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Abstract

Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and

the Generalized Eigenvalue (GEV) beamformer are popular signal processing

techniques which can improve speech recognition performance. In this paper,

we present an experimental study on these linear filters in a specific speech

recognition task, namely the CHiME-4 challenge, which features real recordings

in multiple noisy environments. Specifically, the rank-1 MWF is employed for

noise reduction and a new constant residual noise power constraint is derived

which enhances the recognition performance. To fulfill the underlying rank-1 as-

sumption, the speech covariance matrix is reconstructed based on eigenvectors or

generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with

alternative multichannel linear filters under the same framework, which involves

a Bidirectional Long Short-Term Memory (BLSTM) network for mask estima-

tion. The proposed filter outperforms alternative ones, leading to a 40% relative

Word Error Rate (WER) reduction compared with the baseline Weighted Delay

and Sum (WDAS) beamformer on the real test set, and a 15% relative WER

reduction compared with the GEV-BAN method. The results also suggest that

the speech recognition accuracy correlates more with the Mel-frequency cep-

stral coefficients (MFCC) feature variance than with the noise reduction or the

speech distortion level.
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1. Introduction

Robust machine speech recognition in real environments is a common interest

for the signal processing and speech recognition communities [1]. It has been

a challenging task for decades. One main reason is that the target speech is

corrupted by various background noises. Signal processing methods are able

to extract the desired source from corrupted measurements and to improve

the recognition accuracy. For this purpose, multichannel techniques improve

over single-channel techniques by exploiting information not only in the time-

frequency domain but also in the spatial domain.

Multichannel linear filters, also known as beamformers, have been amply

investigated in the literature [2, 3]. Nevertheless, only a few approaches have

found widespread use in the speech recognition community until recently; these

include the Weighted Delay and Sum (WDAS) beamformer in BeamformIt [4]

and the Minimum Variance Distortionless Response (MVDR) beamformer in

BTK1. Recent works have explored more extensive beamforming implementa-

tions in the scope of speech recognition [5, 6, 7], and the outcomes of these

works indeed benefit both signal processing and speech recognition communi-

ties. On the one hand, multichannel algorithms designed to suppress noise [8],

reverberation [9] or competing speech, can be used as preprocessing steps for

speech recognition. Though they are in general intended for improving the

speech perceptual quality [10], some improvements are typically also achieved

in terms of speech recognition performance. On the other hand, the speech

recognition application inspires many new beamforming architectures [11, 12].

The recognition accuracy metric can also highlight an algorithm from a different

perspective [13].

1http://distantspeechrecognition.sourceforge.net
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Remarkably, Deep Neural Network (DNN) based linear filtering has gained

popularity with its success in recent speech recognition challenges [14, 15, 16, 17].

A regression DNN can be used to predict the speech spectra and combined

with the classical multichannel Gaussian model to derive a Multichannel Wiener

Filter (MWF) [14, 15]. Alternatively, a Bi-directional Long Short-Term Memory

(BLSTM) network can be applied as a classification model to predict a spectral

mask and combined with the MVDR beamformer or the Generalized Eigenvalue

(GEV) beamformer [16, 17]. The mask is used in the calculation of the source

covariance matrix, from which the linear filter coefficients are obtained. Deep

neural networks have proved to be more capable of estimating the speech second-

order statistics or the speech presence probability than traditional methods.

Among the above linear filters, the MVDR beamformer is theoretically de-

signed to be distortionless [18], while the GEV beamformer is targeted to achieve

maximum output Signal-to-Noise Ratio (SNR) [19]. MWF [20] is a Minimum

Mean Square Error (MMSE) solution which allows for given noise reduction at

the expense of some speech distortion. There exist other linear filter variants,

such as the Speech Distortion Weighted MWF (SDW-MWF) [21, 22, 23] and

the Variable Span (VS) linear filter [24]. The SDW-MWF involves a trade-

off parameter which tunes the speech distortion versus the noise reduction. In

the case of a single target source, it can be expressed in the form of a spatial-

prediction MWF [25] or a rank-1 MWF [26]. Note that these linear filters are all

equivalent up to a scaling factor if formulated in a unified framework [24, 27, 28].

While the speech quality performance of these filters has been well studied, the

comparison in terms of speech recognition performance is lacking. An interest-

ing question is whether the already known speech quality performance can be

related to the speech recognition accuracy.

In this paper, we provide an extensive experimental study of the relative per-

formance of these multichannel linear filters, considering the real world speech

recognition task in multiple noisy environments of the CHiME-4 challenge [29].

In particular, we focus on a family of rank-1 MWF variants. We propose a

new constraint of constant residual noise power along both time and frequency,
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Figure 1: System illustration with BLSTM supported linear filters. Φxx is the speech covari-

ance matrix and Φnn is the noise covariance matrix.

which links the rank-1 MWF and the GEV beamformer. This constraint is

shown to enhance the speech recognition performance. To fulfill the underlying

rank-1 assumption, we introduce a speech covariance matrix reconstruction pro-

cess. The reconstruction is based on eigenvectors or generalized eigenvectors. In

the experiments, all linear filters are supported by the same BLSTM network,

which is used for mask estimation. An overview of the system is given in Fig. 1.

We also introduce a novel feature variance metric that correlates well with the

Word Error Rate (WER) and helps understanding the benefit of the proposed

constant residual noise power constraint.

The rest of this paper is organized as follows. The multichannel signal pro-

cessing problem is formulated in Section 2. In Section 3, the rank-1 MWF

solution is first introduced. Three filter variants, including the novel constant

residual noise power filter, are then derived separately. To fulfill the rank-1

assumption in practice, the eigenvector based speech covariance matrix recon-

struction is discussed in Section 4. The speech recognition experiments, the

BLSTM network for mask estimation, the results and the analysis are presented

in Section 5. Conclusions are drawn in Section 6.

2. Problem formulation

The multichannel signal processing problem is formulated as follows. A

target speech source s propagates in the acoustic space and impinges on an
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array of M microphones. The observations at time t are given by

ym(t) = gm ∗ s(t) + nm(t), m = 1, 2, ...,M (1)

where ∗ denotes convolution, gm is the time-invariant acoustic impulse response

from the source to the mth microphone and nm is the undesired noise at mi-

crophone m. Under the narrowband assumption [28], the above model can be

written in the frequency domain as

Ym(l, k) = Gm(k)S(l, k) +Nm(l, k)

= Xm(l, k) +Nm(l, k), m = 1, 2, ...,M (2)

where l and k are respectively the frame index and the frequency index. Ym(l, k),

S(l, k) and Nm(l, k) denote the Short-Time Fourier Transform (STFT) coeffi-

cients of ym(t), s(t) and nm(t), respectively, and Gm(k) is the Fourier transform

of gm. Xm(l, k) = Gm(k)S(l, k) is the narrowband approximation of the rever-

berated source.

Linear filtering techniques aim to design an optimal filter h(l, k) = [H1(l, k),

..., HM (l, k)]T which extracts the desired source and suppresses the other com-

ponents, where subscript T denotes transposition. This filter is applied to the

observation vector y(l, k) = [Y1(l, k), ..., YM (l, k)]T , and the filter output is

O(l, k) = hH(l, k)y(l, k)

= hH(l, k)x(l, k) + hH(l, k)n(l, k) (3)

where H denotes Hermitian transpose, x(l, k) = [X1(l, k), ..., XM (l, k)]T and

n(l, k) = [N1(l, k), ..., NM (l, k)]T .

The filter coefficients can be derived by setting certain constraints on the

filtered output, for instance, to achieve MMSE with respect to an arbitrary

channel of the reverberated source, say X1(l, k). This is expressed as the opti-

mization problem:

min
h

E{|hH(l, k)y(l, k)−X1(l, k)|2} (4)
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where E{·} means expectation. Assuming speech and noise are uncorrelated,

we can rewrite (4) as

min
h

E{|hH(l, k)x(l, k)−X1(l, k)|2}+ E{|hH(l, k)n(l, k)|2} (5)

where the first term is the speech distortion and the second term is the residual

noise power. A weight µ can be introduced to control the contribution of the

second term:

min
h

E{|hH(l, k)x(l, k)−X1(l, k)|2}+ µE{|hH(l, k)n(l, k)|2}. (6)

The solution of this weighted optimization problem is known as the SDW-

MWF [21]

hSDW-MWF(l, k) = (Φxx(l, k) + µΦnn(l, k))−1Φxx(l, k)u1 (7)

where Φxx(l, k) = E{x(l, k)xH(l, k)} is the speech covariance matrix, Φnn(l, k) =

E{n(l, k)nH(l, k)} is the noise covariance matrix and u1 = [1, 0, ..., 0]T is an

M -dimensional vector that projects on the first channel. The hyperparameter

µ in the SDW-MWF controls the trade-off between speech distortion and noise

reduction. A larger value of µ leads to more noise reduction at the expense of

more speech distortion. Specially, the plain MWF is obtained with µ = 1.

3. Rank-1 MWF variants

In the following, we first review the rank-1 MWF solution [26]. Then three

filter variants, namely the minimum distortion filter, the plain rank-1 MWF and

the new constant residual noise power filter, are derived separately by finding the

proper trade-off parameter values. While the first two variants were discussed

in [26], the last one is obtained here by analysing the GEV beamformer [19], a

filter that maximizes the output SNR. We show that the GEV beamformer also

features a constant residual noise power property over both time and frequency.

The new rank-1 MWF variant is then derived following this constraint.

6



3.1. Rank-1 MWF

Under the narrowband approximation (2), the speech covariance matrix can

be decomposed as

Φxx(l, k) = φss(l, k)g(k)gH(k) (8)

where φss denotes the speech power spectral density and g(k) = [G1(k), ..., GM (k)]T

is the vector of acoustic transfer functions. This matrix is of rank-1. Thus

Φ−1nn(l, k)Φxx(l, k) is also of rank-1. Its unique non-zero eigenvalue is given by

λ(l, k) = tr{Φ−1nn(l, k)Φxx(l, k)} (9)

where tr{·} is the trace operation. With Woodbury’s identity and the fact that

gH(k)Φ−1nn(l, k)g(k) = tr{Φ−1nn(l, k)g(k)gH(k)} (10)

the SDW-MWF solution ends up in the rank-1 MWF

hr1MWF−µ(l, k) =
Φ−1nn(l, k)Φxx(l, k)

µ+ λ(l, k)
u1. (11)

Similarly, the trade-off parameter µ controls the speech distortion and noise re-

duction performance. With different parameter values, the corresponding filter

variants exhibit different properties.

3.2. Minimum distortion filter and plain rank-1 MWF

These two filter variants match the cases of µ = 0 and µ = 1, respectively:

hr1MWF−0(l, k) =
Φ−1nn(l, k)Φxx(l, k)

λ(l, k)
u1, (12)

hr1MWF−1(l, k) =
Φ−1nn(l, k)Φxx(l, k)

1 + λ(l, k)
u1. (13)

hr1MWF−0 is indeed distortionless in theory.
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3.3. Constant residual noise power filter

To derive the new filter variant, we first investigate the maximum SNR filter

that is defined as

h(l, k) = argmax
h

hH(l, k)Φxx(l, k)h(l, k)

hH(l, k)Φnn(l, k)h(l, k)
. (14)

This is a generalized Rayleigh quotient and the GEV solution is

hGEV(l, k) = P{Φ−1nn(l, k)Φxx(l, k)} (15)

where P{·} takes the eigenvector corresponding to the largest eigenvalue, which

is defined up to an arbitrary scale. An additional Blind Analytical Normal-

ization (BAN) post-filter can be applied to control the speech distortion [19].

The output SNR of the GEV beamformer is equal to the largest eigenvalue of

Φ−1nn(l, k)Φxx(l, k), which is exactly λ in the rank-1 case.

Meanwhile, the two Hermitian matrices Φxx(l, k) and Φnn(l, k) can be jointly

diagonalized as BHΦxx(l, k)B = Λ

BHΦnn(l, k)B = I
(16)

where B and Λ are respectively the eigenvector2 and eigenvalue matrices of

Φ−1nn(l, k)Φxx(l, k), and I is the identity matrix [24]. If the diagonal elements

of Λ are in descending order, then the GEV beamformer (15) can be chosen as

the first column vector of B. This is the usual choice made in the literature [19]

and the one we also make in the following. We denote it by h∗GEV(l, k) =

P∗{Φ−1nn(l, k)Φxx(l, k)}. By defining the residual noise as ξn = hHn, we see

that the residual noise power of the GEV is given by

E{|ξn(l, k)|2} = h∗HGEV(l, k)Φnn(l, k)h∗GEV(l, k) = 1, (17)

which indicates constant residual noise power over both frequency and time.

2Note that the eigenvectors are not of unit norm here: they are scaled such that

BHΦnn(l, k)B = I holds.
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Going back to the rank-1 MWF, it can be proved that the rank-1 MWF

solution also satisfies (14) with an arbitrary trade-off parameter. The general

expectation of the residual noise power is

E{|ξn(l, k)|2} = hHr1MWF(l, k)Φnn(l, k)hr1MWF(l, k)

=
uT1 Φxx(l, k)Φ−1nn(l, k)Φxx(l, k)u1

(µ+ λ(l, k))2

=
φx1x1

(l, k)φss(l, k)gH(k)Φ−1nn(l, k)g(k)

(µ+ λ(l, k))2

=
φx1x1

(l, k)λ(l, k)

(µ+ λ(l, k))2
(18)

in which the final step makes use of equation (10). Setting the residual noise

power to a constant value E{|ξn(l, k)|2} = 1 as in (17), and taking it into

equation (18), we obtain

µG(l, k) =
√
φx1x1

(l, k)λ(l, k)− λ(l, k) (19)

which has become frame and frequency dependent. Thus a rank-1 MWF filter

which is similar to the GEV in terms of maximizing the output SNR and leading

to constant residual noise power, but different in terms of projection direction,

is given by

hr1MWF−µG
(l, k) =

Φ−1nn(l, k)Φxx(l, k)

µG(l, k) + λ(l, k)
u1. (20)

This choice of µ = µG is new in the context of rank-1 MWF. Although it has

been known that linear filters are equivalent up to a scaling factor [24, 27, 28],

the factor that specifically relates the rank-1 MWF and GEV is given here by

1
µG+λ for the first time.

In [30], the residual noise power was chosen as constant over time. Here we

restrict it to be constant along frequency too. Note that, under this constraint,

the signal can be amplified in some noise-dominated frequency bins and weak-

ened in some speech-dominated frequency bins, which induces speech distortion

as does the GEV beamformer. Nevertheless, the derived three rank-1 MWF

variants differ only by the spectral shape of the filtered signal. They all project

in the spatial direction of Φ−1nn(l, k)Φxx(l, k)u1, but with different spectral gains.
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4. Rank-1 constraint on the speech covariance matrix

The above linear filters are specified as functions of the covariance matri-

ces: Φxx(l, k) and Φnn(l, k). In practice, the covariance matrices need to be

estimated either by recursive smoothing

Φ̃xx(l, k) = αΦ̃xx(l − 1, k) + (1− α)Mx(l, k)y(l, k)yH(l, k) (21)

Φ̃nn(l, k) = αΦ̃nn(l − 1, k) + (1− α)Mn(l, k)y(l, k)yH(l, k) (22)

or by the arithmetic mean

Φ̃xx(l, k) =
1

L

L/2−1∑
l=−L/2

Mx(l, k)y(l, k)yH(l, k) (23)

Φ̃nn(l, k) =
1

L

L/2−1∑
l=−L/2

Mn(l, k)y(l, k)yH(l, k) (24)

where α is a forgetting factor, and Mx, Mn represent the speech and noise

masks or the speech and noise presence probabilities, respectively. Due to esti-

mation errors or to the fact that the narrowband assumption (8) doesn’t hold

perfectly, the estimated speech covariance Φxx(l, k) is not rank-1. In [23], using

a low-rank approximation of the speech covariance matrix in the SDW-MWF

effectively delivered better noise reduction performance. This motivates us to

constrain the estimated speech covariance matrix to be rank-1 as follows.

The matrix can be decomposed into a rank-1 part and a remainder part:

Φ̃xx(l, k) = Φr1(l, k) + Φz(l, k)

= σx(l, k)a(l, k)aH(l, k) + Φz(l, k) (25)

where σx = tr{Φ̃xx(l, k)}/tr{a(l, k)aH(l, k)}, and a(l, k) is defined as the re-

construction vector. The remainder matrix Φz(l, k) can be either treated as

noise or simply ignored, leading to different interpretations of the filter [23]. We

choose to ignore the remainder part here. a(l, k) is chosen from the eigenvector

and the generalized eigenvector, that are defined as:

aEVD(l, k) = P{Φ̃xx(l, k)} (26)

aGEVD(l, k) = Φ̃nnP{Φ̃−1nn(l, k)Φ̃xx(l, k)}. (27)
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Note that aGEVD is interpreted as the desired source relative transfer function

in [31]. These two expressions result in new EVD and GEVD based filters, re-

spectively, that fulfill the rank-1 assumption used for deriving the rank-1 MWF.

The new filters are given by

h̃r1MWF−µ−evd/gevd(l, k) =
Φ̃−1nn(l, k)Φr1(l, k)

µ+ λ(l, k)
u1. (28)

5. Experiments and analysis

5.1. The recognition task

The experiments are conducted on the CHiME-4 challenge data [29]. This

dataset features real recordings in four daily noise environments: bus, cafeteria,

street junction and pedestrian area. Sentences from the Wall Street Journal

(WSJ0) 5k corpus are read from a tablet device. Then the audio signals are

captured by a 6-channel microphone array embedded in the tablet frame. For

subsequent processing, the signals are downsampled to 16kHz. Besides the real

recordings, there are also artificially generated sentences. Clean WSJ0 samples

are mixed with the environment noises at similar SNRs as the real data. The

whole dataset is divided into disjoint training, development and evaluation sets.

In the training set, there are 1600 real and 7138 simulated sentences, about 20

hours in total. In the development set and the test set, there are 1640 and 1320

sentences for each kind of data.

The recognition system is the official challenge baseline built with the Kaldi

toolkit3. The inputs to the DNN acoustic model are Mel-frequency Cepstral Co-

efficient (MFCC) features processed by feature space Maximum Likelihood Lin-

ear Regression (fMLLR) transformation. The outputs are 1979 Hidden Markov

Model (HMM) probability states. The acoustic model has 7 layers that are

trained under the state level Minimum Bayes Risk (sMBR) criterion. In the

decoding phase, a 3-gram Language Model (LM) is used. Recurrent neural net-

work (RNN) LM rescoring is not applied in our experiments: this is the only

3https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4
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difference with respect to the official baseline. The results obtained here are not

meant to be compared to the best CHiME-4 results, where advanced acoustic

and RNN language models are applied.

5.2. Evaluation setup

Table 1: Linear filters involved in the evaluation. They are organized in terms of the projection

direction and spectral gain in order to highlight their differences or similarities. The filter h is

given by the product of the projection direction and the spectral gain. Note that Φxx, Φnn,

a, σx, λ and µG depend on time and frequency.

linear filter reference projection direction spectral gain

MVDR [18]
Φ−1nna, a = P{Φxx}

√
aHa

aHΦ−1
nna

r1MWF-µ-evd (25)(28) σxaHu1

µ+λ , µ = 1, µG

r1MWF-µ (11) Φ−1nnΦxxu1
1

µ+λ , µ = 0, 1, 5, 10, µG

r1MWF-µ-gevd (25)(28)
P∗{Φ−1nnΦxx},

a = ΦnnP∗{Φ−1nnΦxx}

σxaHu1

µ+λ , µ = 1, µG

GEV-BAN
(15)

BAN [21]

GEV 1

MWF (7) (Φxx + Φnn)−1Φxxu1 1

VS [24] aaHΦxxu1, a = P∗{Φ−1nnΦxx} 1
µ+λ , µ = 1

The WDAS beamformer [4] is provided as the official baseline for CHiME-

4. The linear filters involved in the evaluation are listed in Table 1. They are

organized in terms of the projection direction and the spectral gain. GEV-BAN

was the method used in the best CHiME-4 submissions [29].

The linear filters are based on the same BLSTM network which simulta-

neously predicts the speech mask Mx and the noise mask Mn. In [13], the

network was combined with MVDR and GEV. We extend the process here to

other linear filters. The STFT is performed in 1024 points with 256 points shift.

The magnitude spectrum vector of one frame is used as input. The network con-

sists of one recurrent BLSTM layer with 256 nodes and two feed-forward hidden

12
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Figure 2: Illustration of the BLSTM network for mask prediction. The numbers in brackets

indicate the number of nodes per layer.

layers with 512 nodes each. The outputs are 1026 nodes for the speech mask

and the noise mask. The target ideal masks are defined as

Mx =

1 SNR > LCx,

0 otherwise,
(29)

Mn =

0 SNR > LCn,

1 otherwise,
(30)

where the thresholds for speech and noise detection LCx and LCn are set to be 0

dB and -10 dB, respectively. The thresholds are chosen to favor a speech/noise

decision with low false acceptance rate. This results in more reliable covariance

matrix estimation at the cost of discarding some time-frequency bins [16]. The

ReLU activation function is used for all the hidden layers while the sigmoid

function is chosen for the output layer. The network is totally single-channel

based, i.e., it operates on each microphone signal independently. An illustration

of the network architecture is shown in Fig. 2.

In the training stage, the network is trained with all the simulated training

utterances from the 6 channels. The simulated data from the development set

is used for cross validation and early stopping. The weights of the BLSTM

layer are initialized from a uniform distribution ranging from -0.05 to 0.05. The

13



other layers are initialized with samples from a normal distribution with zero

mean and a variance of
√

1/uin with uin denoting the number of input units.

The Adam method [32] is employed to tune the network and the learning rate is

adjusted adaptively. Cross-entropy loss is used as the optimization criterion. For

better generalization performance, dropout is applied to all the hidden layers.

The dropout rate is fixed to 0.5. Batch normalization [33] is applied to speed up

the training process and help the network converge to a better local optimum.

In the test phase, the magnitude spectrum vector of the test signal is fed

to the trained model and the output masks are in the [0, 1] range. The masks

are obtained separately for each channel, and the median value is taken across

channels. The median operation is robust to outliers in the case of microphone

failure in the real recordings [13]. This value is then used to obtain Φ̃xx, Φ̃nn

using (23) and (24). The statistics are averaged on the whole sentence, which

leads to time-invariant filters per utterance, that have shown to be more advan-

tageous than time-varying ones for this speech recognition task [29]. For the

rank-1 MWF, the reference channel is decided by cross-channel correlations.

The channel which has the highest average correlation score with the other

channels is selected as the reference.

The experimental setup follows the CHiME-4 challenge instructions: no ex-

tra information, such as the environment label, is exploited. The source code is

available at https://github.com/ZitengWang/nn_mask.

5.3. Recognition results - Acoustic model trained on noisy data

In the first experiment, two acoustic models are trained with the noisy data:

one with utterances from the official channel 5 (∼20h) and the other with utter-

ances from all 6 channels (∼120h). The involved linear filters are only applied to

the development data and the test data. The WER results are given in Table 2.

From an overall perspective, the results of the linear filters follow the same

trends for both acoustic models. The filers consistently enhance the recognition

performance and lower WERs are achieved as expected with more training data.

The performance difference between simulated data and real data is small on

14
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Table 2: WERs (%) achieved by the DNN-sMBR system trained on noisy data. The best

result for each dataset is in bold.

Acoustic model data from channel 5 data from all 6 channels

Dataset
dev test dev test

simu real simu real simu real simu real

Noisy channel 5 11.43 12.53 14.15 23.52 9.92 11.00 11.44 18.86

WDAS 9.07 8.14 14.20 15.04 8.09 7.30 11.97 12.86

MVDR 6.97 6.86 8.70 10.31 6.21 6.07 7.47 8.89

GEV-BAN 7.27 6.85 9.17 10.48 6.24 6.57 8.25 9.11

GEV 7.54 7.05 10.01 10.53 6.85 6.72 9.21 9.14

MWF 11.24 9.38 12.54 16.16 9.48 7.82 10.17 13.63

VS 5.41 6.53 6.37 10.22 4.85 5.58 5.30 8.56

r1MWF-0 5.83 6.68 7.03 11.40 5.18 5.83 5.79 9.54

r1MWF-1 5.86 6.70 7.07 11.44 5.22 5.84 5.85 9.74

r1MWF-5 6.01 6.83 7.12 11.71 5.31 6.04 6.00 10.15

r1MWF-10 6.20 6.97 7.41 12.00 5.44 6.15 6.21 10.49

r1MWF-µG 6.42 6.43 8.00 10.33 5.76 5.73 6.61 8.89

r1MWF-1-evd 5.82 6.83 7.05 11.17 5.09 5.66 5.99 9.56

r1MWF-1-gevd 5.37 6.59 6.40 10.26 4.86 5.52 5.16 8.47

r1MWF-µG-evd 6.05 6.12 7.63 9.25 5.41 5.54 6.14 8.09

r1MWF-µG-gevd 6.01 6.03 6.84 8.74 5.29 5.53 5.83 7.71

the development set. The overall higher error rates on the test set are due to

the fact that the speakers of the test set speak in a less intelligible way [34]. The

following discussions concentrate on the results achieved on the test set with the

acoustic model trained on utterances from all 6 channels.

Compared with the noisy baseline, it is obvious that all the multichannel

methods improve the speech recognition performance. The WDAS beamformer
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Figure 3: Illustration of the r1MWF-µ filter for an example sentence (M06 440C0201 BUS)

from the real test set. (a) Spectral gain along frequency for different values of µ. (b) The

corresponding log-magnitude of one frame of the filtered signals. (c) and (d) Log-magnitude

spectrograms of the filtered signals with µ = 1 and µ = µG, respectively.

is a simple but effective technique, which delivers 35% relative WER reduction

on the real data. The MWF achieves less reduction here partly due to its

sensitivity to mask estimation errors [35]. The MVDR filter is theoretically
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speech distortionless and further improvement is achieved from the WDAS filter.

For instance, the WER is reduced from 12.86% to 8.89% on the real data. The

GEV and GEV-BAN surprisingly lead to comparable results, despite the fact

that BAN is believed to be crucial to the speech perceptual quality [19]. There is

around 1% absolute difference on the simulated data though. The VS filter gets

the lowest WER among the above ones. It is especially effective on the simulated

data with an average 25% relative improvement from the MVDR filter. The

recognition performance is clearly influenced by the projection direction of the

beamformers as shown by the GEV, MWF filters and the VS, r1MWF-1 filters.

Regarding the rank-1 MWF variants without speech covariance matrix re-

construction, the distortionless r1MWF-0 works best on the simulated data

while the residual noise power constrained r1MWF-µG works best on the real

data. By changing the trade-off parameter µ from 0 to {1,5,10}, more noise

reduction is achieved in the processed signal at the expense of more speech

distortion. This results in worse recognition performance in this specific task:

WERs increase as µ increases. Note that for the r1MWF-µG, this trade-off pa-

rameter is frequency dependent. In Fig. 3, the spectral gain along frequency and

the filtered signals are shown for different parameter values. The r1MWF-µG

has small gain in the low frequencies and puts more weight in the high fre-

quencies, leading to relatively stable level of log-magnitudes as shown in Fig 3

(b) and Fig 3 (d). The differences in the (time-varying) spectral gain result in

different recognition accuracies.

Additional improvement is observed with the speech covariance matrix re-

construction process. On the real test data, the WER is reduced from 8.89%

to 8.09% for the r1MWF-µG-evd and 7.71% for the r1MWF-µG-gevd. Overall,

the r1MWF-µG-gevd gives the best result. It achieves a 40% relative WER

reduction compared with the baseline WDAS beamformer on the real test set

and a 15% relative WER reduction compared with the GEV-BAN method.

An interesting experiment is to check the performance of these filters using

the correct masks instead of the predicted ones. This presumably would help to

partially discriminate the error rate caused by covariance estimation errors and
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Table 3: WERs (%) achieved by the DNN-sMBR system trained on noisy data from channel

5. These filters are computed from the correct masks. The percentages in brackets denote the

relative WER changes from the results obtained with the BLSTM predicted masks. The best

result for each dataset is in bold.

Dataset
dev test

simu real simu real

MVDR 6.25 (-10%) 7.01 (+ 2%) 7.18 (-17%) 10.90 (+ 6%)

GEV-BAN 5.87 (-19%) 7.95 (+16%) 6.51 (-29%) 11.94 (+14%)

GEV 6.70 (-11%) 8.35 (+18%) 7.42 (-26%) 12.84 (+22%)

MWF 7.67 (-31%) 8.65 (- 7%) 8.36 (-33%) 15.91 (- 2%)

VS 4.92 (- 9%) 6.29 (- 4%) 5.83 (- 8%) 10.43 (+ 2%)

r1MWF-0 5.00 (-14%) 6.44 (- 4%) 5.74 (-18%) 11.16 (- 2%)

r1MWF-1 5.00 (-15%) 6.49 (- 3%) 5.75 (-19%) 11.23 (- 2%)

r1MWF-µG 5.81 (-10%) 6.71 (+ 4%) 6.68 (-17%) 10.94 (+ 6%)

r1MWF-µG-evd 5.65 (- 7%) 6.32 (+ 3%) 6.38 (-16%) 10.03 (+ 8%)

r1MWF-µG-gevd 5.56 (- 7%) 6.36 (+ 5%) 6.24 (- 9%) 10.00 (+14%)

limitations of the multichannel linear filters themselves. The correct masks for

the simulated data are well defined, however, the ground truth underlying the

real data is not readily available. The method in [29] is adopted for the ground

truth estimation for real data and then the masks are calculated using (29) and

(30). The recognition results are summarized in Table 3, with the percentages

in brackets denoting the relative WER changes from the results in the left half

of Table 2, that are obtained with the BLSTM predicted masks.

The relative performance between the linear filters is generally consistent

with the previous results, though a reduction of WERs on the simulated data

is observed and an overall increase of WERs is observed on the real data. For

instance, the WERs of GEV-BAN on the test set decrease by 29% relative on
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simulated data and increase by 14% relative on real data. This indicates that

GEV-BAN would benefit from better estimated masks on simulated data. This

also indicates that the ground truth estimation process is not perfect and GEV-

BAN is prone to covariance estimation errors. In comparison, the VS filter

is more robust to mask misestimation and achieves the lowest WERs on the

development set. Comparing r1MWF-µG-evd and r1MWF-µG-gevd to r1MWF-

µG, the rank-1 constraint on the speech covariance matrix still leads to lower

error rates. On the real test data, r1MWF-µG-gevd achieves a 16% relative

WER reduction compared with the GEV-BAN method in this case.

5.4. Recognition results - Acoustic model trained on enhanced data

Table 4: WERs (%) achieved by the DNN-sMBR system trained on enhanced data. The best

result for each dataset is in bold.

Dataset
dev test

simu real simu real

Noisy 11.43 12.53 14.15 23.52

MVDR 6.80 6.97 8.61 11.58

GEV-BAN 6.59 7.14 7.43 10.62

GEV 6.83 7.01 7.70 9.91

VS 5.59 6.55 6.30 11.12

r1MWF-0 5.95 6.83 6.87 12.55

r1MWF-1 6.72 7.45 7.70 13.74

r1MWF-µG 6.89 7.35 7.82 12.07

r1MWF-1-evd 5.92 6.66 6.96 12.32

r1MWF-1-gevd 5.65 6.48 6.13 11.19

r1MWF-µG-evd 5.76 6.13 7.26 10.33

r1MWF-µG-gevd 5.79 6.04 6.48 9.52

In the second experiment, the acoustic model is retrained with the filtered
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training data. The WERs are shown in Table 4. They are comparable to the

left half of Table 2 in the sense that the amount of training data is the same.

On the real data, all linear filters generally achieve higher error rates than

in the first experiment, except for the GEV filter. On the simulated data, the

WERs are generally lower. The proposed r1MWF-µG-gevd is still the best

on real data. Note that retraining the acoustic model every time is rather

time-consuming and not efficient in practice. The results here provide a strong

argument for noisy training, that extends the argument made specifically for

the GEV-BAN in [13].

5.5. Analysis

The above results suggest that neither speech distortion nor noise reduction

is straightforwardly correlated with the speech recognition performance. Indeed,

the GEV introduces more speech distortion than the theoretically distortionless

MVDR but it performs better in the second experiment. The r1MWF-5/10

are supposed to deliver more noise reduction than the r1MWF-0 but they give

higher WERs.

In the following, we investigate the rank-1 MWF variants and their WERs

achieved on the noisy acoustic model trained on utterances from all 6 channels.

In Fig. 4, the relation between the WERs and the speech distortion scores is

shown. The frequency-weighted log-spectral Signal Distortion (SD) metric [36]

is defined as

SD =
1

L

l=L∑
l=1

√√√√k=K∑
k=1

ERB(k)

(
10 log10

φo
φi

)2

dk (31)

where L is the number of frames, φo and φi are respectively the processed

speech power spectrum and the clean speech power spectrum, and ERB(k)

is the frequency-weighting factor giving equal weight to each auditory critical

band. The SD scores are computed and averaged on the simulated test data.

We observe that the r1MWF-µG introduces much larger distortion than the

r1MWF-0/1, from about 9 dB to 16 dB. But the WER only increases slightly.

Clearly, there is no strong correlation between the two.
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Figure 4: WERs achieved on the acoustic model trained on utterances from all 6 channels

and SD scores of the r1MWF variants. WERs are represented by white bars and SD scores

are marked by circles.
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Figure 5: Relation between FV and WER for the real (solid black markers) and simulated

(hollow red markers) data. The dashed lines show the linear regression results separately. A

line with positive slope means positive correlation.

In order to explain the recognition performance, we investigate the variance

of the input features corresponding to each HMM state in Fig. 5. The intuition
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is that smaller Feature Variance (FV) implies an easier classification task for the

neural network acoustic model. We expect the constant residual noise power

property of the r1MWF-µG to translate into a smaller FV for the processed

speech. The HMM state corresponding to each feature vector is first obtained

by forced alignment on enhanced data separately. Note that the alignments of

the simulated data can be obtained using the clean speech, nevertheless, similar

results are observed here. The FV is calculated over all the feature vectors

belonging to each HMM state for each method

V (j) =
1

I

I∑
i=1

Var(i, j) (32)

where Var(i, j) means the variance of the ith feature in the jth state. We pick

the FV of the r1MWF-0 as a baseline and define the metric

FV =
100∑
j cj

J∑
j=1

cj · I(Vtest(j) > Vbaseline(j)) (33)

that is the weighted percentage of states for which the FV is larger than the

baseline. cj denotes the number of occurrences of the jth state. I(·) is an

indicator function the value of which is 1 for true arguments and 0 for false.

For a comparable method, the value is expected to be around 50%. On the

real data, the r1MWF-1 and r1MWF-5 have higher percentages (62.7% and

68.4%) and corresponding higher WERs. For the r1MWF-µG-evd and r1MWF-

µG-gevd, lower percentages (23.1% and 23.6%) correlate with lower WERs.

However, the correlation is not always valid on the simulated data as shown by

the r1MWF-µG: it has 43.7% states with smaller FV and yet a higher WER

than the baseline.

The FV metric provides another view from the feature side to explain the

performance of the constant residual noise filter. Note that a global scale factor

only results in a shift in the 0th MFCC value and will not affect the feature

variance. The computation of FV also avoids the time-consuming decoding

procedure that is required for WER.
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6. Conclusion

Multichannel linear filters are generally designed to improve the speech per-

ceptual quality but not specifically to improve the speech recognition accuracy.

As a matter of fact, the choice of the optimal filter may be different for different

tasks. In the scenario of a single target source, the popular SDW-MWF can

be formulated as the rank-1 MWF. We derived a family of rank-1 MWF vari-

ants and evaluated their performance for speech recognition in multiple noisy

environments. We defined a constant residual noise power constraint to find

the trade-off parameter which links the rank-1 MWF filter and the GEV beam-

former. We showed that this constraint brings more speech distortion, however,

it benefits the speech recognition performance on the real data. To fulfill the

underlying rank-1 assumption, speech covariance matrix reconstruction is pro-

posed. The reconstruction based on eigenvectors or generalized eigenvectors

subsequently improves the recognition accuracy. With experiments conducted

on the CHiME-4 dataset, the final r1MWF-µG-gevd filter achieved a 40% rel-

ative WER reduction compared with the baseline WDAS beamformer on the

real test set and a 15% relative WER reduction compared with the GEV-BAN

method. For future research, we would like to see how the performance is

impacted for corpora with higher reverberation time where the narrowband ap-

proximation becomes more erroneous.

In the speech recognition task, it is observed that multi-condition noisy

training works well and sometimes outperforms retraining with enhanced data.

So when new signal processing methods are applied, a reasonable practice is

to process only the test data. Another finding is that the speech perceptual

quality is not straightforwardly related to the speech recognition performance.

An investigation from the perspective of feature variance is provided. The work

puts forward the need for novel signal or feature metrics that correlate better

with the WER.
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