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Abstract

Recently, a variety of model designs and methods have blossomed in the context of the sentiment analysis domain.
However, there is still a lack of comprehensive studies of Aspect-based Sentiment Analysis. We want to fill this gap
and propose a comparison with ablation analysis of Aspect Term Extraction using various text embeddings methods.
We particularly focused on simple architectures based on long short-term memory (LSTM) with optional conditional
random field (CRF) enhancement using different pre-trained word embeddings. Moreover, we analyzed the influence
on the performance of extending the word vectorization step with character-based word embeddings. The experi-
mental results on SemEval datasets revealed that bi-directional long short-term memory (BiLSTM) could be used
as a very good predictor, even comparing to very sophisticated and complex models using huge word embeddings
or language models. We presented a comprehensive analysis of various customizations of LSTM-based architecture
and word/character embeddings that could be used as a guideline to choose the best model version for particular user
needs.

Keywords: aspect-based sentiment analysis, aspect term extraction, word embeddings, character embeddings,
LSTM, BiLSTM, CRF, SemEval

1. Introduction

If you have used Uber, TripAdvisor or Amazon, you are among 100 million (Uber), 450 million (TripAdvisor), or
over 300 million (Amazon) active users. All of these businesses provide services with a strong focus on communica-
tion and a relationship with customers. It is fundamental for their success to listen to their clients, understand what
exactly the customer is saying and engage when it is necessary. However, how can we analyze even a glimpse of these
communications? This is a reason why development of natural language processing methods (NLP) for large amounts
of such data has boomed. Analysis of textual data can provide valuable insights by the processing of direct feedback
from the customers (customer reviews or their complaints) found on social media platforms such as Twitter, Facebook
and many more platforms, where people regularly post their opinions on all kinds of businesses. Hence, what kind of
NLP techniques should we apply to extract useful knowledge from opinionated texts? The standard sentiment analysis
methods annotate the whole texts or documents with one class only such as negative, positive or neutral. However, it
would be helpful to narrow and precisely describe the insights described in texts. There exists a sub area of sentiment
analysis called Aspect-based Sentiment Analysis (ABSA).

Definition 1.1 (Aspect-based Sentiment Analysis). Aspect-based sentiment analysis aims to extract the sentiment
polarity of the document toward the specific aspect (also called attribute) of a given more general concept.

Imagine that we have a phone review such as in Figure 1. We can spot positive sentiment polarity for the screen
aspect and negative polarity for the battery life. Unfortunately, nowadays most of the solutions still use sentiment
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analysis only on the whole document level; hence, they can not distinguish between the sentiment polarity related to
screen and battery life. They commonly treat the document as a source of only one opinion. Uber would be interested
in which aspect of their service is rated positively and which negatively. There is a big difference between opinion
about the mobile app and a driver - they are described by two different aspect sets.

Figure 1: Example of aspects in a phone review.

An aspect-based sentiment analyzer consists of many components. The first and primary one is responsible for
precise and complete Aspect Term Extraction (ATE). Why is this step is so crucial? Aspect term extraction has
a substantial influence on the accuracy of the entire sentiment analysis tool because errors at the beginning (input) of
the whole pipeline will be propagated to the next steps and could potentially harm the entire solution seriously [1].
The Aspect Term Extractor takes some documents as input and identifies a set of aspects for each document. Figure 2
presents an overview of such extractors with neural network architecture.

Figure 2: A bird’s eye view of Aspect Term Extraction from a phone opinions.

There has been increasing emphasis on neural network architectures, and sequence tagging approaches [2, 3, 4, 5]
in Aspect Term Extraction. These techniques have proved to be effective for named entity recognition (NER), part-of-
speech tagging (POS) or chunking tasks [6, 7, 8]. There exists some research presenting neural network-based models
for aspect term extraction, but there is still a lack of comprehensive and reliable analysis of them. They mostly cover
only a limited range of solutions, use only one or two pre-trained word embeddings [9, 2, 3]; focus only on very well
represented languages such as English [10, 11]; compare only a few model configurations, e.g., two word embedding
models and two neural network architectures [12, 9], or fine-tune models with hand-crafted, language-dependent rules
[2]. Nowadays, machine learning models are deployed in many solutions, with different constraints. Researchers and
machine learning engineers must consider aspects such as model complexity, memory requirements, the need for GPU
acceleration, and many more. A single performance metric is not always enough.

Our goal is to address the mentioned above problems proposing an end-to-end Aspect Term Extraction model
in comparison with a comprehensive ablation analysis. We want to present a guideline that will make the decision
of choosing a particular Aspect Term Extraction architecture easier for researchers or industry machine learning
engineers. Our experiments cover more than ten diverse word embeddings extracted from different corpora and using
different models. We propose the extension of pre-trained word embeddings with character embeddings to improve
models of underrepresented languages such as Polish.
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In our analysis, we responded to the following research questions:

Research Question 1 - Robustness

How robust are the general1 word embeddings in domain-dependent Aspect Term Extraction?

Research Question 2 - Coverage

How does the coverage of word embeddings impact the performance of Aspect Term Extraction?

Research Question 3 - Character-based Word Embeddings

When are character-based word embedding methods able to eradicate drawbacks of the static pre-trained
word embeddings in Aspect Term Extraction?

Summing up, our main contributions are (1) a new method for Aspect Term Extraction using both word and
character embeddings (LSTM-based embeddings), (2) a comprehensive comparison of a number of LSTM-based
approaches to ATE based on many pre-trained word embeddings, and (3) an ablation analysis with focus on what is
the influence of the text vectorization methods and model characteristics on the final performance.

2. Related Work

In this section, we present the most popular machine learning approaches to Aspect Term Extraction as well as
methods for text vectorization.

2.1. Machine Learning approaches to Aspect Term Extraction

One of the first ideas for the solution of aspect extraction in a supervised learning manner was the use of a linear
chain Conditional Random Field (CRF). For example, Toh and Wang proposed such an approach in their DLIREC
system [13] or Chernyshevich [14] from IHS R&D. The other often used model was SVM, as in [15, 16]. There exist
also mixed models combining supervised learning and rule-based systems as in [17, 18, 2]. Jakob and Gurevych [19]
proposed using a sequence tagging scheme for aspect extraction. They used features such as token information, POS,
short dependency path, word distance, and information about opinionated sentences. Toh and Wang [13] extended
this approach with more hand-crafted features such as lexicons, syntactic and semantic features, as well as cluster
features induced from unlabeled data.

Nowadays, deep learning-based approaches have emerged recently. Recursive neural networks and conditional
random field has been used by Want et al. [20]. Poria et al. [2] proposed a deep convolutional neural network that tags
each word in the document as either an aspect or non-aspect word (sequence tagging approach). Nevertheless, they
also used hand-crafted linguistic patterns to improve their method. Hai et al. [21] used a convolution stacked neural
network using dependency trees to capture syntactic features. Ruder et al. [10] experimented with a hierarchical,
bidirectional LSTM model to leverage both intra and inter-sentence relations. Li et al. [9] proposed an LSTM-based
multi-task learning framework. He et al. [22] used an attention mechanism to focus more on aspect-related words
while de-emphasizing aspect-irrelevant words. There exists also an interesting model employing two types of pre-
trained embeddings: general-purpose embeddings and domain-specific embeddings [3].

1Pre-trained based on general texts such Wikipedia, Common Crawl, etc.
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2.2. Text Embedding methods for Deep Learning

Nowadays, many deep learning models in NLP use word embeddings as input features [10, 2, 3]. One of the first
word embedding methods is called Word2Vec [23]. This neural network-based model predicts the target word from
its context words (”phone has the best of all available phones”, where denotes the target word ”screen”) or the
context words given the target word. A second widely used word embedding is Global Vector (GloVe) [24], which
is trained based on a global word-word co-occurrence matrix. A third technique is fastText [25]. It is based on the
Skip-gram model, where each word is represented as a bag of character n-grams. Researchers started to train and also
use domain-dependent word embeddings, e.g., based on product reviews [2, 3]. An interesting approach was proposed
by Yin et al. [12], they used dependency paths to generate embeddings.

Lately, the natural language community has focused on more contextual representation. Peters et al. [26] proposed
deep contextualized word representations (they called the model ELMo). This word embedding technique creates vec-
tor space using bidirectional LSTMs trained on a language modeling objective. Then whole language models have
appeared and developed rapidly. One of the most well-known is BERT (namely Bidirectional Encoder Representa-
tions from Transformers) that uses a modified objective for language modeling called ”masked language modeling”.
This model randomly (with some small probability) replaces some words in a sentence with a mask token. Then,
a transformer-based architecture is used to generate a prediction for the masked word based on the unmasked words
surrounding it, both to the left and right. Radford et at. [27] moved the normalization layer to the input of each
sub-block, and they added a normalization layer after the final self-attention model. Finally, they used a better dataset
that emphasizes the diversity of content. Ultimately, we want to mention a pre-trained language model called XLNet
that aimed to improved BERT by introducing a variant of language modeling called “permutation language modeling“
[28]. Instead of predicting masked words independently and in a left to right manner as in BERT, the XLNet model
predicts target words based on different orders of source words (no strict left to right order).

Some NLP models besides word embeddings use char-based embeddings (ELMo [26], Flair [29]), byte-level
embeddings [30], or ngram embeddings[25]. This kind of embedding has been found useful for morphologically
rich languages and to deal with the out-of-vocabulary (OOV) problem for tasks, including, in part-of-speech (POS)
tagging[31], language modeling [32], dependency parsing [33] or named entity recognition [6]. Zhang et al. [34]
presented one of the first approaches to sentiment analysis with char embedding using convolution networks.

To the best of our knowledge, this is one of the first paper that reports the use of LSTM-based character embeddings
as the extension of the word embedding layer for Long Short Term Memory networks in the Aspect Term Extraction
task. It is also the most comprehensive comparison of many combinations of word embeddings, character embeddings,
and various variants of LSTMs.

3. Aspect Term Extraction in Sentiment Analysis

This section provides a brief yet formal description of underlying tasks and concepts that concern aspect extraction
in sentiment analysis.

3.1. Aspect Term Extraction Problem

Formally, given a collection of documents D = d1, ..., dn we want to extract aspects A = A1, ..., An for each of
n documents.

Definition 3.1 (Aspect Term Extraction). Aspect Term Extraction extracts generates pairs < di, Ai >∈ DxA for
each of document in the corpus, where Ai is a list of aspects for every document.

Many Aspect Term Extraction models use a sequence tagging approaches. In sequence tagging, the output of
model is a sequence of tags t = (t1, ..., tm), also called sequence of labels, and it corresponds to an example sequence
w = (w1, ...,wm). In NLP, we often use word w sequences as an example sequences and Part-of-Speech tags, entity
types, or aspects in aspect-based sentiment analysis as tags t.
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Definition 3.2 (Sequence Tagging). The sequence tagger assigns a tag t to each word w as < wi, ti >∈ WxT, where
W is a domain of words and T = t1, ..., t|T | is a predefined set of tags. Finally, we get an ordered sequence of word and
tag pairs (w1, t1), (w2, t2), ..., (wm, tm), where m is the length of the sequence.

The Aspect Term Extractor maps each document d into sequence of words w, applies sequence tagging model to
tag each word as aspect or not < wm, tm >, and finally derives document-aspects pairs < dn, An >.

A careful study of the outputs of state-of-the-art Aspect Term Extraction models provided us with valuable in-
sights. It highlighted the need to analyze more profoundly the performance of standard text embeddings and neural
network architectures. We wanted to know how the performance of chosen models changes over different text embed-
dings. Moreover, we tried to figure out what potential mitigation of out-of-vocabulary problems could be obtained for
underrepresented and strongly inflected languages such as Polish. We extended the LSTM-based models with charac-
ter embeddings to evaluate how and under which conditions character embedding could be a useful enhancement for
an Aspect Term Extractor.

3.2. Aspect Term Extraction models

In the literature for the Aspect Text Extraction task, two approaches achieve the highest performances. They are
based on either Convolution Neural Networks (CNNs) or Long Short-Term Memory Networks (LSTMs). We wanted
to focus on generic and straightforward architecture and analyze its performance according to different embedding
layers rather than create a very sophisticated customization of neural network architecture. We decided to use LSTM-
based models because it is known that Recurrent Neural Networks (RNNs) work very well for sequential data such
as in language [35]. We experimented with standard LSTMs, their bidirectional extension (BiLSTM), and the Condi-
tional Random Field layer on the top of neural network architectures. We experimented with various configurations
of the model from the simplest one (Figure 3a) to the most complex (Figure 3b).

Table 1 presents all customizations of our models. As we can see, eight different configurations of features and
neural networks were tested.

Table 1: All models used in our experiments. Word and Char denote the word embedding and character embedding, respectively.

Model abbreviation Word Char CRF
Wo-LSTM yes no no
Wo-LSTM-CRF yes no yes
WoCh-LSTM yes yes no
WoCh-LSTM-CRF yes yes yes
Wo-BiLSTM yes no no
Wo-BiLSTM-CRF yes no yes
WoCh-BiLSTM yes yes no
WoCh-BiLSTM-CRF yes yes yes

3.3. Pre-trained Word Embeddings

We used several pre-trained word embeddings as we used pre-trained models in transfer learning. Such an
approach enables us to mitigate the problem of training models based on limited training data. Our intuition is
that aspect indication words (e.g., most of the time aspects are nouns and noun phrases) should appear in regular
contexts in large corpora. Moreover, we wanted to evaluate how the performance of various models changes across
different word embeddings with a different number of unique words, embedding vector lengths, and varying ratios of
out-of-vocabulary words. Pre-trained word embeddings are the primary source of input for neural architecture used
in our experiments.
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(a) Architecture for word embeddings with simple LSTM.

(b) Architecture for word and character embedding with BiLSTM and CRF layer.

Figure 3: Example of architectures used in the experiments.

We tested several well-established word embeddings:

1. word2vec - protoplast model of any neural word embedding trained on Google News.
2. glove.840B - Global Vectors for Word Representation proposed by Stanford NLP Group, trained based on

Common Crawl with 840B words.
3. glove.42B - Global Vectors for Word Representation proposed by Stanford NLP Group, trained based on Com-

mon Crawl with 42B words.
4. glove.6B* - Global Vectors for Word Representation proposed by Stanford NLP Group, trained based on

Wikipedia 2014 and Gigaword2 with 6B words. We used four different word vector lengths: 50, 100, 200,
and 300.

5. numberbatch - Numberbatch consists of state-of-the-art semantic vectors derived from ConceptNet with addi-
tions from Glove, Mikolov’s word2vec and parallel text from Open Subtitles 2016 3 trained via fastText.

6. fastText-wiki-news - 1 million word vectors (300 dimensions) trained on Wikipedia 2017, UMBC webbase
corpus4 and statmt.org news dataset (16B tokens);

7. fastText-crawl - 2 million word vectors (300 dimensions) trained on Common Crawl (600B tokens).
8. Amazon Reviews - word2vec model trained on Amazon Reviews [36]. Since it contains opinionated docu-

ments, it should have an advantage over common language texts such as Google News or Common Crawl.

2https://catalog.ldc.upenn.edu/LDC2012T21
3http://opus.lingfil.uu.se/OpenSubtitles2016.php
4https://ebiquity.umbc.edu/resource/html/id/351
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Table 2 shows a summary of all pre-trained word embeddings used in our experiments. As we can see, there are
word embeddings that cover more than 2 million unique tokens as well as small vocabulary word embeddings such as
sentic2vec (word2vec trained on Amazon Reviews) that contain only 42,000 individual word vectors. We have word
embedding representatives trained on general texts such as Wikipedia or Common Crawl and more domain specific
text sources as ConceptNet graph or Amazon Reviews. We chose these embeddings to provide a comprehensive
comparison of various word embedding techniques, different sources of text used to train them, different length of
word vectors, and various vocabulary sizes of word embeddings. We used all pre-trained word embeddings for every
model described in Table 1.

Table 2: All pre-trained word embeddings used in the experiments.

Word Embedding Source/Main Source # of words Vocab reference
Glove.6B* Wikipedia 2014 6B 400K [24]
Glove.42B Common Crawl 42B 1.9M [24]
Glove.840B Common Crawl 840B 2.2M [24]
word2vec Google News 100B 3M [23]
numberbatch ConceptNet 5 2M 500K [37]
fastText-crawl Common Crawl 600B 2M [38]
fastText-wiki-news Wikipedia 2017, news 16B 1M [38]
sentic2vec Amazon Reviews 4.7B 42K [2]

* we used 4 different word vector lengths, to be exact 50, 100, 200 and 300.

3.4. Character-based Word Embeddings

An important distinction of our work from most previous approaches to Aspect Term Extraction is the inclusion
and analysis of character-based word embeddings. We measured their impact on the performance of all models across
all pre-trained word embeddings. We chose LSTM-based encoding for character embeddings rather than convolutional
neural networks because CNNs discover mostly position-invariant features [6]. This is usable for image recognition -
an object can be spotted anywhere in a picture, but for NLP tasks order of characters or words are very important, e.g.,
prefixes and suffixes can convey essential distinctions. Languages with rich inflectional morphology exhibit lexical
data sparsity [39]. The word used to express a given concept will vary with the syntactic context. Hence, it is unlikely
to spot all inflections of a given lemma, even using large corpora to train word embedding. The character embedding
model could mitigate such problems. In our experiments, we focused on static pre-trained word embedding and
we tried to add a simple as possible model to mitigate out-of-vocabulary problems that could be learned during the
training time of the whole classifier. Hence, we didn’t involve any large character-based model such as Flair [29]
(trained based on a 1-billion word corpus [40]).

3.5. Aspect coding in sentence tagging task

In our experiments, we used the IOB format for sequence tagging, a.k.a BIO [41]. It is a widely used coding
scheme for representing sequences. IOB is short for inside, outside, beginning. The B- prefix before a tag (i.e., B-
aspect) indicates that the tag (aspect) is the beginning of the annotated chunk. The I- prefix before a tag (i.e., I-aspect)
indicates that the tag (aspect) is inside the chunk. I-tag could be preceded only by B-tag or other I-tag for ngram
chunks. Finally, the O tag (without any tag information, no tag) indicates that a token does not belong to any of the
annotated chunks.

An example sentence ”I charge it at night and skip taking the cord with me because of the good battery life”. is
encoded with IOB to: I::O charge::O it::O at::O night::O and::O skip::O taking::O the::O cord::B-aspect with::O
me::O because::O of::O the::O good::O battery::B-aspect life::I-aspect .::O .
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4. A proposal of LSTM-based character embedding model for aspect based sentiment analysis

In this section, we describe our proposal of a Long Short-Term Memory Network architectures used for training
Aspect Term Extraction models and character embeddings. Finally, we present a description and justification for using
the Conditional Random Fields on top of LSTM architecture.

4.1. Long Short-Term Memory Networks

LSTMs take as input a sequence of vectors (these vectors could represent characters or words) (x1, x2, ..., xn) and
return another sequence (h1, h2, ..., hn) that represents some information about this sequence at every step in the input.
Nevertheless, the vanilla RNNs are not perfect. The main issue with them is the vanishing gradient problem [42].
When the network becomes deeper and deeper, the gradients calculated in the back propagation steps become smaller
and smaller. Finally, the learning rate slows significantly and long-term dependencies of the language are harder to
train. Consequently, RNNs memorize worse and worse words that are far away in the sequence and predictions are
biased towards their most recent inputs in the sequence [43]. Long Short-term Memory Networks (LSTMs) have been
designed to solve exactly this long-term dependencies using a memory-cell. This neural network architecture uses
special gates in neurons to control the proportion of the input to give to the memory cell, and the proportion from
the previous state to forget. LSTMs were proposed by Hochreiter and Schmidhuber [44] and they are widely used in
several different NLP problems [45, 5, 46]. To further improve LSTMs and accelerate the training of the network, an
extension has been proposed - BiLSTM [47] - bidirectional LSTM. In this architecture, we split the state neurons of
a regular RNN into two parts - forward and backward. The forward pass

−→
h t is responsible for the positive direction

of sequence (e.g., direction according to the word order) and the backward part
←−
h t learns the negative direction (the

reverse word order). Finally, the BiLSTM architecture outputs concatenation of vectors from each pass ht = [
−→
h t;
←−
h t].

We used to following implementation of LSTM:

it = σ(Wiht−1 + Uixt + bi) (1)

ft = σ(W f ht−1 + U f xt + b f ) (2)

ct = tanh(Wcht−1 + Ucxt + bc) (3)

ct = ft � ct−1 + it � ct (4)

ot = σ(Woht−1 + Uoxt + bo) (5)

ht = ot � tanh(ct) (6)

where σ is the element-wise sigmoid function and � is the element-wise product. xt is the input vector (e.g. word
or character embedding) at time t, and ht is the hidden state vector at time t. Ui, U f , Uc, Uo are the weight matrices
of different gates for input, xt, Wi, W f , Wc, Wo are the weight matrices for hidden state ht, and finally bi, b f , bc, bo

denote the bias vectors.

4.2. Character-based Word Embeddings

Figure 4 presents how we generate embedding for every word using its characters. We take a sequence of character
vectors (x1, x2, ..., xn) as an input. The vectors are initialized randomly. Then two passes, forward and backward,
generate the output vector representation that is the concatenation of those passes (

−→
h t,
←−
h t). It is very similar to using

BiLSTM for a sequence of words in the sentence. However, in our case we have a sequence of characters in each
word. We used such a character-level representation of words in our look-up tables similar to pre-trained word models.
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Figure 4: Architecture of character embedding.

4.3. CRF layer

Conditional Random Field (CRF) is an excellent tool for sequence modeling because it takes into account an
object’s neighborhood. The LSTM-based models predict tags locally considering only some information about the
context. The CRF layer can learn constraints related to the final predicted labels and ensure they are valid. CRF takes
as input a sequence of vectors z = (z1, z2, ..., zn) and returns a sequence of labels y = (y1, y2, ..., yn). Y(z) is the set of all
possible label sequences for z. The probabilistic model for CRF defines a family of conditional probability p(y|z; W, b)
over possible label sequences of y given z using

p(y|z; W, b) =
∏n

i=1 ψi(yi−1, yi, z)∑
y′∈Y(z)

∏n
i=1 ψi(y′i−1, y

′
i , z)

(7)

where ψi(y′, y, z) = exp(WT
y′,yzi + by′,y), WT

y′,y and by′,y are the weight vector and bias corresponding to label pair
(y′, y), respectively.

We used the maximum conditional likelihood estimation for training CRF. For a training set {(zi, yi)}, the log-
likelihood is given by:

L(W, b) =
∑

i

log p(y|z; W, b) (8)

Maximum likelihood training chooses parameters which maximize the log-likelihood. During the decoding phase
we searched for the label sequence y∗ with the highest conditional probability:

y∗ = arg max
y∈Y(z)

p(y|z; W, b) (9)

Figure 5 presents exemplary BiLSTM data extended with the CRF layer. The most interesting part is a table of
BiLSTM predictions that are the input for CRF. We highlighted in light green the highest values (potential predictions).
However, some of these predictions are not valid. The CRF layer can use information about previous predictions and
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Figure 5: BiLSTM outcomes and possible corrections using the CRF layer.

choose a correct tag for words. Thus, we can predict I-aspect rather than O for the third word and replace the incorrect
I-aspect tag for the fifth word with no tag. How can we do that? In our case, CRF can learn restrictions or patterns
related to the IOB-scheme and tag co-occurrence:

• The model predicts I-aspect tags for words that usually look like non-aspect words, such as the second and third
word in Figure 5.

• A tag sequence cannot start with I-aspect tag. It must begin with either B-aspect or no tag - O.

Hence, we can decrease the number of wrong predictions using the CRF layer at the top of the LSTM-based
architecture. In addition, the Conditional Random Field model will be beneficial for multi-word aspects, i.e., battery
life, charging time in the Laptops domain or names of dishes in the Restaurants domain, i.e., fish and chips.

5. Experimental setup

We experimented with various sequence tagging approaches for Aspect Term Extraction. All eight considered
methods are presented in Table 1. We used 11 different pre-trained word embeddings. We evaluated a total of 88
combinations of models and text embeddings in the entire experiment. Each combination was run six times to get
stable results. In addition, we also ran models with replaced an embedding layer. We used contextual word embedding
methods and transformer-based architectures to compare recent state-of-the-art language models as input for LSTM-
based architectures.

5.1. LSTM-based Aspect Term Extraction setup
We used a grid search to get the best general hyper-parameters based on running four models (namely Wo-LSTM,

WoCh-LSTM, Wo-BiLSTM, WoCh-BiLSTM) for all pre-trained word embeddings (Glove.840B, Amazon Reviews,
fastText-crawl and word2vec). We chose the most common and the best hyper-parameters from these runs. Finally,
we used the following: a mini-batch size equal to 10, maximum sentence length of 30 tokens, word embedding size
of 300 (with some exceptions for Glove.6B word embedding, see Section 6.1), and 0.5 as dropout rate [48]. We used
a single layer for the forward and backward LSTMs whose dimensions are set to 256. Tuning this dimension did not
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significantly impact model performance. We trained the networks for 25 epochs using cross-entropy. We also tried
50 and 100 epochs, but the results didn’t improve after the 25th epoch for any of the experimental scenario. We used
the Adam optimizer [49], and early stopping (max two epochs without improvement). We averaged each model’s
performance for each pre-trained word embedding across six runs. Our experiments were implemented in keras5 with
tensorflow6 as backend. The source code for all experiments is available at GitHub7.

5.2. Character-based Word Embedding setup
We used a single layer for the forward and backward LSTMs whose dimensions are set to 25. Tuning this dimen-

sion did not significantly impact model performance. In all our experiments we initialized a random vector of length
equal to 25 for each of the characters. The dropout for the input layer was set to 0.5. We concatenated character
embeddings of words with word embeddings and fed them together to the network (Figure 3b). Each of the character
embedding models was trained separately on train sets.

5.3. SemEval datasets
The SemEval-2014 aspect extraction task consists of customer reviews with annotated aspects of the target entities

from two domains: restaurants (3041 sentences) and laptops (3045 sentences). Table 3 contains statistics of the data
provided for each domain. We did not use SemEval 2015 or 2016 aspect extraction datasets because they were
prepared as text classification with predefined aspect categories and entities. Moreover, since 2017 there has only
been aspect extraction in the tweets challenge. SemEval 2014 consists of sentences with words tagged as aspects.
Hence, SemEval 2014 dataset is the newest, suitable for our sequence tagging approach.

Table 3: SemEval 2014 dataset profile. Multi-aspect means a fraction of multi-ngram (two and more words) aspects toward all aspects of the
domain.

Laptops Restaurants

Train
# of sentences 3,045 3,041
# of aspects 2,358 3,693
# of unique aspects 973 1,241
multi-aspects 37% 25%

Test
# of sentences 800 800
# of aspects 654 1,134
# of unique aspects 400 530
multi-aspects 44% 28%

All # of sentences 3,845 3,841
# of aspects 3,012 4,827

It is important to highlight some issues related to the annotation process for SemEval 2014 datasets. It was unclear
if a noun or noun phrase was used as the aspect term. Aspects referred to the entity as a whole, and not only aspects
explicitly mentioned were mismatched [50]. For example, in this place is awesome, the word place most likely refers
to the Restaurant as a whole. Hence, it should not be tagged as an aspect term. In the text cozy place and good pizza, it
probably refers to the ambiance of the Restaurant that is not explicitly mentioned in the text. In such cases, we would
need an additional (external) review context to disambiguate it.

Moreover, there are several reviews rating laptops as such without any particular aspects in mind. This domain
often contains implicit aspects expressed by adjectives, e.g., expensive, heavy, rather than using explicit terms, e.g.,
cost, weight. We must remember that in both datasets, annotators were instructed to tag only explicit aspects.

The majority of the aspects in both datasets are single-words, Table 3. Note that the Laptop dataset consists of
proportionally more multi-word aspects than the Restaurant domain. The Restaurant dataset contains many more
aspect terms in training and testing subsets, see Table 3. Moreover, it includes more than one aspect per sentence on
average. In contrast, the Laptops datasets consist of less than one aspect per sentence on average.

5https://keras.io/
6https://www.tensorflow.org/
7https://github.com/laugustyniak/aspect_extraction

11

https://keras.io/
https://www.tensorflow.org/
https://github.com/laugustyniak/aspect_extraction


Table 4: The Restaurants and the Laptops datasets: top 20 most frequent aspects.

Restaurants Train Restaurants Test Laptops Train Laptops Test
food
service
place
prices
staff
menu
dinner
pizza
atmosphere
price
table
meal
sushi
drinks
bar
lunch
dishes
decor
ambience
portions

food
service
atmosphere
staff
menu
place
prices
sushi
meal
drinks
waiter
price
pizza
wine
waiters
desserts
lunch
dinner
chicken
bartender

screen
price
use
battery life
keyboard
battery
programs
features
software
warranty
hard drive
windows
quality
size
performance
speed
applications
graphics
memory
runs

price
performance
works
os
features
screen
windows 8
use
size
keyboard
mac os
battery
runs
battery life
speed
set up
design
windows 7
usb ports
operating system

Analysis of aspect distribution over each dataset appears to be very informative and useful. The top 20 aspect
examples according to their frequency from each domain can be found in Table 4. On the one hand, aspect terms
like food and service from the Restaurants domain are much more frequent than any other aspect, and, for example,
service is 4 times more frequent than the third place in the training data. However, aspects in the Laptops domain do
not follow this pattern, and they are more balanced.

5.4. Baseline Methods
To validate the performance of our proposed models, we compare them against many baselines:

• DLIREC [13]: Top-ranked CRF-based system in ATE sub-task in SemEval 2014 - the Restaurants domain.

• IHS R&D [14]: Top-ranked system in ATE sub-task in SemEval 2014 - the Laptops domain.

• WDEmb [12]: Enhanced CRF with word embedding, linear context embedding and dependency path embed-
ding.

• RNCRF-O and RNCRF-F [20]: They used tree-structured features and a recursive neural network as the CRF
input. RNCRF-O was trained without opinion labels. RNCRF-F was trained with opinion labels and some
additional hand-crafted features.

• DTBCSNN+F [21]: A convolutional stacked neural network using dependency trees to capture syntactic fea-
tures.

• MIN [9]: LSTM-based deep multi-task learning framework. This jointly handles the extraction tasks of aspects
and opinions using memory interactions.

• CNN-Glove.840B [2]: deep convolutional neural network using Glove.840B word embedding8.

8This approach was run by us using source code available at https://github.com/soujanyaporia/aspect-extraction.
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• DE-CNN [3]: employed a simple CNN model and two types of pre-trained embeddings: general-purpose
embeddings and domain-specific embeddings9.

Besides the baseline models, we also used contextual word embedding methods in our evaluation, namely ELMo
[26], BERT [51], and Flair [29]. We tested their performance with the most complex LSTM-based architecture that
we used in our experiment, the BiLSTM model, with the CRF layer. Hence, we replaced the embedding layer in our
models (static word and character embeddings) with these language models. However, we must remember that most
language models are trained on large corpora and using highly demanding architectures (computationally expensive
training as well as inference, for example, in the BERT model). We concatenated the token representations from the
last four hidden layers of the BERT (bert-large-cased10) model to get the representation for words. The look-up for
static word embedding is much faster than the inference of transformer-based language models [52]. We used the
same neural network setup as presented in Section 5.1.

5.5. Quality measure
We used several measures to evaluate the quality of the models compared.

5.5.1. F1-measure
The most important measure was the F1-measure (also called F1-score or F-score). This score is the harmonic

mean of precision and recall. It ranges between 0 (the worst score) and 1 (the best score). We calculated the F1-
measure only for exact matches of the extracted aspects, i.e. the battery life aspect will be true positive only when
both words have been tagged. It is a strong assumption opposed to some other quality measures with weak F1, when
any intersection of words between annotation and prediction are treated as correctly tagged. Hence, the consistency
of the annotation process and even one word omitted will impact on the overall performance of the model.

5.5.2. Nemeneyi statistical test
We used the Nemeneyi post-hoc statistical test to find the model groups that differ from each other. Nemeneyi

was used on top of the multiple comparison Friedman test [53]. The Nemeneyi test makes a pair-wise comparison of
all model ranks. We used this test to evaluate models as well as all pre-trained word embeddings. The Nemeneyi test
provides a critical distance (CD) for compared groups that are not significantly different from each other as presented
in Figure 12b.

5.5.3. Gain
We also wanted to evaluate the improvement of some model variations, i.e. the LSTM and BiLSTM architecture.

We proposed to calculate the gain - how much method M2 gains over method M1 - according to Equation 10:

gain(M1,M2) =
M2 − M1

100% − M1
(10)

where M1 and M2 denote F1-measures of the first and second methods, respectively.
This equation can be understood as: to what extent does method M2 gain within the possible margin left by

method M1? Interestingly, the one percentage point gained in the F1 measure from 85% to 86% is more important
(gain = 6.7%) than the improvement from 75% to 76% (gain = 4%), see Figure 10 for results expressed in gain.

6. Results and Discussion

We analyzed 88 method combinations, namely eight model customizations (LSTM vs. BiLSTM, CRF vs. no CRF,
word or word with character embeddings) with each of pre-trained word embeddings (Glove, fastText, word2vec,
Amazon Reviews, and numberbatch embeddings). We also evaluated the results of three contextual text representa-
tions (BERT, Flair, ELMo) using WoCh-BiLSTM-CRF model. We structured the description of the results according
to our research questions, making them easier to follow. We added all results in a tabular view in the appendix. How-
ever, it would be rather interesting for somebody who wants to investigate the specific case in a very deep manner.

9This approach was run by us using source code available at https://github.com/howardhsu/DE-CNN.
10https://huggingface.co/transformers/pretrained_models.html
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(a) The Restaurants dataset. (b) The Laptops dataset.

Figure 6: Comparison of LSTM and BiLSTM model’s performance.

6.1. Research Question 1 - Robustness

How robust are the general word embeddings in domain-dependent Aspect Term Extraction? By general
embeddings we understand large pre-trained word representations trained using general texts such as Wikipedia or
Common Crawl.

LSTM vs BiLSTM
There are experiments that confirm the superiority of the BiLSTM-based model over the standard LSTM. This

has been verified and demonstrated in Figures 6a and 6b. They contain a comparison of models with the LSTM and
BiLSTM architectures across all evaluated pre-trained word embeddings. Interestingly, we can spot the difference in
F1 score distribution for the Restaurant and Laptop datasets. The Restaurant domain scores are flatter and similar to
each other. Most of the time, differences between various word embeddings are not too high. However, the Laptop
scores are much more diverse across embeddings. Surprisingly, even well pre-trained models such as fastText-wiki-
news achieved quite poor performance.

Influence of the CRF layer
The CRF layer added on top of the neural network architecture improves all the models’ performance significantly.

As we have already mentioned the improvement is higher for the Laptop domain Figure 7b. There are some of the
word embeddings where using the CRF layer improved the results by more than 10% percentage points such as for
Glove.6B.50 and surprisingly for fastText-wiki-news. The resulting performance of Glove.6B.50 word embedding was
expected. This is a very short vector representation and it was trained based on a small corpus. We hypothesized that
fastText-wiki-news would be reasonably accurate, so we wanted to investigate why such a lower performance appeared.
There are differences between the two fastText models. fastText-wiki-news was trained based on Wikipedia and news
data, and the fastText-crawl was trained using Common Crawl. Moreover, the first model contains one million unique
words and the second twice as many. Looking at Figure 9 we see that better word coverage is presented by fastText-
crawl. We think that the lower performance of fastText-wiki-news would be due to not enough text used to train it.
Most of the models with the CRF layer are better than non-CRF approaches. We saw the same pattern for the Laptop
dataset (see Figure 12b).

Impact of Word Vector Length

We also evaluated the influence of word vector length on the model’s performance. Figure 8 proves that word
vector length is important, but the only significant differences can be spotted between length equal to 50 and others.

Results for Wo-LSTM-CRF in the Restaurant domain are equal to 76.2, 82.5, 83.3 and 82.7 for 50, 100, 200 and
300 word vector lengths, respectively. In that case, we can gain more than 6 percentage points using word vector with
length equals 100 rather than 50. The improvement for the Laptop dataset was even better than for the Restaurant and
achieved almost 15 more percentage points for the Wo-LSTM-CRF model.
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(a) The Restaurants dataset. (b) The Laptops dataset.

Figure 7: The CRF layer extension.

(a) The Restaurants dataset. (b) The Laptops dataset.

Figure 8: Comparison of various word vector lengths.

It is worth mentioning that when we would like to use word embeddings in production-ready or mobile solutions,
it could be a good idea to measure the latency of model inference as well as memory consumption for each worker
with a loaded model [54]. In such cases, the possibility to use three times smaller models due to memory could be
very beneficial: even a drop of model performance of approximately 1 percent point could be worth considering.

The improvement for longer vector representations is much smaller when the model contains character embed-
dings. The character extension could not mitigate word vector lengths enough in pre-trained word embeddings and
help to represent texts for Aspect Term Extraction better. Hence, it could be a good idea to use straightforward and
short vector representations in individual cases but merged with additional knowledge from character embeddings.

6.2. Research Question 2 - Coverage
How does the coverage of word embeddings impact the performance of Aspect Term Extraction? By the

coverage, we understand how many unique words from our datasets are not present in vocabularies of the pre-trained
word embeddings. This information is strictly related to the out-of-vocabulary problem with any static (based on
look-up tables) word representations. We name mentioned coverage also as an out-of-vocabulary ratio (OOV ratio).
This research question is one of the most exciting parts of our experiments and a significant starting point if you want
to improve quickly your models that are based on static text representations.

Word Embedding Vocabulary Coverage
In a deeper analysis of results and influence of different methods, we start with a word coverage comparison

between pre-trained word embeddings and datasets. Figure 9 shows how many words are not covered by each word
embedding.

The best coverage (OOV ratio) would be equal to 0, which means the embedding covers all words in the datasets.
As we can see, most of the word embeddings - even though they are derived from the general language corpora - cover
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Figure 9: Percent of words not covered by each pre-trained word embedding.

the wording of both datasets quite well. Glove.42B proves to be the best model lacking, on average only 3.46% of
words across all subsets of the SemEval data. The second and third best models are Glove.840B and fastText-crawl,
which do not cover 4.23% and 4.24% of vocabulary, respectively. On the other hand, the lowest coverage of words is
provided by Amazon Reviews (25.58%), numberbatch (11.68%) and word2vec (10.38%). Amazon Reviews shows how
important are domain dependencies in NLP tasks. Not even one out of every three words has a vector representation
in the Restaurants domain. This directly impacts the poor performance of this embedding. Such relatively paltry
coverage can be an expected result because Amazon Reviews do not consist of recipes, ingredients, and cousins’
names. Unexpectedly, Amazon Reviews do not give as good coverage as we thought for the Laptops domain. However,
this domain is closely related to the electronics and Laptop categories in Amazon word embedding.

6.3. Research Question 3 - Character-based Word Embeddings

When character-based word embedding methods are able to eradicate drawbacks of the static pre-trained
word embeddings in Aspect Term Extraction? We calculated and evaluated the influence of extending all neural
network architectures with character embeddings according to equation 10. While we analyzed the word coverage
between datasets (Table 2) and pre-trained word embeddings used by us (Figure 10) we spotted that the character
embeddings work very well for low coverage word embedding such as (Amazon Reviews or ConceptNet number-
batch). However, character embedding could also add some noise to good word embedding as it is for (fastText and
Glove.840B). Hence, it is essential to understand your dataset and word embedding before applying any character
embedding technique.

Figure 11 presents the correlation between the out-of-vocabulary ratio and the performance of two models, i.e.,
Wo-BiLSTM-CRF and WoCh-BiLSTM-CRF. Each point on these scatter plots indicates particular pre-trained word
embeddings. There is one particularly interesting example of word embeddings in these graphs. The red squares
indicate the OOV ratio and F1 measure of word2vec embeddings trained based on Amazon Reviews data. This rep-
resents the worst-performing embeddings in all our experiments. The potential improvement by adding character
embeddings to these vectors is huge. The second worst word embedding is Glove.6B, although its out-of-vocabulary
ratio is meager. The problem with this embedding is the length of vectors for each word (length equals only to 50).
This case could also be mitigated by adding character embedding to the model as we can see in Figures 11c and 11d.
These figures show an easy to spot correlation. To prove this statement, we calculated the Pearson correlation between
the F1-score of various word embeddings for one of the best models (WoCh-BiLSTM-CRF) for either the Laptop or
Restaurant dataset and the corresponding word embedding coverage is very high. The Pearson correlation coefficient
equals -0.81 for both datasets.

Finally, there exists one more fascinating outcome. We spotted that, in some cases, adding character embedding to
the models can hurt performance. If we check the F1 score for the best pre-trained word embedding in our experiments
(glove.42B, green hexagons) we see immediately that the performance of this model dropped after adding character
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(a) The Restaurant dataset. (b) The Laptops dataset.

Figure 10: Gain in F1 measure provided by character extensions of the embedding layer.

(a) Restaurants average OOV vs. Wo-BiLSTM-CRF (b) Restaurants average OOV vs. WoCh-BiLSTM-CRF

(c) Laptops average OOV vs. Wo-BiLSTM-CRF (d) Laptops average OOV vs. WoCh-BiLSTM-CRF

Figure 11: Out-of-vocabulary for each of the pre-trained word embeddings and F1 results for our two the best models. Marked
pre-trained word embeddings: squares - Amazon Reviews, triangles - Glove.6B, hexagons - Glove.42B

embeddings. We hypothesize that the pre-trained representation has already been excellent according to the OOV
ratio as well as the size of datasets used to train it. Hence, character-based vectors only added some noise and lowered
the model’s performance.
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7. Discussion

Summarizing, some of the comparisons presented here could be trivial ones. However, in some individual cases,
they could provide us with excellent insights on how to create simple, small models that are not much worse than
a couple of times bigger and more complex ones. Nowadays, a lot of machine learning specialists are using just the
most complex and very heavy models that have been proved to achieve state-of-the-art performance. Still, there exist
models much simpler with comparable performance. Finally, we want to compare the best models (Wo-BiLSTM-
CRF and WoCh-BiLSTM-CRF) used in our experiments with a couple of state-of-the-art architectures and test the
performance of BiLSTM-CRF models using contextual and language model-based embeddings.

7.1. Overall Results

We obtained the best F1-measure of 86.05% for the Restaurant domain using Glove.42B pre-trained word em-
bedding extended with character embedding using BiLSTM together with an additional CRF layer. Interestingly,
we received the best results of 81.08% for the Laptop domain without the character embedding extension. Table 5
presents a brief comparison of our models and baselines. Glove.42B is the best word embedding regarding word cov-
erage in both datasets. The best of our models achieved better performance than the SemEval 2014 winners - DLIREC
and IHS R&D.

Moreover, the performance of our straightforward models is not significantly worse than the sophisticated state-
of-the-art approaches. The two best models in the literature, the CNN with linguistic patterns (CNN-Glove.840B) and
the double embeddings approach (DE-CNN) offer better performance than that of our simple model. However, we
have not been able to reproduce the author’s results on the same machine and the same datasets even with the author’s
open-source code. We provide the results of our runs in Table 5 as well.

Table 5: Comparison of F1 scores for SemEval 2014. Boldfaced are the best results in the section. * These approaches were run by
us using source code available at https://github.com/soujanyaporia/aspect-extraction and https://github.com/
howardhsu/DE-CNN.

Model Laptops Restaurants
DLIREC 73.78 84.01
IHS R&D 74.55 79.62
WDEmb 76.16 84.97
RNCRF-O 74.52 82.73
RNCRF-F 78.42 84.93
DTBCSNN+F 75.66 83.97
MIN 77.58 -
CNN-Glove.840B 82.32 87.17
CNN-Glove.840B* 77.36* 82.76*
DE-CNN 81.59 -
DE-CNN* 78.70* -
ELMo-BiLSTM-CRF 78.81 85.27
BERT-BiLSTM-CRF 75.74 84.10
Flair-BiLSTM-CRF 77.16 85.01
Wo-BiLSTM-CRF-Glove.42B 81.08 84.97
WoCh-BiLSTM-CRF-Glove.42B 79.21 86.05
Wo-BiLSTM-CRF-Glove.840B 79.99 84.96
WoCh-BiLSTM-CRF-Glove.840B 80.13 85.2

We also compared our simple models against contextual and language model-based embedding approaches using
the embedding layer vectors derived from ELMo, BERT, and Flair. All three of these embeddings were used with
the BiLSTM-CRF model (we used the same hyper-parameters as for other models, we ran every model six times and
got the average F1 score). As we can see, the ELMo embeddings present the best results. However, the F1 score is
still below our best models. We probably need to fine-tune these language models for domain data to get better, more
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competitive representations, but it is not the scope of our paper. We treat these embeddings only as reference values of
state-of-the-art embedding methods, and as we can see, they are not magic wands that will always, without any effort,
improve your NLP models. They need to be tested and tuned for ones specific case.

We noticed that character embedding could harm the model’s performance. For example, the Wo-BiLSTM-CRF
model with Glove.42B word embedding was almost two percentage points better than the same model extended
with character embedding. Glove.840B yielded a slightly worse word embedding (in case of word coverage) than
Glove.42B. Models with Glove.840B extended with character embedding prove to be more accurate than the same
model alone.

7.2. Statistical significance analysis
The Nemeneyi pair-wise test with the Friedman rank test shows the performance across all pre-trained word

embeddings and all evaluated methods. As the input for the Nemeneyi test, we used the average value of each model’s
six runs and embedding combinations. The Nemeneyi analysis provides critical distance (CD, the black horizontal
lines on the graphs) for groups of models that are not statistically significantly different from each other.

As seen in Figure 12 Glove.42B, fastText, and Glove.840B word embeddings are on average the best embedding
choice for the Restaurant domain. We can spot a similar pattern for the Laptop domain - Figure 12a. These three
pre-trained word embeddings cover most of the vocabulary contained in the datasets. Interestingly using Glove.6B
embeddings with word vector length equal to 300 or 200, we can obtain not significantly worse results than for the
three best extensive word representation models. This could be important in the productization of machine learning
models, where we need to find a trade-off between accuracy, model loading, and inference time.

(a) Different pre-trained embeddings across all evaluated methods.

(b) All evaluated methods across pre-trained word embeddings.

Figure 12: Nemeneyi statistical tests for the Restaurants dataset.

The first insight from Figures 12b and 13b shows a significant improvement for aspect extraction models using
CRF as the final layer. All models with a CRF layer prove to have better performance than their equivalents without
the CRF layer. The best method WoCh-BiLSTM-CRF is always significantly better than any other method without
CRF.

Another valuable outcome of our analysis is related to the performance of Amazon Reviews word embedding.
Commonly, the domain dependency on natural language processing is critical. However, the efficiency of models
based on the Amazon Reviews embedding is mediocre at best. This embedding provides a large margin for improve-
ment, Figure 10. We hypothesize that this model could be a perfect domain-dependent representation of words for
electronics-related data. Maybe we should use this embedding rather in the fine-tuning phase of training, and then it
could potentially show more usefulness as in transfer learning approaches [55, 56, 57].
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(a) Different pre-trained embeddings across all evaluated methods.

(b) All evaluated methods across pre-trained word embeddings.

Figure 13: Nemeneyi statistical test for the Laptops dataset.

8. Conclusions and Future Work

We performed the first such extensive analysis of sequence tagging approaches for Aspect Term Extraction using
various customization of LSTM-based architectures and different word representations. We compared several pre-
trained word embeddings and language models, and it can be seen how important the proper embeddings are for the
performance of the final model. We must always test which word embedding will work the best for a specific task. For
example, Amazon Reviews embedding, in theory, should provide us with excellent, domain-dependent representations.
However, this performed poorly in our experiments. Besides, even choosing the most recent, very complex language
models will not always give us the best performance, and we should select the embedding layer carefully.

Interestingly under specific conditions, we can use more memory efficient word representations. Word vectors
with length equal to 200 or 100 can obtain not significantly worse results than word vectors with a length of 300 or
even longer. Plus, we can get a representation that will be a couple of times lighter. This could be valuable in the
productization of machine learning models, where we need to find a trade-off between accuracy, model loading, and
inference time. However, most of the time in the literature, researchers and machine learning engineers use standard
length representation such as 300 in Glove.42 or Glove.840B.

We also presented evidence that combining word embeddings with character-based representations makes neural
architectures more powerful and enables us to achieve better representations, especially for models with a higher OOV
ratio. In other words, character-based word representations usually significantly boost embeddings created from the
texts with a vocabulary not necessarily well matching the considered domain. However, it must be evaluated for each
case separately. We spotted some cases when character embeddings added noise to the models and lowered the overall
performance.

As the take-home message, we want to highlight that not always the biggest, the most sophisticated and the
most complex model is the best for every case. It is much better and more fun to start experiments with simple
models (e.g. one or two layers could be enough) and pre-trained word embeddings (e.g. check the OOV coverage).
Then, one should try to improve them quickly and add super easy and fast character embeddings. Character-based
word embeddings could help in the task where there may be potentially many OOVs such as concept drifts or new
words appearing in social media content. Finally, you can investigate the model’s performance, and choose the best
method according to your metrics (not always F1). Also, consider other dimensions such as memory, and CPU/GPU
consumption.

Based on our intuition, character embedding should be even more critical for inflected languages such as the Slavic
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language family. Our future work will focus on the application of the proposed methods to Polish. Moreover, it would
also be attractive to fine-tine language models such as BERT based on domain data and then use it to generate better
word representations. Another research direction will concentrate on some concepts mentioned above, especially
on building particular hierarchies from complex relationships identified between aspects. Finally, we will apply the
proposed method for aspect extraction to generate abstractive summaries for various opinion datasets.
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Word Embedding Wo-LSTM WoCh-LSTM Wo-LSTM-CRF WoCh-LSTM-CRF Wo-BiLSTM WoCh-BiLSTM Wo-BiLSTM-CRF WoCh-BiLSTM-CRF

Glove.840B 80.91 +/- 1.1 81.26 +/- 0.42 85.02 +/- 0.23 84.91 +/- 0.38 83.56 +/- 0.22 83.55 +/- 0.3 84.96 +/- 0.54 85.2 +/- 0.28

Glove.42B 81.28 +/- 0.6 80.91 +/- 1.33 85.64 +/- 0.28 85.37 +/- 0.57 83.08 +/- 0.37 83.64 +/- 1.04 84.97 +/- 1.22 86.05 +/- 0.37

fastText-wiki-news 77.67 +/- 1.29 78.74 +/- 0.53 84.43 +/- 0.55 84.96 +/- 0.58 80.85 +/- 1.98 81.75 +/- 0.92 84.62 +/- 1.04 84.54 +/- 0.35

fastText-crawl 80.8 +/- 1.49 79.91 +/- 1.85 85.46 +/- 0.21 85.25 +/- 0.46 83.17 +/- 0.54 83.27 +/- 0.61 85.28 +/- 0.46 85.69 +/- 0.64

word2vec 77.73 +/- 0.74 78.15 +/- 0.54 82.49 +/- 0.32 84.12 +/- 0.3 80.16 +/- 0.74 81.39 +/- 1.08 82.94 +/- 0.51 83.61 +/- 1.35

Amazon Reviews 48.78 +/- 1.02 65.81 +/- 2.3 52.09 +/- 0.98 72.84 +/- 0.62 50.49 +/- 0.87 69.53 +/- 1.52 50.63 +/- 0.5 73.5 +/- 0.91

numberbatch 76.26 +/- 0.75 76.11 +/- 1.9 82.19 +/- 0.84 82.92 +/- 0.33 78.57 +/- 1.04 80.89 +/- 0.26 82.31 +/- 0.47 82.85 +/- 0.41

Glove.6B.50 70.24 +/- 2.9 73.35 +/- 1.63 76.16 +/- 0.77 79.38 +/- 0.4 75.97 +/- 0.7 77.64 +/- 1.33 79.03 +/- 0.64 80.79 +/- 0.42

Glove.6B.100 75.04 +/- 1.81 78.04 +/- 0.69 82.52 +/- 0.46 82.79 +/- 0.51 81.3 +/- 0.28 79.47 +/- 2.27 84.01 +/- 0.49 84.16 +/- 0.34

Glove.6B.200 78.69 +/- 1.3 78.3 +/- 0.81 83.26 +/- 0.33 83.3 +/- 0.2 82.09 +/- 0.7 80.87 +/- 0.85 83.81 +/- 0.19 83.74 +/- 0.56

Glove.6B.300 79.22 +/- 0.58 78.7 +/- 0.54 82.7 +/- 0.78 82.56 +/- 0.66 81.31 +/- 0.61 81.5 +/- 0.68 82.99 +/- 0.53 83.26 +/- 0.53

Table 6: All results averaged over 6 runs with std - the Restaurant dataset.



Word Embedding Wo-LSTM WoCh-LSTM Wo-LSTM-CRF WoCh-LSTM-CRF Wo-BiLSTM WoCh-BiLSTM Wo-BiLSTM-CRF WoCh-BiLSTM-CRF

Glove.840B 68.38 +/- 3.61 70.09 +/- 0.61 77.72 +/- 1.42 77.66 +/- 0.46 74.25 +/- 0.87 73.38 +/- 2.46 79.99 +/- 0.72 80.13 +/- 0.34

Glove.42B 69.44 +/- 2.13 68.47 +/- 1.73 77.39 +/- 0.63 78.36 +/- 1.17 74.78 +/- 1.46 74.11 +/- 1.19 81.08 +/- 0.69 79.21 +/- 0.46

fastText-wiki-news 60.32 +/- 4.55 58.96 +/- 2.42 74.66 +/- 1.49 75.93 +/- 0.81 63.54 +/- 4.15 63.66 +/- 4.49 77.05 +/- 2.18 77.04 +/- 2.45

fastText-crawl 67.75 +/- 4.05 66.71 +/- 4.88 77.95 +/- 1.79 77.53 +/- 0.93 73.32 +/- 1.32 73.44 +/- 2.77 79.34 +/- 1.23 79.73 +/- 1.36

word2vec 61.59 +/- 2.43 64.1 +/- 2.67 72.88 +/- 1.12 75.44 +/- 1.57 67.96 +/- 2.15 69.77 +/- 2.84 74.93 +/- 1.0 76.38 +/- 1.37

Amazon Reviews 55.18 +/- 1.77 60.01 +/- 1.18 65.15 +/- 0.73 70.04 +/- 1.3 61.22 +/- 1.14 66.06 +/- 1.11 64.89 +/- 0.75 69.65 +/- 0.97

numberbatch 57.88 +/- 2.48 58.77 +/- 3.86 69.19 +/- 2.5 74.15 +/- 0.39 59.02 +/- 7.19 66.69 +/- 2.07 73.03 +/- 1.02 75.09 +/- 1.75

Glove.6B.50 41.77 +/- 6.04 48.5 +/- 8.45 58.48 +/- 1.18 65.12 +/- 2.48 53.71 +/- 1.18 60.19 +/- 4.27 64.39 +/- 3.51 72.05 +/- 1.39

Glove.6B.100 58.0 +/- 3.98 61.64 +/- 1.92 73.26 +/- 2.07 72.97 +/- 1.55 65.94 +/- 3.21 68.26 +/- 0.89 76.44 +/- 3.29 75.88 +/- 2.22

Glove.6B.200 63.69 +/- 2.15 64.39 +/- 2.07 76.94 +/- 0.96 75.0 +/- 0.99 69.71 +/- 2.83 68.98 +/- 2.34 78.22 +/- 1.67 77.77 +/- 1.47

Glove.6B.300 65.82 +/- 2.33 65.59 +/- 1.7 74.51 +/- 1.98 75.15 +/- 0.54 72.2 +/- 1.39 71.32 +/- 0.82 77.28 +/- 0.87 77.4 +/- 0.24

Table 7: All results averaged over 6 runs with std - the Laptops dataset.
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