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Abstract

We present an automatic speech recognition system that uses a missing

data approach to compensate for challenging environmental noise contain-

ing both additive and convolutive components. The unreliable and noise-

corrupted (“missing”) components are identified using a Gaussian mixture

model (GMM) classifier based on a diverse range of acoustic features. To

perform speech recognition using the partially observed data, the missing

components are substituted with clean speech estimates computed using

both sparse imputation and cluster-based GMM imputation. Compared

to two reference mask estimation techniques based on interaural level and
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time difference-pairs, the proposed missing data approach significantly im-

proved the keyword accuracy rates in all signal-to-noise ratio conditions when

evaluated on the CHiME reverberant multisource environment corpus. Of

the imputation methods, cluster-based imputation was found to outperform

sparse imputation. The highest keyword accuracy was achieved when the

system was trained on imputed data, which made it more robust to possible

imputation errors.

Keywords: Noise robust, Speech recognition, Missing data, Binaural,

Multicondition, Imputation

1. Introduction

The performance gap between human listeners and automatic speech

recognition (ASR) still remains large when recognition in noisy acoustic en-

vironments is considered. One approach to reducing this performance differ-

ence is the use of missing data (MD) methods, which are motivated by stud-

ies of the human auditory system (Cooke et al., 1994). In MD methods, the

observed noisy speech is partitioned into speech-dominated (“reliable”) and

noise-dominated (“unreliable”) components. A number of ways to treat the

reliable and unreliable components have been proposed. In the marginaliza-

tion approach, the unreliable components are completely discarded, whereas

in bounded marginalization, they are used as an upper bound to the missing

clean speech values (Cooke et al., 2001). Unreliable components can also

be reconstructed (imputed) by replacing them with clean speech estimates

which, for example, can be obtained from statistical models of speech (Raj

et al., 2004) or from a dictionary of speech exemplars (Gemmeke et al., 2011).
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The quality of the classification of the observations into reliable and unre-

liable regions (so-called “masking”) is a central factor in the performance of

missing data approaches. The missing data method does not necessarily re-

quire strong assumptions about the type of background noise as information

from the noise-corrupted regions does not need to be used (e.g. in marginal-

ization or imputation). However, missing data approaches can be made more

powerful by including noise models that are used in mask estimation, or pro-

vide an upper bound to observations. Missing data methods have been shown

to significantly improve the noise robustness of ASR systems in experiments

where knowledge of the clean speech and noise signals is available prior to

mixing and exact (“a priori”, or “oracle”) masks of reliable regions can be

used (Cooke et al., 2001).

In practice, oracle masks are not available and missing data masks must

be estimated from the input signal. Several methods have been proposed to

achieve this. In (Vizinho et al., 1999), the masks are created by threshold-

ing sub-band signal-to-noise ratio (SNR) estimates, while in (Seltzer et al.,

2004) a Bayesian classifier is applied to a variety of features derived from

the acoustic signal, such as statistical measures of subband energies. The

statistical approach has been shown to outperform SNR-based mask estima-

tion (Seltzer et al., 2004). Support vector machine (SVM) classifiers were

proposed for the mask estimation task in (Gemmeke et al., 2009) with a set

of features similar to Seltzer et al. (2004) supplemented with features derived

from a harmonic decomposition of the input signal (Van hamme, 2004). The

mask estimation problem in both above mentioned studies was formulated as

one in which each spectral channel in each time frame is classified as reliable
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or unreliable, which is a more localized decision compared to e.g. classifica-

tion of phonemes in ASR. This is possibly one of underlying reasons for the

success of multifeature approaches (Seltzer et al., 2004) in mask estimation.

Mask estimation methods have also been proposed that are based on

the output of auditory models. In particular, masks can be estimated using

models of binaural hearing, which measure interaural level (ILD) and time

of arrival (ITD) differences (Roman et al., 2003; Harding et al., 2006), and

thereby provide information about the spatial location of the target speaker

and interfering sources. Binaural mechanisms also counteract the detrimental

effects of reverberation (Zurek, 1987), for example by identifying signals that

are coherent at the two ears (Faller and Merimaa, 2004). However, when the

target and interfering sources share the same or nearby azimuthal location,

systems that rely solely on binaural cues (Roman et al., 2003; Harding et al.,

2006) can not distinguish between the target and interferences. It is also note-

worthy that human listeners gain only a limited advantage from binaural cues

over purely monaural listening. Therefore any robust approach should also

include monaural cues in the mask estimation. Another auditory-motivated

technique for mask estimation of reverberation-contaminated speech is de-

scribed in (Palomäki et al., 2004), in which modulation filtering is used to

identify spectro-temporal regions containing strong speech energy.

While several imputation methods have been proposed for missing feature

reconstruction, arguably the ones yielding the highest recognition accuracy

for front-end based reconstruction are cluster-based imputation (Raj et al.,

2004) and sparse imputation (Gemmeke et al., 2010). In cluster-based impu-

tation, the statistical dependencies between clean speech features are repre-
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sented using a Gaussian mixture model (GMM) and clean speech estimates

for the missing components are calculated using bounded maximum a poste-

riori (MAP) estimation. In sparse imputation, the clean speech features are

modeled as a linear combination of clean speech dictionary units referred to

as exemplars. Estimates for the missing components are obtained from an

exemplar-based representation constructed to model the reliable components

using as few exemplars as possible.

In this work, mask estimation using a GMM classifier on a comprehensive

set of features is proposed to address the CHiME challenge (Barker et al.,

2013), which consists of stereo data recorded in a noisy, multisource reverber-

ant environment. The feature set used in mask estimation includes features

derived from binaural and monaural auditory models, together with features

designed to distinguish between speech and non-speech elements. The mask

estimation method is evaluated in a missing data reconstruction-based auto-

matic speech recognition task using the cluster-based imputation and sparse

imputation methods. In this work, cluster-based imputation is used with

multi-frame windows as proposed in (Remes et al., 2011).

This paper makes three main contributions. Firstly, we present a compar-

ison of cluster-based and sparse imputation methods on the CHiME corpus.

While cluster-based and sparse imputation methods have performed well on

various noise-robust speech recognition tasks, the CHiME data used in this

work is reverberant and contains a variety of challenging noise types that

neither method has been evaluated on.

Secondly, we investigate whether performance improvements can be ob-

tained via speaker adaptation or re-training to account for the reconstruction
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error. While multicondition training on enhanced speech has resulted in sig-

nificant improvements when combined with a noise suppression method (Raj

et al., 2010), there is no previous work on re-training acoustic models to

accommodate for the reconstruction errors from missing feature reconstruc-

tion. In this work, the acoustic models re-trained on reconstructed features

are referred to as multicondition models for imputed data.

Finally, we systematically evaluate a range of acoustic features for mask

estimation, including those previously used in statistical mask estimation (Seltzer

et al., 2004) and two new binaural features that have not been previously

used in the context of missing data reconstruction (peak ITD and interaural

coherence). To evaluate the effect of the proposed mask estimation method

on the recognition accuracy, the estimated masks are compared with ora-

cle masks, binaural reference masks adapted from (Harding et al., 2006),

and masks computed by a GMM classifier trained on ILD–ITD pairs. To

evaluate the contribution of individual features, we analyse their power to

discriminate between reliable and unreliable values.

The remainder of the paper is organized as follows. The methods used

in this work are described in Section 2, with an introduction to missing

data techniques in Section 2.1, features and methods used for mask estima-

tion in Section 2.2, and reconstruction methods in Section 2.3. The speech

recognition system and noise robust speech recognition task are presented in

Section 3 and the results in Section 4. We discuss the results and present

our conclusions in Section 5.
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2. Methods

2.1. Missing data techniques

Missing data techniques (Cooke et al., 2001) are based on the assumption

that magnitude-compressed spectral features Y that represent noisy speech

can be divided in speech and noise dominated components. Labels that divide

the observations into speech and noise dominated regions are referred to as a

missing data mask. The time–frequency components are denoted as Y (τ, d),

where τ represents the time frame and d represents the frequency bin. The

components that are speech-dominated are considered reliable estimates of

the underlying clean speech features, Yr(τ, d) ≈ S(τ, d), where S(τ, d) denotes

the clean speech value that would have been observed if the signal had not

been corrupted with noise. The noise-dominated components, on the other

hand, are considered unreliable, and assuming that the noise originates from

an uncorrelated source, the unreliable observations provide only an upper

bound on the corresponding clean speech, Yu(τ, d) ≥ S(τ, d). Thus, the

clean speech information in the unreliable components is effectively missing,

and must be compensated for in speech recognition.

Given the reliable and unreliable observations, the speech recognition sys-

tem can either be modified to ignore the missing clean speech data, or the

missing values can be reconstructed with clean speech estimates Ŝ(τ, d). Be-

cause the reconstructed features Ŝ do not contain any missing values, they

can be subjected to any feature transformations (e.g. cepstral transforma-

tion) and can be used for speaker adaptation without a need to modify the

algorithm. Reconstruction methods such as cluster-based imputation (Raj

et al., 2004) and sparse imputation (Gemmeke et al., 2010) have also per-
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formed well on various speech recognition tasks. The clean speech estimates

(i.e. reconstructed features) are calculated using the reliable and unreliable

observations and a clean speech model.

2.2. Mask estimation

In this section we describe a range of acoustic features that form the

basis for classifying time-frequency regions as reliable or unreliable. The

intended purpose of the multifeature approach presented here is to model

various acoustic cues that could signal the reliability of time-frequency re-

gions in CHiME data that is binaural, reverberant, and contains multiple

overlapping and often highly non-stationary sources (e.g. due to a compet-

ing talker). For distinguishing between competing talkers, features taking

advantage of directional cues from the target talker could be useful. For non-

speech interference, cues that discriminate between speech and non-speech

would be effective. Given the above considerations, the features applied here

vary in their intended purpose; some are intended to provide robustness to

reverberation, or to characterize the properties of the background noise and

therefore provide noise robustness. Others have a focus on target detection,

e.g. by using binaural cues to identify when a source is present at the known

location of the target talker. They also vary in their characteristics (e.g.,

whether they are based on monaural or binaural signals). A summary of the

feature types is given in Table 1. First, the intermediate signal representa-

tions required by the different features are described in Section 2.2.1, which

is followed by the descriptions of the individual features in Section 2.2.2.
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Table 1: Summary of acoustic features used for mask estimation. The table indicates

whether the main focus of each feature is reverberation robustness, noise robustness or

detecting the target (speech) source.

Acronym Description Monaural/ Reverberation Noise Target

Binaural robustness robustness detection

MOD Modulation-filtered spectrogram M X

MPR Mean-to-peak-ratio of temporal envelope M X

GRAD Gradient of temporal envelope M X

HA Harmonic energy M X

IHA Inharmonic energy M X

LTE Noise estimate from long-term inharmonic energy M X

GAIN Noise gain M X

FLAT Spectral flatness M X

S2N Subband energy to subband noise floor ratio M X

ILD Interaural level difference B X

ITD interaural time difference B X

PITD Peak interaural time difference B X

IC Interaural coherence B X X

DIFF Noise estimate from channel difference B X X

2.2.1. Intermediate signal representations

Two types of spectral acoustic features are used in our system. The

features used by the ASR back-end are based on standard mel-frequency

cepstral coefficients (MFCC). To compute these, the left- and right-ear signals

are summed, filtered through a pre-emphasis filter, and then the magnitude

spectrum is obtained via a fast Fourier transform (FFT) with a 16 ms frame

length and 8 ms hop size. The magnitude-spectrum is then transformed to

the mel-scale by applying 21 triangular filters with center frequencies between

171 Hz and 7097 Hz. When followed by log compression, the resulting log-
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mel spectrogram is denoted by Y (τ, d), where τ denotes the frame and d the

mel frequency bin. We adopt the notation that Y ∗(τ, d) represents the mel

spectrogram without log compression. MFCCs are obtained by decorrelating

the log-mel spectrogram with a discrete cosine transformation and removing

the zeroth and highest frequency components.

The standard MFCC features described above are suitable for training an

ASR system, but a spectral representation that preserves the temporal fine

structure within each frequency band is also required for mask estimation.

In particular, temporal fine structure is required to compute the binaural

features described in Section 2.2.2. Accordingly, we compute a second “mel-

gammatone” spectral representation from an array of 21 gammatone filters,

whose centre frequencies and bandwidths are set to match the characteristics

of the MFCC front-end described above. The left-ear and right-ear signals

are passed separately through a mel-gammatone filterbank and then half-

wave rectified, giving a representation for the left and right ears denoted

Gl(t, d) and Gr(t, d) respectively. Here, d represents the frequency channel

and t is the discrete time in samples.

For computing ITD, peak ITD and interaural coherence features (de-

scribed in Section 2.2.2), the left-ear and right-ear mel-gammatone filtered

signals are cross-correlated. Here, the generalized cross-correlation method,

which applies a phase transform (GCC-PHAT) (Knapp and Carter, 1976)

with a parameter γ for changing the level of normalization (Tikander et al.,

2003) is used. Compared to a conventional cross-correlation, GCC-PHAT

suppresses secondary peaks in the cross-correlation and has been shown

to produce better target localization accuracy (Perez-Lorenzo et al., 2012).
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Given the two mel-gammatone signals Gl(t, d) and Gr(t, d) the GCC-PHAT

for frame τ and channel d is defined as

GF
PHAT (τ, d) =

GF
l (w, d)[GF

r (w, d)]∗

|GF
l (w, d)[GF

r (w, d)]∗|γ
, (1)

where the superscript [ ]F denotes the Fourier transform, [ ]∗ denotes the com-

plex conjugate, w = [τt, . . . , τ t+(Wl−1)] is a indexing vector corresponding

to a rectangular window of length Wl = 256 samples, and γ = 0.8 is the pa-

rameter for tuning the amount of magnitude normalization. GCC-PHAT is

computed for each frequency channel over a 16 ms rectangular window with

an 8 ms hop size.

2.2.2. Acoustic features

Modulation filtered spectrogram (MOD): Speech signals have their largest

temporal modulation at the syllabic rate, which peaks at around 4 Hz. The

effect of reverberation on speech is to reduce the modulation depth, as the

gaps between syllable onsets are filled with reverberant energy (particularly

the late reverberation component). It has been shown in e.g. (Kingsbury

et al., 1998) that reverberation-robust features for ASR can be obtained by

filtering spectral features along their time trajectory with filters that em-

phasize the syllabic modulations. Modulation filtering has also been used to

discriminate “clean” speech features from those that have been contaminated

by reverberant energy, in the missing feature mask generation approach of

(Palomäki et al., 2004).

The modulation-filtered mel-spectrogram MOD(τ, d) is obtained by fil-
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tering each channel d of Y ∗(τ, d)0.3, described in Section 2.2.1, as follows

MOD(τ, d) =
∞
∑

k=−∞

f(k)Y ∗(τ − k, d)0.3, (2)

where filter f(k) is a bandpass finite impulse response (FIR) filter with 3

dB cutoff frequencies at 1.8 and 10.2 Hz. Here, the compression factor is

set to 0.3 to obtain a match to studies in which the MOD measure was

originally developed (Palomäki et al., 2004) based on an auditory firing rate

signal representation (for an implementation, see (Barker, 2001)), which is

different from the log-compressed feature presentation used in the present

study. The goal of the filtering is to find reverberation-free syllable onsets.

The FIR filter is designed as a linear-phase smoothing lowpass convolved

with a differentiator.

Mean to peak ratio (MPR): When speech is reverberated, the peaks in

the temporal envelope are largely unaffected, but the valleys become filled

with reverberant energy. Temporal smoothing of spectrograms due to rever-

beration can therefore be measured by computing the mean-to-peak ratio of

the speech temporal envelope (Palomäki et al., 2004).

The scalar valued mean to peak ratio MPR across all channels d and all

frames τ of a mel spectrogram Y ∗(τ, d) is denoted as

MPR =
1

D

D
∑

d=1

1
L

∑L
τ=1 Y

∗(τ, d)0.3

maxτ
(

Y ∗(τ, d)0.3
) , (3)

whereD = 21 is the number of frequency channels, τ is a time frame, and L is

the number of time frames in the utterance. Note that the above formulation

defines MPR as a single (global) scalar measure over the whole utterance.

During mask estimation for an utterance, the computed MPR is used for each
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time-frequency bin within that utterance, thusMPR(τ, d) = MPR. A within-

channel MPR metric has also been tested in an earlier study (Brown and

Palomäki, 2008), but the global metric was found to give better performance;

accordingly, we only use the global metric here.

Gradient (GRAD): Reverberant regions of the speech temporal envelope

are often associated with decaying tails, and it has been suggested that the

detection of such tails may play a role in perceptual compensation for the

effects of reverberation (Watkins and Makin, 2007). Hence, we include a

gradient feature that measures the local slope of the temporal envelope within

a short time window, for each frequency channel. The slope GRAD(τ, d) is

determined for each frequency channel d by a linear regression line through

a five-point window centered on each time frame τ . Here, the equation of

GRAD(τ, d) is defined as

GRAD(τ, d) =
1

10

2
∑

i=−2

Ye(τ + i, d)i, (4)

where Ye(τ, d) is a frame extended version of Y (τ, d), whose values outside

the borders of the mel-spectrogram are constructed by repeating the border

values.

Harmonic energy (HA): In voiced segments of speech, the speech signal

will consist primarily of components harmonically related to the pitch of the

speaker, while we assume no such relationship exists between the noise and

the speaker pitch. Consequently, when the spectrum is decomposed into

harmonic and inharmonic parts, the harmonic part will be dominated by the

speech signal. The harmonic feature is formed using a harmonic decompo-

sition based on a pitch estimate (Van hamme, 2004). In the decomposition,
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the complete time-domain input utterance yutt(t) is windowed into overlap-

ping frames, with a frame length of two estimated pitch periods and a frame

shift of one pitch period. For each frame, the noisy signal y(t) is modeled as

a sum of a harmonic time-domain signal h(t) and a residual r(t),

y(t) = h(t) + r(t). (5)

The harmonic part has the form

h(t) =

(

1 +
ct

N

)

·

[

K
∑

k=0

ak cos(2πf0kt) +
K
∑

k=1

bk sin(2πf0kt)

]

(6)

where f0 is the pitch estimate given in normalized form where 1 corresponds

to the sampling rate, N is the corresponding pitch period with the time index

t ranging from 0 to 2N − 1, ak, bk and c are parameters estimated from the

signal using the iterative approach of (Van hamme, 2004), and the number

of harmonics K is set to the largest integer such that f0K < 0.5. Finally, the

central pitch periods of each frame are concatenated to get a non-overlapping

estimate hutt(t) for the harmonic part of the input utterance. The harmonic

feature components HA(τ, d) for each frame τ and frequency channel d are

then obtained as the log-mel spectral representation of the harmonic time-

domain signal estimate.

Using Mel(y, τ, d) to denote the output of the process for generating the

mel spectrogram Y ∗(τ, d), described in Section 2.2.1, with a time-domain

input signal y(t), the harmonic energy features are then

HA(τ, d) = 10 · log10 Mel(hutt, τ, d). (7)

Inharmonic energy (IHA): The inharmonic residual of the harmonic de-

composition outlined above is simply the difference between the input signal
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and the harmonic signal estimate in the time domain. From Equation (5),

rutt(t) = yutt(t) − hutt(t). In voiced speech segments, the inharmonic part

will mostly consist of noise. The inharmonic features IHA(τ, d) are again the

log-mel spectral representation of the residual signal,

IHA(τ, d) = 10 · log10 Mel(rutt, τ, d). (8)

Noise estimate from long-term inharmonic energy (LTE): This feature

is based on the inharmonic residual of the harmonic decomposition (IHA).

The component LTE(τ, d) is the first quartile value of the corresponding d’th

subband energies of the log-mel spectrum of the residual signal within a long

time window centered at time frame τ ,

LTE(τ, d) = Q1({IHA(τ
′, d) | τ ′ = τ − 20 . . . τ + 20}), (9)

where Q1(·) extracts the first quartile value.

Gain (GAIN): The gain feature is a rudimentary SNR estimate (Van

hamme, 2004) based on the harmonic energy (HA) and the inharmonic energy

noise estimate (LTE) features described earlier, as

GAIN′(τ, d) = 10 · log10

(

max

{

HA∗(τ, d)− 3LTE∗(τ, d)

HA∗(τ, d)
, 10−4

})

, (10)

where HA∗ and LTE∗ are the corresponding features in the uncompressed

linear mel-spectral domain. The final GAIN(τ, d) features are the values of

GAIN′ after two-dimensional mean-filter smoothing across the spectrogram

elements:

GAIN(τ, d) =
1

25

τ+2
∑

τ ′=τ−2

d+2
∑

d′=d−2

GAIN′(τ ′, d′), (11)

where values of GAIN′(τ ′, d′) outside the borders of the mel-spectrogram are

constructed by repeating the border values.
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Flatness (FLAT): Qualitatively, when noise is added to a (voiced) speech

signal, the effect in the spectral domain is to “flatten” the valleys between

the resonances apparent in clean speech (Seltzer et al., 2004). This effect

can be characterized by measuring the local variance of the subband energy

within a neighborhood around each time-frequency cell in the log-mel spec-

trogram. The “flatness” feature used here is the sample variance of the noisy

spectrogram Y (τ, d) within a 3× 3 neighborhood

FLAT(τ, d) = V ar(Y (τn, dn)), (12)

where τn and dn run through values [τ − 1, τ, τ + 1] and [d − 1, d, d + 1]

that are not indexed outside the noisy spectrogram.

Although the FLAT and MPR features derive from the same fundamen-

tal idea and may appear redundant, there is no correlation between them;

Pearson’s correlation coefficient between the two is approximately −0.03

(p < 0.01) on both reliable and unreliable time-frequency units. The MPR

is a global metric (since it sums across all frequency regions), whereas the

FLAT metric is local.

Subband energy to subband noise floor ratio (S2N): A coarse estimate of

the noise floor of stationary noise can be obtained by looking at the distribu-

tion of subband energy across all frames in an utterance. Such distributions

tend to be roughly bimodal, with the lower mode corresponding to the noise

energy during silence frames (Seltzer et al., 2004). For this feature, the

subband noise floor N(d) of channel d is approximated by locating the low

peak from a histogram of the corresponding subband energies in the noisy

log-mel spectrogram Y (τ, d), computed over all frames τ in the utterance.

High values of the ratio of current subband energy to the noise floor energy,
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S2N(τ, d) = Y (τ, d)/N(d), are then indicative of regions dominated by either

speech or highly non-stationary noise sources.

Interaural level difference (ILD): When stereo signals are available, fea-

tures related to binaural hearing can be exploited. Human listeners are able

to localize sound sources in space by measuring the interaural differences be-

tween the time of arrival (ITD) and sound level (ILD) at the two ears. The

ILD at each time frame τ is calculated by taking the ratio of the energies of

two windowed mel-gammatone signals, Gr(w, d) and Gl(w, d) described in

Equation (1), and converting to decibels as follows

ILD(τ, d) = 10 log10
Gr(w, d)2

Gl(w, d)2
. (13)

Interaural time difference (ITD): Given the definition of GPHAT in Equa-

tion (1), the cross-correlation for an interaural time difference k is given by:

gPHAT (τ, d, k) = arg
k

IFFT
(

GF
PHAT (τ, d)

)

, (14)

where k is an index to vector GF
PHAT (τ, d). The dominant ITD within channel

d is then given by

ITD(τ, d) = argmax
k

gPHAT (τ, d, k), (15)

where the time lags k are computed between -1 ms and +1 ms in steps of

the sampling period and k = 0 corresponds to the ITD for a source at zero

degrees azimuth.

Peak ITD (PITD): The peak ITD metric is the ratio between the height

of the highest peak and the height at zero delay in the cross-correlation.

PITD is computed using Equation (14) as

PITD(τ, d) =
gPHAT (τ, d, 0)

maxk gPHAT (τ, d, k)
, (16)
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where time lags k are computed between -1 ms and +1 ms in steps of the

sampling period. For sources at zero degrees azimuth, PITD should be close

to unity.

Interaural coherence (IC): In anechoic environments with a single active

sound source, the signals arriving at the two ears of a listener are highly

coherent. However, in complex listening situations, such as in the presence

of several sound sources and room reflections, sound from several different

directions concurrently reaches the position of the listener and the interaural

coherence is much reduced. Furthermore, the superposition of sound em-

anating from several directions results in instantaneous ITD and ILD cues

that most of the time do not correspond to any of the source directions.

Faller and Merimaa (Faller and Merimaa, 2004) suggest that source local-

ization in complex listening situations should be improved by retaining ITD

and ILD cues only when they coincide with a high IC; when the IC is low,

these cues are unlikely to give an accurate source direction and should be dis-

carded. Here, a simplified version of the Faller-Merimaa model is used since

the location of the target (zero degrees azimuth) is known and coherence is

just the generalized cross-correlation value at zero lag. IC is computed using

Equation (14) as IC(τ, d) = gPHAT (τ, d, 0).

Channel difference (DIFF): A rough estimate of the additive noise sources

and reverberation can be formed by a simple channel difference measure ob-

tained by subtracting the left-ear audio channel from the right-ear audio

channel. The difference signal is converted to a log-mel spectral represen-

tation as described in Section 2.2.1. In this work, this is effective since we

assume the spatial location of the speaker is known a priori and there is no
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time delay between the left and right channels in the direct sound component

of the target speech signals.

2.2.3. Classifier

In this work, the missing data masks are estimated using a two-class GMM

classifier as proposed in (Seltzer et al., 2004). Each time–frequency compo-

nent is represented as an N -dimensional feature vector o(τ, d), where N is

the number of features used in mask estimation. Since the features o(τ, d)

may vary depending on the frequency channel, a separate two-class classifier

is trained for each frequency channel d. The training data for channel d is

divided into two sets depending on whether the time–frequency component

associated with the feature vector o(τ, d) is labelled as reliable or unreliable,

and an M -component GMM is estimated for both sets. An M -component

GMM is a weighted sum of M Gaussian densities as given by the equation,

P (o(τ, d)|Γ) =
M
∑

i=1

wig(o(τ, d)|µi,ΣI), (17)

where o(τ, d) is a N -dimensional continuous-value feature vector, wi, i =

1, . . . ,M are the mixture weights, and g(o(τ, d)|µi,Σi), i = 1, . . . ,M , are

the component Gaussian densities. Each component density is a N -variate

Gaussian function of the form,

g(o(τ, d)|µi,Σi) =
1

(2π)N/2|Σi|1/2
exp

{

−
1

2
(o(τ, d)− µi)

TΣ−1
i (o(τ, d)− µi)

}

,

(18)

with the mean vector µi and full covariance matrix Σi. The mixture weights

satisfy the constraint
∑M

i=1 wi = 1. The complete Gaussian mixture model is

parameterized by the mean vectors, covariance matrices and mixture weights
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from all component densities. These parameters are denoted by,

Γ = {wi,µi,Σi} i = 1, . . . ,M. (19)

Thus, a GMM classifier consists of separate M -component full covari-

ance GMM models for reliable and unreliable data independently for each

frequency channel D. This makes the total number of GMMs 2 ∗D. In this

work, the training data is labelled into reliable and unreliable components

based on oracle mask information as described in Section 3.3.

Mask estimation is based on using the GMMs for the reliable and un-

reliable classes as a scaled maximum likelihood classifier. First, the feature

vector o(τ, d) associated with the d-th channel in the τ -th frame is used to

calculate the likelihoods Pd, r(o(τ, d)) and Pd, r(o(τ, d)) using Equations (17)

and (18), where Pd, r(o(τ, d)) denotes the probability of o(τ, d) evaluated on

the GMM that represents the class of reliable feature components in channel

d and Pd, u(o(τ, d)) the probability of o(τ, d) evaluated on the GMM that

represents the class of unreliable components in channel d. In maximum

likelihood classification, the component would be classified as reliable or un-

reliable based on the likelihood scores, but in practice, the results improve

if likelihood scores are scaled with a factor C as discussed in (Seltzer et al.,

2004). In this work, a time–frequency component Y (τ, d) is classified as

reliable if

C · Pd, r(o(τ, d)) > Pd, u(o(τ, d)), (20)

and unreliable otherwise. The scale factor C is optimized for a development

data set and the two missing feature reconstruction methods as described in

Section 3.3.
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Since the GMM classifier processes each time-frequency component inde-

pendently, the estimated mask can contain isolated reliable components that

are unlikely to contain usable information (Cooke, 2006). In missing-feature

reconstruction, even a single isolated reliable component can result in recon-

struction errors and notably degrade the system performance. The estimated

masks are therefore post-processed by removing groups of reliable features

containing less than 20 connected reliable elements. The group size is opti-

mized on the development data set for both imputation methods separately

and also separately for the binaural reference mask. A similar post-processing

step is also used in mask estimation in (Gemmeke et al., 2011).

2.2.4. Binaural reference mask

For the purposes of evaluation, we compare our GMM-based mask es-

timation scheme with a reference mask estimation method, which was the

best-performing approach in our CHiME workshop paper (Kallasjoki et al.,

2011). The reference method is based on the approach described by Hard-

ing et al. (2006), in which the detection of the target source in each time-

frequency bin is based on joint statistics of interaural level (ILD) and time

(ITD) difference cues.

In the training phase, ITD and ILD data are collected for target sources

known to be at zero degrees azimuth in clean conditions. ILD is estimated

as described in Section 2.2.1, whereas ITD is estimated via a standard cross-

correlation rather than the GCC-PHAT approach described previously. For

the training material 120 utterances were selected from the clean CHiME

development set (increasing the amount of data decreased the performance).

ILD–ITD distributions for the target speech were then represented by joint
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ILD–ITD histograms collected independently for each frequency channel. For

ITD, histogram bins were spaced at intervals of 62.5µs (the sampling period)

and for ILD, the width of each histogram bin was 0.2 dB. Normalization was

then performed by dividing every histogram bin value with the maximum

value observed within the same histogram. The resulting histogram is de-

noted by Hd[oh(τ, d)] with oh(τ, d) = [ILD(τ, d), ITD(τ, d)], indicating the

observation in time frequency component τ, d.

During recognition the mask elementsM(τ, d) are set reliable forHd[oh(τ, d)] >

θb, otherwise they are set as unreliable. Time–frequency regions that con-

tain less than 10 connected reliable elements are removed from the masks.

The threshold θb value was selected for cluster-based imputation such that it

yielded the best keyword accuracy rate on the development sets with 6 dB

and −6 dB SNRs.

This baseline mask estimation approach differs from the original Harding

et al. (2006) paper in a number of respects; in particular, we use a binary

mask and measure statistics from clean training signals, whereas Harding et

al. used a real-valued mask and collected statistics from noisy speech data.

2.3. Reconstruction

Two imputation approaches are utilized in this work: the cluster-based

imputation described in Section 2.3.1 and the sparse imputation algorithm

described in Section 2.3.2. Both methods work on vectors formed by the con-

catenation of T consecutive mel-spectral feature vectors, in order to include

some amount of time context in the reconstruction of a single observation.

Cluster-based imputation (Raj et al., 2004) is based on building a Gaus-

sian mixture model, essentially a soft clustering solution, to represent the
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distribution of the concatenated feature vectors of clean speech. The un-

reliable components of observed feature vectors are then filled by the most

probable observation according to the model, under the constraints that the

reliable components equal the actual observation, while the unreliable com-

ponents are bounded by it. These bounds are based on the additive noise

assumption, under which the energy of the clean speech signal cannot exceed

that of the observed noisy signal.

In contrast, the sparse imputation approach (Gemmeke et al., 2010, 2011)

represents the T consecutive features as a linear combination of sample clean

speech segments (exemplars) of similar length, with the weights chosen to use

as few exemplars as possible. In the case of feature imputation, the linear

combination weights are estimated based only on the corresponding reliable

components of the features, after which the unreliable components are set to

the values given by the linear combination of the full clean speech exemplars,

if the resulting values are lower than in the noisy observation. This selection

of the lower value reflects the bounds used for cluster-based imputation.

2.3.1. Cluster-based imputation

When missing-feature reconstruction is applied on a continuous speech

recognition task, the log-compressed spectral features are processed in T -

frame windows where T ≥ 1. Each window is represented as a TD-dimensional

vector s(τ), where D is the number of spectral channels in the observed

data. In cluster-based imputation (Raj et al., 2004), the clean speech feature

vectors s(τ) are modeled as independent and identically distributed (i.i.d.)
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samples from a Gaussian mixture model (GMM)

P (s(τ)) =
∑

m

c(m)N (s(τ);µ(m),Σ(m)), (21)

where c(m) is the prior weight and µ(m) and Σ(m) the mean vector and the

full covariance matrix of the m-th GMM component. Maximum likelihood

estimates for the model parameters Λ = {µ(m),Σ(m)}m are obtained from

clean speech training data using the EM algorithm.

Given the observed feature vector y(τ) divided into reliable and unreliable

components, the reconstructed features are calculated as a weighted sum

of cluster-conditional bounded maximum a posteriori (MAP) estimates as

proposed in (Raj et al., 2004). The reconstructed features are given as

ŝ(τ) =
∑

m

ω(m) argmax
s

{P (s|sr = yr(τ), su ≤ yu(τ),Λ,m)}, (22)

where yr(τ) and yu(τ) denote the vectors constructed from the observed

reliable and unreliable components of y(τ) in frame τ , and sr denotes the

clean speech vector components that correspond to yr(τ) and su the clean

speech vector components that correspond to yu(τ). The weight ω(m) is the

posterior probability of cluster m calculated as described in (Raj and Stern,

2005). The cluster-conditional bounded MAP estimation in Equation (22)

can be formulated as a constrained optimization task,

min
s

{
1

2
(s− µ(m))TΣ(m)−1(s− µ(m))} (23)

subject to

sr = yr(τ) and su ≤ yu(τ),
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where µ(m) and Σ(m) are the mean vector and full covariance matrix of the

m-th component in Equation (21). The feature vector that optimizes Equa-

tion (23) corresponds to the m-th bounded MAP estimate in Equation (22).

Note that the clean speech estimate for the reliable features is constrained

to match the observed value.

Finally, when the frame shift between two consecutive windows is less

than the window length T , several reconstructed vectors ŝ(τ), which repre-

sent a multi-frame window centered at frame τ , will contain an estimate for

the same time–frequency component S(τ ′, d). The clean speech estimates

for the individual time–frequency components, Ŝ(τ ′, d), are calculated as the

average of all the components of reconstructed vectors ŝ(τ) that represent

the channel d of frame τ ′.

2.3.2. Sparse imputation

The sparse imputation algorithm (Gemmeke et al., 2010, 2011) provides

an alternative approach to the task of reconstructing the clean speech sig-

nal. Similarly to the cluster-based imputation method, the reconstruction

is processed in T -frame windows, and the compressed spectral features are

concatenated to give a single TD-dimensional vector y(τ). The underlying

clean speech vector s(τ) is represented as a linear combination of exemplars

(i.e. clean speech frames) of the same size,

s(τ) ≈
E
∑

n=1

xn(τ)an = Az(τ), (24)

where z(τ) is the activation vector corresponding to the τ -th frame, and A

is the TD × E sized fixed dictionary of clean speech.
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For reconstruction, the activation vector components are estimated using

the reliable components in each frame, while the reconstructed clean speech

estimate is computed using the full clean speech exemplars. In particular,

the activation vector z(τ) is obtained by solving the minimization problem

z(τ) = argmin
ẑ∈RE

{‖W (τ)Aẑ −W (τ)y(τ)‖2 + λ ‖ẑ‖1} , (25)

where given the binary missing data maskm(τ), the matrixW (τ) = diag(m(τ))

is used to select only the reliable components of frame τ . The λ ‖z‖1 term

is a sparsity-inducing penalty in order to represent the observation using as

few exemplars as possible.

After obtaining the activation vectors, a clean speech estimate is then re-

constructed as s∗(τ). The reliable components of the imputed features ŝ(τ)

are set to y(τ), while the unreliable components are set to min {s∗(τ),y(τ)},

reflecting the additive noise assumption, under which the observation gives

an upper bound for the value of the clean speech features. Finally, as in the

cluster-based imputation method, the clean speech estimates for the individ-

ual time–frequency components, Ŝ(τ ′, d), are calculated as the average of all

the components of reconstructed vectors ŝ(τ) that represent the channel d

of frame τ ′.

3. Experimental setup

3.1. Data

The proposed system is evaluated using the CHiME challenge corpus

described in (Barker et al., 2013). Here only a short overview is given. The

CHiME challenge defines standard training, evaluation and test sets. The
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speech material in CHiME is taken from the Grid corpus (Cooke et al.,

2006) which is reverberated with binaural room impulse responses (BRIRs)

measured from a dummy head at a source-to-receiver distance of 2 meters.

A typical Grid corpus utterance could be, for example, “bin green in r eight

please”. Environmental noises were recorded in a family home over a long

period of time, using the same dummy head setup described above. The

standard training set consists of 17000 utterances of reverberated (but noise-

free) speech. The CHiME development and evaluation sets consist of 600

different utterances with shared speakers. Speech in the development and

evaluation sets are reverberated and mixed with environmental noise samples

at SNRs ranging from −6 to 9 dB at 3 dB intervals. Neither the speech nor

the noise is scaled to obtain a desired SNR; rather, particular SNRs were

obtained by selecting noise samples of an appropriate intensity.

In addition, we constructed a multicondition training set by mixing the

standard clean training set with utterance-length samples extracted from

random locations in the background noise recordings. Following the process

used for the CHiME test sets, no scaling was applied to either the speech or

the noise samples. Rather, the selected noise samples were chosen to provide

an approximately uniform SNR distribution in the −6 dB to 9 dB range for

the utterances of the final multicondition training set.

3.2. Speech recognition system and setup

The baseline system used in this work is a large vocabulary continu-

ous speech recognizer (LVCSR) based on hidden Markov models (HMM)

with state likelihoods modeled by Gaussian mixture models and trained on

CHiME training data. The speaker independent acoustic models of the sys-
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tem are state-tied triphones constructed with a decision-tree method. The

triphone-level segmentations of the CHiME training data were generated by

a LVCSR trained on the Wall Street Journal British English (WSJCAM0)

corpus (Robinson et al., 1995) in “forced alignment” mode. Each state is

modeled with at most 100 Gaussian components and the state durations are

modeled with gamma distributions. Each frame of the speech signal is repre-

sented by 12 MFCC features and a frame power feature, together with their

first- and second-order temporal derivatives. Post-processing of the features

is done by applying cepstral mean subtraction (CMS) before scaling and

mapping with a maximum likelihood linear transformation (MLLT) (Gales,

1999) optimized in training. Finally, the covariance matrices of the Gaus-

sians are diagonalized. A more detailed description of the baseline system is

found in (Hirsimäki et al., 2006).

For language modeling, a no-backoff bigram (i.e. word-pair) model with

uniform frequencies for all valid bigrams is constructed to restrict recognized

sentences to conform to the restricted Grid utterance grammar specified in

(Cooke et al., 2006). The training data described in Section 3.1 was used to

train a clean baseline, multicondition baseline and multicondition model for

imputed data ASR-systems. The multicondition model for imputed data was

trained on the multicondition training set processed by cluster-based impu-

tation using GMM estimated masks (i.e. the best performing MD system;

see Tables 3 and 4). The development set was used for parameter adjustment

and training the mask estimation GMMs (see the detailed description in Sec-

tion 3.3). Finally, an independent evaluation was performed on the standard

evaluation set. For additional speaker adaptation tests, unsupervised con-
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strained maximum likelihood linear regression (CMLLR) was applied to both

multicondition trained systems to further improve the accuracy rate. The

adaptation data for an individual speaker was obtained from the first-pass

recognition hypotheses of the corresponding multicondition trained system

using all the SNRs for the speaker in question of either the development or

evaluation set.

Our baseline system is evaluated against a CHiME baseline system in

Table 5. The differences between the CHiME challenge baseline and our

baseline system are that the CHiME baseline system is trained speaker de-

pendently and the words are modeled as whole-word HMMs. Our baseline

also utilizes MLLT post-processing in addition to CMS.

3.3. Missing feature reconstruction and mask estimation setup

The GMMs used for mask estimation were trained using the EM algo-

rithm implemented in the GMMBAYES Matlab toolbox (Kämäräinen and

Paalanen, 2005). The model parameters were initialized with fuzzy c-means

and the EM algorithm was used for at most 100 iterations. The train-

ing data was constructed from 1800 sentences randomly selected from the

development data (all SNRs) as follows. First, oracle masks were con-

structed based on stereo data (noisy and clean) that allows to exactly cal-

culate the local SNR in each time–frequency component. In the oracle

mask estimation, a time–frequency component Y (τ, d) is considered reliable if
(

10 log10(expS(τ, d))−10 log10(expY (τ, d)−expS(τ, d))
)

> θ, where Y (τ, d)

denotes the noisy log-mel-spectral feature component and S(τ, d) the clean

log-mel-spectral feature component, and θ is a threshold parameter in deci-

bels determined based on speech recognition experiments on the development
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data. The threshold θ giving the best keyword accuracy rate is optimized sep-

arately for each SNR in the development set and separately for cluster-based

(θ ranges from 0 dB to 2 dB depending on SNR) and sparse imputations (θ is

between -2 dB and 2 dB). Separate threshold optimizations for both imputa-

tion methods are required since the optimal values depend on the imputation

method. For example, the optimal θs for cluster based imputation are 0 dB

for SNRs of 6 dB and 0 dB, whereas the respective θs for sparse imputation

are both 2 dB. Each time–frequency component in the noisy training data

was represented as an N -dimensional feature vector o(τ, d) and the reliable–

unreliable classifications were used to divide the training samples into two

sets that were further divided into separate sets for each frequency channel

d.

In this work, the feature vectors o(τ, d) are 14-dimensional, which are

referred to as a full feature set (with features described in Section 2.2.2).

We also use other systems in comparisons presented in Sections 2.2.4 and

4.1.3, that use only a subset of features (feature vectors are either two or

13-dimensional). Based on experiments on the CHiME development data

set, a 14-component GMM was chosen to model each channel-dependent

training dataset. Note that separate training datasets and therefore separate

GMM classifiers were constructed for cluster-based imputation and sparse

imputation because the above described optimal oracle mask thresholds were

different.

The scale factor C introduced in Section 2.2.3 was determined based on

experiments on the development data, which indicated that the optimal value

is C = 1 for cluster-based imputation and C = 0.6 for sparse imputation.
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The missing feature components are reconstructed in theD = 21-dimensional

log-compressed mel-spectral domain. In cluster-based imputation, the fea-

tures are processed in T = 5 frame windows with a window shift of ∆ = 1

frame. 1500 randomly selected utterances from the CHiME training set were

used to train a 13-component clean speech GMM with 105-variate compo-

nent densities and full covariance matrices. The model was trained using the

EM implementation in the GMMBAYES toolbox. The simply constrained

quadratic programming problem in Equation (23) was solved with an active-

set method implemented in the QPC toolbox (Willis, 2010).

The sparse imputation algorithm was applied using windows of T = 15

frames and a window shift ∆ = 1 frame. The window size was selected based

on small-scale tests on the CHiME development data and the clean speech

dictionary consisted of 34000 randomly selected 15-frame exemplars, which

resulted in 315 dimensional exemplar vectors, taken from the CHiME training

set. For the sparse imputation, a Matlab implementation by Gemmeke et al.

(2011) was used.

Increasing the model size i.e. increasing the number of components in the

GMM or using a larger dictionary for CI and SI, respectively, may improve

the performance at the cost of an increase in computation time. For both

methods, pilot investigations (not shown) have shown that any improvement

is only minor and not worth the increased computational effort.
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4. Experiments

4.1. Feature analysis

The mask estimation approach discussed in Section 2.2 classifies each

time–frequency component as reliable or unreliable based on a vector con-

taining N = 14 features. The features are constructed to utilize known

speech characteristics or binaural cues in order to discriminate between the

reliable, speech-dominated components and the unreliable, noise-dominated

components. To analyze how well each feature discriminates between the re-

liable and unreliable data, the distributions of reliable and unreliable features

are compared, and mask estimation experiments using feature sets with N−1

features are conducted. The experiments were conducted on the SNR 6 dB

and 0 dB development data described in Section 3.1, and the reliable and

unreliable components were determined based on oracle masks with a 0 dB

threshold. Using a 0 dB threshold means that a component is interpreted

as speech-dominated when the speech energy exceeds the noise energy, and

noise-dominated when the noise energy exceeds the speech energy. 0 dB is

also the optimal threshold for cluster-based imputation in SNR 6 dB and

0 dB conditions, whereas the optimal for sparse imputation is 2 dB.

4.1.1. Feature histograms

In this experiment, the reliable and unreliable feature distributions are

represented as normalized histogram vectors. The histogram vectors were

constructed as follows. The N -dimensional data vectors o(τ, d) are each

associated with an oracle mask label that indicates whether the vector de-

scribes a reliable or an unreliable time–frequency component Y (τ, d). Based
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on the mel-spectral channel d and oracle mask label, the data vectors can be

divided into D · 2 sets, where D is the number of mel-spectral channels. The

components of the data vector o(τ, d) correspond to the different features

used for mask estimation, so we represent the distribution of each compo-

nent within each of the D · 2 datasets as a normalized histogram vector h.

The histogram vector dimension depends on the feature n, for continuous

features are represented with 1000-bin histograms but discrete features are

not represented with more histogram bins than they have discrete values. A

histogram vector calculated for the n-th feature based on a set where the

data vectors are associated with channel d and labeled reliable is denoted

as hr(n, d) and a histogram calculated based on a set where the vectors are

labeled unreliable as hu(n, d).

In order to rank features based on the dissimilarity between their reli-

able and unreliable values, the normalized histogram vectors were compared

using two dissimilarity measures: cosine distance, which measures similarity

based on the normalized inner product between the vectors, and information

radius or Jensen–Shannon divergence, which measures the difference in rela-

tive entropy between the distributions P and Q and the average distribution

(P + Q)/2. L1 and Bhattacharyya distances were also computed but the

results were similar to the results of cosine distance or information radius,

respectively, and are hence not presented. For a comprehensive survey of

dissimilarity measures, see (Cha, 2007).

To measure the feature discrimination power, the dissimilarity between

the normalized histogram vectors hr(n, d) and hu(n, d) for each feature n

and each frequency channel d was calculated. The results are displayed in
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Figure 1: Dissimilarity between the reliable and unreliable feature distributions measured

using cosine distance and information radius. The cosine distances and information ra-

diuses between the reliable and unreliable histograms of each feature in each channel are

displayed on a scale from 0 (white) to 0.18 (black). The average across-channel cosine

distance or information radius of each feature is displayed as a separate plot. Results

from the SNR 6 dB and 0 dB conditions are reported in separate plots. Note that the

differences between the results from the two conditions are due to differences in both the

noise level and noise type.

Figure 1. Both dissimilarity measures give the reliable and unreliable feature

distributions low dissimilarity scores in general. The average cosine distance

is 0.02 and the average information radius 0.03 on a scale from 0 to 1 where

0 indicates exactly overlapping distributions and 1 indicates that the distri-

butions do not overlap. Highest dissimilarity scores are observed between
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the reliable and unreliable ITD and interaural coherence distributions in the

mel channels above d = 10. Additionally, the dissimilarity scores between

the reliable and unreliable LTE distributions are consistently above average

in every mel channel.

While the dissimilarities measured with cosine distance and information

radius mostly follow the same pattern, a few notable differences may be

observed. For example, information radius indicates an above-average dis-

similarity between the reliable and unreliable peak ITD distributions in the

mel channels above d = 10, whereas their cosine distance is almost zero.

This is because the cosine distance emphasizes differences between histogram

bins with large normalized counts and because the peak ITD distributions

have two components: a continuous, unimodal component and a peak at

PITD = 1. The continuous parts in the reliable and unreliable peak ITD dis-

tributions have an average across-channel cosine distance of 0.04, but since 1

is the single most observed value in both reliable and unreliable components,

the concurrent peaks dominate the inner product, and hence, the cosine dis-

tance between the distribution vectors.

Finally, we have also calculated the average of the measured channel–

dependent dissimilarities (Figure 1). We note that while the average across-

channel dissimilarities conveniently characterize the discrimination power of

each feature with one number, the unweighted average does not completely

correlate with the missing data task performance. This is because the mask

estimation errors in different frequency channels do not have an equal effect

in the missing-feature reconstruction performance; errors in certain channels

have a larger effect in the overall result (Gemmeke et al., 2008).
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4.1.2. Feature-pair histograms

Since the features are used together with other features rather than in-

dependently, experiments with feature combinations were also conducted.

In these experiments, two-feature combinations were considered. Normal-

ized feature-pair histograms were calculated from the same D · 2 datasets

that were used to calculate the feature histograms in Section 4.1.1. The his-

togram vectors constructed for feature pairs are different from the histogram

vectors constructed for single features in that each histogram bin defines

an applicable range for both features rather than one feature. Other than

using 2-dimensional bins and data points, the feature-pair histograms are

constructed as described in Section 4.1.1. A histogram vector calculated for

the n-th and n′-th feature based on a set where the data vectors are asso-

ciated with channel d and labeled reliable is denoted as hr(n, n
′, d) and a

histogram calculated based on a set where the vectors are labeled unreliable

as hu(n, n
′, d).

The normalized histogram vectors were compared using the cosine dis-

tance and information radius. Again, L1 and Bhattacharyya distances were

found to be very similar to the results of cosine distance and information

radius and hence are not presented. To facilitate the comparisons between

individual features, the average dissimilarities across all configurations with

the given feature n were calculated. The results are displayed in Figure 2.

The average dissimilarity between feature pair distributions is 0.12 with the

cosine distance and 0.24 with the information radius. Both dissimilarity mea-

sures suggest that while the modulation filtered spectrogram, gradient, har-

monic and inharmonic energy, and channel difference were not particularly
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Figure 2: The dissimilarity scores reported here are the average cosine distance or infor-

mation radius between the reliable and unreliable feature-pair distributions that include

the indicated feature. The average cosine distances between the reliable and unreliable

feature-pair histograms that include the indicated feature are displayed for each channel

in scale from 0 (white) to 0.3 (black) and the information radiuses in scale from 0 (white)

to 0.45 (black). The average across-channel cosine distance and information radius are

displayed separately and the results from the SNR 6 dB and 0 dB conditions reported in

separate plots.

effective in separating between reliable and unreliable components when ana-

lyzed independently, they notably increase the dissimilarity between reliable

and unreliable component distributions when combined with other features.

In addition, the dissimilarity scores between the reliable and unreliable LTE

feature distributions are above average in every mel channel, and finally, the

information radius between the reliable and unreliable gain feature distribu-
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tions is notable especially in the mel channels d = 2 . . . 5.

4.1.3. Feature discrimination power in mask estimation

Mask estimation experiments with a 7-component GMM classifier trained

either using the full feature set or a set with N − 1 features was conducted.

The classifier was trained on a 600 utterance training dataset constructed

by randomly selecting 100 utterances from each development set SNR. The

estimated masks were (a) compared to the oracle masks and (b) evaluated

in the missing feature reconstruction and keyword recognition task described

in Section 3.1. The features were reconstructed using cluster-based imputa-

tion. Comparison with the oracle masks allows us to determine how often

a component labelled as reliable corresponds to a reliable component in the

oracle mask (precision) and how often a reliable component is labelled as

reliable in the estimated mask (recall). The F1 scores calculated based on

comparison with the oracle masks and the keyword accuracies obtained in

the reconstruction and recognition task are reported in Table 2.

Using all N = 14 features in mask estimation results in the best F1 score

and also in the best keyword accuracy when the average results from 6 dB and

0 dB conditions are compared. The features whose removal most degrades

the system performance are inharmonic energy, flatness, and channel differ-

ence. Additionally, when mean to peak ratio is not included in the feature

set, the keyword accuracy degrades in the 6 dB condition where removing a

single feature often improves the performance. We find it noteworthy that

inharmonic energy, flatness, and channel differences, whose removal most de-

grades the results, have continuous, unimodal distributions, i.e. distributions

that a GMM can efficiently model. The histogram experiments, which re-
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Table 2: (a) F1 scores and (b) keyword accuracies (%) measured on the development data

when each feature is in turn excluded from the feature set used for mask estimation. The

labels indicate which feature is not used in the experiment, and “none” indicates that all

features are used. An underlined average result suggests that the feature is one of the

three most important features for mask estimation.

(a)

MOD MPR GRAD HA IHA FLAT GAIN LTE S2N ILD ITD PITD IC DIFF None

6 dB 0.79 0.79 0.79 0.79 0.77 0.77 0.79 0.79 0.80 0.80 0.80 0.80 0.78 0.76 0.80

0 dB 0.71 0.71 0.71 0.70 0.69 0.67 0.70 0.71 0.70 0.72 0.71 0.72 0.70 0.68 0.72

Avg. 0.75 0.75 0.75 0.74 0.73 0.72 0.75 0.76 0.75 0.76 0.76 0.76 0.74 0.72 0.76

(b)

MOD MPR GRAD HA IHA FLAT GAIN LTE S2N ILD ITD PITD IC DIFF None

6 dB 83.3 81.9 82.9 82.1 81.7 82.2 82.6 83.1 82.8 83.0 82.8 83.6 82.8 82.2 82.3

0 dB 63.0 62.8 62.7 63.8 60.9 60.4 63.7 63.9 64.1 61.8 62.6 62.3 63.1 60.9 65.0

Avg. 73.1 72.3 72.8 72.9 71.3 71.3 73.1 73.5 73.4 72.5 72.7 73.0 73.0 71.6 73.7

sulted in a different ranking for the features, did not take such factors into

account. The histogram experiments also did not consider N − 1 feature

combinations but individual features or feature pairs.

4.2. Speech recognition performance of imputation and mask estimation meth-

ods

The speech recognition results are collected in Tables 3, 4 and 5, and

the system ranking is based on their average results. The highest scores on

each evaluation set SNR is shown in bold type. First, cluster-based imputa-

tion (CI) was evaluated with three mask estimation methods: 14-component

GMM classifier trained on the full 14-feature set (GALL), 14-component

GMM classifier trained on ILD–ITD pairs (GBIN), and an ILD–ITD his-
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Table 3: Keyword accuracy rates of cluster-based imputation (CI) using binaural his-

togram (HBIN), binaural GMM (GBIN) and GMM (GALL) mask estimation techniques

for the CHiME development and evaluation sets.

Devel set Eval set

9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg. 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CI+HBIN 87.8 83.9 75.3 62.4 53.1 47.8 68.4 88.6 79.8 70.8 58.9 47.4 46.3 65.3

CI+GBIN 88.7 84.3 77.1 67.1 56.8 52.6 71.1 88.5 83.2 73.5 63.6 54.9 48.6 68.7

CI+GALL 88.6 85.3 78.1 68.6 60.6 55.1 72.7 90.3 84.3 76.9 68.2 58.2 56.3 72.3

togram (HBIN). The keyword accuracy rates obtained with the mask esti-

mation methods are compared in Table 3. HBIN mask estimation receives

the lowest scores in almost in every SNR condition on both development and

evaluation data sets, with respective averages of 68.4% and 65.3%. GBIN,

with an average of 71.1% for the development set and 68.7% for the evalua-

tion set, outperforms HBIN at every SNR, excluding the 9dB evaluation set.

GALL achieves the highest average scores, of 72.7% and 72.3% on the devel-

opment and evaluation sets respectively. Based on these results, GMM mask

estimation trained on the full feature set (GALL) was selected for subsequent

evaluation.

Statistical significance of the keyword accuracy difference between each

system pair on the evaluation set was computed by the Wilcoxon signed-rank

test with a 95 % confidence level. The details of the statistical analysis are

presented in Appendix A, with the results of SNR-wise system comparisons

shown in Tables A.6 and A.7. In this section, we present only the statistics

of the pairwise comparisons based on the average results, except for the
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Table 4: Keyword accuracy rates of cluster-based imputation (CI) and sparse imputation

(SI) using oracle (ORA) and GMM (GALL) estimated masks for the CHiME development

and evaluation sets.

Devel set Eval set

9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg. 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CI+ORA 93.5 93.0 92.3 90.1 86.2 86.6 90.3 N.A.a

CI+GALL 88.6 85.3 78.1 68.6 60.6 55.1 72.7 90.3 84.3 76.9 68.2 58.2 56.3 72.3

SI+ORA 93.7 93.8 92.3 90.5 90.3 88.2 91.5 N.A.a

SI+GALL 81.7 80.3 68.1 59.5 49.5 42.7 63.6 84.3 78.3 67.3 57.1 44.2 42.7 62.3

a Oracle masks can not be generated for the evaluation set.

statistics computed for Table 4 which are fully described. In Table 3, all the

differences between the system averages are statistically significant.

Keyword accuracy rates for cluster-based imputation (CI) and sparse im-

putation (SI) using oracle masks (ORA) and masks estimated by the GMM

mask estimation (GALL) for the CHiME development and evaluation sets

are collected in Table 4. When oracle masks are used, the accuracy of SI is

higher or equal to the accuracy of CI in every development set SNR condition.

Respective averages for SI and CI are 91.5% and 90.3%. Both imputation

systems using oracle masks outperform those using GMM estimated masks

(GALL) by a large margin, especially at low SNRs. However, when GMM es-

timated masks are used, CI achieves higher accuracies in every development

and evaluation set SNR condition. Development and evaluation set averages

for CI with GMM estimated masks are 72.7% and 72.3%, and the respective

averages of SI are 63.6% and 62.3%. For further system analysis, CI was

selected as the imputation method. Statistically significant differences are
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Table 5: Keyword accuracy rate improvements over CHiME baseline (CBL) and our base-

line (BL) for CHiME development and evaluation sets. Abbreviations: Cluster-based im-

putation using GMM estimated masks (CI+GALL), multicondition trained system (MC),

multicondition models for CI+GALL imputed data (MCI), unsupervised speaker adapta-

tion (SA).

Devel set Eval set

9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg. 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CBL 83.1 73.8 64.0 49.1 36.8 31.1 56.3 82.5 75.0 62.9 49.5 35.4 30.3 55.9

BL 83.3 80.0 69.8 55.2 46.0 40.6 62.5 86.3 78.3 68.5 53.9 44.3 41.9 62.2

CI+GALL 88.6 85.3 78.1 68.6 60.6 55.1 72.7 90.3 84.3 76.9 68.2 58.2 56.3 72.3

MC 87.7 85.7 80.9 69.2 62.2 54.4 73.3 88.4 84.3 78.8 71.3 61.3 53.9 73.0

MC+SA 88.1 85.9 81.7 70.5 63.0 56.8 74.3 89.2 84.9 79.7 72.0 62.4 54.7 73.8

MCI 88.3 87.5 83.0 73.1 65.5 60.9 76.4 89.0 86.3 82.4 74.3 65.2 61.8 76.5

MCI+SA 88.3 88.5 83.3 73.8 65.9 61.4 76.9 89.6 86.7 83.2 75.4 65.7 62.3 77.1

found for all pairwise system comparisons in Table 4 on keyword spotting

accuracy over each evaluation set SNR and average.

In Table 5, keyword accuracy rates of the CHiME baseline system (CBL)

and our own baseline system (BL) are evaluated against the multicondition

trained systems and the best performing missing data system. The BL system

achieves higher rates than CBL in every SNR condition on both data sets.

The development set averages for CBL and BL are 56.3% and 62.5%, and for

evaluation set 55.9% and 62.2%, respectively. Cluster-based imputation using

GMM estimated masks outperforms BL on every SNR condition for both

data sets, with averages of 72.7% on the development set and 72.3% on the

evaluation set (CI+GALL). The multicondition trained system (MC) gives
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average rates of 73.3% and 73.0% for the development and evaluation sets,

respectively, which are comparable to CI+GALL; higher rates are obtained

by CI+GALL on 9 dB and −6 dB cases on both sets, otherwise MC performs

better or equal. Applying unsupervised speaker adaptation (SA) to MC, all

the rates in every SNR condition on both data sets are improved. Averages

of 74.3% and 73.8% are achieved for the development and evaluation sets,

respectively. The multicondition model for imputed data (MCI) outperforms

MC+SA almost in all SNR conditions and the average rates are increased to

76.4% in the development set and to 76.5% in the evaluation set. Comparing

MCI to CI+GALL system, relative improvements of 2.4%, 7.2%, 8.9%,12.0%,

and 9.8% are obtained on SNRs ranging from 6 dB to −6 dB, respectively.

Applying SA to the MCI system, average rates of 76.9% and 77.1% are

reached for the development and evaluation sets, which are either equal or

slightly increased over MCI in every SNR condition on both sets.

We also observe that systems based on MCI gain higher average rates on

the evaluation set than on the development set, which is not observed for

other cases. Overall, MCI+SA receives the highest accuracy rates on almost

every SNR condition of the evaluation set. Comparing the best performing

method MCI+SA to BL, relative improvements ranging from 3.8% to 48.7%

are observed.

All the differences in the average accuracies of the evaluation set in Table 5

are statistically significant except between system pairs CI+GALL and MC,

and CI+GALL and MC+SA.
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5. Discussion

In this study, a mask estimation method based on a GMM classifier uti-

lizing a set of fourteen features was proposed including both monaural and

binaural representations. Notably the set included two new binaural features

(peak ITD and interaural coherence) not previously used in the context of

missing data reconstruction. The proposed method was evaluated against

two kinds of binaural reference masks; one adapted from (Harding et al.,

2006) and the other based on ILD–ITD features applying the GMM clas-

sifier. The evaluations were performed using CHiME corpus in applying

missing data reconstruction with cluster-based (CI) and sparse imputation

(SI) methods. The proposed method using the full feature-set outperformed

the reference methods using only ILD and ITD. Regarding comparisons of

the two imputation methods, CI clearly outperformed SI when the estimated

masks were used. Additional performance improvements were obtained with

speaker adaptation and re-training HMMs in the ASR back-end for the re-

construction error.

While the present work on the CHiME challenge is based on a rather

small vocabulary recognition, our ultimate goal is to apply the proposed

methods in large vocabulary tasks. This justifies our choice of focusing on

imputation approaches that make it possible to use cepstral or other decor-

related features, rather than on classifier modifications that require spectral

features. It also justifies the use of our own complex LVCSR-system rather

than the CHiME baseline system. We also note that our LVCSR baseline

system produced better results than the CHiME baseline.

Section 2.2.4 described our adaptation of Harding et al.’s binaural histogram-
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based mask estimation technique (Harding et al., 2006), which provided ref-

erence masks (HBIN) for the present study with feature representation based

on ILD and ITD cues alone. Our implementation of Harding et al.’s scheme

does not gather statistics from noisy conditions, as was done in their paper

– instead, we compare observed ILD–ITD feature pairs to a histogram that

represents the ILD–ITD distribution for clean speech. A more faithful imple-

mentation of Harding et al.’s approach was also tried on CHiME data, but

poor results were obtained; most likely this was due to the noise background

in the CHiME corpus, which is much more spatially diffuse than the strongly

localized noise sources used in Harding et al.’s study.

The reasons why the proposed mask estimation technique outperforms

the reference HBIN system are now considered. Most importantly, our ap-

proach uses a diverse range of fourteen features (including ILD and ITD),

whereas the HBIN system uses only ILD and ITD. Secondly, the data repre-

sentations in the classifier model are different; our approach uses GMMs for

both the reliable and unreliable data, whereas HBIN uses histograms only

for reliable data. To investigate the role of the ILD–ITD data representation,

we also tested a binaural reference mask that was directly comparable to the

full feature set approach (GALL). We therefore trained a GMM classifier for

ILD–ITD data, with settings of the model (GBIN) that exactly matched the

main approach (GALL), including the same number of Gaussians and sep-

arate models for reliable and unreliable components. The GBIN approach

provided a performance improvement over HBIN, but was poorer than GALL.

In addition, it is worth noting that our implementation of ITD estimation

(in GBIN and GALL) uses normalized GCC-PHAT cross-correlation, which
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provides more accurate time delay estimation than the conventional cross-

correlation (Perez-Lorenzo et al., 2012) used in HBIN and in the original

work of Harding et al. (2006). Taken together, GBIN most likely gave a

performance improvement over HBIN because the GMMs were better able

to construct a representation of the data, and some additional improvement

could have been achieved by using a more accurate ITD estimation algo-

rithm. However, we can not completely rule out the possibility that there

may still exist a substantially better configuration for the histograms used in

HBIN. Thus with more effort to refine the parameters of a histogram based

representation, one could possibly improve also the performance of the HBIN

approach.

There are a several probable reasons why the full fourteen feature set

mask estimation was more effective than the ILD–ITD pair based estimation.

First, the classifier had access to interaural coherence, and may therefore have

placed less weight on ILD and ITD cues with low coherence. Second, ILD

and ITD are degraded by reverberation to some extent, but the 14-feature

set contains features (e.g. modulation filtered spectrogram) that are more

reverberation-robust. Finally, the noise backgrounds contain interference

from a range of spatial locations; if the noise and target locations overlap,

then monaural cues are needed to determine the mask.

In the experiments where a single feature was removed from the mask

estimation feature set, we observed that in the SNR 6 dB condition, using

one less feature often improved the keyword accuracy. This may be due to

correlations between the different features, and suggests that the feature set

used for mask estimation could benefit from dimensionality reduction. We
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also note that the results in Table 2 represent a GMM that was essentially

trained from a data dependent initialization. Depending on the initialization

(i.e. the feature set), training may have focused on minimizing the error

between the GMM and sharp, discrete peaks such as the peak in the PITD

distribution (discussed in Section 2.2.2). It is therefore possible that some

features may have potential that we were not able to exploit with a GMM

classifier. A support vector machine (SVM), which does not attempt to

model the class distributions but the decision border between classes, could

be used with the proposed mask estimation method for improved classifica-

tion accuracy. Further classification approaches will be investigated in the

future.

Feature analysis indicated that the reliable and unreliable feature dis-

tributions are most dissimilar when binaural features are used (Figure 1),

and in the mask estimation experiments, using a GMM classifier trained

on ILD–ITD pairs resulted in acceptable missing feature reconstruction and

speech recognition performance (Table 3). However, the results from mask

estimation experiments in Tables 2 and 3 indicate that on average, the best

performance is obtained with the full feature set that includes both binaural

and monaural features, and the feature pair analysis (Figure 2) suggested

modulation filtered spectrogram is more important than the binaural fea-

tures when features are used as a set. Like binaural features, the modulation

filtered spectrogram can indicate speech components corrupted with rever-

beration.

This combination-of-features-theory is also promoted by the observation

that the proposed mask estimation method combined with cluster-based im-
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putation imparts high generalization power, since the decrease in average

accuracy rate is considerably smaller than on the reference methods when

shifting from the development set to the evaluation set (Table 3). The mul-

ticondition trained system and multicondition model for imputed data offer

similar generalization power with higher performance.

Considering the comparison between the two imputation methods, it is

perhaps surprising that CI achieves higher accuracies than SI when estimated

masks are used. In previous work, SI achieved substantially higher accuracies

than CI in a large vocabulary task using the SPEECON corpus (Iskra et al.,

2002), although also in that work, the gap between oracle mask and estimated

mask recognition accuracies was large. In that work however, no time-context

was used in CI, whereas in (Remes et al., 2011) CI using multi-frame windows

showed superior performance over SI on speech corrupted by impulsive noises,

while SI did outperform CI on speech corrupted with babble noise. From this,

we conclude that SI is more sensitive to the type of mask estimation errors

made on the noise types with which the CHiME data is corrupted.

It is known that SI is more sensitive to features incorrectly labeled as

reliable, as the presence of these false reliables results in finding incorrect

exemplar representations (Iskra et al., 2002). The fact that C < 1 for SI

(resulting in fewer reliable features) while the oracle mask thresholds do not

differ much from those used in CI shows that this issue is relevant to the

CHiME dataset. Moreover, we observe that even at the highest SNRs, there

is a substantial drop in recognition accuracy when compared to the use of

oracle masks. Although a detailed analysis of the mask estimation errors that

lead to a lower performance of SI with respect to CI is out of the scope of this

48



paper, these findings lead us to hypothesize that the mask estimation method

presented in this work consistently labels some features incorrectly as reliable.

Future work will have to test the validity of this hypothesis, for example

by experimenting with missing data masks containing only mask estimation

errors on reliable features or on unreliable features. Another, perhaps more

pragmatic line of research would be to investigate to what extent the re-

training of the acoustic model on SI-processed speech can compensate for

the errors introduced by SI.

In conclusion, in this paper we presented a mask estimation method that

employs a comprehensive set of features, which focus on reverberation, noise

robustness and on monaural and binaural aspects of the noisy speech signal.

We presented an analysis of the discriminative power of each of the features

as well as evaluations on a noise robust speech recognition task. Although

the performance gap with error-free oracle masks remains large, the evalua-

tions show that the presented mask estimation technique works substantially

better than previously used mask estimation methods that only employ a

subset of these features.

Finally, it should be noted that the standard approach in missing data

techniques has been to use models in the ASR back-end that have been

trained using clean (noise free) speech (Cooke et al., 1994), which is in con-

trast to many practical speech recognition applications that commonly use

multicondition training. In the present study training the system on the

imputed speech (MCI) was rather successful. Improvements using the MCI

systems were at their largest at low SNRs. This could be explained by the

fact that at low SNRs both mask estimation and imputation are more prone
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to errors than at high SNRs, and the effect of multicondition training is ex-

pected to counteract these errors. We would also expect that in the CHiME

data the improvements due to multicondition training might be relatively

large as the data is very challenging for both the mask estimation and impu-

tation due to non-stationary noises and interference from competing speech.

In conclusion, a key finding from the present study is that the imputation

missing data approach can benefit from multicondition training when trained

on imputed speech, which in turn might make missing data techniques a more

viable option for practical noise robust ASR applications.
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Appendix A. Statistical analysis

For the Wilcoxon signed-rank test in separate SNR cases, the recognition

data of two compared systems are paired speakerwise (with CHiME data, the

number of ranked pairs i.e. speakers is 34) and the ranking is based on the

correct keyword counts. For computing the statistics of the average results,

the correct keyword counts are collected speakerwise from all SNR cases so

that the number of ranked pairs remains the same as in the separate SNR

cases.

Statistical significances of pairwise system comparisons of the evaluation

set for Table 3 are gathered in Table A.6 and the statistics of Table 5 are gath-

ered in Table A.7. In Table 4, all differences in pairwise system comparisons

are statistically significant thus no separate statistics table is presented.

Table A.6: Statistical significances of pairwise system comparisons of the evaluation set

presented in Table 3. “−” and “+” denote negative and positive statistical significance,

respectively.

Pair 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CI+HBIN – CI+GBIN - + + + + + +

CI+HBIN – CI+GALL - + + + + + +

CI+GBIN – CI+GALL + - + + + + +
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Table A.7: Statistical significances of pairwise comparisons of the evaluation set presented

in Table 5. “−” and “+” denote negative and positive statistical significance, respectively.

Pair 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CBL – BL + + + + + + +

CBL – CI+GALL + + + + + + +

CBL – MC + + + + + + +

CBL – MC+SA + + + + + + +

CBL – MCI + + + + + + +

CBL – MCI+SA + + + + + + +

BL – CI+GALL + + + + + + +

BL – MC + + + + + + +

BL – MC+SA + + + + + + +

BL – MCI + + + + + + +

BL – MCI+SA + + + + + + +

CI+GALL – MC + - - + - + -

CI+GALL – MC+SA - - - + + - -

CI+GALL – MCI - - + + + + +

CI+GALL – MCI+SA - + + + + + +

MC – MC+SA - - - - + - +

MC – MCI - - + + + + +

MC – MCI+SA - + + + + + +

MC+SA – MCI - - + + + + +

MC+SA – MCI+SA - - + + + + +

MCI – MCI+SA - - - - - - +
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Palomäki, K.J., 2011. Mask estimation and sparse imputation for miss-

ing data speech recognition in multisource reverberant environments, in:

CHiME 2011Workshop on Machine Listening in Multisource Environment,

Florence, Italy. pp. 58–63.
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