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TaggedPAbstract

In this article, we review the INTERSPEECH 2013 Computational Paralinguistics ChallengE (ComParE) � the first of its

kind � in light of the recent developments in affective and behavioural computing. The impact of the first ComParE instal D85X Xment is

manifold: first, it featured various new recognition tasks including social signals such as laughter and fillers, conflict in dyadic

group discussions, and atypical communication due to pervasive developmental disorders, as well as enacted emotion; second, it

marked the onset of the ComParE, subsuming all tasks investigated hitherto within the realm of computational paralinguistics;

finally, besides providing a unified test-bed under well-defined and strictly comparable conditions, we present the definite feature

vector used for computation of the baselines, thus laying the foundation for a successful series of follow-up Challenges. Starting

with a review of the preceding INTERSPEECH Challenges, we present the four Sub-Challenges of ComParE 2013. In particular,

we provide details of the Challenge databases and a meta-analysis by conducting experiments of logistic regression on single fea-

tures and evaluating the performances achieved by the participants.

� 2018 Published by Elsevier Ltd.
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1 1. Introduction

2 TaggedPAffective Computing, focusing on the emotional mechanisms in natural human-machine interaction, has been an

3 active topic for two decades now since its early emergence in the second quinquennium of the 1990s (Picard, 1997).

4 Affective computers are aimed to recognise, express, model, communicate, and respond to emotional information,

5 thus providing better performance in collaboration and communication with human beings (Picard, 1997). Propelled

6 by the advances in speech processing technology, many of the suggested applications of affective computing to com-

7 puter-assisted learning, perceptual information retrieval, arts and entertainment, and human health and interaction as

8 envisioned in Picard’s pioneering work have already become reality, e.g., wearable computer devices, interactive

9 emotion games for social inclusion of people with autism spectrum condition (ASC), and big data analytic systems.

10 TaggedPFrom a psychological point of view, the realm of affect extends beyond the domain of emotions and moods (Rus-

11 sell, 2003; Beedie et al., 2005); in current studies, the terms affect, mood, and emotion are often used interchange-

12 ably, without much effort at conceptual differentiation (Ekkekakis, 2013). In an attempt to draw some lines of

13 demarcation, Russell (2009) advocated the concept of core affect as a neurophysiological state, accessible to con-

14 sciousness as a simple non-reflective feeling: feeling good or bad, feeling lethargic or energised, with the two under-

15 lying dimensions of pleasure�displeasure and activation�deactivation.

16 TaggedPMost importantly, in spite of the paramount importance of affect, it only presents one facet of human beings, thus

17 the paradigm of affective computing has been shifting towards a more holistic understanding of human social intelli-

18 gence (Albrecht, 2006). In this context, Pentland (2007) and Vinciarelli et al. (2012a) pioneered the domain of social

19 signal processing, with the aim to endow machines with human-like emotional, social perceptual and behavioural

20 abilities.

21 TaggedPFor speech processing, the paradigm shift has led to an increasing attention to the automatic recognition of

22 speaker characteristics beyond affective states, which has enabled a new broad spectrum of applications such as vir-

23 tual assistants with personalised aspects, safety and security monitoring services, and speaker identification systems.

24 There is currently a wealth of loosely connected studies, mostly on affect recognition (including emotion, depres-

25 sion, and stress level), but also recognition of other speaker states and traits such as sleepiness, alcohol intoxication

26 (Schiel and Heinrich, 2009), health condition (Maier et al., 2009), personality (Mohammadi et al., 2010), and biolog-

27 ical primitives in terms of age, gender, height, weight (Krauss et al., 2002; Schuller et al., 2013). From the plethora

28 of well studied and currently under-researched speech phenomena, a new major field of speech technology research

29 has been emerging, termed ‘computational paralinguistics’ by Schuller (2012) and Schuller and Batliner (2014).

30 2. The INTERSPEECH challenges

31 TaggedPAlong with the growing maturity of this field, different research challenges have been established, allowing

32 researchers to compare their affect recognition systems with benchmark performances, and at the same time,

33 addressing the different channels of affect manifestations such as facial expression, body gesture, speech, and physi-

34 ological signals (e.g., heart rate, skin conductivity) (Tao and Tan, 2005). For instance, the Audio/Visual Emotion

35 Challenge and Workshop (AVEC) is aimed at bridging between different modalities by featuring audio, visual, and

36 audiovisual analysis for spontaneous emotion recognition (Ringeval et al., 2015). Likewise, the Emotion Recogni-

37 tion In The Wild Challenge and Workshop (EmotiW) scopes multimodal emotion recognition, while focusing on

38 snippets of movies (Dhall et al., 2013). The MediaEval Benchmarking Initiative for Multimedia Evaluation1 sets a

39 special focus on the social and human aspects of multimedia access and retrieval, while emphasising the ‘multi’ in

40 multimedia involving speech recognition, content analysis, music and audio analysis, user-contributed information

41 (tags, tweets), viewer affective response, social networks, temporal and geo-coordinates.

42 TaggedPThe INTERSPEECH Challenges 2009 to 2012 were held in conjunction with the annual INTERSPEECH confer-

43 ence, one of the prime venues in speech signal processing. In the following, we detail the task specifications, data,

44 features, Challenge conditions and evaluations of this Challenge series. The first INTERSPEECH 2009 Emotion

45 Challenge (IS09EC) (Schuller et al., 2009; 2011a) featured a binary (idle vs negative) and a five-way (anger,

46 emphatic, neutral, positive, and rest) classification task on the FAU Aibo Emotion Corpus of naturalistic children’s

1 http://www.multimediaeval.org/.
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47 TaggedPspeech (Steidl, 2009). In light of the Challenge, the first widely used open-source affect analysis toolkit openEAR

48 (Eyben et al., 2009) was introduced. A follow-up effort, the INTERSPEECH 2010 Paralinguistic Challenge

49 (IS10PC) (Schuller et al., 2010; 2013), evaluated the continuous-valued level of interest ([-1,+1]) and the biological

50 primitives age (child, youth, adult, and senior) and gender/age (female, male, and children). In the ensuing INTER-

51 SPEECH 2011 Speaker State Challenge (IS11SSC) (Schuller et al., 2011b; 2014), intoxication (above or below 0.5

52 per mill blood alcohol concentration) and sleepiness (above or below 7.5 on the Karolinska sleepiness scale) had to

53 be detected. Finally, in the INTERSPEECH 2012 Speaker Trait Challenge (IS12STC) (Schuller et al., 2012; 2015),

54 personality (openness, conscientiousness, extraversion, agreeableness, and neuroticism), likability, and intelligibility

55 of pathological speakers were investigated, where all tasks were binarised to above or below average.

56 TaggedPSpecifically, high realism was fostered in the choice of all Challenge data, e.g., genuine intoxication and sleep

57 deprivation was given, and spontaneous speech was considered for tasks based on subjective perception. Furthermore,

58 partitioning is strictly subject-independent, whenever possible. Only the first Challenge did not feature a development

59 partition. The subsequent Challenges defined roughly a 40:30:30 partitioning for the training, the development, and

60 the test set, where training and development were united for the baseline computation. Test data � without target

61 labels � were provided to the participants, who had limited trials of result submissions per competing site. To uphold

62 the quality and validity of research, the individual paper submissions undergo the regular INTERSPEECH peer-

63 review process and have to be accepted for the conference in order to participate in the Challenge. In each Challenge,

64 an acoustic feature set was specified, comprising 384, 1582, 4368, and 6125 attributes, respectively (2009�2012),

65 which were obtained by applying statistical functionals to low-level descriptors. For transparency, the openSMILE

66 feature extraction toolkit has been consistently used over the years (Eyben et al., 2010; 2013); openEAR is a release

67 of openSMILE including models for emotion recognition as targeted in the IS09EC Challenge. Another distinguish-

68 ing mark of this Challenge series is the reproducibility for the learning algorithms by consistently using the data min-

69 ing toolkit WEKA 3 (Witten and Frank, 2005). Last but not least, the popularity of these events has steadily

70 increased from 33 to 52 registered participants. An overview of the Challenge results is given in Table 1. It can be

71 seen from the table that the baselines always were competitive but could be surpassed by the winners, and that in all

72 but one cases, the majority vote could surpass the single best vote by a small margin.

73 3. The First Computational Paralinguistics Challeng D86X Xe (ComParE)

74 TaggedPFig. 1 depicts an exemplary space of speaker characteristics spanned by the axes of subjectivity and time, ranging

75 from temporary speaker states to long-term speaker traits, and from objective measures (ground truth) to subjective

76 gold standards determined through inter-rater procedures.

77 TaggedPAs can be seen from the taxonomic representation in Fig. 1, the tasks investigated in the INTERSPEECH Chal-

78 lenges represent specific sub-domains and much scope is left for exploration in the broad field of paralinguistic

79 speech phenomena. Based on this motivation, the first Challenge of the ComParE series was aimed at illuminating a

80 cross-section of closely connected tasks of high relevance for affective and behavioural research, and subsuming dif-

81 ferent kinds of investigated and potential new tasks under the umbrella of computational paralinguistics (Schuller

Table 1

Results of the INTERSPEECH 2009�2012 Challenges. Evaluation measures: unweighted average recall (UAR [%]),

Pearson’s correlation coefficient (CC). Base: baseline results. Best: best participant results. Vote: majority vote over

the optimal number (shown in parentheses) of the participants’ results.

Challenge Tasks Classes Base Best Vote

IS12STC Personality 2 68.3 71.6 (Ivanov and Chen) 70.4 (5)

Likability 2 59.0 65.8 (Montaci�e and Caraty) 68.7 (3)

Intelligibility 2 68.9 76.8 (Kim et al.) 76.8 (1)

IS11STC Intoxication 2 65.9 70.5 (Bone et al.) 72.2 (3)

Sleepiness 2 70.3 71.7 (Huang et al.) 72.5 (3)

IS10PC Age 4 48.9 52.4 (Kockmann et al.) 53.6 (4)

Gender 3 81.2 84.3 (Meinedo and Trancoso) 85.7 (5)

Interest [-1,1] 0.421 0.428 (Jeon et al.) D1X X¡
IS09EC Emotion 5 38.2 41.6 (Dumouchel et al.) 44.0 (5)

Negativity 2 67.7 70.3 (Lee et al.) 71.2 (7)
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82 TaggedPand Batliner, 2014). Thus, in response to the growing popularity of the Challenge series (Schuller, 2012), ComParE

83 2013 broadened the scope with a larger variety of tasks compared to previous years. In line with INTERSPEECH

84 2013’s theme Speech in Life Sciences and Human Societies, social signals (Vinciarelli et al., 2009) and conflicts in

85 communication (Roth and Tobin, 2010) as occurring in real-life were detected and localised. In addition, we re-

86 addressed the topics emotion and intelligibility from IS09EC and IS12STC by introducing new databases and task

87 definitions.

88 3.1. Challenge D87X Xcorpora

89 TaggedP3.1.1. SSPNet Vocalisation Corpus (SVC)

90 TaggedPThe SOCIAL SIGNALS SUB-CHALLENGE was carried out on the “SSPNet Vocalisation Corpus” (SVC), which contains

91 2 763 audio clips of 11 seconds (total duration: 8.4 h) annotated in regard to laughter and fillers. Laughter (Bachor-

92 owski et al., 2001; Vettin and Todt, 2004; Tanaka and Campbell, 2011) in terms of vocal outbursts can be regarded

93 as an indicator for amusement, joy, scorn, or embarrassment. Fillers such as um, er, uh in English are frequently

94 used delays in speaking when the speaker needs to bridge the time when searching for a word or deciding what to

95 say next (Clark and Fox Tree, 2002). The corpus was extracted from a collection of 60 phone calls involving 120

96 subjects (63 female, 57 male) (Vinciarelli et al., 2012b).

97 TaggedPThe fillers were identified manually by an individual annotator and then validated (accepted or discarded) by a

98 second, independent listener. Thus, the corpus includes only fillers for which there is agreement between annotator

99 and listener. The identification of the fillers was performed with a tool allowing one to manually set beginning and

100 end of a given filler. In case of ambiguity, start or end point were set in correspondence of the earliest or latest point,

101 respectively, where the signal actually corresponded to a filler for both annotator and listener. The tool allows one to

102 set a point with an error as small as the sampling period of the signal (the time interval between two consecutive

103 samples). However, the tool was used with a precision of 30 ms; a value sufficiently good for automatic processing

104 like the one described in this work.

105 TaggedPThe participants of each call were fully unacquainted and never met face-to-face before or during the experiment.

106 The calls revolved around the Winter Survival Task: The two participants had to identify objects (out of a predefined

107 list) that increase the chances of survival in a polar environment. The subjects were not given instructions on how to

108 conduct the conversation, the only constraint was to discuss only one object at a time. The conversations were

Pathology
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Fig. 1. Speaker characteristics investigated in the INTERSPEECH Challenges 2009�2012 and the First Computational Paralinguistics Challenge

(ComParE) 2013.
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109 TaggedPrecorded on both phones (model Nokia N900) used during the call. The clips were extracted from the microphone

110 recordings of the phones. Thus, clips from the same speaker never overlap, whereas clips from two subjects partici-

111 pating in the same call may overlap (for example in the case of simultaneous laughter). However, they do not contain

112 the same audio data because they are recorded with separate microphones. Each clip was selected in such a way that

113 it contains at least one laughter or filler event between t ¼ 1:5 D88X Xs and t ¼ 9:5 D89X Xs. In total, the database contains 2988

114 filler events and 1158 laughter events. Both types of vocalisation in this database can be considered fully spontane-

115 ous. Given this layout, the Social Signals Sub-Challenge introduced for the first time a frame-wise detection and

116 localisation task instead of supra-segmental classification as in the other Sub-Challenges and all previous Chal-

117 lenges. The data were divided into speaker disjoint subsets for training, development, and testing. For transparency,

118 this was simply done by using calls 1�35 (70 speakers) for training, calls 36�45 (20 speakers) for development, and

119 calls 46�60 for testing. The Challenge data were delivered with a manual segmentation of the training and develop-

120 ment data into ‘garbage’, ‘laughter’, and ‘filler’ segments, in the ‘master label file’ (MLF) format used by the Hidden

121 Markov Model Toolkit (HTK) (Young et al., 2006). Further meta data were not provided. The resulting partitioning

122 by numbers of utterances, number of vocalisation segments (filler, laughter) as well as vocalisation and garbage

123 frames (100 per second) is shown in Table 2.

124 TaggedP3.1.2. SSPNet Conflict Corpus (SC2)

125 TaggedPIn the CONFLICT SUB-CHALLENGE, the “SSPNet Conflict Corpus” (SC2) was used (Kim et al., 2012b). It contains

126 1 430 clips of 30 seconds (total duration: 11.9 h) extracted from the Canal9 Corpus � a collection of 45 Swiss politi-

127 cal debates (in French). For the Challenge, 110 subjects in total: 18 females (1 moderator and 17 participants) and

128 92 males (1 moderators and 91 participants) were considered. The clips were annotated in terms of conflict level by

129 551 assessors recruited via Amazon Mechanical Turk. The annotation was performed using a questionnaire fully

130 described by Kim et al. (2012b). As the goal of the corpus was the study of nonverbal communication, only non-

131 French speakers were involved. In this way it was possible to avoid, or at least to limit, the effect of the

132 content (Kim et al., 2014). Every clip was rated by 10 randomly assigned annotators and the agreement was mea-

133 sured in terms of effective reliability R (Rosenthal, 2005):

R ¼ Nr

1þ ðN�1Þr ; r ¼ 2

PN
i¼1

PN
j¼iþ1 rij

NðN�1Þ ð1Þ
134

135 where N is the number of assessors and r is the average of the correlations between all possible pairs of assessors (rij
136 is the correlation between assessors i and j). The observed value of R for the corpus was 0.91, above the threshold of

137 0.90 that the literature considers to be sufficient in experimental practice (Rosenthal, 2005).

138 TaggedPEach clip is associated with a continuous conflict score in the range [�10; þ10], giving rise to a straightforward

139 regression task (‘Score’ task). A classification task was specified based on these labels, which were binarised into

140 ‘high’ (� 0) or ‘low’ (< 0) level of conflict (‘Class’ task). As several subjects were involved in debates with

Table 2

Partitioning of the SSPNet Vocalisation Corpus into train, dev(elopment), and test set: numbers

of utterances, vocalisation segments (laughter, filler), and vocalisation/‘garbage’ frames.

# Train Dev Test S

Utterances

S 1D2X X583 500 680 2 D3X X763

Segments

Laughter 649 225 284 1 D4X X158

Filler 1D5X X710 556 722 2 D6X X988

Frames

Laughter 59,D7X X294 25, D8X X750 23,D9X X994 109, D10X X038

Filler 85D11X X034 29, D12X X432 35,D13X X459 149, D14X X925

Garbage 1D15X X,591 D16X X,442a 492, D17X X607 684, D18X X937 2, D19X X768, D20X X986

S 1D21X X,735, D22X X770 547, D23X X789 744, D24X X390 3, D25X X027, D26X X949

a 79D27X X,572 frames after training set balancing by re-sampling.
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141 TaggedPdifferent moderators, a truly speaker independent partitioning was not possible for these data. Considering the fact

142 that all participants except the moderators are not present more than a few times (mostly only once), the following

143 strategy was followed to reduce speaker dependency to a minimum. All broadcasts with the female moderator

144 (speaker # 50) were assigned to the training set. The development set consists of all broadcasts moderated by the

145 (male) speaker # 153, and the test set comprises the remaining male moderators. This also ensures that the develop-

146 ment and test sets are similar in case that the gender of the moderator had an influence. The resulting partitioning is

147 shown in Table 3, along with the distribution of binary class labels and continuous ratings (Fig. 2) among the parti-

148 tions. The training set comprises 55% of the data, the development 17% and the test set 28%. A drawback of this par-

149 titioning is the rather small development set, but participants were encouraged to use both training and development

150 set for data analysis. As meta data, manual speaker segmentation, as well as role (participant/moderator) and gender

151 of the subjects were provided for the training and development sets. Participants were encouraged to use the manual

152 speaker segmentation for the development of features extraction, but an automatic speaker diarisation system had to

153 be used for the test set.

154 TaggedP3.1.3. Geneva Multimodal Emotion Portrayals (GEMEP)

155 TaggedPFor the EMOTION SUB-CHALLENGE, the “Geneva Multimodal Emotion Portrayals” (GEMEP) corpus (B€anziger
156 et al., 2012) was selected. It comprises 1 260 instances of emotional speech (total duration: 8.9 h) from ten profes-

157 sional actors (five female) in 18 categories. Specifically, prompted speech, which contains sustained vowel phona-

158 tions and two ‘nonsensical’ phrases (phrase #1: ‘ne kal ibam soud molen!’, phrase #2: ‘koun se mina lod belam?’)

159 with two different intended sentence modalities were pronounced by each actor in various degrees of regulation

160 (emotional intensity) ranging from ‘high’ to ‘masked’ (hiding the true emotion). As a partitioning that is both text

161 and speaker disjoint is not feasible, we used vowels and phrase #2 subdivided by speaker ID for training and devel-

162 opment, and phrase #1 for testing, to ensure text independence. Masked regulation utterances are only included in

163 the test set in order to alleviate potential model distortions. This is similar to typical automatic speech recognition

164 tasks where the lowest signal-to-noise ratios are only encountered in the test set. As six of the 18 emotional catego-

165 ries are extremely sparse (� 30 instances in total), we restricted the evaluation to the 12 most frequent ones in the

166 multi-class classification task. The classification labels for each utterance correspond to the emotions intended to be

167 acted; no manual annotation is done. For the binary tasks, mappings of the original labels were only applied on those

168 emotion categories such as to obtain a balanced distribution of positive/negative instances for the dimensions arousal

169 and valence. Nevertheless, the remaining data were given to the participants (with labels in 18 categories for the

170 training and development sets), which could be used, e.g., to train ‘background’ or ‘garbage’ models. The resulting

171 partitioning is shown in Table 4. As meta data, actor IDs, prompts, and intended regulation were released for the

172 training and the development set.

Table 3

Partitioning of the SSPNet Conflict Corpus into train, dev(elopment), and test

set for binary classification (‘low’ �[¡10,0[, ‘high’ �[0,+10]).

# Train Dev Test S

Low 471 127 226 824

High 322 113 171 606

S 793 240 397 1D28X X430

Fig. 2. Level of conflict (2 ½�10;þ10�) histograms for the Challenge partitions of the SSPNet Conflict Corpus.
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173 TaggedP3.1.4. Child Pathological Speech Database (CPSD)

174 TaggedPThe AUTISM SUB-CHALLENGE used the “Child Pathological Speech Database” (CPSD) (Ringeval et al., 2011), cre-

175 ated at two university departments of child and adolescent psychiatry (Universit�e Pierre et Marie Curie/Piti�e-Sal-
176 pêti�ere Hospital and Universit�e Ren�e Descartes/Necker Hospital), located in Paris, France. The recordings are

177 prompted sentence imitation of 26 sentences representing different modalities (declarative, exclamatory, interroga-

178 tive, and imperative) and four types of intonations (descending, falling, floating, and rising); another version of this

179 database including emotional speech (CPESD) has been recently studied and released (Ringeval et al., 2016; Schmitt

180 et al., 2016). The CPSD dataset used in the Sub-Challenge comprises 2 542 instances of speech recordings (total

181 duration: 1 h) from 99 children aged 6 to 18 years; 35 of these children show either pervasive development disorders

182 of autism spectrum condition (PDD, 10 male, 2 female), specific language impairment such as dysphasia (DYS,

183 10 male, 3 female), or PDD non-otherwise specified (NOS, 9 male, 1 female), according to the DSM-IV criteria2

184 (First, 1994), which distinguish ASC subtypes: e.g., Autism Disorders (AD), with symptoms in all areas that charac-

185 terise PDD; or PDD-NOS, which is characterised by social, communicative and/or stereotypical impairments that

186 are less severe than in AD. Further, a monolingual control group of 64 typically developing children (TYP, 52 male,

187 12 female) is included. None of the TYP subjects had a history of speech, language, hearing or general learning prob-

188 lems (Demouy et al., 2011).

189 TaggedPTypically developing children were recorded in two different places according to their age (middle/high school),

190 whereas children with developmental conditions were either recorded at home or at the clinic (DYS: Necker Hospi-

191 tal, PDD and PDD-NOS: Piti�e-Salpêti�ere Hospital), depending on their availability. Various acoustic conditions are

192 thus present in the data due to the use of different places for the recordings of the children; two different places for

193 TYP, and at least four different places for the three groups of children suffering developmental conditions.

194 TaggedPTwo evaluation tasks were specified: a binary ‘Typicality’ task (typically vs atypically developing children), and

195 a four-way ‘Diagnosis’ task (classifying into the above named categories). Note that by ‘Diagnosis’, we refer to the

196 classification of the children’s developmental condition in the four classes reported by the clinicians using DSM-IV

197 criteria. Performance reported by the automatic classification of those conditions thus reflect the agreement of the

198 system with the diagnosis provided by the clinicians on the children from the CPSD database, which can evolve

Table 4

Partitioning of the GEMEP database into train, dev(elopment), and test set for 12-way classification by

emotion category, and binary classification by pos(itive)/neg(ative) arousal (A) and valence (V).

# Train Dev Test A V S

D29X XAdmirationþ 20 2 8 pos pos 30

D30X XAmusement 40 20 30 pos pos 90

D31X XAnxiety 40 20 30 neg neg 90

D32X XCold anger 42 12 36 neg neg 90

D33X XContemptþ 20 6 4 neg neg 30

D34X XDespair 40 20 30 pos neg 90

D35X XDisgustþ 20 2 8 �* �* 30

D36X XElation 40 12 38 pos pos 90

D37X XHot anger 40 20 30 pos neg 90

D38X XInterest 40 20 30 neg pos 90

D39X XPanic fear 40 12 38 pos neg 90

D40X XPleasure 40 20 30 neg pos 90

D41X XPride 40 12 38 pos pos 90

D42X XRelief 40 12 38 neg pos 90

D43X XSadness 40 12 38 neg neg 90

D44X XShameþ 20 2 8 pos neg 30

D45X XSurpriseþ 20 6 4 �* �* 30

D46X XTendernessþ 20 6 4 neg pos 30

S 602 216 442 1260

þ Mapped to ‘other’ and excluded from evaluation in 12-class task.

* Mapped to ‘undefined’ and excluded from evaluation in binary tasks.

2 Even though the recent DSM-V adopted a single diagnosis of ASC based on dimensional features, we kept the definition of DSM-IV for this

study, since ASC children from the CPSD database were originally diagnosed with the criteria of the DSM-IV.
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199 TaggedPover time. Speaker independent partitioning into training, development, and test data was performed on stratified

200 data according to the children’s age and gender. The respective class distribution is shown in Table 5. As additional

201 meta data, age and gender of the children were enclosed.

202 TaggedPBecause evaluations performed in this study are speaker-independent, it is probable that some tested subjects

203 present acoustic conditions that have not been seen either during the training or the optimisation of the hyper-param-

204 eters of the classifier (e.g., a child recorded at home). In a practical perspective, such conditions for system training

205 would be ideal for the development of health care systems that would work well at home on unseen children, while

206 taking additional benefits from recordings collected at the hospital.

207 3.2. The overall scope of the ComParE 2013

208 TaggedPIdeally, we could choose for each year’s sub-challenges amongst many database candidates the ones that fit

209 together under a clearly defined umbrella. However, suitable candidates are rather scarce because they have to meet

210 several conditions, i. e., they have to be new (especially the test set), large enough for experimental purposes, and of

211 considerable interest for the community. Nevertheless, the four sub-challenges in this first ComParE Challenge

212 reflect pivotal aspects of human communication � to be more precise, of specific ‘non-communications’ and prob-

213 lems of a-typicality, according to the type of speaker and speech phenomenon:

TaggedP�214 In the SSPNet Vocalisation corpus SVC (social signal sub-challenge), laughter and fillers represent ‘non-seman-

215 tic’ phenomena, which are very helpful for characterising speakers and gaining a deeper understanding of dia-

216 logues beyond the sole exchange of semantic messages. They can be modelled and detected together with words,

217 but have been disregarded in ‘classic’ Automatic Speech Recognition (ASR).

TaggedP�218 In the SSPNet Conflict Corpus (SC2), conflict occurs as a disruptive event that frequently results in speech over-

219 laps, thus creating problems for ASR and speech modelling.

TaggedP�220 In the Geneva Multimodal Emotion Portrayals (GEMEP), pronounced but unrealistic portrayals of frequent and

221 less frequent emotions, serves as a upper baseline for modelling a many-class problem and demonstrates the diffi-

222 culty of this task even in ‘ideal’ conditions; it has been shown that, when going over to realistic, spontaneous

223 data, performance considerably deteriorates (Batliner et al., 2000; Vogt and Andr�e, 2005).
TaggedP�224 In the Child Pathological Speech Database (CPSD), a-typical speech, which often forms a obstacle for standard

225 ASR, can used for modelling these specific types of speech pathologies (Bone et al., 2012; Marchi et al., 2015;

226 McCann and Peppe, 2003; Van Santen et al., 2010; Demouy et al., 2011).

227 TaggedPFollowing the preceding INTERSPEECH Challenges’ example, strict comparability, transparency and reproduc-

228 ibility, as well as research validation through peer-review were maintained. From this ComParE Challenge onwards,

229 a ‘recipe’ for re-producing the baseline classification and regression results on the development set in an automated

230 fashion has been supplied, embedding the entire workflow from pre-processing, over model training and evaluation,

231 to scoring by the according measures.

Table 5

Partitioning of the Child Pathological Speech Database into train, dev(elopment), and test

set for four-way classification by diagnosis, and binary classification by typical / atypical

development. Diagnosis classes: typically developing (TYP), pervasive developmental dis-

orders (PDD), pervasive developmental disorders non-otherwise specified (NOS), and spe-

cific language impairment such as dysphasia (DYS).

# Train Dev Test S

Typically developing

TYP 566 543 542 1651

Atypically developing

PDD 104 104 99 307

NOS 104 68 75 247

DYS 129 104 104 337

S 903 819 820 2D47X X542
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232 3.3. Challenge D90X Xfeatures

233 TaggedPAs standard acoustic feature set to be used as the new reference in the ComParE series, we modified the feature

234 set adapted from the INTERSPEECH 2012 Speaker Trait Challenge (Schuller et al., 2012) � the most effective one

235 up to that point (cf. Section 2). In detail, voice quality features (jitter and shimmer) were slightly improved, slight

236 modifications of the F0 extraction algorithms were made (i. e., the non-greedy peak detection was replaced by a

237 greedy one), and the rules for applying functionals to low-level descriptors (LLD) were simplified. Altogether, the

238 ComParE feature set contains 6 373 attributes, including energy, spectral, cepstral (MFCC), and voicing related

239 LLDs as well as a few other LLDs (e.g., logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and psy-

240 choacoustic spectral sharpness). Different sets of functionals are applied to two groups of LLDs. Group A of LLDs

241 consists of four energy related LLDs and 55 spectral LLDs; group B consists of the remaining 6 voicing related

242 LLDs. A set of 54 functionals is applied to the LLDs of group A, and 46 functionals are applied to the DLLDs of this
243 group, resulting in 59 ¢ ð54þ 46Þ ¼ 5 900 acoustic features. A smaller set of only 39 functionals is applied to the

244 LLDs of group B and their DLLDs, resulting in 6 ¢ ð39þ 39Þ ¼ 468 acoustic features. In addition, five temporal sta-

245 tistic descriptors are computed for voiced segments: the mean length, the standard deviation of the segment length,

246 the minimum length, and the maximum length of the voiced segments, and the ratio of non-zero F0 values. In total,

247 the final feature set consists of 5900þ 468þ 5 ¼ 6373 features. The sets of LLDs and applied functionals are given

248 in Tables 6 and 7, respectively. For a more detailed description of the functionals and LLDs as well as the underlying

249 algorithms, please refer to Eyben (2015).

250 TaggedPFor the Social Signals Sub-Challenge that requires localisation, a frame-wise feature set was derived. Taking into

251 account space and memory requirements, only a small set of descriptors was calculated per frame, following a slid-

252 ing window scheme to combine frame-wise LLDs and functionals. In particular, frame-wise MFCCs 1�12 and loga-

253 rithmic energy were computed along with their first and second order delta (D) regression coefficients as typically

254 processed in speech recognition. They were augmented by voicing probability, HNR, F0, and zero-crossing rate,

255 as well as their first order Ds. Subsequently, each frame-wise LLD is augmented by the arithmetic mean and

256 standard deviation across the frame itself and eight of its neighbouring frames (four before and four after), resulting

257 in 47 ¢ 3 ¼ 141 descriptors per frame.

258 3.4. Challenge D91X Xbaselines

259 TaggedPAs primary evaluation measure, we retained the choice of unweighted average recall (UAR) as used since IS09EC

260 (Schuller et al., 2011a). The reason to consider unweighted rather than weighted average recall (‘conventional’ accu-

261 racy) is that it is also meaningful for highly unbalanced distributions of instances among classes, as is the case in, e.

262 g., the Autism Sub-Challenge. Given the nature of the Social Signals Sub-Challenge as a detection-oriented task, we

Table 6

ComParE acoustic feature set: 65 provided low-level descriptors (LLD).

4 Energy Related LLD Group

Sum of Auditory Spectrum (Loudness) Prosodic

Sum of RASTA-Style Filtered Auditory Spectrum Prosodic

RMS Energy, Zero-Crossing Rate Prosodic

55 Spectral LLD Group

RASTA-Style Auditory Spectrum, Bands 1�26 (0�8 kHz) Spectral

MFCC 1�14 Cepstral

Spectral Energy 250�650 Hz, 1 k�4 kHz Spectral

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 Spectral

Spectral Flux, Centroid, Entropy, Slope, Harmonicity Spectral

Spectral Psychoacoustic Sharpness Spectral

Spectral Variance, Skewness, Kurtosis Spectral

6 Voicing Related LLD Group

F0 (SHS & Viterbi Smoothing) Prosodic

Probability of Voicing Sound D48X XQuality

Log. HNR, Jitter (Local, Delta), Shimmer (Local) Sound D49X XQuality
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263 TaggedPalso considered the Area Under the Curve measure (Witten and Frank, 2005) for laughter and filler detection on

264 frame level (100 frames per second), with the unweighted average (UAAUC) as the official competition measure of

265 this Sub-Challenge. In this respect, participants were required to also submit posterior class probabilities

266 (‘confidences’) per frame in this Sub-Challenge. Besides, in the Conflict Sub-Challenge, we additionally chose the

267 Pearson correlation coefficient (CC) as evaluation criterion for regression on the ‘continuous-valued’ original labels,

268 following the IS10PC, which also featured a regression task (Schuller et al., 2013).

269 TaggedP3.4.1. SVM baselines

270 TaggedPIn order to provide a standard evaluation measure, linear SVMs were used, where logistic functions map hyper-

271 plane distances to class pseudo-posteriors (Platt, 1999),

dSVMðxÞ ¼ 1

1þ exp
�
�
�
aðwTxþ b1Þ þ b2

�� ; ð2Þ
272

273 where w is the normal vector of the SVM hyperplane, x is an acoustic feature vector, b1 is the SVM bias and a and b2
274 are parameters of the logistic function, which are fitted to the SVM outputs on the training set in analogy to the

275 method described in Section 3.4.2 on univariate logistic regression. A convenient property of linear support vector

276 machines (SVMs) is that they are robust against overfitting in high dimensional feature spaces. The complexity

277 parameter C weighs the trade-off between classification error and the L2-norm of w. For each task, we chose the

278 SVM complexity parameter C 2 f10�3; 10�2; 10�1; 1g that achieved best UAR on the development set. The weight

279 vector w was determined with sequential minimal optimisation (SMO). Multi-way classification was reduced to

Table 7

ComParE acoustic feature set: functionals applied to LLDs as defined

in Table 6.

Mean D50X XValues

Arithmetic Mean , Arithmetic Mean of Positive ValuesA
D ;B ,

Root-Quadratic Mean, Flatness

Moments: Standard Deviation, Skewness, Kurtosis

Temporal Centroid

Percentiles

Quartiles 1�3, Inter-Quartile Ranges 1�2, 2�3, 1�3,

1%-tile, 99%-tile, Range 1�99%

Extrema

Relative Position of Maximum and Minimum, Full Range (Maximum¡Minimum)

Peaks and ValleysA

Mean of Peak Amplitudes,

Difference of Mean of Peak Amplitudes to Arithmetic Mean,

Mean of Peak Amplitudes Relative to Arithmetic Mean,

Peak to Peak Distances: Mean and Standard Deviation,

Peak Range Relative to Arithmetic Mean

Range of Peak Amplitude Values,

Range of Valley Amplitude Values Relative to Arithmetic Mean,

Valley-Peak (Rising) Slopes: Mean and Standard Deviation,

Peak-Valley (Falling) Slopes: Mean and Standard Deviation

Up-Level Times: 25%, 50%, 75%, 90%

Rise and Curvature Time

Relative Time in which Signal is Rising,

Relative Time in which Signal has Left Curvative

Segment LengthsA

Mean, Standard Deviation, Minimum, Maximum

Regression

Linear Regression: Slope, Offset, Quadratic Error,

Quadratic Regression: Coefficients a and b, Offset c, Quadratic Error

Linear Prediction

LP Analysis Gain (Amplitude Error), LP Coefficients 1�5

AFunctionals applied only to energy related and spectral LLDs (group A)
BFunctionals applied only to voicing related LLDs (group B)
DFunctionals applied only to DLLDs

Functionals not applied to DLLDs
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280 TaggedPpair-wise binary classification in the same way as for logistic regression (see Section 3.4.2). In case of regression

281 (only in the Conflict Sub-Challenge), SMO-trained support vector regression (SVR) was used.

282 TaggedPTo cope with imbalanced class distribution in the Autism Sub-Challenge, instance upsampling was applied. The

283 instances of the under-represented categories (PDD, PDD-NOS, SLI) in the four-way ‘Diagnosis’ task were repli-

284 cated five times in order to increase their effective weight in the loss function; in the binary ‘Typicality’ task a factor

285 of two was applied. Note that we found this simple method to achieve similar performance for our tasks as more

286 elaborate techniques such as SMOTE (Chawla et al., 2002). Conversely, for the Social Signals Sub-Challenge,

287 downsampling was used, where only 5% of the ‘garbage’ frames were kept. No resampling of the training instances

288 was done for the other Sub-Challenges. The baseline recipe provided to the participants performs training set resam-

289 pling in a reproducible way. For evaluation on the test set, we retrained the models using the training and develop-

290 ment set, applying resampling as above.

291 TaggedPLet us now briefly summarise the baseline results as displayed in Table 8. In the Social Signals Sub-Challenge,

292 detection of fillers seemed slightly ‘easier’ than detection of laughter, and for both a somewhat acceptable perfor-

293 mance in terms of AUC (83.3% baseline UAAUC on test) was achieved � yet, showing the challenge of vocalisation

294 localisation in naturalistic recordings of spontaneous speech. Note that the chance level baseline for AUC � obtained

295 as mean and standard deviation over 25 random trials using random class posteriors � is at 50% with small standard

296 deviation, as would be expected.

297 TaggedPIn the Conflict Sub-Challenge, it turned out that the SVM baseline did not significantly outperform univariate

298 logistic regression on the classification task (cf. the results in Section 3.4.2). This might be due to the fact that the

299 features and classification do not respect the multi-party conversation scenario (e.g., mean F0 is calculated on aver-

300 age across all participants). However, in the regression task, a CC of above 81% was achieved, which is significantly

301 (p< 0.05 according to a one-tailed z-test) higher than the CC of any single feature (cf. Table 10).

302 TaggedPIn the Emotion Sub-Challenge, the SVM baseline again showed arousal to be easier to be classified than

303 valence � this is a well known phenomenon when using acoustic features only. On the test set, a performance

304 drop was observed for the binary tasks. In the 12-way Category task there is a large room for improvement

305 (40.9% baseline UAR on test), indicating the challenge of classifying subtle emotional differences even in

306 enacted emotional speech. While the SVM baseline was tied by the logistic regression baseline on the devel-

307 opment set (cf. Table 10), it clearly outperformed it on the test set, where some utterances are ‘masked’. This

308 can motivate the investigation of feature robustness in masked emotion in future work.

Table 8

Official Challenge baselines using support vector methods. C: Complexity parameter in SVM/

SVR training (tuned on development set). Dev: Result on the development set, by training on the

training set. Test: Result on the test set, by training on the training and development sets.

Chance: Expected measure by chance (cf. text). UAAUC: Unweighted average of AUC for

detection of the laughter and filler events. Official Challenge competition measures are

highlighted.

[%] C Dev Test Chance

Social Signals Sub-Challenge

AUC [Laughter] 0.1 86.2 82.9 50.0 § 0.18

AUC [Filler] 0.1 89.0 83.6 50.0 § 0.21

UAAUC 87.6 83.3 50.0 § 0.13

Conflict Sub-Challenge

CC [Score] 0.001 81.6 82.6 ¡ D51X X0.8 § 2.3

UAR [Class] 0.1 79.1 80.8 50.0

Emotion Sub-Challenge

UAR [Arousal] 0.01 82.4 75.0 50.0

UAR [Valence] 0.1 77.9 61.6 50.0

UAR [Category] 1.0 40.1 40.9 8.33

Autism Sub-Challenge

UAR [Typicality] 0.01 92.8 90.7 50.0

UAR [Diagnosis] 0.001 52.4 67.1 25.0
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309 TaggedPFinally, in the Autism Sub-Challenge, the binary Typicality task can again alternatively be solved by mapping

310 from the 4-way task leading to 92.6% UAR on test (not shown in Table 8). However, this high classification perfor-

311 mance must be taken with caution, since channel recording conditions were different between typically and atypi-

312 cally developing children (Bone et al., 2013), and results are reported for relatively small groups of children (35

313 ASC vs 64 TYP). Reported results are therefore indicative pointers rather than strong markers of ASC deficiencies

314 in speech production (Marchi et al., 2014). Better algorithms are clearly sought after for the Diagnosis task (67.1%

315 baseline UAR on test).

316 TaggedPIn order to bring insights into the impact of recording conditions on performance, we performed additional experi-

317 ments. In the first experiment, we removed all spectrum-related features from the feature set, as they convey most of

318 the acoustic changes due to the use of different rooms. In the second experiment, we removed all static features from

319 the feature set, and only kept derivates, which is likely to reduce the impact of stationary noises from the recordings.

320 Results show that performance is increased for the binary Typicality task when spectrum-related features are

321 removed from the feature set, whereas the removal of static features slightly degrades the performance, cf. Table 9.

322 Therefore, features related to voice quality, pitch and loudness appear more robust for the Typicality task than spec-

323 trum-related features, which are indeed directly computed from the spectrum, and thus reflect the acoustic of the

324 rooms used for the recordings, e.g., reverberation, environmental noise. Regarding the 4-way classification task, i.e.,

325 the Diagnosis task, a small degradation is again observed when only the first-order derivate of the acoustic features

326 is kept in the feature set, whereas the removal of all spectrum-related features degrades more severely the perfor-

327 mance. This supposes that a fine classification task like the diagnosis requires the use of a larger feature space,

328 including spectral-related features, in order to achieve a better performance. As this might be related to specific

329 room conditions, the use of dynamic features instead could be a suitable compromise for robustness.

330 TaggedP3.4.2. Univariate logistic regression

331 TaggedPWe now introduce � for the first time in such a challenge � a univariate evaluation measure, i. e., we look for a

332 single best feature. This serves two purposes: we can see whether at all and to which extent such a univariate refer-

333 ence value is beaten by our standard baseline procedure, and the other way round, how far we can get with one single

334 feature as reference. To this aim, we used logistic functions of the form

diðxiÞ ¼ 1

1þ exp
�
�ðaixi þ biÞ

� ; ð3Þ
335

336 where xi is the value of feature i. For each feature and binary recognition task, the parameters ai and bi are fitted to

337 the training set by the least squares method, modelling one of the classes as the positive, and the other as the negative

338 outcome of a Bernoulli trial. A decision for the positive class is taken whenever di> 0.5. This baseline serves both

339 for verification of the acoustic feature extraction procedure and as a reference for the results obtained with more

340 sophisticated machine learning algorithms. In contrast to test statistics such as the t- or the Wilcoxon W-statistic, the

Table 9

Impact of recording conditions on performance for the Autism-Sub-

Challenge tasks (typicality and diagnosis). Baseline: full acoustic

features set. Only deltas: static features removed; No spectrum: all

spectrum-related features removed. Dev: Result on the development

set, by training on the training set. Test: Result on the test set, by

training on the training and development sets.

[% UAR] Dev Test

Typicality

Baseline 92.8 90.7

Only deltas 86.1 89.2

No spectrum 87.4 91.8

Diagnosis

Baseline 52.4 67.1

Only deltas 42.8 66.6

No spectrum 45.2 58.9
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341 TaggedPUAR achieved by logistic regression is a realistic performance measure of a discriminatively trained classifier, yet it

342 does not tell us whether feature values are positively or negatively correlated with the class label (0 or 1). However,

343 this can be easily seen from the sign of ai: ai> 0 indicates that higher feature values are related to the class with label

344 1. For multi-way classification tasks (emotion category and developmental disorder diagnosis), logistic regression

345 functions are trained for each pair of classes, and posterior probabilities are estimated by pairwise coupling (Hastie

346 and Tibshirani, 1998), which is an iterative method that estimates multi-class posteriors from the ones provided by

347 binary classifiers for each pair of classes.

348 TaggedPFor selecting the best suited logistic model among those obtained on the individual features, we chose different

349 strategies for the Sub-Challenges. For the Conflict and Emotion Sub-Challenges, we used the one that achieved the

350 highest UAR on the union of training and development set (i. e., reclassification of the training set, and classification

351 of the development set). For the Autism Sub-Challenge, we manually selected prosodic features (cf. 6) that achieved

352 a high UAR. As there are sometimes differences in the recording conditions across the classes (cf. Section 3.1.4),

353 one could argue that spectral features from the ComParE feature set also reflect acoustic conditions apart from para-

354 linguistic content, a hypothesis put forth by Bone et al. (2013). On the contrary, prosodic features are known to be

355 robust against effects of reverberation Schuller (2011). Thus, the manual feature selection serves to show that the

356 baseline feature set does indeed capture the task of interest.

357 TaggedPResults of the single feature evaluation are shown in Table 10. There, we also compared against chance level. For

358 UAR, they are defined as an equal class distribution (50% for 2, 25% for 4, and 8.33% for 12 classes). For CC (Con-

359 flict Sub-Challenge only), these are obtained as mean and standard deviation over 25 random trials prediction of

360 Gaussian random numbers with mean and standard deviation of the training set labels.

361 TaggedPFor the Conflict Sub-Challenge, we found the mean of HNR to be indicative: if the HNR is low, there is a high

362 degree of conflict. Logistic regression delivers 76.2% UAR on the test set. This might indicate a higher tension of

363 the speakers in situations of conflict, resulting, for example, in more pressed/harsh voice. In the regression task, if

364 we suppose that the (negated) mean HNR feature, which delivers the best CC (64.5%) on the training + development

365 set, is our regressor, we obtain a similar CC of 64.6% on the test set.

366 TaggedPIn the Emotion Sub-Challenge, arousal can be classified relatively robustly on both the development and the test

367 set, with around 70% UAR when considering the third quartile of the 25% spectral roll-off point � portending that

368 the speech contains a large portion of higher frequencies. Note that this feature is related to F0, but much easier to

369 compute and robust (being a percentile based feature); it mirrors the expected higher effort when arousal is high

370 (positive). For valence, single features are less effective, as can be generally expected. The skewness of the first

Table 10

Challenge results by logistic regression on single features. Multi-way classification (Cate-

gory, Diagnosis) by pairwise coupling of 1-vs-1 classifiers. Dev: Result on the develop-

ment set, by training on the training set. Test: Result on the test set, by training on the

training and development set. Chance: Expected measure by chance (cf. text). Official

Challenge competition measures are highlighted.

[%] Feature Dev Test Chance

Conflict Sub-Challenge

CC [Score] Mean of Positive Log. HNR 57.2 64.6 �0:8
UAR [Class] Mean of Positive Log. HNR 74.5 76.2 50.0

Emotion Sub-Challenge

UAR [Arousal] Q3 of 25% Spectral Roll-Off 69.9 71.0 50.0

UAR [Valence] Skewness of MFCC 1 68.3 57.2 50.0

UAR [Category] (Pairwise coupling) 42.5 29.9 8.33

Autism Sub-Challenge

UAR [Typicality] Flatness of RMS Energy 84.7 82.2 50.0

UAR [DYS vs NOS] IQR 1�3 of ZCR 78.4 70.4 50.0

UAR [DYS vs PDD] Flatness of F0 49.5 51.1 50.0

UAR [NOS vs PDD] Mean Dist. of Peak Mean from Mean in DLoudness 73.3 66.3 50.0

UAR [DYS vs TYP] Flatness of RMS Energy 88.2 89.8 50.0

UAR [NOS vs TYP] Flatness of RMS Energy 77.3 76.6 50.0

UAR [PDD vs TYP] Flatness of RMS Energy 81.6 88.5 50.0

UAR [Diagnosis] (Pairwise coupling) 52.2 49.0 25.0
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371 TaggedPMFCC delivers above chance accuracy on the development set and the test set, and is hard to interpret as well. In

372 pairwise coupling, the performance is relatively high on the development set (42.5%), but lower on the test set. This

373 can be explained by the fact that in the test set, some of the utterances are spoken with ‘masked’ emotion.

374 TaggedPIn the Autism Sub-Challenge, we found that typicality can be classified with 82.2% UAR on the test set if using

375 the flatness of RMS energy. A low flatness (‘spiky’ energy curve) is indicative of language impairments due to diffi-

376 culties in regulating the speech, while a high flatness implies smooth speech output. For DYS against NOS, we

377 observed 70.4% UAR on the test set by considering the inter-quartile range (IQR) 1�3 of the zero-crossing rate,

378 which is particularly low for NOS. The DYS vs PDD task seems to be very hard with just a single feature, and only

379 chance level UAR is obtained on held out data (development/test set). For the NOS vs PDD task, we observed that

380 the mean distance of the loudness change peaks from the average loudness change is higher for autism (PDD), and

381 this feature delivers 66.3% UAR on the test set. This result is particularly interesting for the purpose of eliminating

382 possible acoustic confounders, as (most of) the NOS and PDD group were recorded in the same acoustic conditions.

383 For the classification of any language-impaired group against typical children, we used the flatness of RMS energy

384 as for the typicality task, delivering UAR way above chance in all three cases. Pairwise coupling of the above-named

385 logistic regression functions delivers 52.2% and 49.0% UAR on the development and the test set, respectively, which

386 is highly and significantly above chance (p� .001 according to a one-sided z-test). This suggests that it is feasible to

387 classify language impairments using only low-level acoustic features which are robust against channel effects.

388 TaggedPSumming up, we have demonstrated the general feasibility of the univariate approach, and at the same time, the

389 superiority of the multi-feature approach as employed in the computation of the baselines. Certainly, we can imagine

390 further promising avenues of research: the curve shape from the best to the n-best features (n being a number like 10,

391 50, or 100, or meeting some stop criterion) will most likely be rather flat, and interpreting these features (or feature

392 types) will be interesting. Feature selection can be extended from single-best to a combination of n-best features.

393 Yet, our experience from the Challenges tells us that most likely, we will not get a real boost of performance when

394 using a well-suited classifier such as SVM with a rather complete (yet highly redundant) feature vector due to its

395 robustness to the curse of dimensionality.

396 3.5. Participants and D92X Xresults

397 TaggedPOne of the requirements for participation in the Challenge was the acceptance of a paper submitted to ComParE

398 and undergoing peer-review. Following the increasing trend of participant numbers and due to the fact that more

399 tasks were featured, 65 research groups registered for the Challenge, and finally, 19 papers were accepted for the

400 INTERSPEECH conference proceedings. All participants were encouraged to compete in all Sub-Challenges.

401 Table 11 shows the individual participants for each Sub-Challenge. In summary, eleven teams took part in only one

402 Sub-Challenge, one team in two, and two teams in three Sub-Challenges. Furthermore, the majority vote of the n

403 best systems shows that the performances of the winning team can still be improved. Fig. 3 depicts the results of this

404 fusion for values of n between six and fifteen. Note that not all the systems that were used for majority vote could be

405 considered in the official Challenge in course of the peer-review process. As the number n of fused systems is opti-

406 mised on the test set by selecting the combination with maximum performance on test, this fusion result is an upper

407 limit of what can be reached by combining different systems, but is not meant to compete with the participants’

408 results.

409 TaggedP3.5.1. Contributions to the social signals sub-challenge

410 TaggedPThe studies on social signals detection are mainly based on two approaches, focusing on either features or classi-

411 fiers. An et al. (2013) and Oh et al. (2013) both used syllabic-level features. Wagner et al. (2013) included phonetic

412 features extracted from raw speech transcriptions obtained with the CMU Sphinx toolkit for speech recognition. All

413 these groups retain the choice of using SVM as classifier. In contrast, Gosztolya et al. (2013) and Gupta et al. (2013)

414 applied their own algorithms to the task, while using the official ComParE features. Specifically, Gosztolya et al.

415 (2013) successfully applied the meta-algorithm AdaBoost to the Social Signals, but also Emotion and Autism Sub-

416 Challenges. In particular, the probabilistic time-series smoothing and masking approach by Gupta et al. has proven

417 to be highly efficient, achieving 6.1% absolute improvement over the baseline. Janicki (2013) adjusted both the fea-

418 tures and the algorithm by advocating a hybrid Gaussian Mixture Models (GMM) - SVM approach, combining three
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419 TaggedPGMMs working in the 36-dimensional MFCC space and the discriminative SVM working in the 4-dimensional log-

420 likelihood space. The majority vote of the best two systems leads to 92.7%.

421 TaggedP3.5.2. Contributions to the conflict sub-challenge

422 TaggedPGr�ezes et al. (2013) suggested that the ratio of overlapping speech to non-overlapping speech is a useful feature

423 for the detection of conflict levels, thus efficiently reducing the classification task to an overlap detection problem.

424 Using this feature, they obtained 83.1% on the test set. R€as€anen and Pohjalainen (2013) performed feature selection

425 by using a new variant of random subset sampling methods with k-nearest neighbours (kNN) as a classifier, despite

426 some effects of overfitting the feature set to finite data. It is noted that their approach has also proven to be effective

427 in the Emotion and Autism Challenge. The best result obtained by majority voting of the best three participants is

428 85.9%.

429 TaggedP3.5.3. Contributions to the emotion sub-challenge

430 TaggedPIn this Sub-Challenge, the teams Lee et al. (2013) and Gosztolya et al. (2013) both used the ComParE feature set,

431 while applying different algorithms. In particular, the fusion of sub-systems and classifiers leads to superior results

432 over the baseline, as shown by Sethu et al. (2013) and Lee et al. (2013). The best fusion result of twelve systems is

433 46.1%, considering all systems uploaded for evaluation. Although the number n of fused systems is optimized on

434 test, the fusion results are always better than the winner for n� 5 (s. Fig. 3c).

435 TaggedP3.5.4. Contributions to the autism sub-challenge

436 TaggedPMost of the participants (R€as€anen and Pohjalainen, 2013; Gosztolya et al., 2013; Kirchhoff et al., 2013; Lee et al.,
437 2013) in the Autism Sub-Challenge applied different algorithms on the ComParE acoustic feature set, achieving

438 mediocre results. Bone et al. (2012); Mart{nez et al. (2013); Asgari et al. (2013) applied SVM on individual feature

439 sets, where the sets comprising prosodic and ceptral features used by the latter two groups led to the best results.

Table 11

Features, algorithms, and ‘gimmicks’ used by the participants; performances (UAAUC/UAR) on the test set

Participant Features Algorithms Gimmick [%]

Social Signals Sub-Challenge UAAUC

An et al. Frame- + syllabic-level SVM Rescoring of segment-internal frames 84.8

Oh et al. Syllabic-level features SVM Syllabic-level segmentation 85.3

Wagner et al. ComParE (141)+phonetic features SVM Phonetic transcription by ASR 88.4

Janicki MFCCs + log-likelihoods GMMs + SVM Hybrid GMM-SVM approach 89.8

Gosztolya et al. ComParE (141) AdaBoost Feature analysis 89.9

Gupta et al. ComParE (141) DNN Probabilistic time-series smoothing and

masking

91.5

Conflict Sub-Challenge UAR

Gr�ezes et al. ComParE + overlap ratio SVR + SVM Reducing conflict classification to overlap

regression

83.1

R€as€anen and Pohjalainen ComParE subsets kNN Random subset feature selection 83.9

Emotion Sub-Challenge UAR

R€as€anen and Pohjalainen ComParE subsets kNN Random subset feature selection 31.7

Sethu et al. MFCC + DMFCC GMMs Sub-system fusion 35.7

Lee et al. ComParE SVM, DNN, kNN, acoustic segment model Ensemble of classifiers 41.0

Gosztolya et al. ComParE AdaBoost Feature analysis 42.3

Autism Sub-Challenge UAR

Bone et al. Spectral energy and smoothness features SVM, kNN Prosodic template and pronunciation

quality modelling

60.2

R€as€anen and Pohjalainen ComParE subsets kNN Random subset feature selection 61.9

Gosztolya et al. ComParE AdaBoost Feature analysis 62.1

Kirchhoff et al. ComParE subsets MLPs Submodular feature selection and ranking 64.4

Lee et al. ComParE SVM, DNN, kNN, acoustic segment model Ensemble of classifiers 64.8

Mart{nez et al. ComParE + prosody, formants, shifted-delta

cepstrum, amplitude modulation index

SVM iVectors 66.1

Asgari et al. Voice quality, energy, spectrum, cepstrum SVM + SVR Harmonic model of voiced speech 69.4
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440 TaggedPAsgari et al. (2013) achieved the best UAR at 69.4%, which could not be outperformed by fusion of the best n partic-

441 ipants’ systems.

442 TaggedP3.5.5. Regions of significance

443 TaggedPFig. 4 shows which absolute improvements over the result obtained in a given experiment could be considered as

444 being significantly better for the four levels of significance a ¼ :050; .010, .005, and .001 in a one-sided test (Dietter-
445 ich, 1998). For instance, to outperform the baseline at a significance level of a ¼ :05; the participants had to achieve

446 a minimum absolute improvement of 4.4% over the baseline of the Conflict Sub-Challenge 80.8%, 5.5% compared

447 to the baseline of the Emotion Sub-Challenge 40.9%, and 3.8% compared to the baseline of the Autism Sub-Chal-

448 lenge 67.1%. A one-sided test can be applied if there is a substantial alternative hypothesis H1 over the null hypothe-

449 sis H0; without such an H1, we had to use a two-sided test which means for Fig. 4 that the a level displayed has to be

450 divided in half.

Fig. 3. Fusion of the results of the n best participants by majority vote.

ARTICLE IN PRESS
JID: YCSLA [m3+;March 20, 2018;11:52]

Please cite this article as: B. Schuller et al., Affective and behavioural computing: X XLessons learnt from the First

Computational Paralinguistics Challenge, Computer Speech & Language (2018), http://dx.doi.org/10.1016/j.

csl.2018.02.004

16 B. Schuller et al. / Computer Speech & Language xxx (2018) xxx-xxx

http://dx.doi.org/10.1016/j.csl.2018.02.004
http://dx.doi.org/10.1016/j.csl.2018.02.004


451 TaggedP3.5.6. Meta- D93X Xanalysis

452 TaggedPLet us now provide some meta-analysis of the participants’ results beyond simple accuracy measures. For

453 instance, in the Emotion Sub-Challenge, it is interesting to see the performances depending on emotion regulation.

454 The figures displayed in Fig. 5 show that systems have most difficulties in understanding highly regulated arousal

455 (‘low’ and ‘masked’ intensities), as would be expected. However, it is interesting that high intensity is not easier to

456 recognise than normal intensity (Fig. 5a). We might speculate that high intensity stimuli produced by actors are defi-

457 nitely pronounced (clear) but might vary due to speaker idiosyncrasies whereas normal intensity might be less pro-

458 nounced but more ‘standard’. Thus, a higher stronger manifestation is counterbalanced by a more regular

459 manifestation. In contrast, valence seems to be hard to recognise from acoustics in general � although ‘masked’

Fig. 4. Significance of results.

Fig. 5. Boxplots of participants’ performances (UAR) by regulated intensity of emotion.
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460 TaggedPintensity leads to worst results again, the differences are less pronounced than for arousal (Fig. 5b). This we know

461 from practically all studies on valence recognised from speech. The trend in the 12-class category discrimination

462 (Fig. 5c) is very similar to the one observed for arousal recognition.

463 TaggedPFurthermore, let us now investigate the results of the two multi-way classification Sub-Challenges more closely.

464 Here, we are interested in the most frequently occurring confusions per class.

465 TaggedPTo shed light on this question, we computed the average confusion matrix of the participants’ predictions and the

466 SVM baseline predictions for the Category task (Emotion Sub-Challenge) as well as for the Diagnosis task (Autism

467 Sub-Challenge). Table 12 shows the results for the emotion category task. The most easily recognised categories are

468 sadness, amusement, relief, hot anger, and interest. Most difficult to recognise are pride (14.7%) and elation

469 (15.3%). Confusions of one category with another specific category are rather low, the highest being 25%, namely

470 pleasure confounded with sadness; due to the rather small number of cases per category, we should not over-interpret

471 single confusions, though. The confusions are distributed across many categories and not especially across categories

472 sharing the same dimension values (either plus OR minus for arousal and/or valence).

473 TaggedPAs cases with masked regulation (hiding the true emotion) are only represented in the test set, they could not be

474 learned in the training. Of course, this fact contributes to a higher overall confusion between categories. To illustrate

475 the different degrees of confusions between one category and all others, we give in the last line of Table 12 the sum

476 of all percentages by columns to show the tendency of hits and false alarms in each category. High values above

477 100% imply that the category has been recognised well (hits) and/or there exists a bias towards this category

478 (false alarms). To put it the other way round, lower values than 100% indicate that this category is rather imprecisely

479 recognised and/or there is a negative bias ‘away from’ this category. We can see a positive bias towards

480 sadness, interest, and anxiety, and a negative bias towards elation, despair, and pride. All these categories are obvi-

481 ously less distinct than, for instance, amusement that is recognised relatively well. All in all, the high percentage of

482 confusions � only sadness is classified with a recall clearly above 50% (amusement at 50.7%) � demonstrates the

483 difficulty of such a multi-class task and the challenge when facing realistic � even more noisy � data.

484 TaggedPTable 13 shows the corresponding result for the autism diagnosis task. It is notable that there is a strong

485 bias towards predicting the majority class (typically developing children), which might be remedied by threshold

Table 12

Average confusion matrix of participants’ systems for the Category task (Emotion Sub-Challenge).

Table 13

Average confusion matrix of participants’ systems for

the Diagnosis task (Autism Sub-Challenge).
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486 TaggedPoptimisation (it is not possible to give results because the participants did not have to submit posteriors for this task).

487 Among the language impairment conditions, dysphasia seems easiest to recognise from acoustics, while the manifes-

488 tation of autism (PDD) or unspecific impairments is harder, which is expected.

489 4. Conclusions and future challenges

490 TaggedPIn this work, we reviewed the first of its kind Computational Paralinguistics Challenge, which has been initialised

491 to overcome comparability issues regarding data sets, partitioning, evaluation measures, baseline systems, and test-

492 beds. The introduction of the common ComParE feature set, designed to tackle various paralinguistic recognition

493 tasks, has proven very successful, as can be seen from the fact that most of successful participants’ submissions

494 employed the feature set or parts of it, and at the same time it has contributed to utmost comparability of results.

495 TaggedPAlong with SVM, the ComParE features introduced here yielded competitive performance in the participants’

496 field of the Conflict, the Emotion, and the Autism Sub-Challenge; yet, no single feature from the ComParE set was

497 competitive on its own. In line with the other challenges, combining classifier results (late fusion, cf. Fig. 3) normally

498 gives some boost to performance.

499 TaggedPThe Conflict Sub-Challenge was the first Challenge task in the INTERSPEECH series to feature speech from mul-

500 tiple speakers in a single instance, and hence speech overlap � a mid-level feature whose extraction is usually stud-

501 ied in the neighbouring field of speaker diarisation � performed very respectably. In a similar vein, the Social

502 Signals Sub-Challenge was the first INTERSPEECH Challenge task requiring segmentation, and hence methods

503 known from the field of ASR, where this is a well understood issue, prevailed over the ComParE baseline approach.

504 All in all, these results show a promising avenue for further Challenges: exploring a greater variety of paralinguistic

505 recognition tasks that differ in nature from previously tackled ones is likely to lead to more diverse methodologies

506 being successful.

507 TaggedPIn this Challenge, we introduced four paralinguistic tasks which are important for the realm of affective human-

508 computer interaction, yet some of them go beyond the traditional tasks of emotion recognition. Thus, as a milestone,

509 ComParE 2013 laid the foundation for a successful series of follow-up ComParEs to date, exploring more and more

510 the paralinguistic facets of human speech in tomorrow’s real-life information, communication and entertainment

511 systems.
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