2003 LRE 30s segments

corpus to supervector space in the same way described in chapter 5. For each GMM

size, 2048 and 4096, two gender-dependent SVM models for each language were trained

on the resulting supervectors using ‘one-against-others’ strategy. Evaluated on NIST

LRE 2003 30-sec subset, the performance (EER[%]) of our GMM-UBM, GMM-SVM

and GMM-SVM-GMM language ID systems are reported in table 8.7. These results

confirm that in perspective of language ID, the discriminative techniques such as SVMs

are more effective than the probabilistic modeling techniques such as GMMs. Our GMM-

SVM language ID systems with 2048 and 4096 components outperform the corresponding

GMM-UBM systems by around 74% and 73% respectively. A further 10% and 9.2%

improvements are achieved with our GMM-SVM-GMM systems, with 2048 and 4096

components respectively.
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# of Gauss

System 2048 4096

GMM-UBM 5.75 5.19

GMM-SVM 1.5 1.41

GMM-SVM-GMM 1.35 1.28

Table 8.7: Performance (EER [%]) of GMM-UBM, GMM-SVM and GMM-SVM-GMM

language ID systems on NIST 2003 LRE 30s segments

8.1.4 Inter-Session Compensation (ISC) for acoustic systems

In order to apply ISC technique, which was described earlier in chapter 5, to our acous-

tic language ID systems, first we need to estimate the eigen-channel subspace U matrix

which represents the inter-session variability in the supervector space. The same super-

vectors which were used for our GMM-SVM system, are also used to estimate U matrix.

The second requirement for ISC is to estimate inter-session variability in each utterance

(training and testing) in a low dimensional space (i.e. Xc), in the same way described in

chapter 5.

The ISC technique can be applied to the GMM model domain or to the acoustic

feature domain or both of them at the same time. Therefore, ISC at model domain can

be applied to GMM-UBM and GMM-SVM-GMM systems only, whereas ISC at feature

domain can be applied to all systems.

Before we start using ISC with our language ID systems, we need to determine the best

number of eigenvectors in U matrix (i.e. the dimension of Xc vectors) which represents

the number of removed dimensions. A possible way to find it practically is by evaluating
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our GMM-UBM system with 4096 components by applying ISC using different number

of eigenvectors ranging from 50 to 600.

Figure 8.3 shows the performances of our GMM-UBM system evaluated on the NIST

2003 30-sec data with the ISC technique (applied in model domain) using different number

of eigenvectors. This figure shows that compensating for the inter-session variability

decreased the EER from 5.19%, when no ISC is applied, to 3.6%, when ISC is applied with

only 50 eigenvectors. The best performance, EER = 3.32%, was found when representing

the inter-session variability by its major 400 dimensions. Therefore and unless otherwise

stated, 400 eigenvectors were used in all of our subsequent experiments which includes

ISC technique.

The performances of all our acoustic systems with ISC in the model and feature do-

mains are reported in table 8.8. The general observation from these results that normal-

izing the inter-session variability improves the performance of the three acoustic language

ID systems, GMM-UBM, GMM-SVM and GMM-SVM-GMM dramatically. As expected,

applying ISC technique at the acoustic features level is better than in the model domain

because in the earlier method the inter-session variability is normalized in both the train-

ing and the testing acoustic features, whereas, this variability is normalized in the testing

features only with ISC in the model domain. Another interesting observation is that a

further improvement on the GMM-UBM and GMM-SVM-GMM systems was obtained by

combining both ISC in both features and model domains. This combination is achieved

by applying the ISC at the feature level using uncompensated models and then re-training

the acoustic models on the compensated features. The ISC is then applied in the model

domain to compensate the new models. The best performance (EER=0.5%) was obtained
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by our GMM-SVM-GMM system with 4096 components and with applying the ISC in

the feature and model domains.

We believe that the best result on the NIST 2003 30-sec evaluation set published

in 2003 was 2.8% EER [34] and that the overall best performance since then is 0.8%

EER [35]. This is comparable with our own best result (0.5%EER) and establishes the

credibility of our system.

However, this improvement in performance of acoustic language ID systems was at

the cost of computation time. This powerful technique (ISC), especially at the feature

level, required a huge computation which takes a very long time.

Figure 8.3: Variation of EER of GMM-UBM system with ISC technique using different

number of eigenvectors

8.1.5 GMM-n-gram language ID system

Our GMM-n-gram language ID system is the same as the phonotactic system, except a

GMM is used as a tokenizer instead of phone recognizer, as described earlier in chapter 5.

Twelve language dependent GMMs, with 2048 components, were trained on the language
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# of Gauss

System ISC-Feature Domain ISC-Model Domain 2048 4096

GMM-UBM

– – 5.75 5.19

–
√

3.52 3.32

√
– 1.5 1.5

√ √
1.4 1.33

GMM-SVM – – 1.5 1.41

√
– 1.25 1.2

GMM-SVM-GMM

– – 1.35 1.28

–
√

1.08 1.0

√
– 0.84 0.55

√ √
0.837 0.5

Table 8.8: EER [%] of acoustic language ID systems with the ISC using 400 dimensions

to represent the inter-session variability.

specific data, and then used to build our GMM-uni-gram system in two different ways:

• First, each language-dependent GMM was used as a tokenizer for all languages and

then the twelve uni-gram systems are combined at the back-end (similar to parallel

PRLM with different phone recognizers) (this is the ’Parallel lang-dept GMMs-uni-

gram system in table 8.9).

• Second, the twelve language-dependent GMMs are concatenated together to form

our proposed MLM language-independent model with 24,576 GMM components

(this is the MLM-uni-gram system in table 8.9).
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The the same UBM which was trained on the whole training data and used for our

GMM-UBM and GMM-SVM systems, was also used as a tokenizer for our GMM-bi-gram

system (system bi-gram in table 8.9). The MLM-uni-gram and GMM-bi-gram systems

were fused together with the GMM-UBM and GMM-SVM-GMM acoustic systems to

get the ‘acoustic-fused’ system. All of the acoustic systems were also fused with the

phonotactic systems to get our final fused language ID system (’phono-acoustic-fused’ in

table 8.11).

Moreover, to investigate the effectiveness of the ISC technique on the GMM tokeniza-

tion systems, all of our GMM tokenization language ID systems described in this section

were re-trained and re-evaluated on the compensated feature vectors, as shown in the

third column of table 8.9).

System
EER[%]

Un-compensated features Compensated features (ISC)

Parallel lang-dept

GMM-uni-gram

(12×2048)

3.87 3.34

MLM-uni-gram

(24,576)

1.66 1.34

GMM-bi-gram 3.51 3.18

Table 8.9: Performance (EER[%]) of GMM-n-gram language ID systems on the NIST

2003 LRE 30sec subset.

The results in table 8.9 show that concatenating the twelve language dependent GMMs

into a high order MLM and using it as a tokenizer outperforms the parallel language-
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dependent GMM tokenizers. The reason for this superiority is that, with high number of

GMM components in our MLM, the language specific features are modeled in separate

components, which allows emphasizing them with the LLR weights in a better way.

To study the difference between the traditional UBM and MLM, a 6144-component

background model was built in three ways: A traditional UBM model (table 8.10, column

2), a concatenation of 12 language-dependent 512-component GMMs built separately for

each language (table 8.10, column 2), and a concatenation of 12 language-dependent 512-

component GMMs MAP adapted from a 512-component UBM (table 8.10, column 4).

Each background model was used in two different systems: A GMM-UBM system, and

a discriminative GMM-uni-gram system (rows 2 and 3 in table 8.10, respectively).

System/Background model UBM MLM MLM-adapt

GMM-UBM 5.4 5.8 6.6

GMM-uni-gram 2.7 2.3 3.6

Table 8.10: Performance [EER%] of the GMM-UBM and GMM-uni-gram systems using

background model built in three different ways.

It is clear from the results that the MLM background model is advantageous for the

GMM-uni-gram system but not for the probabilistic GMM-UBM system. A possible

explanation is that the areas of interest of the two systems in acoustic space are dif-

ferent. The discriminative n-gram systems focus on the language-specific boundaries of

the background model, where use of a component is indicative of a particular language.

By contrast, the probabilistic GMM-UBM system relies on differences in the probabili-

ties from components of the language specific GMMs which arise from MAP adaptation

of the same components from the cross-language middle of the background model. The
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smaller traditional UBM appears to result in more reliable and robust Gaussian probabil-

ities, but has fewer language-specific components that can be exploited by the uni-gram

model, whereas the larger MLM method has enough space to accommodate the language

specific components that the uni-gram model requires. Thus, the MLM is more biased

towards the language specific components than the traditional UBM. This is useful for

the discriminative approaches but not for the generative approaches.

8.2 Fusion

Table 8.11 shows the results of our fused language ID systems. The ‘phonotactic-fused’

results was obtained by fusing the 12 phonotactic sub-systems together. The ‘Acoustic-

fused’ was obtained by fusing the four acoustic sub-systems: GMM-UBM, GMM-SVM-

GMM, MLM-uni-gram and GMM-bi-gram. The best result (0.34% EER) was obtained

by our overall fused system, ‘phono-acoustic-fused’, which is fusion of 16 sub-systems (12

phonotactics plus 4 acoustics). In all fused systems, the NIST 1996 evaluation set was

used as training data to optimize the fusion coefficients with the LLR fusion technique

(described in chapter 6).

According to the results presented in this chapter, the configurations of our final

language ID system can be summarized as follow:

• Three phone recognizers (Czech, Hungarian and Russian) are used as tokenizers for

the phonotactic systems.

• Four order of n-grams (1-gram, 2-gram, 3-gram and 4-gram) are used to build

language models for phonotactic systems, whereas only 1-gram and 2-gram are
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System
EER[%]

Un-compensated features Compensated features (ISC)

phonotactic-fused 1.48 1.48

Acoustic-fused 0.93 0.41

Phono-acoustic-

fused

0.7 0.34

Table 8.11: Performance (EER[%]) of fused language ID systems on the NIST 2003 LRE

30sec subset.

used for the GMM-n-gram systems.

• Hamming window of 20ms and frame rate of 100 frames per second

• 23 triangular windows with a 3.5 KHz bandwidth

• RASTA filtering in the log power spectral domain

• Acoustic features are 19 MFCCs plus 49 SDCs (68 features).

• Silence frames are labeled and removed with the energy-based VAD

• Feature warping technique is applied for the final feature vectors (after removing

silence)

• Gender-dependent models

• ISC technique is applied in the feature and model domains

• A UBM of 4096 components is used for our GMM-UBM, GMM-SVM, GMM-SVM-

GMM and GMM-bi-gram systems
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• MLM of twelve language-dependent GMMs with 2048 components (24,576) is used

for the GMM-uni-gram system

• Scores are normalized with the max-loglikelihood.

• Linear logistic regression is used for fusion.

8.3 NIST 2005 LRE

In this section we evaluate our language ID system, which was developed in the previous

sections using the NIST 2003 evaluation data, on the NIST 2005 30s evaluation data.

Since the seven target languages (with three dialects) in NIST 2005 LRE are a subset

of the twelve languages (with three dialects) in the CallFriend corpus (except the Indian

English dialect), the same systems trained for the NIST 2003 LRE were also used for the

NIST 2005 evaluation. Only the language-dependent models of the seven target languages

are used for the NIST 2005 language recognition evaluation. The NIST 1996 evaluation

data set was used to train the weighting coefficients for fusion.

Table 8.12 shows the performances of the main components of our language ID system

and the overall fused system (‘Phono-acoustic-fused’) on the NIST 2005 data. As it is

shown from the results, the performance of each of the acoustic systems is poor compared

with the NIST 2003 evaluation. The phonotactic system (5.2% EER) outperforms all of

the acoustic systems. The best performance achieved with our language ID system is 4.2%

EER , which is obtained by fusing all of the acoustic and the phonotactic sub-systems.

To compare our results with the best results published on the NIST 2005 LRE, ta-

ble 8.12 includes the results published by the MIT and BUT. The MIT fused system
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language ID Systems NIST 2005 LRE (EER[%])

GMM-UBM 13.1

GMM-SVM 11.75

GMM-SVM-GMM 9.14

MLM-uni-gram 11.9

GMM-bi-gram 18.2

Phonotactic-fused 5.2

Acoustic-fused 8.4

Phono-acoustic-fused 4.2

MIT fused system 3.3

BUT fused system 2.9

Table 8.12: Performance [EER%] of different language ID systems on NIST 2005 30-

second subset.

(row 10) was obtained by fusing two phonotactic systems with a GMM-based acoustic

system [70]. The two phonotactic systems are parallel of phone recognizers followed by

language models classifiers using phone lattices and parallel phone recognizers followed

by binary language models. The result of the BUT fused system (row 11) was obtained

by fusing phonotactic and acoustic systems [108], where the phonotactic system is very

similar to our system (same phone recognizers) except they used phone lattice and anti-

model technique. The BUT acoustic system is GMMs trained with MMI discriminative

training. As shown in the results, these two systems outperform our fused system. Both

systems, MIT and BUT, used speech data for Indian English from OGI corpus because

the CallFriend corpus does not contain Indian English speech, whereas our system was
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trained on the CallFriend corpus only. This difference in the training data could be a

reason for the the relatively poor performance of our system.

The main results for all systems and tasks described in this thesis are also summarized

in table A.1 in appendix A.

8.4 Summary and challenges

In this chapter our phonotactic and acoustic language ID subsystems were developed and

evaluated on the NIST 2003 LRE data set. The results of the phonotactic systems showed

that training the LMs on the phone sequences produced by different phone recognizers

with SVMs and using the LLR discriminative weighting achieves results very comparable

with the published results on the same data and using the same phone recognizers. The

best result of the phonotactic systems was obtained by combining multiple systems with

different phone recognizers and different orders of n-gram.

With our acoustic systems, we have verified that the results and conclusions of other

labs obtained with MFCC and SDC features are valid and that these features are good for

our language ID system. In addition, we have examined the importance of normalizing the

acoustic features and the output scores for language ID. The performance of our GMM-

UBM system improved by increasing the number of GMM components but this requires

more training data. However, the cost of this improvement in the system performance is at

the computation time. For instance, training our GMM-UBM system with 512 Gaussian

components and 4 EM iterations on a PC with Quad core (Q8200) CPU running at 2.33

GHz and has 4 GB memory, required about 130 hours (∼ 5 days) compared with 195

hours and 300 hours for the 2048 and 4096 Gaussian components, respectively.
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The discriminative training with SVMs clearly outperforms the widely used GMMs for

language ID. The ISC technique in the model domain and the acoustic feature domain

is greatly beneficial for language ID. Moreover, applying this technique in the feature

domain has a great advantage, as it allows to apply SVM parameter re-estimation with-

out modifying the training algorithm. However, the ISC technique, particularly in the

feature domain, requires a massive computation resources. For example, compensating

the feature vectors of all of the conversations in the train and development sets of Call-

Friend corpus using a GMM with 512 components, took around 21 days on the same

PC described earlier. The requirement of this huge computation urged us to divert our

research a little bit towards optimization and parallel processing in order to speedup the

computation. Optimizing and accelerating GMM and ISC computation on CPU and on

multi-core GPU will be addressed in chapter 9.

It has been also shown in this chapter that methods normally applied to sequences

of high-level units such as phones or words can be successfully applied to sequences of

GMM components. A GMM-uni-gram system works surprisingly well, provided that

discriminative weighting is applied to the uni-gram probabilities. The MLM has been

proposed as an alternative to both conventional UBM and parallel of language-dependent

GMMs. The MLM appears to have more language-specific components than a UBM, and

for this reason works particularly well as the basis of a uni-gram system (and potentially

as the basis of an n-gram system), but less well in a conventional probabilistic GMM-

UBM system. The best performance is obtained by fusing the outputs of conventional

phonotactic, GMM-UBM and GMM-SVM-GMM systems with those of a discriminatively

weighted uni-gram system based on a 24,576 components MLM and a 4096 components
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UBM bi-gram system.

The NIST 2005 data set was used only for evaluating the components of our language

ID system. The results of our NIST 2005 language recognition evaluations are comparable

with the published results on the same data. This gives credibility to our language ID

system, which will be applied to accent and ethnic group recognition later in chapters 10

and 11, respectively.
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Chapter 9

Language Recognition Using

Multi-core Processors

In this chapter we investigate the potential impact of the GPU on signal processing by

examining the impact of GPUs on the problem of probability calculation and speech-

spectrum estimation in the context of automatic language ID. Speech processing appli-

cations, such as language ID, typically comprise several algorithmic units of which two

normally absorb the majority of the computer’s resources. These are spectral analysis and

the calculation of the conditional probability of the input speech given some pre-trained

acoustic model, typically a GMM.

In the first part of this chapter we consider the use of GPU for GMM probability

caculation. Several papers [30, 31, 32, 33] have already considered this problem. The

calculation is a weighted sum of Gaussian PDF calculations, and while rearrangement of

the algebra is possible the algorithm used is fixed. The optimizations possible for this

calculation are discussed at length in section 9.2. As described in chapter 5, training

these systems usually involves an iterative technique such as the EM algorithm, which

dominates the use of the computer resources. We also exploited the benefits of GPU
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to speedup the computation of the ISC technique, which improved the performance of

language ID systems dramatically (see chapter 8).

In the second part of this chapter, we investigate the extent to which the best perfor-

mance, in terms of both accuracy and use of computer resources, is achieved not only by

optimising the mapping of the spectral analysis algorithm onto the GPU architecture, but

also by choosing a spectral analysis technique where a high degree of optimisation can be

realised. It is important to note that our concern is the performance of the whole feature

extraction process, from a waveform to a sequence of MFCC vectors, rather than simply

an abstract comparison of spectral analysis techniques in isolation. Thus, although the

feature vector dimension and frame rate are fixed, other parameters, such as the anal-

ysis window size, are chosen empirically to optimize language ID performance for each

approach.

Language ID is an example of a real signal processing problem where restricted com-

puting power is a significant constraint. We have already seen (chapter 8) that the feature

vectors in a typical language ID system comprise ‘static’ MFCCs plus a number of SDCs.

All of the experiments in this chapter use 66 dimensional vectors comprising 17 MFCCs

plus 49 SDCs and the language ID system is a simple GMM-UBM acoustic system (chap-

ter 5) with 2048 or 4096 components. However, the same basic architecture is applied

in many other pattern recognition problems. Hence the results presented in this chapter

are more widely applicable. The essential content of this chapter also appears in [109].
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9.1 Graphics Processing Units

9.1.1 Hardware description

GPUs are add-on processors which accelerate the performance of PCs applied to the

composition of video code for computer games. The experiments described in this paper

use the NVIDIA GE Force 260 core 216, a typical mid-range GPU. It comprises twenty

seven multiprocessors, each with eight core processors, giving 216 cores operating at a

clock rate of 1242 MHz (table 9.1). Each core processor can execute a floating-point

multiply/add in a single clock cycle. The resulting GPU has a maximum performance

of more than 800 GFlops. Each multi-processor also has two transcendental-function

calculation units and shared memory. However it is important to note that the cores

have a high latency, so that the result of a computation is not available until after 32

clock cycles. This has implications for algorithms that require access to prior results to

complete the current calculation.

9.1.2 Software

GPUs were initially difficult to program due to their restrictive programming model.

However, the introduction of NVIDIA’s Compute Unified Device Architectures (CUDA)

framework has simplified development, allowing the GPU to become a more mainstream

tool [110].
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Multi-Processors 27

Core processors 216

Core Clock (MHz) 585

Processor Clock (MHz) 1242

Compute Capability 8̃00 GFLOPS

Memory Clock (MHz) 999

Memory Configuration (MB) 1792

Memory Interface Width 448-bit

Memory Bandwidth (GB/sec) 111.9

Table 9.1: NVidia Geforce GTX260 (216 cores) Specifications

9.1.2.1 NVidia CUDA

CUDA is a C like programming language for writing kernels, the functions that execute

concurrently on GPU. A kernel comprises a configurable number of blocks, each consisting

of a configurable number of threads [111], as shown in figure 9.1, where each thread applies

the kernel function to different data. Built-in variables indicate which thread of which

block is currently executing.

A CUDA program comprises a CPU-based host function, which can be a simple func-

tion or a full program, plus one or more GPU-based parallel kernel functions. The host

transfers data to the GPU memory, calls kernel functions after configuring the execution

parameters, and transfers results back to the host memory. Kernel functions run as a

grid of blocks of up to 512 threads, which execute concurrently, so that all computation

in the grid must end before invoking another grid. All threads in a block run in lock-
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Figure 9.1: Overview of CUDA threads batching [111]

step on the same GPU multiprocessor. There is no communication between blocks, but

threads in the same block share fast local cache memory, as shown in figure 9.2, and can

be synchronized at programmer specified barriers. Since enormous numbers of blocks can

be launched in parallel, a very high number of threads run concurrently.

Figure 9.2: logical structure of graphics processor unit (GTX260) [111]

Most data resides in the shared global GPU memory as each multiprocessor’s shared

cache memory is limited. When calling a CUDA kernel, parameters are passed by value

to the local cache, but array pointers will reference the shared global memory, which has

a significant penalty for reading. When data is required from the global memory, it is
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best that adjacent threads in the block request adjacent memory locations, as this results

in only a single delay. Kernels may use inter-thread data requests to rearrange memory

requests. Processed data is returned to the global memory by the end of the thread’s

execution, so that the results are accessible from the GPU by the host. The host function

can be based on a low-level API, called the CUDA driver API, or on a higher-level API,

called the runtime API, as illustrated in figure 9.3.

Figure 9.3: Software architecture of CUDA application [111]

9.1.2.2 GPUmat

GPUmat is one of several toolboxes which allows MATLAB to benefit from the com-

putation power of modern GPUs. It is built on the top of NVidia CUDA technology.

The computation is directly executed on the GPU transparently. Only the declaration

of variables needs to be changed using new specific keywords. So it does not require a

good knowledge in the GPU or the CUDA programming. Because of its simplicity and

free availability, GPUmat is used as an interface between MATLAB and GPU.

Data is transferred from the host memory to the GPU memory implicitly by declaring

the MATLAB variables as GPUsingle or GPUdouble for single and double precision
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floating-points respectively. Any operation on variables declared in the GPU memory

will be executed directly on the GPU multiprocessors. In the same way, copying back

the computation results from GPU memory to the host memory can be done simply by

declaring the GPUsingle or GPUdouble variables as MATLAB singles or doubles.

Figure 9.4 shows a simple MATLAB example of how to port addition of two vectors

from CPU to GPU using GPUmat toolbox. In this example, Ah and Bh vectors are

initialized in the host memory. The addition operation is executed on the host CPU and

the result is stored in the host memory. To port this piece of code from the host to the

GPU, first the two data vectors need to be copied to the GPU memory. With GPUmat,

this can be done simply by declaring two variables, Ag and Bg, and initializing them

with the host vectors, Ah and Bh respectively. The addition of two vectors; Ag and Bg

will be executed on the GPU and the result will be stored in the GPU memory. To copy

the result vector Cg from GPU to host memory, the same declaration is used but with

MATLAB operators double or single.

Figure 9.4: Example of using GPUmat

As shown in the example in figure 9.4, porting an existing MATLAB code from the

host CPU to the GPU is as simple as changing single and double to GPUsingle and

GPUdouble respectively. The right-hand variables of any statement should be defined
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either in host memory or in GPU memory but not in both. In other words, mixing

between MATLAB variables and GPUmat variables in one statement is not allowed. A

wide range of standard MATLAB functions (e.g. REPMAT) have been implemented

in the GPUmat but still some functions have not been implemented (e.g. BSCXFUN).

For simple Matlab programs, e.g. matrix multiplication, GPUmat can transfer them

efficiently to GPU. For more complex tasks, GPUmat allows users to write their own

functions by using low-level CUDA driver API which gives the programmer the best level

of control for optimization to achieve the best performance.

9.2 GMM probability computation optimization tech-

niques

GPU technology offers dramatic performance improvements for computationally intensive

algorithms that are amenable to parallelisation. An example is the set of algorithms

associated with Gaussian Mixture Models (GMMs). A GMM is a PDF p defined as a

linear combination of Gaussian PDFs, (combining equations 5.1 and 5.3 in chapter 5)

p(xt|λ) =
M∑
i=1

wi

(2π)D/2|Σi|
1
2

exp

(
−1

2
(xt − µi)TΣ−1i (xt − µi)

)
(9.1)

such that, wi ≥ 0, and
∑M

i=1wi = 1. xt is an observation vector with dimension D at

time t, M is the number of Gaussian components in the mixture and λ is the set of GMM

model parameters {wi, µi,Σi} where, wi, µi and Σi are the weight, mean and diagonal

covariance of the ith Gaussian component.

As explained in chapter 5, the application of GMMs involves two processes, training,

typically using the EM algorithm, and maximum likelihood classification. The high

121



computational cost of these processes for large M and substantial amounts of data has

already motivated research into the application of GPUs to this task, for example [30,

31, 32, 33].

9.2.1 Implementation details

Parallelizing the computation of GMM probabilities can be achieved in several ways:

Computing the probabilities of one GMM component for all data vectors (loop over GMM

components (i in equation (9.1))), computing the probabilities of all GMM components

for each feature vector dimension of all data vectors (loop over dimension, d = 1, . . . , D

in (9.1) (assuming that the covariance matrices of the GMM components are diagonal)),

or computing the probabilities of all GMM components for one vector (loop over data

points, t in (9.1)). To exploit the capabilities of the GPU, a large number of threads must

be executed concurrently. In a real LID task, the number of data points is much greater

than both the number of GMM components and the number of feature dimensions. Thus,

the third option, loop on data points, is excluded. If the number of GMM components

is greater than the dimension of the features (which is the case for state-of-the-art LID

systems), then looping on feature dimensions is best, otherwise, looping on components

is best.

Assuming X = {xn : n = 1 : N} is a set of N feature vectors xn, where xn =

[xn1, xn2, ..., xnD] is a feature vector of dimension D, and a GMM, as defined in equa-

tion 9.1, consists of M Gaussian components with µ mean vectors, Σ diagonal covari-

ances and w weights. Two CPU algorithms for GMM probability calculation, ‘loop over

Gaussian components’ and ‘loop over feature dimension’, are implemented in MATLAB
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using REPMAT function as shown in figure 9.5. By profiling those algorithms (with

REPMAT ) implementations line-by-line with the MATLAB profiler, statements with

the REPMAT function are found to consume 60% of the overall computation. Conse-

quently, an optimized mex-function BSXFUN is used as an alternative to theREPMAT

function. Therefore, the two algorithms are re-implemented with BSXFUN (figure 9.5).

Figure 9.5: Four different MATLAB implementations for GMM PDF computation on

CPU

The BSXFUN function has been implemented in GPUmat . Thus, only the algorithms
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with using REPMAT are converted to GPUmat as shown in figure 9.6.

Figure 9.6: Porting MATLAB implementations of GMM PDF computation to GPU using

GPUmat toolbox

As we have shown in figures 9.5 and 9.6, GPUmat does not offer the high flexibility

of CUDA APIs. In our low-level implementation for the GMM computation, GPUmat

is used only to transfer data between the host and the GPU memory, and the CUDA

driver API is used to configure parameters of grids, blocks and threads when invoking

the kernel function. The same kernel function is executed many times concurrently by

each thread but with different input parameters. Feature vectors are divided into streams

of maximum size 65535 blocks. Each block contains a maximum of 512 threads. Each
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Figure 9.7: Example of data organization in the GPU memory

thread computes the probability of one feature vector given one Gaussian component and

writes back the result into a specific space in the global GPU memory.

To ensure efficient access to the GPU global memory during kernel execution, the

feature vectors and model parameters are re-organized at the feature level, such that

the first elements are the first feature of each data vector and each GMM component

parameter followed by the second feature and so on. Figure 9.7 shows an example of

two 4-dimensional feature vectors and the parameters (µ and Σ) of two Gaussian com-

ponents. In this figure, xtd denotes feature dimension d in vector xt, and µid and Σid

denote dimension d in mean vector and diagonal covariance vector of GMM component

i, respectively.

The algorithm in figure 9.8 shows the implementation of the kernel function which

is executed by every thread. DATA DIM is the dimension of the feature vectors (66 in

our case), N is the number of vectors and M is the number of GMM components. In

this implementation, the probability of a single feature vector given a single Gaussian

component is computed by one thread. Copying feature vectors and model parameters

from the global memory to the shared static memory speeds up the access time 100x

because global memory access time is around 100 clock cycles, whereas shared memory

access time is only one clock cycle. In our case, the high dimensional feature vectors (66)
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and model parameters cannot be transfered to the shared memory because of the limited

size of the shared memory, 64 KB.

Figure 9.8: CUDA kernel Implementation

9.3 Results and discussion

To compare the performance of different implementations of the GMM probability cal-

culation on CPU and GPU, pre-trained GMM models with order M = 32, 64, 128, 256,

512, 1024, 2048 and 4096 are used to calculate the probabilities of a 100 second speech

segment on CPU and GPU with different implementation methods. A front-end speech

processor converted the acoustic waveform into a sequence of 66-dimensional acoustic

feature vectors at 100 frames per second, resulting in 10,000 vectors. The CPU imple-

mentations ran on a 2.33GHz Intel Core 2 Quad Q8200 CPU with 4GB of memory. The

GPU implementations ran on an Nvidia GeForce GTX 260 (Core 216) GPU installed in a
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PC running 64-bit windows7, and an NVidia C1060 Tesla machine running 64-bit Linux.

The NVidia GeForce GTX 260 was described previously. The C1060 Tesla machine com-

prises 30 multiprocessors (240 cores) and has 4GB of RAM. Microsoft visual studio 2008

and CUDA toolkit version 4.0 were used in compilation. All tests were repeated 10 times

to obtain average CPU and GPU times.

GMM Order LOC-

REPMAT

LOD-

REPMAT

LOC-

BSXFUN

LOD-

BSXFUN

32 0.4517 0.8534 0.3064 0.5073

64 0.9015 1.6591 0.6013 1.0014

128 1.8055 3.2963 1.197 1.98

256 3.5048 7.48 2.371 3.913

512 7.073 19.334 4.836 7.672

1024 13.97 39.73 9.746 15.35

2048 29.3 79.217 19.345 30.8618

4096 58.489 160.48 40.398 61.254

Table 9.2: Computation time (in seconds) for GMM Probability calculations for 10,000

66-dimensional acoustic frames running on CPU. LOC refers to ’loop on GMM compo-

nents’ and LOD to ’loop on dimension’.

Table 9.2 shows the computation times (in seconds) for four different implementa-

tions of GMM probability calculation running on CPU, namely looping over GMM com-

ponents, i, using MATLAB function REPMAT (column 2 ), looping over dimension,

d, using MATLAB function REPMAT (column 3) , looping over GMM components

using optimized mex-function BSXFUN (column 4) and looping over dimension using
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NVidia GeForce GTX 260 NVidia C1060 Tesla

GMM

Order

LOC-

GPUmat

LOD-

GPUmat

LOD

CUDA

LOC-

GPUmat

LOD-

GPUmat

LOD

CUDA

32 0.4336 0.4777 0.0202 0.2376 0.173 0.0162

64 0.8615 0.5182 0.023 0.4635 0.1747 0.0219

128 1.7204 0.6182 0.0314 0.9162 0.2524 0.0393

256 3.3612 1.2052 0.0499 1.8204 0.4585 0.0987

512 6.7686 1.4401 0.0838 3.6306 0.8734 0.1883

1024 13.6125 2.0032 0.1432 7.25 1.7013 0.2447

2048 26.7198 3.5713 0.2838 14.5014 3.3584 0.822

4096 53.56 7.16 0.634 28.953 6.673 1.6701

Table 9.3: Computation time (in seconds) for GMM Probability calculations, including

data transfer time, for 10,000 66-dimensional acoustic frames on GTX260 GPU and C1060

Tesla, implemented with GPUmat and CUDA driver API. LOC refers to ’loop on GMM

components’ and LOD to ’loop on dimension’.

BSXFUN (column 5).

The results in table 9.2 show that the implementations with a loop over the GMM

components outperform that with a loop over dimension when using either REPMAT

or BSXFUN . The explanation for this is that REPMAT and BSXFUN are used

twice in the loop over dimension implementations and only one time in the loop over

components implementations (see algorithms in figure 9.5). It is also clear that using

the BSXFUN outperforms the REPMAT function, because it is highly optimized for

the C/C++ programming language. We also note that in the loop over components
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case, the computation time is proportional to the number of GMM components because

the algorithm is optimized to calculate the probability of a single GMM component and

executed according to GMM order.

Because the optimized BSXFUN function is not available in the GPUmat toolbox,

only the implementations with the REPMAT function are ported to the GPU using

GPUmat. Table 9.3 shows the computation times (in seconds), including data transfer

time, for three different implementations running on both the GTX 260 GPU and C1060

Tesla machine. As shown from the results, we gain no improvement when porting the

loop over GMM components’ algorithm, with REPMAT , to the GTX 260 GPU us-

ing GPUmat (column 2), whereas, we get around 2X speed up when running the same

algorithm on the Tesla machine (column 5) because of its superiority in hardware spec-

ifications. Note also that in both columns 2 and 5, computation time is proportional to

the number of GMM components, because the algorithm is mapped onto the GPU for

a single GMM component and executed according to the GMM order. Columns 3 and

6 of table 9.3 show the results for a GPUmat implementation of the algorithm on the

GTX260 and Tesla machine respectively, in which the loop is over the data dimension.

In this case the increase in computation time is no longer proportional to GMM order.

For up to 128 GMM components, the increase in computational load is accommodated

by the capacity of the GPU and there is little increase in computation time. However,

for 256 components there are insufficient threads to execute the entire process in parallel

and so the algorithm must be implemented in two stages, resulting in an approximate

doubling of computing time. This pattern is repeated for the higher order GMMs. The

computation time for the ‘LOD-REPMAT ’ GPU implementation for a 4096 component
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GMM running on GTX260 is only 4.5% of the computation time of the corresponding

algorithm running on CPU and just 18% of the corresponding computing time for the

’LOC-BSXFUN ’ (column 4). Columns 4 and 7 of table 9.3 show the results of further

optimization using the low-level CUDA driver API for both the GTX 260 (column 4)

and Tesla machine (column 7). For a 4096 component GMM these implementations re-

duce computation time relative to the best CPU implementation, column 4, by factors

of 64 and 24, respectively. The superior performance of the GTX 260 relative to the

higher-specification Tesla hardware may be due to the Linux CUDA driver.

These significant reductions in processing time allow approaches to be considered

which would otherwise be ruled out on computational grounds. For example, the im-

provement in language ID performance reported in [65] and in section 8.1.5, results from

the application of a ‘GMM tokenizer’ based on a 24,576 component GMM (our MLM-

uni-gram system in table 8.9). Without the increased computing power offered by a GPU

this would not have been attempted.

In a previous study, Cardinal at al. [30] used the NVidia GeForce 8800GTX with

CUDA to accelerate probability calculations in an Automatic Speech Recognition (ASR)

system. The probability computation is 5 times faster with their GPU implementation

than the optimized CPU implementation, leading to 26% computation time reduction in

their ASR system. Gupa and Owens [32] achieved over 60% reduction in GMM com-

putation time and 90% reduction in the memory bandwidth with an NVidia 8800GTX

GPU. The specification of the NVidia 8800GTX, with 128 cores and 768MB of RAM, is

less capable than our GPU’s, and the CPUs are also different, so that direct comparison

is difficult. However, our GMM computation speedup factor is more than nine times
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greater, leading to 97.92% reduction in GMM computation time (see table 9.4).

GMM-UBM (2048)

Training

NIST 2003 Evaluation Overall

CPU 174.264 2.8811 177.145

GTX260 14.6227 0.1844 14.8071

Speedup 11.917 15.6 11.97

Table 9.4: Processing time (in hours) for training and evaluation GMM-UBM language

recognition system with 2048 Gaussian components. This system is trained on train and

development sets of CallFriends corpus (around 1200 hours) and evaluated on NIST LRE

2003 30-sec evaluation segments (1200 30-sec).

9.4 Optimizing ISC computation

We have shown experimentally earlier in section 8.1.4, that the ISC technique is very

beneficial for language ID, particularly at the feature level. However, we have also shown

that this technique requires a huge computation, which limits its usage.

The results of using a GPU to speedup the GMM probability computation motivates

us to accelerate the ISC computation with the GPU. By referring to equation 5.30 in

section 5.7, we find that the compensation offset term depends on three factors; the

GMM posterior probabilities, the eigen-channel subspace (U matrix) and the channel

factors (Xc). The computation of the first factor is already accelerated as explained in the

previous section (section 9.2). Because of the high dimensionality of the eigen-channel

subspace, a recursive algorithm is used to estimate a subset of its eigenvectors which
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correspond to the highest eigenvalues. Both the high dimensionality and the recursive

algorithm make it difficult to speedup the estimation of U matrix with GPU. Fortunately,

the estimation of U matrix depends only on the GMM model and training data, thus it

can be estimated off line and only once.

The third factor in the compensation offset term is the vector of channel factors,

Xc, which depends on the feature vectors with their GMM posterior probabilities and

the pre-computed U matrix. The posterior probabilities,γ(t), are computed with the

same GPU algorithms described earlier in section 9.2. Returning to the channel factors

equations (equations 5.28, and 5.29) we find that estimating Xc involves two terms. the

first is the summation over feature vectors (T ) in equation 5.28 (
∑T

t=1 γi(t)
xt−µi
σi

) which

is very similar to the summation term in the GMM probability evaluation (equation 9.1),

therefore, a similar algorithm, particularly looping on dimension, is used to optimize the

computation of this term. The first summation (over GMM components,M) in equation

5.28 (
∑M

i=1 U
T
i ) disappears by vectorizing the multiplication of the UT with the weighted

sum of the normalized feature vectors, UT × Vs, where Vs is vectorized sum of normalized

feature vectors. The second term is the two summations in equation 5.29 which also can

be easily converted to matrix multiplication by weighting the U matrix with the GMM

posterior probabilities and then computing UT
w × Uw , where Uw is a weighted U matrix.

Matrix multiplication can be easily parallelized and computed efficiently on both the

CPU and GPU. The CUBLAS (4.0) library ( part of CUDA toolkit 4.0) which is highly

optimized for matrix operations on GPU, was used to compute matrix multiplication on

the GPU.

To study the benefit of the GPU for accelerating the ISC computation and compare
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it with CPU, ISC (at feature level) was used to compensate the 66-dimensional feature

vectors of 30-sec and 30-minute speech segments using the UBM with 2048 components

and a pre-computed U matrix with 400 eigenvectors (i.e. dimension of U is 135168×400).

The optimized algorithm for calculating Xc and feature domain compensation was run on

the CPU and on our GTX 260 GPU. The computation times (in seconds) of compensating

3000 and 180000 feature vectors extracted from 30-sec and 30-minute speech utterances,

respectively, are reported in table 9.5. The computation time (in hours) for compensating

the whole training data ( 600 hours of speech) and NIST 2003 evaluation data (1200 30-sec

segments) on both the CPU and GPU is also presented in table 9.5.

The results in table 9.5 show that with a GPU, the computation time required for

compensating 30-sec and 30-min is reduced by a factor of 4.82 and 13.96, respectively. We

have mentioned earlier in chapter 8 that compensating the whole training and NIST 2003

30-sec testing data with an un-optimized ISC algorithm running on CPU took around 21

days using UBM of 512 components. With the optimized ISC algorithm, compensating

cepstral features for the whole data (training and testing), took around 163 hours when

running on CPU and only 13.27 hours when running on our GTX260 GPU. This means

that with the GPU, the ISC computation is accelerated by a factor of around 12, which

makes it possible to use this powerful technique in all of our experiments.

Speech Data CPU GPU Speedup

30-sec 17.52s 3.63s 4.82

30-min 884.56s 63.36s 13.96

ALL train and test data 163.22 hours 13.27 hours 12.3

Table 9.5: Computation time of ISC at feature level on CPU and GTX260 GPU
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9.5 Speech feature extraction

In the previous sections we have demonstrated the importance of program structure in

achieving optimal GPU performance for a specific algorithm. However in some appli-

cations there is a choice between different algorithms. In this section we consider algo-

rithm choice for feature extraction in terms of throughput and language ID performance.

Throughput is measured for 30 second speech samples (a typical test utterance length in

language ID) and 30 minute samples (a typical training utterance length).

The process of extracting cepstral features from speech signal, with four alternative

algorithms for spectral analysis, was described in detail in chapter 3. In the case where

spectral analysis is performed using a FFT (see section 3.2.1.3), profiling shows that this is

the most costly component, in terms of computation time, in the whole feature extraction

process. The time taken to process a 30-min conversation, excluding spectral analysis,

is approximately 5.07 seconds, while spectral analysis of the same conversation requires

approximately 4.6 seconds. This motivated our investigation of GPU implementations of

spectral analysis.

9.5.1 IIR filter bank implementation

The IIR filter bank is described in section 3.2.1.1. Our IIR filter bank consists of 18

IIR filters, each of order 5. Unfortunately the recursive nature of this algorithm causes

difficulties when it is run on a GPU, since each calculation of the output cannot complete

until all its predecessors have been calculated. This clearly implies that the computation

must be arranged in a serial rather than a parallel manner. However, we have overcome

this problem by dividing the data into overlapped short segments and applying IIR filters
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independently.

Assuming that the speech signal is stationary, this dependency can be reduced by

dividing the input signal into overlapped segments of 20-30 ms. The starting sample

of each segment is shifted by 80 samples with respect to the previous segment to give

outputs every 10 ms. For example, a 30 minute utterance is divided into 180,000 segments,

which permits a large degree of parallel processing on the GPU. Consequently, each core

processor implements one IIR filter on one segment independently of the other segments.

Doing this introduces a small amount of inaccuracy, since the state of a filter at the start

of a segment is set to all zeros rather than the state of the filter at the termination of

the previous segment. However, this approximation does not markedly affect language

ID performance. The implementation comprises a fifth order IIR Filter Bank consisting

of eighteen channels. In this implementation, filtering a single speech segment with a

single filter channel is computed by one thread. Consequently, filtering 30 segments with

seventeen filter channels is computed by one block of threads since the maximum size

of a thread block is 512 threads. The maximum number of launched thread blocks is

65,535. For memory access efficiency, the input samples are re-organized in a way that

begins with the first sample of all segments, then the second sample, then the third and

so on. Moreover, the coefficients of the seventeen filters are copied to the shared memory

in order to reduce the global memory access. Because of the limited size of the shared

memory, the input samples cannot be copied.

Algorithm 1 (in appendix A) shows the kernel of the IIR Filter Bank implementation

with a two-stage single-pole filter smoothing. The algorithm works as follows: two shared

arrays are declared to store the coefficients of the seventeen filters. Each thread copies

135



single coefficient from the global memory to the shared memory and waits until all threads

in the same thread block complete their operation. After that, every thread applies the

recursive IIR algorithm on its own input samples and filter coefficients and writes the

result into the output array in the global memory.

9.5.2 FIR filter bank implementation

The FIR filter bank is described in section 3.2.1.2. Our FIR filter bank is implemented

with 19 filter-pairs (I and Q), each with 80 coefficients. Since the I and Q FIR filters

require the same computation, one kernel is used to implement them both. The input

stream of samples is divided into an array of 10ms (80 samples) non-overlapped frames

and the same input samples are shifted by 5 ms (40 samples) and divided into another

array of 10 ms frames. This results in two arrays with the same number of frames where

corresponding frames have a time shift of 5 ms. The frames of samples in the two arrays

are organized in the same way described earlier for the IIR filter bank (section 9.5.1), for

memory access efficiency.

Our FIR kernel implementation for both I and Q filters is shown in algorithm 2 (in

appendix A). First, the 80 coefficients of all I and Q FIR filters are copied to the shared

memory before starting the filter operation because access time of the on-chip shared

memory is only around 1% of that for global memory. Similar to the IIR filter kernel,

a single thread applies single filter-pair (I and Q) into one frame of the input arrays at

a time and writes back the output into an output array allocated in the global memory.

Therefore, every thread block applies the nineteen filter-pairs to 26 input frames as the

maximum number of threads per thread block is 512. The number of launched thread
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blocks is set to its maximum, 65,535.

As shown in equations 3.4 and 3.5, the filter operation is simply matrix multiplication.

Therefore, each thread does 160 MUL-ADD operations for both I and Q filters, giving

two outputs. These are squared and added to get the total power of the I and Q filters

for every input frame. By applying this kernel to the two input arrays, we get two output

arrays of size N × 19, where N is the number of input frames (in each array) and 19 is

the number filter-pairs (I and Q). The two output arrays are then added together to get

a frame rate of 100 frames per second. The implementation requires 6, 213 floating-point

operations (FLOPs) for each input frame, or N × 6, 213 in total.

9.5.3 FFT filter bank implementation

The FFT filter bank is described in section 3.2.1.3. Our CPU implementation of the FFT

is based on the FFTW library [112, 113] which decomposes the problem recursively using

the Cooley-Tukey algorithm [49] until it can be solved with one of several other algorithms

such as the prime factor algorithm [46] or a split-radix algorithm [114]. The recursive

nature of these algorithms imposes some limitation on the GPU implementation. The

GPU FFT implementation is based on the NVidia CUDA library, cuFFT (version 4.0)

[115]. These algorithms were compared by computing FFTs of 65,536 256-dimensional

vectors of single-precision reals (a total of 16M elements). Ignoring the transfer time,

the GPU implementation achieved around 76 GFLOPS/s, about ten times faster than

the CPU algorithm, which is comparable with the best published results [116, 117].

This supports our assumption that the FFTW and cuFFT libraries are among the best

implementations of the FFT available for CPU and GPU.
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However, computation of the FFT coefficients is part of the DFT filter bank in our

language ID system front-end. Therefore, memory transfer time should be added to the

FFT computation time when running on the GPU. After taking memory transfer time

into account, the GPU performance drops to 14.5 GFLOPS/s, approximately twice as

fast as the CPU.

In our implementation of DFT filter bank, the input samples are divided into 20 ms

frames (160 samples) overlapped by 10 ms (80 samples) to give 100 frames every second.

Prior to the 256 point transform each frame is windowed with a 20 ms Hamming window

and 96 zero samples are appended. The absolute values of the first 128 coefficients give

the power spectrum, which is then filtered with nineteen Mel-scaled triangular filters.

The DCT of the log of the filter outputs gives the cepstral features.

Alternative window sizes were considered for both the FFT and FIR filter banks, but

the configurations described in this and the previous section were found to give the best

language recognition performance.

9.5.4 LP implementation

Matlab built-in functions running on CPU were used to estimate 16 LP coefficients which

were then used to calculate 19 linear frequency cepstral coefficients. For more details refer

to chapter 3.

A GPU implementation for estimating the LP coefficients was developed with GPUmat

and the NVidia CUDA tools. The input speech signal is divided into overlapped 20ms

(160 samples) segments. The starting sample of each segment is shifted by 80 samples

with respect to the previous segment to give outputs every 10ms. By considering that
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LP coefficients can be predicted from the previous input samples, every single core in

the GPU calculates the autocorrelation matrix of one input segment independently. The

Levinson-Durbin algorithm is then used to estimate 16 LP coefficients from the autocor-

relation matrix and then writes them in the GPU global memory. The sizes of CUDA

blocks and grids are set to their maximum 512 threads, and 65535 blocks, respectively.

For memory access efficiency, the input samples are re-organized in the same way which

described earlier for the IIR and FIR filter banks.

9.6 Results and discussion

9.6.1 Computational speed

In order to set up a comparison, in terms of computation time, between the four described

spectral analysis algorithms when running on CPU and GPU, 30-second and 30-minute

speech segments (typically testing and training utterances in our language ID system)

were used to compute seventeen cepstral coefficients at frame rate of 100 frames per

second with the four algorithms. Matlab, GPUmat and CUDA were used to implement

the spectral analysis algorithms and optimize them for CPU and GPU. The process was

repeated 20 times to ascertain average CPU and GPU times.

Table 9.6 shows CPU and GPU processing times for each of the speech analysis

algorithm investigated. An analysis of the computing time on the CPU reveals that the

FIR is the most efficient technique, followed by the FFT then LP and the IIR filter bank.

The recursive nature of the IIR filters requires that every filter output sample must be

computed, even though we only require an estimate of the envelope every 10 ms. This
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leads to a much larger number of computations compared to the other techniques.

For the short 30s segments of speech, the spectral analysis computation times for

FIR, FFT, IIR and LP, with single precision arithmetic, are accelerated by factors of

1.43, 3.5, 2 and 4.5, respectively, when running on the GPU compared with the CPU.

For the longer speech segments, 30 minutes, the corresponding speedup factors are 2.52,

6.92, 9.8 and 6.7, respectively. This confirms that the benefits of a GPU are best realized

with larger amounts of data, because the parallelism in the GPU is used more effectively

and memory transfer time is relatively less significant.

CPU GTX260 GPU

30-sec Speech 30-min Speech 30-sec Speech 30-min Speech

FIR 0.0120

(0.0097)

0.8500

(0.600)

0.0075

(0.0068)

0.3227

(0.238)

FFT 0.0622

(0.028)

4.6667

(2.180)

0.0118

(0.008)

0.7705

(0.315)

IIR 0.3498

(0.3354)

20.77

(18.026)

0.1701

(0.168)

2.1310

(1.842)

LP 0.2420

(0.121)

28.420

(9.223)

0.0301

(0.0273)

1.4306

(1.397)

Table 9.6: CPU and GPU processing times (in seconds) for FIR, FFT, IIR and LPC

based speech analysis algorithms. The processing time includes data transfer time and it

is measured for doubles (singles) precision floating-point operations.

As we have seen earlier in chapter 3, conventional IIR filters are unable to exploit the

advantages of the GPU effectively because each new output sample cannot be calculated
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until the previous output sample is available. However, dividing the speech signal into

overlapped short segments and mapping it onto the GPU, as described in section 9.5.1,

overcomes this limitation and speeds up the IIR filter bank computation by factors of 2

and 9.8 (single precision) for the 30 second and 30 minute speech segments, respectively,

without affecting language ID performance. By contrast, the FIR filter is well-suited to

the GPU architecture as the kernels comprising the vector multiplication can be executed

in any order. Therefore the scheduler is free to arrange the execution of these kernels in

an order best suited to maintaining a high computational throughput. Extracting 180,000

cepstral feature vectors from the 30 minute speech using the FIR filter bank on the GPU

is approximately 9 and 14 times faster than the conventional FFT-based filter bank on

the CPU, for single and double precision arithmetic, respectively. Although the number

of FLOPS required in the FIR filter bank algorithm is around 21% greater than those

for the FFT filter bank, the FIR algorithm is faster. This is probably because the main

computation in the FIR filter bank is matrix multiplication which can be de-composed

into independent tasks that the GPU can process very efficiently.

9.6.2 Algorithmic performance

The generative GMM-UBM and the discriminative GMM-SVM language ID systems,

with 2048 GMM components, are trained and evaluated on cepstral features extracted

using FIR, FFT, IIR and LP spectral analysis algorithms. The percentage EERs for

the language ID systems, with and without ISC technique, are shown in table 9.7. The

performance of the GMM-UBM system with an FIR filter bank, 5.337% EER, is ap-

proximately 7% better than with an FFT filter bank, 17% and 32% better than with an
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IIR filter bank and LP spectral analysis, respectively. The ISC technique improved the

language ID performance of the four algorithms by around 38%.

GMM-UBM GMM-SVM

without ISC with ISC without ISC with ISC

FIR 5.337 3.26 1.28 1.08

FFT 5.75 3.52 1.35 1.08

IIR 6.4 3.91 2.13 1.47

LP 7.86 4.82 2.93 2.11

Table 9.7: LID performance (EER[%]) for FIR, FFT, IIR and LPC based speech analysis

algorithms.

When the languages are modeled discriminatively with the GMM-SVM system, the

superior performance of the FIR filter bank based features relative to the FFT based

features is reduced to just 5% and disappeared when applying ISC technique. In addition,

the 90% confidence intervals [118] for the GMM-UBM and GMM-SVM results, without

ISC, are approximately ±0.65 and ±0.34, respectively. This suggests that there are no

significant differences between the language identification performances achieved with the

FIR and FFT filter banks.

Finally, table 9.8 compares the results, in terms of computation time, for the com-

plete NIST 2003 LRE task conducted using language ID systems with FIR-based spectral

analysis on the GPU and FFT-based spectral analysis on the CPU. The results show that

the utility of GPUs and FIR-based analysis demonstrated in the previous sections, trans-

fers to a real, practical application. The whole 2003 NIST LRE is completed in sixteen

hours with the GPU/FIR system, compared with 180 hours for the more conventional
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CPU/FFT system, a speed-up factor of more than eleven, with no reduction in language

ID accuracy.

Frontend Pro-

cessing(∼1210

hrs of speech)

GMM-UBM

Training

NIST 2003

Evaluation

(1200 30-sec)

Overall

CPU

( FFT)

3.3554 174.264 2.8811 180.5

GTX260

(FIR)

1.308 14.6227 0.1844 16.115

Speedup 2.565 11.917 15.6 11.2

Table 9.8: Processing time in hours for feature extraction, training and evaluation GMM-

UBM language ID with 2048 Gaussian components. This system is trained on train

and development sets of CallFriends corpus and evaluated on NIST LRE 2003 30-sec

evaluation segments.

9.7 Summary and conclusion

The use of a GPU can provide a high level of computation at very low cost. However in

order to fully realise its potential, it is necessary to understand how to map an algorithm

onto the GPU architecture so that the available processing power is used to best advan-

tage. This not only includes the effective coding of predetermined algorithms, but also

the choice of algorithm or technique for a specific function. The difference in architecture

between a CPU and a GPU can lead to surprising results when an appropriate algorithm
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is selected, and improvements in performance can be achieved with little impact on the

processing effort required. It also becomes possible to try new techniques which would

otherwise not be possible due to their high computational load.

For example, a GPU based system using an FIR filter bank front-end can complete

the NIST 2003 LRE language ID task in 16 hours, compared with 180 hours for a more

conventional FFT-based system running on a standard CPU (a speed up factor of more

than 11), with no reduction in language ID performance.
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Chapter 10

Human and Computer Recognition

of Regional Accents from British

English Speech

In this chapter we apply the state-of-the-art language ID system developed in chapter 8

to extract paralinguistic information from English speech, namely the speaker’s regional

accent. As well as measuring the overall performance of our language ID system, we report

the performance of its acoustic and phonotactic subsystems on this task. In addition, the

effect of changing some parameters and techniques on accent recognition performance is

also investigated. The performance of our language ID systems on the accent ID task is

compared with human listeners’ performance, and with two systems based on Huckvale’s

ACCDIST measure [18].

A justifiable objection to this approach is that the application of language ID tech-

niques to this problem is counter-intuitive. This is because regional accent within a given

language is an example of variability to which a language ID system should, by defini-

tion, be insensitive. However, we argue that this objection is not valid. As explained

145



previously, mainstream language ID is based on generic statistical and pattern recogni-

tion methods, primarily GMMs, SVMs and n-gram language models, aided by various

normalization techniques designed to remove irrelevant variations from the sequences of

feature vectors that are to be classified. Our premise is that within a given language

(in this case English) the distributions of acoustic feature vectors, or phone n-grams,

corresponding to different regional accents are sufficiently distinct to enable the same

methods to be applied successfully to regional accent recognition. The systematic dif-

ferences between various regional accents of British English are well documented [1, 2].

For example, according to [1] the “two most important characteristics setting northern

accents apart from southern ones are (i) the absence of the foot - strut split, i.e. the lack

of a phonemic opposition between the vowels of foot and strut; and (ii) the absence of bath

broadening, i.e. the use in bath words of the vowel of trap” (here ‘northern accent’ refers

to an accent associated with the north or midlands of England). A quantitative analysis

of the vowel systems for each of the fourteen accents in the ABI-1 corpus is presented in

[119], which shows scatter plots of the first formant frequency F1 against the difference

between this and the second formant frequency, F2− F1, for eleven monophthong vowels

for each accent. These diagrams show both systematic inter-accent differences, and con-

siderable intra-accent consistency. Accent differences in British English are not restricted

to vowels [1], however quantitative data is less readily available.

The objective of the work described in this chapter, is to determine whether or not

these inter-accent differences are sufficient to enable methods from language ID to be

applied successfully to automatic accent recognition. The main results of this work also

appear in [120, 121].
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10.1 Automatic classification systems

It is convenient to divide the automatic systems used in this chapter into text-dependent

systems, which require a word-level text transcription of the test utterance, and text-

independent systems, which do not. The text-dependent systems are variants of Huck-

vale’s ACCDIST approach [18]. The text-independent systems are the components of our

language ID system, which was developed in chapter 8.

10.1.1 Text-independent automatic systems

As we have seen earlier in chapter 8, our language ID system (phonotactic and acoustic

components) was tuned on the NIST 2003 evaluation data set and evaluated on the

NIST 2005 evaluation set. This system is applied to accent recognition with the same

parameters and configuration, except that our English phone recognizer (described below)

is added to the phonotactic systems. This results in sixteen phonotactic systems (4 phone

recognizers × 4 n-grams).

Since our target applications are for English, we built an English decision-tree triphone-

based phone recognizer, using the HMM toolkit (HTK) [122]. We trained the acoustic

models using training data from the ABI-1 corpus (see chapter 7). The system uses 39

dimensional PLP-based feature vectors (see section 3.2.1.4). All phone HMMs comprise

3 emitting states without state-skipping, with one 16 component GMM per state. The

phone recognizer uses a bi-gram phone-level language model derived from the ABI-1 train-

ing set. The pronunciation dictionary was generated from the British English Example

Pronunciation dictionary (BEEP)1.

1”ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz”, [cited April 30, 2011]
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Phone Recognizer \n-gram 1-gram 2-gram 3-gram 4-gram

English 39 1521 41827 275175

Czech 42 1764 91125 235341

Hungarian 58 3364 39943 229587

Russian 52 2704 40830 246671

Table 10.1: Dimensions of n-gram vectors for each phonotactic accent recognizer

The dimensions of the n-gram (n = 1, 2, 3 and 4) vectors, after removing the zero

occupancy components, for each phontactic system are shown in table 10.1.

In the accent experiments, there is no development set to train the fusing coefficients.

Therefore we divided the test speakers (in each ‘jackknife’ round) into two sets. The

accent and gender of speakers are distributed equally in both sets. One set is used to

find the coefficients for fusing the systems on the second set, and vice versa. The fused

scores are then combined together and the final performance is calculated.

10.1.2 Text-dependent automatic systems

10.1.2.1 ACCDIST-based systems

In [1], British English accents are characterized according to differences in the realization

of vowels in specific ‘key words’. Huckvale’s ACCDIST measure [18] makes this notion

computationally useful. He argues that a relative measure, based on differences between

the realizations of vowels in different words, is not only a cue for accent recognition, but is

also less sensitive to other speaker specific characteristics than measures that depend on

absolute spectral properties. Similar approaches are advocated in [19, 123]. ACCDIST
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is text-dependent, since it requires a phone-level transcription of an utterance to which

it is applied. In order to make our system comparable with Huckvale’s systems, only the

nineteen MFCCs plus energy are used for our ACCDIST system. Given a transcribed

utterance, the start and end times of each realization of a vowel are identified. Each vowel

segment is then split into two halves by time and the average feature vectors for each half

are concatenated to create a single 40 dimensional vector. The distances between these

vectors, corresponding to different vowels in different contexts, are calculated using an

unweighted Euclidean distance and stored in a distance table. To ensure that distance

tables are comparable, all utterances must share the same phone-level transcription. An

accent is represented as the average distance table over all of the training utterances for

that accent. A test utterance is classified according to the correlation distance between

its distance table and those for each of the accents.

In our variants of ACCDIST, a phonemic transcription of each of the SPA recordings in

the ABI-1 corpus was generated using standard pronunciations from the BEEP dictionary.

This was force-aligned with the speech data using our English phone recognizer (section

10.1.1). Our ACCDIST-based system differs from that in [18] in two ways: First, we used

the SPA data from ABI-1 rather than the “Short Sentence” files. The SPA recording was

chosen because we believe it is more suitable for human perceptual experiments, and we

wanted to use the same test material to test automatic and human recognition. Second,

we used all of the SPA recordings in our experiment, whereas only those recordings which

were completed without errors or repetitions were used by Huckvale. This is because our

ACCDIST systems do not require each recording to correspond to exactly the same

phone sequence. Alternatively, the speaker distance tables are built from vowel tri-phone
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segments (i.e. “phone-vowel-phone”) rather than words. We also include vowel duration

as an extra feature. For repeated tri-phones the mean feature vector was used. Hence,

each SPA recording is represented as a sequence of pairs (vi ,pi), where vi is the 41-

dimensional feature vector (two concatenated vectors comprising nineteen MFCCs plus

energy, plus vowel duration) of the ith tri-phone in the sequence and pi is its label. The

105 most common tri-phones across all speakers in the training data were found and used

in constructing the speaker distance tables. Our ACCDIST-based systems are described

in the following sections.

10.1.3 ACCDIST-Corr.dist

A speaker distance table was calculated for each speaker by finding the distances between

the feature vectors of every tri-phone pair in the common tri-phones list. Then, the mean

of the resulting speakers’ distance tables was calculated for each accent. Accent recogni-

tion was performed using the correlation distance between the test speaker distance table

and the accent mean distance tables. To calculate the correlation distance, d, between

the two vectors V1 and V2 of the length J , we consider the two vectors as two streams

and we normalize them with their mean and standard deviation. Then, the correlation

distance is calculated as follow (dot product between the two normalized vectors):

d(V1, V2) =
J∑
j=1

(
V j
1 − µ1

σ1
)× (

V j
2 − µ2

σ2
) (10.1)

where, µ1, µ2 are the means of vectors V1 and V2, and σ1 and σ2 are the standard

deviation of the vectors V1 and V2, respectively. When the two vectors are independent,

the correlation distance is zero, and when the vectors are identical, the correlation distance

is one.
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The correlation took into account only those tri-phone-pairs which occurred in the

test utterance. An obvious shortcoming of the vowel tri-phone approach is the limited

vowel context, compared with the whole-word contexts in Huckvale’s system.

10.1.4 ACCDIST-SVM

The success achieved by applying SVMs to supervectors constructed from stacked MAP-

adapted GMM means for language ID (see chapter 8) motivated us to apply SVMs to

the speaker distance tables in our ACCDIST-based system. In our version of Huckvale’s

system above (ACCDIST-Corr.dist.), the average of the speaker distance tables for a

given accent was used to represent that accent. By contrast, in our ACCDIST-SVM

system, SVMs were applied to the ‘vectorized’ speaker distance tables of all accents.

Due to symmetry, each 105 × 105 distance matrix has 5460 distinct entries, which are

rearranged into a 5460 dimensional vector. By labeling the distance tables of one accent

as a target class (+1) and the remaining distance tables as a background class (-1), this

results in one SVM for each accent. A test speaker vectorized distance table is evaluated

against every accent model. The correlation distance in equation 10.1 was used as a

kernel for training and evaluating the SVM systems. In this case J = 5460, and V1 and

V2 are the two (5460 dimensional) distance table vectors.

In the ACCDIST based systems, not all of the tri-phones pairs seen in the training

data are necessarily found in the test utterance. Assuming there is enough training data,

the set of tri-phones of the test utterance is a subset of the tri-phones learned from the

training data. This results in distance tables of different sizes. As mentioned above,

for the ACCDIST-Corr.dist systems, this problem is simply solved by calculating the
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correlation distance taking into account only those tri-phone-pairs which occurred in the

test utterance. However, in the ACCDIST-SVM system the situation is more complicated

because the accent-dependent SVMs are already trained on vectorized distance matrices

for the complete set of tri-phone-pairs found in the training data of each accent. We

solved this problem by training new SVMs during recognition using only the tri-phone-

pairs of the test utterance. A shortcoming of this solution is the intensive computation

of the SVM training in the recognition phase.

10.2 Human experiments

To provide baselines against which the automatic systems could be compared, a web-

based human perceptual experiment was conducted. This experiment used exactly the

same SPA test recordings as automatic classification. Twenty four native British English

speaking subjects, aged between 21 and 78, took part in the experiment. Each subject

completed a registration process in which he or she gave their gender and age and indi-

cated which, if any, of the thirteen different ABI-1 locations they had ever lived in, and

which of the fourteen regional accents they were familiar with. Each subject then listened

to a different set of twenty SPA recordings, each varying in length between 30s and 40s,

selected randomly from the test set. For each recording, subjects were asked to identify

the accent of the speaker (out of the fourteen possible accents), the speaker’s gender and

age and to state their confidence in their decision. The listeners were näıve in that they

had no formal training in phonetics or linguistics and no explicit training in regional

accent recognition was given. Instead the listeners were required to accomplish the task

using the knowledge of regional accents that they had acquired naturally through their
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experiences to date.

10.3 Results and discussion

For each component of our language ID system, the accent recognition performance is

reported in terms of EER[%] (detection task) and accuracy [%] (identification task). As

we have mentioned in section 7.2, each accent recognition system is evaluated on the 30s

segments and the SPA recordings.

Table 10.2 shows the performances of the individual n-gram phonotactic systems

(n = 2, 3, 4) for each phone recognizer (the 1-gram systems performed very poorly, and

their inclusion did not improve the overall performance of the fused systems). Focusing

on recognition accuracy and the SPA test data, although the fused result is best with the

Hungarian phone recognizer (73%), no individual system outperforms all of the others

consistently and the performance obtained with the English phone recognizer is relatively

poor. Ultimately, it seems that what is important is consistency rather than phone

recognition accuracy. Referring to the general structure of phonotactic system, figure 4.1

in chapter 4, in this application it may be better to regard these systems as abstract

‘tokenizers’ rather than explicitly as phone recognizers. The best result (EER=6.5%,

Acc=82.1%) was obtained by fusing the twelve phonotactic systems together.

The results for all of the automatic systems are summarized in table 10.3. Columns

two and three, and four and five of table 10.3 show accent recognition performance on

the 30s cuts and the SPA recordings, respectively. We focus on the SPA results (columns

four and five), as these are available for all of the systems. The performance of each

of the acoustic systems is poor despite the facts that a GMM with a large number of
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English Czech Hungarian Russian Fused

30s SPA 30s SPA 30s SPA 30s SPA 30s SPA

2-gram 25.2 22.7 26.8 26.4 23.4 23.4 28.6 22.6 17.7 16.8

38 38.6 39 37 46 43 32 48.2 52.5 55

3-gram 19.7 18.3 20.2 14.7 17 1.74 24.7 14.9 11.4 8.5

50 53 50 62.7 60.3 65 40 62 70 68.4

4-gram 18.4 14.8 17.7 9.6 14.2 10.8 23.9 14.6 9.8 6.7

51 58 55 68.7 62 71 42 63 73 79.6

Fused 16.7 12.8 17.3 8.7 13.3 9.3 22.2 11.3 9.2 6.5

56 61 57 70.5 66 73 43 69 74 82.1

Table 10.2: Performance EER[%] (Accuracy[%]) of phonotactic accent recognizers using

English, Czech, Hungarian and Russian phone recognizers.

mixture components (4096) has been used and the recordings are good quality rather

than telephone quality speech.

The phonotactic system (6.5% EER) outperforms all of the acoustic systems, despite

the fact that phonotactic differences are apparently restricted because all of the record-

ings correspond to readings of the same text. The best accent recognition performance

achieved with our language ID system is 5.16% EER (86.4% accent classification accu-

racy), which is obtained by fusing all of the acoustic and phonotactic sub-systems.

Both variants of the ACCDIST measure give better results than the acoustic-phonotactic

language ID system. The ACCDIST system with correlation distance gives 2.66% EER

(93.17% accent classification accuracy), and the ACCDIST-SVM system gives the over-

all best result of 1.87% EER (95.18% accuracy). This compares with 92.3% accent
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System Accent ID (30s) Accent ID (SPA)

EER [%] Acc [%] EER [%] Acc [%]

GMM-UBM (4096) 17.32 57.38 14.83 60.2

GMM-SVM (4096) 16.2 60.12 12.7 66.3

GMM-SVM-GMM (4096) 14.73 64.4 10.7 70.4

GMM-uni-gram 16.94 57.2 15.43 58.95

GMM-bi-gram 22.3 50.13 21.2 53.5

Acoustic-fused 12.82 72.3 9.3 75.6

Phonotactics 9.18 74.1 6.5 82.1

Phono-Acoustic-Fused 7.2 85.4 5.16 86.4

ACCDIST-Corr.dist. - - 2.66 93.17

ACCDIST-SVM - - 1.87 95.18

Human - - - 58.24

Table 10.3: Results of all accent recognition experiments. The figures are percentage

EER and percentage recognition accuracy (Acc)

recognition accuracy reported in [18]. We conclude that exploiting linguistic knowledge

about how the realization of vowels in particular contexts is indicative of regional accents

of British English, gives a significant advantage compared to the purely data-driven ap-

proach that is followed in contemporary language ID. There is also an interesting trade-off

between the need for a textual transcription of the test material in the ACCDIST ap-

proach and its modest computational requirements, and the text-independence but much

greater computational requirement of the full language ID system.
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Human performance on the accent identification task (58.24% recognition accuracy)

is significantly poorer than any of the automatic systems. However, this has also been

observed in other studies [13]. Table 10.4 shows the confusion matrix for the human ac-

cent recognition experiment, which is largely as one would predict. For example, there is

confusion between the two northern English accents, East Yorkshire (eyk) and Lancashire

(lan), the two Scottish accents, Glasgow (gla) and Scottish Highlands (shl), and between

the two Irish accents , Dublin (roi) and Ulster (uls). The consistent misclassification of

the North Wales accent (nwa) as Liverpool (lvp) is explained by the close geographi-

cal proximity of Denbigh, the town where the North Wales recordings were made, and

Liverpool.

As expected, subjects are better at classifying accents with which they are familiar

[13, 21]. Human accent recognition accuracy is 76.2% for accents from regions where the

listener has lived, compared with 51.7% for accents from regions where they have not lived,

and 71.63% for ‘familiar’ accents and only 40.2% for ‘unfamiliar’ accents (according to

the listeners’ responses to the questionnaire). The good performance for the Birmingham

accent, and the overall shape of the confusion matrix, may be influenced by the presence

of a disproportionate number of subjects from the Birmingham area in the listener group.

For comparison, table 10.5 shows the corresponding confusion matrix for the acoustic

GMM-UBM system, which achieves a similar accent recognition accuracy to the human

listeners. The confusions are generally less intuitive. For example, as well as the ex-

pected confusion between Lancashire (lan) and East Yorkshire (eyk), there are many

other instances of data being incorrectly classified as East Yorkshire or Inner-London,

and examples where the Birmingham accent (brm) is incorrectly recognized as seven
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different accents.

brm crn ean eyk gla ilo lan lvp ncl nwa roi shl sse uls Acc

brm 30 . 2 2 . 1 1 1 . . . 1 . 1 76.9

crn . 15 6 . . 1 1 . 1 3 1 . 2 1 48.4

ean . 8 12 . . 9 2 . . 2 . . 4 1 31.6

eyk . . 6 19 1 1 14 . 3 . . . 1 . 42.2

gla . . . 2 20 . . . 1 . 1 5 2 1 62.5

ilo 2 2 1 1 . 24 . 1 . . . . 3 . 70.6

lan 1 . 2 7 . . 22 1 2 . 1 1 . . 59.5

lvp . . . . . . . 28 3 . . . 2 . 84.9

ncl . 3 . 2 2 . 3 . 21 . . 1 . . 65.6

nwa . . 2 4 . . 3 11 2 10 . . 3 1 27.8

roi . . . . . . . . . 1 22 . 1 6 73.3

shl 2 . . 1 9 . . . . 1 . 19 . 1 57.6

sse . . 4 . . 3 1 1 . 1 . . 17 1 60.7

uls . . 1 . 1 . . . . . 8 1 . 20 64.5

Table 10.4: Confusion matrix for human regional accent recognition experiment. see

table 7.2 in chapter 7 for accents’ abbreviations

The main results for all systems and tasks described in this thesis are also summarized

in table A.1 in appendix A.
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brm crn ean eyk gla ilo lan lvp ncl nwa roi shl sse uls Acc

brm 7 2 1 1 1 2 . . . 3 . . 1 . 38.9

crn . 7 . . . 7 . 1 . 1 . 2 . . 38.9

ean . . 10 2 . 3 . . . . . . 3 . 55.6

eyk . 1 . 11 . . 3 . 1 2 . . . . 61.1

gla . 1 . . 12 . . . . . . 5 . . 66.7

ilo . 2 . . . 12 1 . . 2 . 1 . . 66.7

lan . . . 3 . 1 13 . . 1 . . . . 72.2

lvp . . . 2 . 2 . 11 . 3 . . . . 61.1

ncl . 1 . 2 1 2 . . 11 . . 1 . . 61.1

nwa . . . 1 . 3 1 1 . 12 . . . . 66.7

roi . . . . . . . . . . 14 . . 3 82.4

shl . . . . . 1 . . . . . 17 . . 94.4

sse 3 2 . 2 . 2 . . . . . . 6 . 40.0

uls . . . 1 . 2 . . . 1 4 1 . 8 47.1

Table 10.5: Confusion matrix for GMM-UBM regional accent recognition experiment.

See table 7.2 in chapter 7 for accents’ abbreviations

10.3.1 Vowel system for accent recognition

As noted at the beginning of this chapter, D’Arcy in her thesis [119] shows vowel plots

(scatter plots of F1 against F2-F1) for all speakers for each ABI-1 region. These plots

show that the vowel systems are different between accents and they show considerable

consistency within an accent. This provides evidence that the vowel systems may be
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strong cues for accent recognition. Moreover, Huckvale’s ACCDIST system focusses

exclusively on vowels. This motivated us to investigate the effect of using only the vowels

(and voiced sounds in general) on the performances of our language ID systems.

10.3.1.1 Pitch-based VAD

One way of focusing on voiced sounds is by estimating the pitch (fundamental frequency)

for each speech frame and then using the VAD to remove the silence and unvoiced sounds,

in the same way described in chapter 3. The pitch is estimated with the auto-correlation

method using the standard ‘praat’ toolkit 2.

Using the pitch-based VAD, the performances of all of our acoustic and fused systems

are reported in table 10.6. In spite of the fact that the pitch based VAD not only

removes the silence but also the unvoiced sounds, the performances of all acoustic and

fused systems are improved with the pitch-based VAD. The percentage EER of the GMM-

UBM system is improved by around 11.8% and 12.5% when evaluated on the 30-second

segments and SPA recordings, respectively. By fusing all of the acoustic systems (with

pitch-based VAD), with the twelve phonotactic systems, the performance is improved

to 4.52% EER (89.6% accuracy) compared with 1.87% EER (95.18% accuracy) for the

ACCDIST-SVM system.

10.3.1.2 Accent ID using “Careful Words”

The “Careful Words” recordings in ABI-1 corpus (see section 7.2) are read speech of

a list of syllables of the form hVd. In other words, the initial and end consonants are

/h/ and /d/, respectively and ‘V’ is a variant of vowels. In order to study how well

2http://www.fon.hum.uva.nl/praat/
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our language ID systems can distinguish between the regional accents using vowels, only

the “Careful Words” recordings in the test sets are used to evaluate our acoustic and

phonotactic systems. The performance (EER[%] and accuracy [%]) of all of our systems

are presented in columns 6 and 7 of table 10.6. These results show that using only vowels,

the performance of all of the acoustic systems is improved. As expected, the performance

of the phonotact system is degraded because all of the careful words have exactly the

same sequence of words.

In general, these results suggest that the voiced speech segments, and specifically

the vowels, have the most discriminative information to distinguish between the British

accents.

System 30-second SPA recordings Careful Words

EER [%] Acc [%] EER [%] Acc [%] EER [%] Acc [%]

GMM-UBM 15.28 60.34 12.98 65.1 8.76 82.18

GMM-SVM 14.3 63.2 11.15 71.82 8.5 83.8

GMM-SVM-GMM 13.0 67.72 9.41 76.11 8.4 84.2

GMM-uni-gram 14.95 60.12 13.54 63.8 7.9 83.4

GMM-bi-gram 19.69 52.12 18.5 57.83 18.5 59.4

Acoustic-fused 12.33 73.6 8.3 77.32 6.44 88.3

Phonotactics 9.18 74.1 6.5 82.14 14.22 61.5

Acou-Phono-fused 6.4 88.8 4.52 89.6 5.5 88.5

Table 10.6: Performance of the acoustic and fused accent recognition systems using pitch-

based VAD. The figures are percentage EER and percentage recognition accuracy (Acc)
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Figure 10.1: Accent recognition performance (EER[%]) for the GMM-UBM system with

different number of GMM components.

10.3.2 Number of GMM components

As we have seen, the performance of acoustic accent recognition is significantly degraded

by including non-vowel voiced sounds. In order to check that this is not due to the use of

too many GMM components for the available training data, we repeated the GMM-UBM

experiment using GMMs with 2N components (N = 4, ..., 12). The pitch based VAD is

used in all of these experiments.

Although the amount of available training data for accent ID is small compared with

the language ID, the performance of the GMM-UBM system improves by increasing the

number of GMM components up to 4096 components, as shown in figure 10.1. This

confirms what we have already found for language ID.
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10.3.3 The effect of speech bandwidth on accent recognition

As we have seen in the previous section, vowels appear to have the most discriminative

information between the British regional accents. The fact that the formants of vowels

occupy the low frequency region (less than 4 KHz) and the formants of the un-voiced

sounds occupy the high frequency region (greater than 4 KHz) motivated us to study the

effect of the bandwidth on the accent recognition performance.

Lu and Dang in [124] investigated the dependency between frequency components

and speaker information quantitatively using the F -ratio and mutual information mea-

surements. They found that the most important speaker specific information exist in

three different regions on the frequency axes. Specifically, the low frequency region (less

than 500 Hz), the region between 4 KHz and 5.5 KHz and the high frequency region

around 7.5 KHz. They also found that there is less speaker discriminative information

in the region from 500 Hz to 3.5 KHz. Since our objective in accent recognition is to

ignore the speaker specific information within a single accent, we have investigated the

relationship between the frequency bandwidth and the accent recognition. The aim of

this investigation is to find the bandwidth which minimizes the inter-speaker variation

and maximizes the desired inter-accent variation.

For this purpose, we used the FFT based front end with 30 Mel frequency triangular

filters with a total bandwidth of 11.025 KHz (full bandwidth of speech waveforms in ABI

corpus) to extract 19 MFCC and 49 shifted-delta cepstra coefficients at frame rate of 100

frames per second. In order to study the effect of the high frequency region ( greater

than 3.5 KHz) on accent recognition, the same feature vectors were re-extracted but

with the bandwidth reduced from the high frequency end. We reduced the bandwidth
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by discarding one filter at a time from the highest frequency region and fixing the low

frequency cut-off at zero. This process was repeated 15 times, which corresponds to a high

frequency cut-off range from 11.025 KHz down to 2.5 KHz. Our GMM-UBM with 2048

components was used to evaluate the accent performance in each case. Figure 10.2(a)

shows the relationship between accent recognition performance (EER[%]) and the high

frequency cut-offs. The best performance was obtained by setting the high frequency

cut-off to around 3.5 KHz. This means that the high frequency region greater than 3.5

KHz contains information (probably speaker specific information) which is not desirable

for accent recognition. This result is also consistent with findings of other studies such

as [124, 125] that the high frequency region contains the most discriminative speaker

information.

To study the effect of low frequency cut-off on accent recognition, the same procedure

was used, but skipping one filter at a time from the lowest frequency region and fixing

the high frequency cut-off at 3.5 KHz. This process was repeated six times which corre-

sponds to low frequency cut-offs range from zero to around 516 Hz. The effect of the low

frequency components on accent recognition performance is shown in figure 10.2(b). The

best performance is obtained with low frequency cut-off of around 86 Hz. By excluding

frequency components between 86 Hz and 516 Hz, the accent recognition performance

degrades dramatically.

10.4 Summary and conclusion

The objective of this study on regional accents of the British Isles is to measure the

ability of a state-of-the-art automatic language ID system to extract the regional accent
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(a) (b)

Figure 10.2: The effect of bandwidth on accent recognition. (a) effect of upper cut-off

[KHz] and (b) effect of lower cut-off [Hz]

of a speaker from a short section of speech signal. The performance of our language ID

system is compared with human performance, and with other automatic systems based

on Huckvale’s ACCDIST measure. The ABI-1 corpus of good quality recordings of read

speech, representing fourteen different regional accents of spoken British English, is used

for our experiments.

For accent recognition, automatic language ID outperforms human listeners. The

classification error rate for human listeners is approximately four times greater than that

for the language ID system (41.76% compared with 13.6%).

Regional accent recognition appears to be a challenging task for both automatic sys-

tems and human listeners. Even though the ABI-1 recordings are good quality read

speech (rather than telephone conversational speech), the best accent recognition per-

formance of our language ID system on 30s segments is 7.2% EER (85.4% accuracy)

compared with 0.34% EER (99.1% accuracy) and 4.4%EER (93% accuracy) for language

ID using the same amount of telephone conversational speech from the NIST 2003 and
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2005 evaluations, respectively (see chapter 8). The best regional accent recognition per-

formance is 1.87% EER (95.18% accuracy), which is achieved using the ACCDIST-SVM

system and the SPA recordings. The superior performance of the ACCDIST-based sys-

tems relative to the language ID system is an interesting example where the explicit use

of linguistic knowledge results in a method that outperforms a purely data-driven sta-

tistical approach, and with a much lower computational requirement. However, a clear

disadvantage of the ACCDIST method is its text dependency, in that transcriptions of

the training and test utterances are required. An obvious challenge is to exploit the ideas

that motivate ACCDIST without relying on a such a transcription.

Regionally accented speech in the ABI-1 corpus is defined to be speech spoken by

an individual who was born in that region and has lived there for all of his or her life.

However, even with this residency constraint many subjects’ accents exhibit non-regional

influences. It seems that näıve native human listeners can correctly place characteristic

examples of regionally accented speech but have difficulty in cases where, for example, as

a consequence of social or educational factors a subject’s accent exhibits strong traits of

Standard English. However, the relatively good performances of the automatic systems

indicate that correct classification of many of these more subtle instantiations of regional

accent is possible. It would be interesting to know how well human listeners can perform

given suitable explicit training.
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Chapter 11

Human and Computer Recognition

of Ethnic Groups From British

English speech

As we have seen in chapter 10, spoken British English can be partitioned into a range of

regional accents and dialects [1]. However, even within a particular accent region there is

variation. For example, people born and raised in different neighborhoods or in different

social groups in the same city can often be distinguished by their speech.

In chapter 10, we have successfully adopted the most common techniques used in

language ID to regional accent recognition. The purpose of this chapter is to deter-

mine whether these same techniques can distinguish between different groups within the

same accent. Our language ID system which is developed in chapter 8 and applied to

the accent recognition task in chapter 10 is also applied to ethnic group identification.

All of the parameters and normalization techniques of our system, which are tuned on

the NIST 2003 evaluation data, are kept the same for the ethnic group ID, except the

VAD. Because the pitch-based VAD has been found to improve the accent recognition
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performance significantly (see section 10.3.1), it is also used for our ethnic group ID. A

further investigation about the best parameters and best techniques which may affect the

performance of ethnic group ID is also conducted in this chapter.

For all of the experiments described in this chapter, we used the VaB corpus of tele-

phone conversational speech (section 7.3). The two largest ethnic groups in Birmingham

(UK) are the ‘Asian’ and ‘White’ communities, and the VaB corpus includes a substan-

tial amount of data from each group. The task is to assign a subject to one of these two

groups using a forty second sample of his or her telephone conversational speech. For the

Asian group we only used data from second generation subjects. Although we refer to this

as ‘ethnic group’ classification, and to the two groups as ‘Asian’ and ‘White’, it is clear

that we are actually concerned with differences between the patterns of pronunciation

and language usage between the two communities, and not explicitly with ethnicity. We

compare the performance of our language ID system with that of human listeners on this

task. Related human perceptual studies for varieties of American English are reported in

[23] and [22].

The main results of this work also appears in [126] and [121].

11.1 Automatic classification systems

Because transcriptions are not available for the VaB corpus, it is not possible to apply

the ACCDIST-based systems, which were described earlier in chapter 10, to the ethnic

group ID. Therefore, only our language ID systems (phonotact and acoustic) are used for

automatic ethnic group identification.

After removing zero occupancy components, the dimensions of the n-gram vectors for
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Phone Recognizer \n-gram 1-gram 2-gram 3-gram 4-gram

English 39 1521 43652 360360

Czech 42 1764 32464 275350

Hungarian 58 3364 31640 216413

Russian 52 2704 33294 213197

Table 11.1: Dimensions of n-gram vectors for each phonotactic system

each of the sixteen phonotactic systems are shown in table 11.1.

Because there is no development data to train the fusing coefficients, we divided the

315 speakers in the test set into two subsets; one with 157 speakers and the other with

158 speakers. The ethnic group and gender of speakers are distributed equally in both

sets. One subset is used to find the coefficients to be used in fusing the systems on the

second subset, and vice versa. The fused scores are then combined together and the final

performance is estimated. This method was used to obtain all of the fusion results in this

chapter.

11.2 Human performance

To provide a baseline against which the automatic ethnic group recognition systems could

be compared, a web-based human perceptual experiment was conducted using exactly

the same 315 test utterances that were used for automatic classification. Eight listeners

who were familiar with the Birmingham accent took part in the experiment. As with

the human accent recognition experiment, in chapter 10, the listeners had no formal

background in phonetics or linguistics and no explicit training was given. Two subjects
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listened to all of the 315 test utterances, and six subjects listened to sets of 20 utterances.

For each utterance, subjects were asked to identify the ethnic group (Asian or White),

to indicate their confidence in their decision, to estimate the age of the speaker, and

to indicate the factors (acoustic quality, use of particular words or phrases, intonation,

grammar, or other factors) that influenced their decision. The human listeners scored an

average error rate of 8.72% for the ethnic group identification task.

11.3 Results and discussion

The experimental results for the sixteen phonotactic systems are presented in table 11.2.

The results are presented as percentage EER and accuracy on the 315 test utterances.

For each n-gram, the performances of the phonotactic systems with different phone

recognizers are almost the same. However, since the VaB corpus is British English speech,

the phonotactic systems with British English phone recognizers were expected to perform

better than the other phone recognizers for ethnic group ID. A possible explanation for

the fact that it does not, is that the Phone Error Rate (PER) of our phone recognizer

is around 42% which is relatively high compared with 24%, 33% and 39% PER for the

Czech, Hungarian and Russian phone recognizers 1, respectively. As with language and

accent ID, combining phonotactic systems with different phone recognizers improves the

performance for all n-gram systems. In addition, fusing the 2-gram, 3-gram and 4-gram

systems for each single phone recognizer improves the performance. The best performance

(13.0%EER, 87.2% accuracy) is obtained by fusing all of the sixteen phonotactic systems

1http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context, November

2011
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Phone Recognizer English Czech Hungarian Russian Fused

1-gram 39.34 44.6 38.14 43 31.38

56.5 55.3 61.9 56.8 68.5

2-gram 18.8 23.65 20.68 17.96 16.08

81.2 76.5 79.4 81.9 83.6

3-gram 18.35 19.84 18.69 20.31 17.52

82.4 80 81.3 79.6 84

4-gram 19.67 21.36 24.61 26.37 18.11

80.6 78.5 75.6 73.7 82.3

2,3,4-fused 16.55 15.61 18.35 18.25 13.0

83.1 83.5 81.9 81.6 87.2

Table 11.2: Performance EER[%] (Accuracy[%]) of phonotactic ethnic groups recognizers

using English, Czech, Hungarian and Russian phone recognizers.

together.

The performances of the acoustic and fused systems are presented in table 11.3. All of

the acoustic systems achieve a similar level of performance, with the GMM-UBM giving

the lowest EER at 15.1%. Fusion of the acoustic systems (‘Acoustic-fused’) results in an

EER of 8.22%, a reduction of approximately 50% in EER relative to individual acoustic

systems. This indicates that there is some orthogonality between the different acoustic

systems for the ethnic group classification task. Despite the fact that the GMM-SVM

system involves discriminative training it performs worse than the GMM-UBM system on

this task. The final fused system (‘Acoustic-phonotactic-fused’) scores 4.0% EER (94.3%

accuracy).
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Acoustic system EER [%] Accuracy [ %]

GMM-UBM 15.1 85

GMM-SVM 19.8 83.67

GMM-SVM-GMM 19 84.35

GMM-uni-gram 17 83

GMM-bi-gram 17.78 82.16

Acoustic-Fused 8.22 90.56

Phonotactic 13.0 87.2

Phono-Acoustic-Fused 4.0 94.3

Table 11.3: Performance (EER [%] and Accuracy [%]) of the acoustic based ’ethnic

groups’ ID systems and fused system

The main results for all systems and tasks described in this thesis are also summarized

in table A.1 in appendix A.

11.4 The effect of using the SDC and pitch-based

VAD on the ethnic group ID

We have seen earlier for language and accent recognition that there are many parameters

and techniques that may improve or degrade recognition performance. The only way to

find out what is the effect of changing these parameters and techniques on recognition

performance for a specific recognition task, is by practical experiments. Therefore, we

used the simple GMM-UBM system (with 4096 components) to answer the following

questions for ethnic group ID:
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• what number of MFCCs gives the best performance?

• which is better, in terms of performance, the traditional ∆ parameters or the SDC

coefficients?

• which of the feature normalization techniques gives the best performance?

• which of the score normalization techniques gives the best performance?

• what is the effect of using the pitch-based and the energy-based VAD on ethnic

group ID performance?

After running a number of experiments, we ended up with the same configuration for

language and accent recognitions (see chapters 8 and 10) , except for the SDC coefficients.

Using the traditional ∆ parameters rather than SDCs has been found to improve the

ethnic group ID performance. In addition, as for accent recognition, the energy-based

VAD has also been found to degrade ethnic group ID performance (table 11.4).

Table 11.4 shows the performances (EER[%]) of the GMM-UBM system when com-

bining 19 MFCCs with 19 traditional ∆ (over 5 frames) parameters (38 dimensions) and

also when combining the 19 MFCCs with the 49 SDC coefficients using 7-3-1-7 configu-

ration (68 dimensions) . For each case, the system is trained and evaluated when using

the energy-based VAD and the pitch-based VAD. Recall that in the case of pitch VAD,

both silence and unvoiced frames are removed.

As shown in the results in table 11.4, a significant improvement is obtained by using

the pitch-based VAD, which keeps the voiced frames only. This is consistent with our

result for the regional accent recognition that the voiced sounds, specifically vowels, have
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GMM-UBM

Features Energy-based VAD Pitch-based VAD EER[%] Acc[%]

MFCC+∆

√
– 18.24 81.7

–
√

13.33 87

MFCC+SDC

√
– 20.8 79.5

–
√

15.1 84.6

Table 11.4: Performance (EER[%] and accuracy[%]) comparison of using the ∆ parame-

ters and the SDCs, and for each case, using the energy-based and the pitch-based VAD

with the GMM-UBM ethnic group ID recognizer.

the best information to discriminate between closely related variations of British English,

including regional accents and ethnic groups within a single accent.

Unexpectedly, using the traditional ∆ parameters outperformed the SDCs, even though

the later have been shown to improve language ID performance. According to this result,

and to investigate the effect of using traditional ∆ parameters rather than SDCs on all

of our acoustic systems, they are re-trained and re-evaluated using the ∆ parameters.

The performance of all of the acoustic systems is improved by an average of 13% (EER)

and 2.8% (accuracy). Fusing the acoustic systems together improves the performance to

7.28% (EER) and 92.7% (accuracy). The best performance (EER =3.57% and accuracy

=96.51%) is obtained when fusing all of the acoustic systems with the sixteen phonotactic

systems. This compares with 9.76% error rate (90.24% accuracy) for the human listeners.

The fact that the phonotactic and acoustic components contribute approximately

equally to automatic ethnic group identification performance is interesting. Subjectively,

it is evident from listening to the recordings that the speech quality is different for the
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two groups, and one would expect this to be exploited by the acoustic systems. However

it is also evident that the Asian recordings are characterized by the more frequent use

of particular English words and the almost exclusive use of some non-English words (for

example, people’s names), which one would expect to be exploited by the phonotactic sys-

tem. However, it seems that both of these phenomena contribute approximately equally

to automatic classification performance. In contrast, the human listeners reported that

in 75.5% of the tests the ‘quality’ of the speech contributed to their judgement, compared

with 28% for the occurrence of specific words or phrases, 23.8% for intonation, 11.8% for

grammar, and 0.6% for ‘other factors’.

11.5 Summary and conclusion

In this chapter we investigated whether techniques used for language and accent recog-

nition are able to distinguish between talkers from different ethnic (social) groups within

a single regional accent. The 2001 census of England and Wales identifies two main

ethnic groups in the city of Birmingham, UK, namely Asian and white. These groups

are well represented in Voices across Birmingham, a corpus of recordings of telephone

conversational speech between individuals in the city. In this study we only consider

speech from those participants who were born in Birmingham. The results of applying

various acoustic and phonotactic language ID systems to this problem are reported. The

best phonotactic and acoustic systems score EERs of 13% and 8.22%, respectively. The

overall best performance (3.57% EER) is achieved using a system which fuses the out-

puts of a combination of these phonotactic and acoustic systems that use the traditional

∆ parameters and pitch-based VAD. This result is much better than anticipated and

174



compares with an error rate of 8.72% for human listeners The fact that it is possible to

decide automatically which ethnic group within a particular accent group an individual

belongs to, and to achieve this using as little as 40s of data, has interesting implications

for automatic speech recognition. First, it confirms that there are significant acoustic

and phonotactic differences even within a homogeneous accent group. Second, it shows

that these differences are sufficiently large to be detected automatically. Hence it may be

possible to identify suitable acoustic, lexical and even grammatical models automatically

for rapid adaptation.
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Chapter 12

Conclusion and Future Work

This chapter summarizes the contributions of this thesis and draws some conclusions

about this research. Finally, it outlines some possible directions for future work.

12.1 Conclusions

The summary and conclusion of each individual chapter are presented in its last section.

This section gives an overview of the main conclusions of the whole thesis.

Back to the introduction in chapter 1, the main objective of this thesis is to measure

the ability of a state-of-the-art automatic language ID system to extract two particular

types of paralinguistic information from a speech signal, specifically the regional accent of

the speaker, and the ethnic group to which he or she belongs. In both cases, the perfor-

mance of the language ID system is compared with human performance, and for regional

accent recognition, with other automatic systems based on Huckvale’s ACCDIST mea-

sure. The ABI-1 corpus of good quality recordings of read speech, representing fourteen

different regional accents of spoken British English, is used for our experiments in accent

recognition. The VaB corpus of telephone conversational speech between subjects who

were born and live in the city of Birmingham (UK) is used for ethnic group recognition.
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For both regional accent and ethnic group recognition, automatic language ID outper-

forms human listeners. The recognition error rate for human listeners is approximately

four times greater than that for the language ID system for regional accent recognition

(41.76% compared with 13.6%), and two times greater for ethnic group recognition (9.76%

compared with 5.7%).

Regional accent recognition appears to be a challenging task for both automatic sys-

tems and human listeners. Even though the ABI-1 recordings are good quality read speech

(rather than telephone conversational speech), the best accent recognition performance

of our language ID system on 30s segments is 7.2% EER (85.4% accuracy) compared

with 0.34% EER (98.42% accuracy) for language ID using the same amount of telephone

conversational speech from the NIST 2003 evaluation (see chapter 8). The best regional

accent recognition performance is 1.87% EER (95.18% accuracy), which is achieved using

the ACCDIST-SVM system and the SPA recordings. The superior performance of the

ACCDIST-based systems relative to the language ID system is an interesting example

where the explicit use of linguistic knowledge results in a method that outperforms a

purely data-driven statistical approach, and with a much lower computational require-

ment. However, a clear disadvantage of the ACCDIST method is its text dependency, in

that transcriptions of the training and test utterances are required. An obvious challenge

is to exploit the ideas that motivate ACCDIST without relying on a such a transcription.

Regionally accented speech in the ABI-1 corpus is defined to be speech spoken by

an individual who was born in that region and has lived there for all of his or her life.

However, even with this residency constraint many subjects’ accents exhibit non-regional

influences. It seems that näıve native human listeners can correctly place characteristic
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examples of regionally accented speech but have difficulty in cases where, for example, as

a consequence of social or educational factors a subject’s accent exhibits strong traits of

Standard English. However, the relatively good performances of the automatic systems

indicate that correct classification of many of these more subtle instantiations of regional

accent is possible. It would be interesting to know how well human listeners can perform

given suitable explicit training.

Intuitively, the ethnic group classification task appears to be more difficult than accent

recognition, even though it is a two-class problem, since the classes share some aspects

of the same regional accent, and the data is telephone conversational speech. However,

the acoustic and phonotactic components of our automatic language ID system score

recognition accuracies of 92.7% and 87.2%, respectively, and the overall best performance

is 94.3% accuracy, achieved by fusing all of the acoustic and phonotactic subsystems. This

result is much better than expected and compares with an accuracy of 90.24% for human

listeners. As in the case of regional accent recognition, it would be interesting to know

how well human listeners would perform if they were given explicit training for this task.

We also investigated the effect of focusing our language ID system on vowel (or more

generally ’voiced’ phonemes) differences between accents and ethnic groups. This was

achieved by using a pitch-based VAD and in case of accents, choosing the “careful words”

recordings from ABI-1 as test data. The results show that using vowels, regional accent

and ethnic group recognition performances (%EER) are improved by around 12.4% and

27.4%, respectively.

The fact that it is possible to access these types of paralinguistic information using

as little as 30s of data has interesting implications for automatic speech recognition.
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It confirms that there are significant acoustic and phonotactic differences between, and

even within, regional accents, and it shows that these differences are sufficiently large be

detected automatically. Hence it may be possible to use these technologies to identify

suitable acoustic, lexical and even grammatical models automatically, as a first step

towards rapid adaptation.

Although it is difficult to make direct comparisons, it seems that our language ID

system performs better on the language recognition and the ethnic group recognition

tasks than on the regional accent recognition task, even though the former are based

on conversational speech recorded over a telephone channel while the latter involves

good quality recordings of read speech. It seems likely that, unlike automatic speech

recognition, the availability of natural conversational speech may be advantageous for

these types of paralinguistic tasks.

Returning to our original premise, we conclude from the results presented in this

thesis that the distributions of acoustic feature vectors, and phone n-grams, corresponding

to different regional accents of English or different ethnic groups within an accent, are

sufficiently distinct to enable pattern recognition methods from language ID to be applied

successfully to automatic regional accent and ethnic group classification. From a broader

perspective, this raises the possibility of applying similar techniques to the automatic

classification of other paralinguistic phenomena.

In the other part of this thesis, we investigated the effectiveness of the GPUs to accel-

erate the intensive computation required in language ID. We used the GPU to accelerate

the computation of the most consuming components of the standard language ID tech-

niques, specifically conditional probability calculation and spectral analysis algorithms.
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Our result shows that the GPUs seem to be very effective for speeding up the language

ID computation. Using a GPU, the overall computation of our GMM-UBM language ID

system was accelerated by a factor eleven, which makes it possible to try new techniques

which would otherwise not be possible due to their high computational load. For exam-

ple, our MLM-uni-gram system comprises 24,576 GMM components. The performance

of this system is comparable with the state-of-the-art, but its evaluation would have been

impossible without a GPU implementation.

Our results also indicate that an FIR-based front-end has substantial computational

advantages in the case of a CPU implementation and major advantages when the imple-

mentation utilizes a GPU. For example, for 30 minutes of speech, FIR on GPU is nine

times faster than FFT on CPU.

12.2 Future work

This thesis describes an investigation of modeling phonotactic and acoustic cues from a

speech signal with standard language ID techniques to recognize the fourteen accents in

the ABI-1 corpus and the main two ethnic groups within a single accent, specifically the

Birmingham accent. However, these are not the only available cues from speech; and

based on what is known about how humans recognize accents, a number of other cues

might also be exploited. Their use in an automatic accent recognition framework offers a

number of possible avenues for future work. It is also important to acknowledge some of

the limitations of the studies reported in this thesis, and future work should also involve

addressing some, if not all, of these limitations. Some avenues of work described in this

thesis are listed below.
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• All of the language ID experiments reported in this thesis were developed and tuned

on NIST 2003 and NIST 1996 evaluation data sets and evaluated on the NIST 2005

evaluation data set. The NIST 2005 LRE is relatively old compared with NIST 2007,

NIST 2009 and NIST 2011 LREs. This in turn limits the language ID work reported

in this thesis to an exploratory investigation that unearthed interesting hypotheses

that need to be validated on recent NIST evaluations. Therefore, evaluating our

language ID system on the NIST 2007, 2009 and 2011 LREs is a natural extension

for this research.

• In addition to phonotactic and acoustic features for language ID, prosodic features

such as pitch and energy contours are known to be good paralinguistic cues in

speech. Fusing the phonotactic and acoustic systems with a prosodic based system

may improve the overall performance, because these three different features are

considered to be mutually complementary.

• Some other techniques for language ID, such as removing some gender and inter-

speaker variation by normalizing the length of the vocal tract using the VTLN

technique should also be interested. De-correlating and reducing the dimensionality

of the acoustic features, especially the SDC features, with Heteroscedastic Linear

Discriminant Analysis ( HLDA) is also interesting for future work.

• All of the accent recognition experiments reported in this thesis were performed

on the ABI-1 corpus. This corpus is limited in size, contained recorded speech for

only fourteen accents and consisting of read speech. Applying the same approaches

on a larger database and natural speech collected through the telephone network
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is interesting future work. It is not clear whether telephone conversational speech

would make the problem harder or easier.

• For accent recognition, and when the transcription of the speech is available, Huck-

vale’s ACCDIST measure was proven to outperform traditional text-independent

methods which depend on absolute spectral properties or sequence analysis. Ex-

tending this method to other tasks such as language ID and ethnic group ID is

another interesting challenge for the future. Removing the text-dependency limita-

tion in the ACCDIST based system by relying on a high accuracy phone recognizer

to do phonetic segmentation is a possible way forward that should be investigated.

In addition, weighting the speaker distance tables with a discriminative weighting

technique similar to the LLR weighting which was successfully used in the n-gram

systems also has potential, as does using the concept of inter-session compensation

to compensate inter-speaker variability in the ACCDIST speaker distance tables.

• Human accent recognition performance was found to be higher for the accents of

regions where listeners have lived and also for accents that they consider themselves

familiar with. This suggests that training human listeners on the target accents

training data before they do the classification test will improve their classification

rate.

• For accent recognition, projecting speakers’ speech into high-dimensional space

prior to classification performs well. Therefore a more interesting challenge for

the future is to develop continuous space representation of speakers and accent,

such that subjects who are close in this space speak in a similar manner and, from
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the perspective of automatic speech recognition, can be characterized by similar

sets of model parameters.
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Appendix A

Language ID Accent ID Ethnic

System (NIST2003) (NIST2005) (ABI-1) Group ID

(30s) (30s) (30s) (SPA) (VaB)

EER Acc EER Acc EER Acc EER Acc EER Acc

GMM-UBM 1.33 95.9 13.1 74.5 17.32 57.38 14.83 60.2 15.1 85

GMM-SVM 1.2 96.5 11.75 75.3 16.2 60.12 12.7 66.3 19.8 83.7

GMM-SVM-GMM 0.5 98.4 9.14 81.6 14.73 64.4 10.7 70.4 19 84.4

MLM-uni-gram 1.34 96.6 11.9 76 16.9 57.2 15.4 59 17 83

UBM-bi-gram 3.18 91.8 18.2 66 22.3 50.13 21.2 53.5 8.2 90.6

Acoustic-fused 0.41 98.7 8.4 83.4 12.82 72.3 9.3 75.6 7.3 92.7

Phonotactics 1.48 95.8 5.2 92.7 9.18 74.1 6.5 82.1 13.0 87.2

Phono-Acou-Fused 0.34 99.1 4.4 93 7.2 85.4 5.2 86.4 4.0 94.3

ACCDIST-Corr.dist. - - - - - - 2.66 93.17 - -

ACCDIST-SVM - - - - - - 1.87 95.18 - -

Human - - - - - - - 58.24 - 90.2

Table A.1: Summary of results for all systems and tasks. The figures are percentage EER

and percentage recognition accuracy (Acc)
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Algorithm 1 IIR Filter Bank kernel

Inputs:: SEG, N, nF, Order, sm, indata, a ,b

Outputs: outdata

xIndex← blockIdx.x× blockDim.x+ threadIdx.x;

yIndex← blockIdx.y × blockDim.y + threadIdx.y;

oIndex← yIndex×N + xIndex;

—shared— float tempA[4][17], tempB[5][17] ;

float shifta[4], shiftb[5], Am[4], Bm[5], tmp = 0 ;

int dd1, dd2, j;

float tmp sm1, prev tmp sm1 = 0, tmp sm2, prev tmp sm2 = 0 ;

if(xIndex < NandyIndex < nF ) {

if(threadIdx.x < 4)

tempA[threadIdx.x][threadIdx.y]← a[yIndex+ (int)threadIdx.x× nF ]

if(threadIdx.x < 9 AND threadIdx.x > 3)

tempB[threadIdx.x− 4][threadIdx.y]← b[yIndex+ (int)threadIdx.x× nF ]

SyncThreads() ;

for(j = 0; j < Order; j + +) {

if(j < Order − 1){

Am[j]← tempA[j][yIndex]

shifta[j]← 0

}

Bm[j]← tempB[j][yIndex]

shiftb[j]← 0

}
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for(intj = 0; j < SEG; j + +) {

for(j = 0; j < Order − 1; j + +)

shiftb[j]← shiftb[j + 1]

shiftb[Order − 1]← idata1[xIndex+ j ×N ]

tmp← 0

for(j = 0; j < Order − 1; j + +) {

tmp← tmp+Bm[j]× shiftb[j]− Am[j]× shifta[j]

}

tmp← tmp+Bm[Order − 1]× shiftb[Order − 1]

tmp sm1 ← abs(tmp) - sm×prev tmp sm1

tmp sm2← tmp sm1− sm× prev tmp sm2

for(j = 0; j < Order − 2; j + +)

shifta[j]← shifta[j + 1]

shifta[Order − 2]← tmp

prev tmp sm1← tmp sm1

prev tmp sm2← tmp sm2

}

odata[oIndex]← tmp sm2

}
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Algorithm 2 FIR Filter Bank kernel

Inputs:: DATA DIM, N , M, G Ceof, indata

Outputs: outdata

xIndex← blockIdx.x× blockDim.x+ threadIdx.x;

yIndex← blockIdx.y × blockDim.y + threadIdx.y;

oIndex← yIndex×N + xIndex;

—shared— float S Coef[17][80]

float acum = 0.0

if(xIndex < NandyIndex < M)

{

if(threadIdx.x < M AND threadIdx.y < DATA DIM)

S Coef [threadIdx.x][threadIdx.y]← G Coef [yIndex+ threadIdx.y ×M ]

SyncThreads()

for(intj = 0; j < DATA DIM ; j + +)

acum← acum+ indata[xIndex+ j ×N ]× S Coef [threadIdx.x][j]

outdata[oIndex]← acum

}
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