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Abstract

Despite the promising results achieved in last years by statistical machine translation, and more precisely,
by the neural machine translation systems, this technology is still not error-free. The outputs of a machine
translation system must be corrected by a human agent in a post-editing phase. Interactive protocols
foster a human—computer collaboration, in order to increase productivity. In this work, we integrate the
neural machine translation into the interactive machine translation framework. Moreover, we propose new
interactivity protocols, in order to provide the user an enhanced experience and a higher productivity.
Results obtained over a simulated benchmark show that interactive neural systems can significantly improve
the classical phrase-based approach in an interactive-predictive machine translation scenario.

Keywords: Neural machine translation; Interactive-predictive machine translation; Recurrent neural
networks

1. Introduction

The statistical framework has allowed a breakthrough in machine translation (MT) and new systems
provide admissible results for many tasks. However, in other scopes the quality of fully-automated systems
is insufficient. In such cases, MT is used to obtain translation hypotheses, which must be supervised and
corrected by a human agent in a post-editing (PE) stage. This working method is more productive than
a completely manual translation, since the translator starts from an initial hypothesis that must be cor-
rected. Nevertheless, this is a decoupled strategy in which computer and human agent work independently.
Higher efficiency rates can be reached if human and system collaborate on a joint strategy. Seeking for
this human—computer collaboration, Foster et al. (1997) introduced the so-called interactive-predictive MT
(IMT), further developed by Alabau et al. (2013), Barrachina et al. (2009), Bender et al. (2005), Langlais
and Lapalme (2002) and Macklovitch (2006).

This approach consists in an iterative prediction—correction process: each time the user corrects a word,
the system reacts offering a new translation hypothesis, expected to be better than the previous one. In the
basic IMT proposal, the user was constrained to follow a left-to-right protocol. Always was corrected the
left-most wrong word from a translation hypothesis. This word, together with the previous ones, formed a
validated prefix. At each iteration, the user validated a larger prefix and the system produced an appropriate
suffix for completing the translation.

IMT evolved during the years, introducing advances related to the generation of the new suffix (Azadi
and Khadivi, 2015; Cai et al., 2013; Green et al., 2014b; Koehn et al., 2014; Ortiz-Martinez, 2011), and
the possibility of suggesting more than one suffix (Koehn, 2010; Torregrosa et al., 2014). Other novelties
came from profiting the use of the mouse, validating a prefix and suggesting a new suffix each time the user
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clicked into a position to type a word correction (Sanchis-Trilles et al., 2008). The addition of confidence
measures aided the user to validate correct prefixes (Gonzélez-Rubio et al., 2010a,b). The use of online
learning techniques was also studied, aiming to improve the system with the user feedback (Mathur et al.,
2014; Nepveu et al., 2004; Ortiz-Martinez, 2016). Related to this, Gonzélez-Rubio et al. (2012) explored the
active learning protocol in an interactive post-edition stage. An interactive approach was also developed
for hierarchical translation models (Gonzalez-Rubio et al., 2013). Multimodal interaction integrated hand-
writing recognition/speech recognition into the IMT environment (Alabau et al., 2011, 2014). Green et al.
(2014a) investigated the interactive use of translation memories. Nonetheless, the core of the user protocol
remained the same in all these cited works. Recent works (Gonzélez-Rubio et al., 2016) strove to overcome
the prefix-based approach. One of the interactive protocols proposed in our work, relies on these latter ideas
of breaking down the prefix constraint.

The prefix-based protocol suffered from three main issues: first, it was quite restrictive. The human
translator was forced to always follow the left-to-right validation direction. This could be unnatural for the
users or even inadequate in many cases. Second, the IMT system could produce worse suffixes, which also
should be corrected by the user. Apart from increasing the human effort of the process, this introduced an
annoying behaviour: the user had to correct words that were right in previous iterations, leading to user
exasperation. The third issue was the computational cost of the (prefix-constrained) search for alternative
hypotheses, which prevented the use of regular decoders. The increase of the computational power has
alleviated this problem, allowing the use of more complex models and search strategies, in order to reach
real-time generation of successive hypotheses.

Pursuing to overcome both first problems, in this work we propose an alternative protocol: when a
hypothesis is generated, the user can select correct word sequences, called segments, from all over the
sentence. These segments are considered to be valid and will remain in future iterations. The user can
also correct wrong words, as in the classical approach. The system offers then an alternative hypothesis,
that takes into account the corrected word together with the validated segments. Thus, correct parts of
the hypothesis are kept during successive interactions, offering a more comfortable user experience and an
increase in the productivity.

Up to now, the IMT approaches were based on discrete representations of words and sentences. Never-
theless, in the last years, continuous representations of words and sentences have gained much the attention
of the natural language processing community. Distributed representations are richer than classical ones,
yielding encouraging results. Although neural models were already applied to MT long ago (Castano and
Casacuberta, 1997), they finally took off recently and its use has dramatically increased. Bengio et al. (2003)
proposed to project words into a distributed space and estimate the probabilities of a language model in such
space. From here, continuous models have been used profusely in a wide range of tasks like language mod-
elling (Mikolov et al., 2010; Schwenk, 2007; Sundermeyer et al., 2012), handwritten text recognition (Graves
et al., 2009) or automatic speech recognition (Graves et al., 2013). In the MT field, neural models have
been successfully introduced into the current statistical machine translation (SMT) pipeline, both in the
phrase-based and hierarchical approaches (Devlin et al., 2014; Sundermeyer et al., 2014).

In addition to this, a neural approach to MT has been recently proposed (Cho et al., 2014; Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014). Neural machine translation (NMT) has emerged as one of the
most promising technologies to tackle the MT problem. It is based on the use of neural networks for building
end-to-end systems. The translation problem is addressed by a single, large neural network, which reads
an input sentence and directly generates its translation. This is opposed to classical approaches to MT
(e.g. Koehn et al. (2003)), made up of multiple decoupled models. Most architectures are based on recurrent
neural networks (RNN). In order to properly deal with long-term relationships, RNNs use gated units, such
as long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997) or gated recurrent units
(GRU) (Cho et al., 2014).

There has been a significant effort for improving the NMT model. Thus, attention mechanisms were
included to the model (Bahdanau et al., 2015; Luong et al., 2015b), allowing the model to focus on different
parts of the input sentence. The out-of-vocabulary problem was tackled by Jean et al. (2015), Luong et al.
(2015a) and Sennrich et al. (2016). Jean et al. (2015) also investigated the use of large target vocabular-
ies. Gulcehre et al. (2015) included additional monolingual resources into the system. NMT at character-level
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has also obtained promising results (Chung et al., 2016; Costa-Jussa and Fonollosa, 2016; Ling et al., 2015).

Furthermore, the same neural framework has also been recently applied in different tasks, such as im-
age (Vinyals et al., 2015b; Xu et al., 2015) and video captioning (Peris et al., 2016; Yao et al., 2015), image
generation (Gregor et al., 2015) or syntactic constituency parsing (Vinyals et al., 2015a).

NMT systems implement fairly simple decoders, especially compared to the classical PB ones. Hence,
to modify the decoder for integrating interactive mechanisms is easier than in the PB (Sanchis-Trilles et al.,
2014) or hierarchical MT approaches (Gonzélez-Rubio et al., 2013).

In this work, we explore the integration of the NMT technology into the interactive framework. To the
best of our knowledge, this is the first work that delves into the combination of the interactive paradigm
together with neural systems. Our main contributions are the following;:

1. We adapt the NMT paradigm to fit into the classical prefix-based interactive MT.

2. We implement an alternative interaction protocol that aims to offer the user more freedom and a more
comfortable and more productive experience. We formulate and implement strategies for applying the
NMT technology within the extended protocol.

3. We conduct a wide experimentation, tackling the different translation tasks usually employed in the
literature. Such tasks feature different language pairs, domains and complexities. Results show signif-
icant improvements over the traditional PB systems.

This manuscript is structured as follows: after this introduction, Section 2 is devoted to the main concepts
and statistical formalization of IMT. NMT is presented in Section 3. In Section 4, we deploy the integration
of NMT systems into the IMT protocols. The experimental framework is set up in Section 5. In Section 6,
we show and discuss the experimental results obtained. Finally, conclusions are drawn in Section 7.

2. Interactive machine translation

IMT arose as an alternative to the classical PE stage, in which a human agent supervised and corrected
the output of an MT system in a decoupled manner. Under the interactive paradigm, the PE stage shifts to an
iterative human—computer collaboration process: each time the user makes a correction, the system suggests
a new translation according to the feedback introduced by the user. IMT strives hence, for combining the
efficiency of an MT engine with the knowledge of a human translator.

Classical IMT proposals (Alabau et al., 2013; Barrachina et al., 2009) are based on the statistical for-
malization of the MT problem. The goal of SMT (Brown et al., 1993) is to find the best translation

9l =91, .. ,§5 of length f, given a source sentence x{ = x1,...,x  of length J:
§i = argmax Pr(y] | 27) (1)

Lyf

During several years, the state of the art in SMT were PB systems, based on bilingual phrases as
translation units (Koehn et al., 2003; Zens et al., 2002). PB models combine different features by means
of a log-linear model (Och and Ney, 2002). SMT based on stochastic finite state models also played a
significant role in previous IMT works (Barrachina et al., 2009); but the prevailing SMT technology were
PB systems (Koehn et al., 2007). Nevertheless, in the last few years, this trend is shifting in favour of neural
approaches (Bojar et al., 2016). To the best of our knowledge, the integration of interactive protocols in the
NMT approach remains unexplored.

2.1. Prefiz-based interactive machine translation

In the classical prefix-based IMT protocol, computer and human collaborate to translate a source sentence
x{. This collaboration starts with the MT system proposing an initial translation ¥/ = y;,...,yr. The user
then searches, from the left to the right, the first wrong word y; from the translation and corrects it. This
provides the system a feedback signal with the form f = g;, where ; is the corrected word at the position %
in the target hypothesis. This feedback signal is double-folded: it states that the i-th target word must be ;,



but it also validates the hypothesis prefix yifl. Taking this into account, we can rewrite f as f = i, where
9} is the validated prefix together with the corrected word. At the next iteration, the system generates the
best suffix y/1; to build a new translation y{’ = g% y/2,. This process is repeated until the user accepts the

complete hypothesis of the system. Fig. 1 represents this protocol.

A — Reference: The pain may also wake you up during the night .

The pain may also|break|during the night . ——— The pain may also wake you up during night .

}

Figure 1: Single iteration of prefix-based IMT. The user wants to translate the French sentence “La doleur peut également vous
réveiller pendant la nuit .” into English. The user corrects the first wrong word from the hypothesis provided by the system,
introducing the word “wake” at position 5. Next, the system generates a new hypothesis, that contains the validated prefix
together with the corrected word. Note that, although the system generates a partially correct suffix, in this new hypothesis
it is also introduced a new error (“during night” instead of “during the night”). This behaviour is intended to be solved with
the segment-based approach.

The suffix generation is formalized as follows (Barrachina et al., 2009):

L, = argmax Pr(yly, | of.31) S
I,y{+1

which can be straightforwardly rewritten as:

I ai T J
Yipr = argmax Pr(ji, iy, | 21) (3)
I’yil+1
This equation is very similar to Eq. (1). Therefore, at each iteration, the process consists of a regular
search in the translations space, but constrained by the prefix g;.

2.2. Segment-based interactive machine translation

In the segment-based IMT protocol proposed in this work, collaboration between computer and human
is extended. Now, besides correcting a wrong word, the user can validate segments (word sequences) to be
kept in future iterations. As before, the process starts with the MT system proposing an initial translation
yl = y1,...,yr. The user then validates all correct segments from y{ and introduces a word correction.
These actions become a feedback signal fI¥ = fi,..., fn, where fi,..., fy is a sequence of the N non-
overlapping, validated segments, including a one-word segment with the word the user has corrected. At
the next iteration, the system generates a sequence of non-validated segments G = g1, ..., gy that fills f¥
to conform a new translation ' = f1,§1,..., fn,gn. Once again, this process is repeated until the user
accepts the complete suggestion of the system. Fig. 2 represents the segment-based interactive protocol.

In our statistical framework, the best translation segments are obtained as:

g1 = argmax Pr(gy | a7, f{") (4)
g7y
which can be rewritten as:
~N _ J
91 —argrllgax Pr(flagl7"‘>fN7gN‘x1) (5)
91

This last equation is very similar to the classical prefix-based IMT equation (Eq. (3)). The search process
in Eq. (3) is limited to the space of suffixes, constrained by #i. In Eq. (5) the search space is all possible
substrings of the translations of z{, constrained by the sequence of segments fi,..., f.
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® f Reference: The pain may also wake you up during the night .
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Figure 2: Segment-based IMT iteration for the same example than in Fig. 1. In this case, the user validates two segments
and introduces a word correction. The system generates a new hypothesis that contains the word correction and keeps the
validated segments. The user feedback is f = “The pain may also”, “Wake”7 “during the night .”. The reaction of the system
is to generate the sequence of non-validated segments g = A, “you up”, A; being A the empty string. The hypothesis offered by
the system consists in the combination of the validated and non-validated segments.

3. Neural machine translation

Most NMT systems rely on an RNN encoder-decoder framework: at the encoding process, a source
sentence is projected into a distributed representation. Given this representation, the decoder generates,
word by word, the corresponding translated sentence. From Eq. (1), NMT aim to directly model the
conditional translation probability:

y1|x1 HPY Yi | y1 - xl) (6)

In this work, we followed the architectural choices made by Bahdanau et al. (2015). Refer to this work
for a more in-depth review of the system. We summarize its main components below.

The input is a sequence of words x{ = x1,...,2, each of them belonging to the source vocabulary
V., and following a one-hot codification scheme. Each word is linearly projected to a fixed-size real-valued
vector through an embedding matrix.

The sequence of word embeddings feeds a bidirectional RNN with gated recurrent units (GRU). Therefore,
the sequence of word embeddings is analysed in both time directions. This bidirectional GRU network
computes a sequence of hidden states h{ = hy,...,h;.

The model features an attention mechanism (Bahdanau et al., 2015), which allows the decoder to selec-
tively focus on parts of the input sequence. Complex relationships in long sentences are therefore kept. At
each decoding time-step ¢, the attention mechanism computes a different context vector c¢; as the weighted
sum of the sequence of hidden states h{ from the encoder:

J
ci =Y ajh; (7)
j=1

where o5 is a weight assigned to each h;. This weight is computed by means of a soft alignment model,
which measures how well the inputs from the source position j and the outputs at target position ¢ match.
Fig. 3 shows the architecture of an attention-based NMT system.

The decoder is another GRU network, that generates the translated sentence y! = y1,...,y7. The hidden
state of the decoder (s;) depends on the previously generated word y;_1, its previous hidden state (s;_1)
and the context vector ¢; from the attention model. Assuming a model for Pr(y; | yi™*, z{) in Eq. (6)
of parameters 6 (the different matrices in the encoder and the decoder), the probability of a word at the
times-step ¢ is defined as:

p(yi |yt 2ls0) = 3/ o(V d(yi-1,si,¢:)) (8)

where () € RIVv! is a softmax function that produces a vector of probabilities, |V, | is the size of the target
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Figure 3: Architecture of the neural machine translation system, equipped with an attentional model, similarly depicted
as Bahdanau et al. (2015). The bidirectional RNN encoder processes the source sentence :1:1‘] and generates the sequence of
hidden states hi]. The alignment model assigns a weight a;; to each hidden state, according to the previous state of the
decoder s;_1 and the hidden state from the encoder. The states from the encoder are then combined in order to obtain a
context vector c¢;. The decoder generates the next word y; according to the context vector c;, its previous hidden state s;_1
and the previously generated word y;_1.

‘/y ‘/?J|><L

vocabulary, y; € NIVvl is the one-hot representation of the word y;, V € Rl is the weight matrix and ¢
is the output of an Elman RNN (Elman, 1990) with GRU units and an L-sized maxout (Goodfellow et al.,
2013) output layer.

3.1. Training and decoding

To estimate the model parameters 6, the training objective is to maximize the log-likelihood over a

bilingual parallel corpus S = {(ac(s), y(s)) 9, consisting of S sentence pairs, with respect to :
S I
0 =argmax Y log(p(y” |y~ 2):0) (9)
o s=11i=1

where I is the length of the s-th target sentence. For the sake of clarity, we drop the dependencies on 6 in
the rest of equations of this manuscript.

Once the model parameters are estimated, the goal of the NMT system is the same as classical SMT
(Eq. (1)). An optimal solution would require to search over the space of all possible target sentence, which
is unaffordable. For generating translations, suboptimal decoding strategies such as beam-search were used
by Bahdanau et al. (2015), Cho et al. (2014) and Sutskever et al. (2014).

4. Interactive neural machine translation

The addition of interactive mechanisms to NMT systems affects the search process: the search space
must be constrained, in order to take into account the user feedback and generate compatible hypotheses.

In this section, we describe the modifications of the search process that interactive scenarios require.
Following the statements from Section 2, we distinguish between prefix-based and segment-based interactive
protocols.



4.1. Prefiz-based interactivity

In this protocol, the user corrects the left-most wrong word of the system hypothesis. Given a translation
hypothesis y! = y1,...,yr, the feedback given to the system has the form f = ¢, where ¢} is the validated
prefix together with the corrected word. The inclusion of this feedback into the NMT systems is natural,
because sentences are generated from the left to the right. Given a prefix ¢, only a single path accounts
for it. The branching of the search process starts once this path has been covered. Introducing the user
feedback f = i, Eq. (8) becomes:

. o o) if il <i
v —1 J 7 vy Y )y >~
/i, ’x 9 = = 10
p(yir | v i f=19) {y;,rgo(V Sy 1.8, c))  otherwise (10)

where §(-, -) is the Kronecker delta. This can be seen as generating the most probable suffix given a validated
prefix, and fits into the statistical framework deployed by Barrachina et al. (2009).

4.2. Segment-based interactivity

In the segment-based interactive protocol, the user can perform two actions: introduce a word correction
and validate segments to keep in future iterations. A validated segment f is defined over the translation
hypothesis y{ as a sequence of one or more consecutive target language words: f = yf/ being 1 <¢ <4 < I.

The feedback signal has now the form f = fi,..., fx, where fi,...,fx is a sequence of N non-
overlapping segments validated by the user. The word correction introduced by the user is inserted as a
one-word segment in f{¥. Note that the prefix-based approach is a particular case of the segment-based
one, in which the sequence of validated segments only contains the validated prefix (including the corrected
word).

Once again, the system must generate a new hypothesis compatible with the feedback signal. For
achieving this, the problem is reformulated as the generation of the optimal sequence of non-validated
segments §i' = §i,...,Jn, where each §, is a subsequence of words in the target language. The goal is
to obtain a sequence of non-validated segments such that its combination with the sequence of validated
segments provide a (hopefully) better translation 3’ according to Eq. (5).

Unlike the prefix-based approach, positions of validated segments f,, in the next hypothesis are unknown
beforehand: the user only validates segments of words, not positions in the hypothesis. Therefore, validated
segments cannot be introduced on a rigid way as in Eq. (10). The search process must be constrained on a
softer way.

We propose to allow the model to decide whether the search process should be constrained or uncon-
strained. f¥ and ¥ are non-overlapping sequences. Hence, the words produced by the system exclusively
belong either to a validated or to a non-validated segment. We can differentiate the word generation process
according to whether we are generating words belonging to a validated segment or to a non-validated one.

In the first case, the word generation is similar to the prefix-based approach. Let f,, be the n-th validated
segment and let ¢,, be the previous position in y where f, should start. The word probability expression for
the words belonging to this validated segment is:

PWinti |y 2l ) = 0(ingirs ), 1< < | fal (11)

where | f,,| is the length of the validated segment f,, and f,; refers to the i'-th word of such segment.

In the second case, words belong to a non-validated segment. This is harder for the NMT system, because
the length of the current g, is unknown. This length needs to be estimated. Let W,, be the length of a non-
validated segment g,,, located between two validated segments, f,, and f, 1. Each alternative hypothesis y
will (partially) have the form y = ..., fu, gn, fut1,.-.. For estimating the value of W,,, we “look forward”
and generate M + 1 alternatives, each one having a different value of W,, (0 < W,, < M). M is defined as
the maximum length of a non-validated segment and it is estimated on a development set. We take the value
of W, that provides the most probable hypothesis, normalised by the length of the non-validated segment.



As before, let i, be the previous position in y where g, should start, i.e. the end position of f,,. The value
of W, is estimated as follows:

— 1 in+Wn+1 A
W, = arg max plyir |y 71,IJ .
" oswa<m Wa +1 i,:gﬂ (vir [ 1 1) (12)

Note that this expression allows the model to generate non-validated segments of length zero, resulting
in the consecutive positioning of the validated segments f,, and f,,11.

Once the length of the non-validated segment has been estimated, words belonging to that segment are
generated following the regular procedure:

P |yt e 1) = Yo v @(V Wi wir—1,Sip+irs Cintir)), 1 <8 < W, (13)

We can reuse the computations made in Eq. (12) for evaluating this last expression without additional
cost. This gives the model freedom to choose the number of words to insert between validated segments.
The system is able to shift forward or backward the validated segments along the new hypothesis. In order
to avoid the repetition of words, if the system started to generate words in a non-validated segment g, that
belong to the next validated segment f,, 41, we include f,,+1 into g,, collapsing both segments.

When all validated segments have been already generated, the hypothesis is completed following the
non-interactive process (Eq. (8)).

5. Experimental framework

In this section we describe the experimental methodology, corpora, evaluation metrics and MT systems
used in this work for assessing our proposals.

5.1. Corpora

Following prior IMT works (Barrachina et al., 2009; Gonzélez-Rubio et al., 2013; Tomds and Casacuberta,
2006), we tested the proposed methods in five different translation tasks. Xeroz (Barrachina et al., 2009)
consists in user manuals from Xerox printers. EU (Barrachina et al., 2009) is a collection of proceedings
extracted from the Bulletin of the European Union. TED (Federico et al., 2011) is a collection of TED
talks. EMEA (Tiedemann, 2009) is a medical corpus extracted from the European MEdical Agency. We
used the same data splits that the aforementioned IMT works; hence, the results obtained are directly
comparable. Finally, we also used the release v7 of the Europarl (Koehn, 2005) corpus, a large collection
of proceedings from the European Parliament. We used the news-test2012 and news-discuss-test2015
sets as development and test partitions, respectively.

We tokenised all corpora using the standard tool from the Moses toolkit (Koehn et al., 2007). We kept
sentences truecased, except for the Zh—FEn language pair, since Chinese has no case information. Table 1
shows the languages and main features of each corpus.

5.2. User simulation

A direct evaluation of an IMT system would require to conduct experiments with human users. Un-
fortunately, this is excessively costly and slow for deploying IMT prototypes. Hence, automatic evaluation
methodologies have been developed in the literature (Barrachina et al., 2009; Gonzalez-Rubio et al., 2013;
Tomads and Casacuberta, 2006), aiming to simulate the behaviour of a real user. We followed such protocols
for evaluating our proposal. Nevertheless, it is planned to perform a human evaluation of the system as a
future work.

In the simulation, it is assumed that the reference sentences from our parallel corpora are the outputs
desired by the user. This is a pessimistic assumption, since the user can find appropriate different translations
for the same sentence. We consider only one translation to be the correct one.



Table 1: Main figures of the Xerox, EU, EMEA, Europarl and TED corpora. S, T and V account for number of sentences,
number of tokens and vocabulary size respectively. k and M stand for thousands and millions.

Training Development Test
S T A% S T Y S T V
Xerox gl 0 G e NP g UP g o
BU o 2 ook om0 o
O R A A
Buroparl 20N gy B0 g g L0 g g
TED p 0 g s M s w9

We defined two simulated scenarios, accounting for both interactive protocols: prefix-based and segment-
based. In the first one, the simulated user corrects the first wrong word from the translation hypothesis.
The system then, produces an alternative hypothesis, containing the validated prefix. This process continues
until the hypothesis produced by the system is the one desired by the user i.e., our reference sentence.

In the segment-based interactivity, the simulated user selects the correct segments from the hypothesis.
We assume, without loss of generality, that word corrections are made from the left to the right. The user
also inserts word corrections. The system generates an alternative translation hypothesis when a word is
inserted. Such hypothesis accounts both for the word correction and the validated segments from previous
interactions.

5.3. Assessment metrics

Automatic evaluation of MT systems is still an open problem, and even more in the interactive cases,
as many factors affect the translation process. Since a human is involved all along the process, we should
assess both the quality of the MT system and the effort required by the user for post-editing the system
outputs. The goal of IMT is to minimize the effort made by the user, rather than improving the quality of
the system outputs, because final post-edited translations are supposed to be perfect. Hence, we divide the
evaluation metrics depending on what they measure: translation quality or human effort.

5.3.1. Measuring translation quality
The quality of an MT engine is usually estimated by comparing the output of the system with the
reference corpus. For evaluating our MT systems, we used the following well-known metrics:

BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002): is the most widely used metric for
evaluating MT systems. BLEU aims to model the correspondence between the translation generated
by the MT system and the one produced by a human translator. It is defined as the geometric mean
of the n-gram precision between the hypothesis and the reference sentences, modified by a brevity
penalty.

Translation Edit Rate (TER) (Snover et al., 2006): is the minimum number of word edit operations
(insertion, substitution, deletion and swapping between groups of words) that must be made in order
to transform the hypothesis into the reference. The number of edit operations is normalised by the
number of words in the reference sentence. TER can be used as a representation of the human-targeted
TER (HTER) when considering the reference sentences as the human post-edited version of the MT
translation (Zaidan and Callison-Burch, 2010).
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5.3.2. Measuring human effort

The human effort required for post-editing the output of an MT system is usually estimated as the
number of actions performed by the human agent in order to obtain the desired translations. Our protocol
supports two different input devices: keyboard and mouse. We implemented two metrics that measure the
use of each device:

Word Stroke Ratio (WSR) (Tomés and Casacuberta, 2006): number of word corrections made by the
user for obtaining the desired translation from the system hypothesis, divided by the total number of
words in the final sentence. It is assumed that the cost of correcting a word is constant, regardless its
length.

Mouse Action Ratio (M AR) (Barrachina et al., 2009): measures the effort made by the user with the
mouse during the interactive PE process. It is defined as the number of mouse actions made by the
user, divided by the total number of characters in the final hypothesis. We count mouse “clicks”
as mouse actions. Correcting a wrong word requires to select the word and accounts for one mouse
action. Validating a segment requires two mouse actions: clicking at the beginning and at the end of
the segment. A single mouse action is enough for validating one-word segments. We add an additional
action per sentence, accounting for the final validation of a hypothesis.

We take WSR and MAR as a broad approximation of the human effort required by using the IMT system.
Nevertheless, for properly measuring the user effort, a human experimentation should be conducted.

5.4. MT systems

We used the GroundHog toolkit! for training the NMT systems. GroundHog is built upon Theano (Theano
Development Team, 2016). The search process was implemented in the Python scripting language.

We followed the architecture introduced by Bahdanau et al. (2015) and described in Section 3. The
main model hyperparameters for each task were obtained through the random search (Bergstra and Bengio,
2012) method. Such parameters were the size of the word embedding (tested in the range [100,620]) and
the number of GRU hidden units (tested in the range [100,1000]). We set the same configuration for both
encoder and decoder networks at each run. We chose the model with highest BLEU on the development
set. Figures of these hyperparameters are detailed in Table 2. Since a random seach for the Europarl task
was excessively costly, we followed Bahdanau et al. (2015) and used a word embedding size of 620 and 1000
GRU units for each RNN.

Table 2: Main NMT hyperparameters figures, obtained through the random search method: size of the word embedding and
size of the GRU hidden state. The same word embedding and GRU sizes have been used in both encoder and decoder RNNs,
for each configuration.

Word embedding GRU units

Xerox Es-En 289 354

En-Es 415 607
TR
W BE o

The rest of specific hyperparameters were set according to preliminary trials. Source and target vocabu-
laries sizes were set to 30,000 words, except for the Xerox task, where we could process the full vocabulary.

Thttps://github.com/lisa-groundhog/GroundHog
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For dealing with unknown words, we used the strategy described by Jean et al. (2015), consisting in re-
placing the unknown word by its correspondingly aligned source word. Models were trained on an Nvidia
Titan X GPU. We used minibatch SGD for updating the parameters, with minibatches of 80 sentences.
The Adadelta (Zeiler, 2012) method automatically set the learning rate. We computed the BLEU on the
development set each 2,000 updates. We early-stopped the training when this BLEU did not improve for
20,000 updates. The beam size was fixed to 6.

We compare the NMT technology against the classical PB approach. As PB system, we used the standard
configuration of Moses. This includes bilingual phrase, language, distortion and reordering models, among
others. We used a 5-gram language model smoothed with the Kneser-Ney method (Kneser and Ney, 1995)
and estimated with the SRILM toolkit (Stolcke, 2002). We estimated the weights of the log-linear model
using the Minimum Error Rate Training (MERT) (Och, 2003) method on the development partition.

PB models were used to obtain a baseline for prefix-based IMT. We followed the procedure described
by Barrachina et al. (2009) for exploring a word graph and generating the best suffix for a given prefix. For
each sentence to translate, we generated a word graph with the PB system. The word graph was treated
as a weighted finite-state automaton. We parsed the prefix over the word graph to find the best path that
accounts for the prefix, going from the initial state to any other intermediate state. Finally, we obtained
the corresponding translation for the best path from this intermediate state to the final state. Therefore,
our implementation of prefix-based IMT is consistent with Barrachina et al. (2009), but considering that we
generated word graphs with the current SMT state-of-the-art Moses toolkit.

6. Results and discussion

This section presents the results of the experiments conducted for assessing our proposals. In this section
we only show the results obtained on the test set. First, we compare the neural system against the PB system
in a classical PE scenario. Next, we assess the performance of both systems in the prefix-based IMT. Finally,
we compare the proposed segment-based IMT approach, showing that the typing effort can be significantly
reduced. For all metrics, we report their confidence intervals (p = 0.05), computed by means of bootstrap
resampling (Koehn, 2004).

6.1. Quantitative analysis

Table 3 shows the results of translation quality of the neural and phrase-based systems. Using BLEU
to measure the translation quality, the neural approach generally performs slightly worse than PB systems.
We conjecture that part of these differences are due to the vocabulary reduction and rare words handling.
The inclusion of larger vocabularies (Jean et al., 2015) or the use of subword units (Sennrich et al., 2016)
may bring closer the performance of both approaches. TER presents a similar behaviour: PB technology
also performs slightly better than the neural one in some tasks, although differences in TER are generally
smaller than those observed in BLEU.

As we move on to the interactive scenario, NMT exhibits its strengths. Table 4 shows the results of the
prefix-based interaction. Despite having a poorer general performance in pure automatic translation, the
neural approach significantly outperforms PB systems in all cases. Differences yield from almost 5 WSR
points up to 15, which accounts for reductions of the 30% of the typing effort. Similar decreases are obtained
in the MAR values.

These WSR and MAR differences are probably due to the different nature of both approaches: neural
models are naturally smoother than the PB ones, and they react better to the introduction of word correc-
tions. The modifications over the search process required by the interactive protocol are small, hence, they
handle on a more natural way changes in their hypotheses. On the other hand, PB systems are more rigid,
relying on the search over a pruned word graph.

Moreover, the insertion of an unexpected correction (e.g. an unknown word) can produce a failure of the
PB system. If the user feedback leads to a specific state in the word graph that has no path to any final state,
the system fails. An error correction method is used for overcoming this issue (Barrachina et al., 2009),
but it may lead to successive wrong hypotheses. NMT systems handle the out-of-vocabulary problem by
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Table 3: Results of translation quality for all tasks in terms of BLEU [%] and TER [%)]. Best results for each task and metric
are bold-faced.

BLEU [%] TER [%)]

PB NMT PB NMT
Yooy EsEn 5L3E23 532+25 325:18 B30.0EL7
En-Es 600+23 585+24 291+17 292417
gy  EsEn 46419 40718 413%16 452L16
En-Es 458+18 414417 433+16 462+15
EvEa PP En 30111 263+ 11 489+11 537+12
EnFr 297+10 261+13 526+10 535+1.7
Buropar] PP B0 230509 208E10 599510 607412
EnFr 227409 21.0+09 595+1.0 61.1+1.2
tgp b En 116£06 10706 760+14 7rd=ll

En-Zh 87105 7.8+0.5 82710 819+1.0

Table 4: Results of prefix-based interaction for all tasks, measured in WSR [%] and MAR[%)]. Best results for each task and
metric are bold-faced.

WSR [%)] MAR [%]

PB NMT PB NMT
Es-En 29.7+18 240+13 106+0.6 9.8+04

Xerox  p Bs 311415 209+11 96404 7.9+03
BU Es En 456+18 351+14 105+04 82+03
EnFEs 457+17 346+13 103404 7.9+0.3
EMEA PP En 588E13 497+11 129+03 11.0+0.2
EnFr 587413 431409 135403 10.4+0.2
Fr En 703+13 526+1.0 195+04 155+0.3

Europarl
EnFr 677412 56.6+1.0 17.840.3 154+0.3
g Zb-En SL3E10 617+09 233+03 185+03

En-Zh 834+15 71.0+08 59.2+1.0 49.7+0.5

mapping unknown words to a special token. Since during the training phase the system has seen unknown
words, it is prepared to deal with this inconvenience.

Table 5 shows the segment-based interaction results, compared with the prefix-based neural IMT. Using
this protocol, the typing effort is always diminished, at the expense of more mouse interactions. The WSR
is reduced by a factor ranging from 7% up to 15%. On the other hand, MAR values are increased in all
tasks.

This is an expected behaviour: since the user validates segments, the mouse activity is higher. However,
using the mouse for validating segments avoids to introduce errors in successive iterations on correct parts
of the hypothesis. Therefore, this mouse activity increase may pay off from the user comfortability point of
view. Nevertheless, due to the flexibility of the segment-based approach, users are free to choose how to use
the system: a user may prefer to use more intensively the mouse, while another one may prefer to introduce
more word corrections. Both user behaviours are supported by the protocol.

Despite that the segment-based approach obtains better WSR than the prefix-based protocol for every
task, the differences between them are lower than those achieved by the neural model with respect to the
PB approach. This is probably due to the way in which the neural system generates the translations: since
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Table 5: Results of neural segment-based interaction for all tasks, compared with the neural prefix-based approach. Best results
for each task and metric are bold-faced.

WSR [%] MAR [%]

Prefix Segment-based Prefix Segment-based
Xerox Es-En 24.0+1.3 21.8+1.2 98+04 11.94+0.6
En-Es 209+£1.1 194+1.0 79+0.3 13.24+0.5
EU Es-En 35.1+£1.4 30.5+1.3 82+03 13.7+04
En-Es 34.6+1.3 30.3+1.2 79+03 12.7+04
EMEA Fr-En 49.7+£1.1 42.6 £1.0 11.0+0.2 17.5+£0.3
En-Fr 43.1£0.9 385+0.8 10.4 £ 0.2 16.7+0.3
Buroparl Fr-En 52.6+£1.0 48.3+0.9 15.5+0.3 23.8+04
En-Fr 56.6 1.0 51.9+09 1544+0.3 222403
TED Zh-En 61.7£0.9 55.0+0.8 18.5+0.3 25.6 £0.3
En-Zh 71.0£0.8 61.7+0.8 49.7£0.5 66.8 +0.7

it follows a left-to-right direction, the prefix-based approach fits nicely into it. The inclusion of the segment-
based feedback is more unnatural. Although it helps the system, in light of the results, the benefits obtained
are limited.

However, the segment-based framework allows the implementation of more complex user models. For
instance, the user could remove words between validated segments, or drop all non-validated segments from
a hypothesis, achieving the desired translation in fewer interactions. We think that higher gains could be
obtained by sophisticating the user model.

Finally, the average response times for all systems are shown at Table 6. In the neural systems, the
response rates are adequate for an interactive scenario (Nielsen, 1993), when using the GPU. If computations
are made on the CPU, the response time is increased approximately 10 times. We are aware that, in an
industrial setting, the device used will be the CPU, hence, strategies for scaling up the system and enhancing
the CPU response time should be developed in the future.

Table 6: Average system response time (in seconds) per interaction, for each task. NMT-CPU refers to the execution of
the neural system in a CPU, while the column NMT-GPU show the times for the GPU execution. In the case of the PB
systems, we report the time of the sole exploration of the word graph (PB-SEARCH), together with the time required for
both building and exploring the word graph (PB-ALL). All PB systems run on CPU. Best results for each task are bold-faced.

NMT-GPU NMT-CPU PB-ALL PB-SEARCH

< Es En 0.04 0.34 1.16 0.14
X En-Fs 0.09 0.93 1.09 0.34
5U Es En 0.32 4.01 1.98 0.73

En-Es 0.37 4.1 2.93 0.98

Fr En 0.38 1.03 1.50 0.49

EMEA o R 0.25 2.45 0.97 0.36
Burooar] BN 111 1.92 0.91 0.26
wropart g Fr 1.13 4.06 1.25 0.38

7Zh-En 0.28 2.89 0.68 0.25

TED  pozn 0.26 2.77 0.87 0.33

In the case of the PB systems, we measure two different scenarios, depending on whether the word graph
is pre-computed or not. In the first case, response times are acceptable, allowing fluent interactivity. In
the second case, response times are inadequate for the interactivity. Nevertheless, note that a comparison
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of the NMT system with the first scenario is unfair, because in the NMT system we do not assume any
pre-computation. It should be investigated if advancing computations may help to reduce the responsiveness
of the NMT system.

Due to the different metrics and pre/post-processing techniques (e.g. corpus categorisation) employed in
the literature, it is hard to directly compare the obtained results. For computing the PB results, we use the
software kindly provided by the authors of Barrachina et al. (2009). Hence, these results can be considered
an updated version of Barrachina et al. (2009), using the current Moses implementation.

On the other hand, several works tackled the same tasks. In Tomds and Casacuberta (2006), it was
developed a specific decoder for IMT. They obtained a WSR. of 30.0% and 28.7% in the Xerox task, for
the En—Es and Es—En language directions, respectively. Our prefix-based neural system provided similar
results. The segment-based protocol significantly reduces the keyboard activity, at the expense of more
mouse activity. Gonzalez-Rubio et al. (2010b) studied the inclusion of confidence measures in the prefix-
based interactive process. Their base IMT system obtained a WSR of 52%, which is clearly outperformed by
the neural system. Finally, Gonzdlez-Rubio et al. (2016) pioneered the segment-based idea and developed
a system based on hierarchical models and hypergraphs. This was tested on a categorised version of the
EU task. They reported a WSR. of 54.5% and 35.1% for the prefix-based and segment-based protocols,
respectively. The neural system also outperforms these results (35.1% and 30.5%). Moreover, they reported
an average response time of 3 seconds. The NMT system response time is approximately 10 times lower
when executed on GPU, which is closer to the demands of interactive systems.

6.2. Qualitative analysis: IMT session examples

Now, we qualitatively compare the behaviour of the PB systems against the neural technology with a
typical example from the EMEA corpus. We show the different IMT sessions of the PB and neural systems,
in order to translate a French sentence into English. The source sentence is “Ils seront invités a fournir
un échantillon d’ urine propre .” and the corresponding target sentence is “They will be asked to provide a
clean catch urine sample .”. Since these are real examples, we present all sentences tokenised.

As shown in Fig. 4, the PB system requires 6 interactions in order to correctly translate the source
sentence. Note that, at the first iteration, the PB system is unable of properly taking into account the
correction provided by the user: the generated suffix contains the word “requested”, although it should be
removed from the hypothesis.

Fig. 5 shows the analogue example, but using the neural system. The first hypothesis is similar to
that provided by the PB system, and the first correction is the same. But now, the NMT system adapts
the next hypothesis to the user feedback: The system processes the correction “asked” as a synonym for
“encouraged”. Therefore, it is able to provide a coherent hypothesis. With this, the number required of
iterations is reduced from 6 to 4.
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Source (z): Ils seront invités & fournir un échantillon d’ urine propre .

Target translation (§): They will be asked to provide a clean catch urine sample .

IT-0 MT They will be invited to provide a panel of urine clean .

IT-1 User | They will be asked to provide a panel of urine clean .
MT They will be asked requested to provide clean urine sample .

IT-2 User They will be asked to requested to provide clean urine sample .
MT They will be asked to provide a panel of urine clean .

IT-3 User They will be asked to provide a clean panel of urine clean .
MT They will be asked to provide a clean urine sample .

IT-4 User They will be asked to provide a clean catch urine sample .
MT They will be asked to provide a clean catch ( urine sample .

IT-5 User They will be asked to provide a clean catch urine ( urine sample .
MT They will be asked to provide a clean catch urine .

IT-6 User They will be asked to provide a clean catch urine sample .
MT They will be asked to provide a clean catch urine sample .

END | User They will be asked to provide a clean catch urine sample .

Figure 4: Real PB prefix-based IMT session to translate a sentence from French into English: given the input sentence x,
the user desires to obtain the target sentence §. User corrections are in bold font, while validated prefixes are in italic font.
First, the system generates an initial hypothesis. Following the protocol, at iteration IT-1, the user corrects the first wrong
word, introducing the word “asked” at position 4. Then, the system reacts and suggests a new suffix. In this hypothesis, the
words “asked” and “requested” are consecutive in the new hypothesis. This shows that the PB system is unable to properly
deal with the correction given by the user. The next iteration starts then, with the user validating the next wrong word and
the system generating a compatible hypothesis. The protocol is repeated until the desired translation is obtained. This IMT
process requires 6 word corrections.

Source (z): Ils seront invités & fournir un échantillon d’ urine propre .

Target translation (9): They will be asked to provide a clean catch urine sample .

IT-0 MT They will be encouraged to provide a clean urine sample .
IT-1 User | They will be asked encouraged to provide a clean urine sample .
MT They will be asked to provide a clean urine sample .
IT-2 User They will be asked to provide a clean catch urine sample .
MT They will be asked to provide a clean catch .
IT-3 User | They will be asked to provide a clean catch urine .
MT They will be asked to provide a clean catch urine .
IT-4 User | They will be asked to provide a clean catch urine sample .
MT They will be asked to provide a clean catch urine sample .
END | User | They will be asked to provide a clean catch urine sample .

Figure 5: Real neural prefix-based IMT session, considering the same sentence, protocol, and format as in Fig. 4, but using the
NMT system. In this case, the NMT engine is able to cope with the given prefix at the first iteration, obtaining a meaningful
hypothesis at this iteration. The protocol is the same as before but, due to the behaviour of the NMT system, the session ends
after 4 interactions, which accounts for a reduction of the 33% of the effort, compared with the PB system.

At IT-1 of Fig. 5, the NMT system produced the correct segment “urine sample .”. Nevertheless, this
segment is lost at IT-2. The segment-based protocol aims to prevent this behaviour. Fig. 6 shows addition
of the segment validation. Now, at the first iteration, the user validates three segments and introduces a
word correction (“asked”). The user feedback allows the model to keep into the hypothesis the validated
segment “urine sample .”, at the second iteration. Since there are no new segments, at the next iteration,
the user only introduces a word correction. Since the hypothesis provided by the system is now correct, the
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user accepts it as final translation. Using the segment-based approach, only two interactions are necessary,
which accounts for a reduction of the 66% and the 50% of the number of interactions from prefix-based PB
and NMT systems, respectively.

Source (z): Ils seront invités & fournir un échantillon d’ urine propre .

Target translation (9): They will be asked to provide a clean catch urine sample .

IT-0 MT They will be encouraged to provide a clean urine sample .

IT-1 User They will be| asked encouraged [to provide a clean| [urine sample ||

MT [They will be| [asked] [to provide a clean| [urine sample .|

User | [They will be| [asked] [to provide a clean| catch

MT [They will be| [asked] [to provide a clean] [catch] [urine sample ||

IT-2

END | User They will be invited to provide a clean urine sample .

Figure 6: Real neural segment-based IMT session. Same sentence, system, and format as in Fig. 5, but following the segment-
based protocol. represents validated segments. Now, in addition to correcting words, the user validates with
the mouse correct segments in the hypotheses. Hence, at iteration IT-1, the user first selects the correct segments of the
hypothesis and then introduces a word correction (“asked”), which is included as a one-word validated segment. Next, the
system provides a new hypothesis compatible with the sequence of validated segments. At iteration IT-2, since there are no
new correct segments, the user only introduces the word correction “and”. The system generates another hypothesis, which
is completely correct. Finally, the user validates this hypothesis, finishing the process. Only 2 iterations are required during
this session. In comparison, the prefix-based approaches require 6 and 4 iterations in the case of the PB and neural systems,
respectively.

For better understanding some of the weaknesses of our approach, we study now some failure cases of the
neural IMT system. First, we show a case where the corrections made by the user are somewhat unexpected
by the system. The source sentence is “Paquete de 6 ( contiene 6 cartuchos )’ and the target sentence is “6
Pack ( contains 6 cartridges )”. The initial hypothesis of the NMT system is “Zone 6 ( assume 6 cartridges
). A traditional post-editing strategy would require three corrections. Fig. 7 shows the post-editing session
of the neural prefix-based IMT system. As the successive corrections are inserted, the system introduces
some artefacts in the hypotheses, which demand further corrections.

Source (z): Paquete de 6 ( contiene 6 cartuchos )

Target translation (g): 6 Pack ( contains 6 cartridges )

IT-0 MT | Zone 6 ( assume 6 cartridges )

IT-1 User | 6 Zone 6 ( assume 6 cartridges )
MT | 6 Thermistor 6 ( three cartridges )

T2 User | 6 Pack Thermistor 6 ( three cartridges )
MT | 6 Pack 6 ( containing cartridges )

IT-3 User | 6 Pack (6 ( containing cartridges )
MT | 6 Pack (10 cartridges )

IT-4 User | 6 Pack ( contains 10 cartridges )
MT | 6 Pack ( contains 10 cartridges )

IT-5 User | 6 Pack ( contains 6 10 cartridges )
MT | 6 Pack ( contains 69 )

IT-6 User | 6 Pack ( contains 6 cartridges 9 )
MT 6 Pack ( contains 6 cartridges )

END | User | 6 Pack ( contains 6 cartridges )

Figure 7: Real failure case of a neural prefix-based IMT session. The user corrections are unexpected for the system, which
steadily produces wrong hypotheses.
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Note that in the previous example, the original hypothesis (at IT-0) contained correct sequences of
words which were removed from the next hypotheses. The segment-based approach (Fig. 8) intends to avoid
this phenomenon. In this case, the correct segment “ 6 cartridges )” is kept along the session. Hence, the
problem is mitigated, requiring less interactions.

Source (z): Paquete de 6 ( contiene 6 cartuchos )

Target translation (§): 6 Pack ( contains 6 cartridges )

IT-0 MT | Zone 6 ( assume 6 cartridges )

IT-1 User | 6 Zone K]assume
MT Thermistor 6 E]

T2 User Pack Thermistor 6 [
MT [Pack] 6 [(] [6 cartridges )|

o | User | B o (6 0
MT [6] Pack] [( [6 cartridges )

IT-4 User |§| K]contains
MT |§| [Pack] [(] [contains| [6 cartridges )]

END | User | 6 Pack ( contains 6 cartridges )

Figure 8: Real failure case of a neural segment-based IMT session. Although the behaviour is similar to Fig. 7, in this case
the selection of the correct segments in the hypothesis prevents from the degradation suffered by the prefix-based protocol.

Finally, we show a case where the segment-based approach worsens the regular post-editing and the
prefix-based strategy. In this case, the source sentence is “La Utilidad de administracion de fuentes queda
eliminada del sistema .” and its corresponding translation is “The Font Management Utility is removed from
your system .”. Fig. 9 shows the prefix-based session for this example. 2 interactions are required in order

to produce the correct translation. A regular post-editing process would also require 2 corrections.

Source (z): La Utilidad de administracién de fuentes queda eliminada del sistema .

Target translation (y): The Font Management Utility is removed from your system .

IT-0 MT The Font Management Utility are removed from the system .

IT-1 User | The Font Management Utility is are removed from the system .
MT The Font Management Utility is removed from the system .

IT-2 User | The Font Management Utility is removed from your the system .
MT The Font Management Utility is removed from your system .

END | User | The Font Management Utility is removed from your system .

Figure 9: Prefix-based neural IMT session. Same notation as in previous examples. Two corrections are required for correcting
the initial hypothesis. A regular post-editing process would require the same two corrections.

But as we apply the segment-based protocol, the system duplicates parts of the target sentence (Fig. 10):
“the system” is erroneously inserted at IT-1, when this concept is already considered by the segment
. This requires an additional correction. This error arises because the system predicts the next
words according to the previously generated words and the immediately next segment. Hence, the segment
is not taken into account when generating “the system” at IT-1. Although this happens infre-
quently, most of the errors made in the segment-based protocol are due to this. A more advanced decoding
strategy, e.g. bidirectional decoding (Liu et al., 2016), may alleviate this problem.
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Source (z): La Utilidad de administracién de fuentes queda eliminada del sistema .

Target translation (§): The Font Management Utility is removed from your system .

IT-0 MT The Font Management Utility are removed from the system .

IT-1 User | [The Font Management Utility| is are [removed from]| the [system |
MT [The Font Management Utility| the system [removed from]| the [system ]

IT-2 User | [The Font Management Utility] removed the system [removed from]| the [system ||
MT [The Font Management Utility| [removed from]| the [system ||

IT-3 User [The Font Management Utility| [removed from| your the

MT

The Font Management Utility| [removed from| [your| [system ]

END | User | The Font Management Ulility is removed from your system .

Figure 10: Failure case of a segment-based neural IMT session. Same notation as in previous examples. At IT-1, the user
selects the segment . The new suggestion provided by the system is unable of properly taking this segment into
account. Hence, “the system” is duplicated at the new hypothesis. This leads to an additional correction.

7. Conclusions and future work

In this work, we proposed and deployed a neural approach to the interactive paradigm of MT. Addi-
tionally to the classical left-to-right IMT, we presented an alternative interaction protocol. By allowing the
selection of correct parts from the ongoing hypothesis, this protocol aims to offer more freedom to the user.
We conducted simulated experiments on different language pairs and domains, with satisfactory results:
neural models obtained significant improvements in effort reduction over a state-of-the-art PB system. The
inclusion of the new protocol lowered even more the typing effort required by the user. We conjecture that
these enhancements are due to the flexibility of the neural models and their capability for adapting to the
user feedback.

Moreover, the simplicity of the NMT decoders—compared against the complex PB or hierarchical
ones—allows the easier development of new interactive protocols. This enables the future implementation
of new protocols, that may lead to increase the translation performance.

The next step to take is to conduct a human-based experimentation which confirms the results obtained
in this work. We plan to integrate the neural technology into the CasMaCat (Alabau et al., 2013) workbench.
For doing that, we want to integrate a GPU into the CasMaCat server. In addition, NMT decoding speed
should also be accelerated, in order to be able to reach a CPU real-time response rate. Stochastic sampling
or a distributed implementation of Noisy Parallel Approximate Decoding (Cho, 2016) may achieve real-
time response. Moreover, further research on the NMT technology should be made, for addressing the
weaknesses of our approach. Byte Pair Encoding (Sennrich et al., 2016) or the large vocabulary trick (Jean
et al., 2015) may help to deal with the treatment of unknown words and the vocabulary limitation. As
discussed in Section 6.2, bidirectional target decoding (Liu et al., 2016) may also enhance the predictions of
the system, specially in the segment-based scenario.

Other interesting way that opens from this work is the inclusion of multimodal feedback signals. Previous
works have already integrated speech (Alabau et al., 2011) or e-pens (Alabau et al., 2014) into the interactive
pipeline. Neural networks are able to incorporate signals from different sources. Thus, the inclusion of
multimodality could lead to even larger productivity increases. Furthermore, the encoder-decoder framework
is not limited only to MT. Hence, it can be applied to other structured prediction tasks, such as handwritten
transcription. In the future, the neural interactive framework deployed in this work should be tested in these
tasks, hoping to obtain improvements, as in MT.

Nowadays, reinforcement learning (RL) is attracting again the attention of many researchers. Some
recent works applied RL techniques to sequence-to-sequence problems (Ranzato et al., 2015; Shen et al.,
2015; Xu et al., 2015) and more specifically, to NMT (Wu et al., 2016). Within the interactive scope, it
seems clear the existence of a relationship between RL and interactivity. We are unaware of any attempt
aiming to bring both worlds together. Nevertheless, we plan to explore the use of RL techniques in the
interactive framework in the future.
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Finally, both neural networks and IMT fit nicely into the online learning (OL) framework. A validated
hypothesis is a new training sample, which can be used by the system for improving its performance. The
effectiveness of the combination of the online and interactive paradigms has already been shown in the MT
field (Ortiz-Martinez, 2016). In this scenario, OL entails an enhanced user experience, since the system
adapts its behaviour to the user preferences. Related to this, active learning (AL) techniques for classical
IMT have also been studied (Gonzélez-Rubio et al., 2012). In a real environment, with massive data streams,
the use of AL becomes mandatory. The deployment of online training techniques for interactive NMT would
also allow the inclusion of AL into the neural interactive pipeline. In a near future, we plan to apply both
online and active learning methods into the interactive NMT approach, hoping to develop a more personal
user experience that implies a boost in the industrial translation performance.
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