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A B S T R A C T

The task of speech recognition in far-field environments is adversely affected by the reverberant
artifacts that elicit as the temporal smearing of the sub-band envelopes. In this paper, we
develop a neural model for speech dereverberation using the long-term sub-band envelopes
of speech. The sub-band envelopes are derived using frequency domain linear prediction
(FDLP) which performs an autoregressive estimation of the Hilbert envelopes. The neural
dereverberation model estimates the envelope gain which when applied to reverberant signals
suppresses the late reflection components in the far-field signal. The dereverberated envelopes
are used for feature extraction in speech recognition. Further, the sequence of steps involved in
envelope dereverberation, feature extraction and acoustic modeling for ASR can be implemented
as a single neural processing pipeline which allows the joint learning of the dereverberation
network and the acoustic model. Several experiments are performed on the REVERB challenge
dataset, CHiME-3 dataset and VOiCES dataset. In these experiments, the joint learning of
envelope dereverberation and acoustic model yields significant performance improvements
over the baseline ASR system based on log-mel spectrogram as well as other past approaches
for dereverberation (average relative improvements of 10–24% over the baseline system). A
detailed analysis on the choice of hyper-parameters and the cost function involved in envelope
dereverberation is also provided.

. Introduction

Automatic speech recognition (ASR) is a challenging task in far-field conditions. This is particularly due to the fact that the
peech signal will be reverberant and noisy. The word error rates (WER) in ASR have seen a dramatic improvement over the past
ecade due to the advancements in deep learning based techniques (Yu and Deng, 2016). Still the deterioration in performance in
oisy and reverberant conditions persist (Hain et al., 2012). A relative increase in WER of 75% is reported by Peddinti et al. (2018)
nd Ganapathy and Peddinti (2018b) when the signal from headset microphone is replaced with far-field array microphone signals
n the ASR systems. This deterioration is due to temporal smearing of time domain envelopes caused by reverberation (Yoshioka
t al., 2012).

One common approach to suppress reverberation is to combine all channels by beamforming (Anguera et al., 2007) before feeding
t to the ASR system. Recently, unsupervised neural mask estimator for generalized eigen-value beamforming is proposed (Kumar
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et al., 2020). Traditional pre-possessing also includes the weighted prediction error (WPE) (Nakatani et al., 2010) based derever-
beration along with the beamforming in most state-of-art far-field ASR systems. Further, multi-condition training is usually used to
alleviate the mismatch between training and testing (Seltzer et al., 2013). Here, either simulated reverberant data or real far-field
data can be added to the training data. However, even with these techniques, the beamformed signal shows significant amount of
temporal smoothing in sub-band envelopes. The temporal smearing is caused by the superposition of direct path signal and reflected
signals and this leads to ASR performance degradation (Ganapathy, 2017).

In this paper, we analyze the effect of reverberation on sub-band Hilbert envelopes. We show that the effect of reverberation can
e approximated as convolution of the long-term sub-band envelopes of clean speech with the envelope of room impulse response
unction. In order to compensate for the late reverberation component in the envelope, we explore a Wiener filtering approach
here the Wiener filter gain is computed using a deep neural network (DNN). The gain estimation network is implemented using a

onvolutional-long short term memory (CLSTM) model. The gain is multiplied with the sub-band envelopes to suppress reverberation
rtifacts. The sub-band envelopes are converted to spectrographic features through integration and used for deep neural network
ased ASR. The sub-band envelopes are derived using the autoregressive modeling framework of frequency domain linear prediction
FDLP) (Thomas et al., 2008; Ganapathy and Harish, 2018).

The steps involved in envelope dereverberation, feature extraction and acoustic modeling for ASR can all be implemented
s neural network layers. Therefore, we also propose an approach for joint learning of the speech dereverberation model with
he ASR acoustic modeling network as a single neural model. Various ASR experiments are performed on the REVERB challenge
ataset (Kinoshita et al., 2013) as well as the CHiME-3 dataset (Barker et al., 2015). In these experiments, we show that the proposed
pproach improves over the state-of-the-art ASR systems based on log-mel features as well as other past approaches proposed for
peech dereverberation and denoising based on deep learning. In addition, we also extend the approach to large vocabulary speech
ecognition on VOiCES dataset (Richey et al., 2018; Nandwana et al., 2019).

The rest of the paper is organized as follows. The related prior work is discussed in Section 2. This section also discusses the key
ontributions from the proposed work. Section 3 provides details regarding the reverberation artifacts and autoregressive envelope
stimation using frequency domain linear prediction. In Section 4, we discuss the envelope dereverberation model, feature extraction
s well as the joint approach to dereverberation with acoustic modeling for ASR. The ASR experiments and results are discussed in
ection 5. Various model parameter choices and additional analyses are reported in Section 6. This is followed by a summary of the
ork in Section 7.

. Related prior work

Xu et al. in Xu et al. (2014) attempted to find a mapping function from noisy and clean signals using supervised neural network,
hich is used for enhancement in the testing stage. In a similar manner, speech separation problem is also explored with ideal

atio mask based neural mapping (Wang and Chen, 2018). Zhao et al. proposed a LSTM model for late reflection prediction in the
pectrogram domain for reverberant speech (Zhao et al., 2018). A spectral mapping approach using the log-magnitude inputs was
ttempted by Han et al. (2014). A mask based approach to dereverberation on the complex short-term Fourier transform domain
as explored by Williamson and Wang (2017).

Speech enhancement for speech recognition based on neural networks has been explored in Wöllmer et al. (2013), Chen et al.
2015) andWeninger et al. (2015). In Maas et al. (2013), a recurrent neural network is used to map noise-corrupted input features
o their corresponding clean versions. A context aware recurrent neural network based convolutional encoder–decoder architecture
as used in Santos and Falk (2018) to map the power spectral features of noisy and clean speech. In a recent work by Pandey and
ang (2019), the speech enhancement is learned in the time domain itself, but using a matrix multiplication to convert the time

omain signal into frequency domain and the frequency domain loss is used for training. This approach uses mean absolute error
etween the STFT frames of the clean and noisy speech for training.

The joint learning of the speech enhancement neural model and the acoustic model was attempted in Wang and Wang (2016).
ere, a DNN based speech separation model is coupled with a DNN based acoustic model and the weights are adjusted jointly.
o Wu et al. (2017) proposed to unify the speech enhancement neural model and the acoustic model trained separately, and then
he joint model is further trained to improve the ASR performance. The power spectrum in the log domain was used as features
n the enhancement stage. Bo Wu et al. (2017) also explored an end-to-end deep learning approach in, where the knowledge
bout reverberation time is incorporated in DNN based dereverberation front end. This reverberation time aware-DNN enhancement
odule and ASR acoustic module are further trained jointly to improve the ASR cost.

The key contributions from the current work can be summarized as follows,

• Deriving a signal model for reverberation effects on sub-band speech envelopes and posing the dereverberation problem as a
gain estimation problem.

• Dereverberation of the autoregressive estimates of the sub-band envelope using a CLSTM model followed by feature extraction
for ASR.

• Joint learning of the dereverberation model parameters and the acoustic model for ASR in a single neural pipeline.
• Illustrating the performance benefits of the proposed approach for multiple ASR tasks.

We use FDLP features (Purushothaman et al., 2020) for far-field speech. This paper extends the prior work done in (Purushothaman
et al., 2020b) by proposing a joint neural dereverberation which forms an elegant neural learning framework. Further, several ASR
2

experiments with the joint modeling approach are also conducted in this work.
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3. Sub-band envelopes — Effect of reverberation and autoregressive estimation

We present the signal model for reverberation and the autoregressive model for estimating the sub-band envelopes (Ganapathy,
017; Ganapathy et al., 2009).

.1. Signal model

When speech is recorded in far-field reverberant environment, the data collected in the microphone is modeled as

𝑟(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡), (1)

where 𝑥(𝑡), ℎ(𝑡) and 𝑟(𝑡) denote the clean speech signal, the room impulse response and the reverberant speech respectively. The
room response function ℎ(𝑡) = ℎ𝑒(𝑡) + ℎ𝑙(𝑡), where ℎ𝑒(𝑡) and ℎ𝑙(𝑡) represent the early and late reflection components.

Let 𝑥𝑞(𝑛), ℎ𝑞(𝑛) and 𝑟𝑞(𝑛) denote the decimated sub-band clean speech, room-response and the reverberant speech signal
respectively. Here 𝑞 = 1,… , 𝑄 denotes the sub-band index and 𝑛 denotes the decimated time-index (frame). Assuming an ideal
band-pass filtering we can write (using Eq. (1)),

𝑟𝑞(𝑛) = 𝑥𝑞(𝑛) ∗ ℎ𝑞(𝑛) (2)

In the proposed model, we explore the modeling of the sub-band temporal envelopes. In order to extract the envelopes, the analytic
signal based demodulation is proposed. The analytic representation of a real-valued signal is the complex signal consisting of the
original function (real part) and the Hilbert transform (imaginary part). The negative frequency components of the analytic signal
are zero-valued. By representing the real-valued functions in analytic domain, the extraction of the modulation components (like
envelopes and carrier signals) is facilitated.

Now, the analytic signal of the sub-band signal 𝑟𝑞(𝑛) is denoted as 𝑟𝑎𝑞(𝑛), where 𝑟𝑎𝑞(𝑛) = 𝑟𝑞(𝑛) + 𝑗[𝑟𝑞(𝑛)]. Here, [.] is the Hilbert
operator. It can be shown that (Thomas et al., 2008; Ganapathy and Hermansky, 2012),

𝑟𝑎𝑞(𝑛) =
1
2
[𝑥𝑎𝑞(𝑛) ∗ ℎ𝑎𝑞(𝑛)], (3)

If two signals have a modulating envelope on the same modulating sinusoidal carrier signal (single AM–FM signal), the convolution
operation of the two signals will have an envelope which is the convolution of the two envelopes, i.e., the envelope of the convolution
of the two signals is the convolution of the envelope of the signals. For sub-band speech signals, this envelope convolution model
will form a good approximation if the sub-band signals are narrow-band.

Then, for band-pass filters with narrow band-width, we get the following approximation between the sub-band envelope (defined
as the magnitude of the analytic signal) components of the reverberant signal and those of the clean speech signal.

𝑚𝑟𝑞(𝑛) ≃
1
2
𝑚𝑥𝑞(𝑛) ∗ 𝑚ℎ𝑞(𝑛), (4)

where 𝑚𝑟𝑞(𝑛), 𝑚𝑥𝑞(𝑛), 𝑚ℎ𝑞(𝑛) denote the sub-band envelopes of reverberant speech, clean speech and room response respectively. We
can further split the envelope into early and late reflection coefficients.

𝑚𝑟𝑞(𝑛) = 𝑚𝑟𝑞𝑒(𝑛) + 𝑚𝑟𝑞𝑙(𝑛), (5)

3.2. Autoregressive modeling of sub-band envelopes

Frequency domain linear prediction (FDLP) is the frequency domain dual of the conventional time domain Linear Prediction
(TDLP). Just as the TDLP estimates the spectral envelope of a signal, FDLP estimates the temporal envelope of the signal (Ganapathy
and Peddinti, 2018), i.e. square of its Hilbert envelope (Bedrosian, 1962). The Hilbert envelope is given by the inverse Fourier
transform of the auto-correlation function of discrete cosine transform (DCT) (Ganapathy, 2012; Athineos and Ellis, 2003).

We use the auto-correlation of the DCT coefficients to model the temporal envelope of the signal. The autoregressive (AR)
modeling property of linear prediction implies that the model preserves the peak location of the signal (which tend to be more
robust in the presence of noise and reverberation) (Ganapathy et al., 2014). For the FDLP model, the sub-band AR model tries to
preserve the peaks in temporal envelope (Ganapathy et al., 2009).

Let 𝑥(𝑡) denote an 𝑁-point discrete sequence. The type-I odd DCT (Martucci, 1994) 𝑦[𝑘] for 𝑘 = 0, 1,… , 𝑁 − 1 is given by,

𝑦[𝑘] =
𝑁−1
∑

𝑡=0
𝑐𝑡,𝑘𝑥(𝑡)𝑐𝑜𝑠

( 2𝜋𝑡𝑘
𝑀

)

(6)

where 𝑐𝑡,𝑘 = 1 for 𝑡, 𝑘 > 0 and 𝑐𝑡,𝑘 = 1
2 for 𝑡, 𝑘 = 0 and 𝑐𝑡,𝑘 = 1

√

2
for the values of 𝑡, 𝑘 where only one of the index is 0 and 𝑀 = 2𝑁 −1.

An even symmetric version of the input signal 𝑥(𝑡) is the signal 𝑞(𝑡) of length 𝑀 = 2𝑁 − 1 where,

𝑞(𝑡) = 𝑥(𝑡), 𝑡 = 0..𝑁 − 1

𝑞(𝑡) = 𝑥(𝑀 − 𝑡), 𝑡 = 𝑁..𝑀
3
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Fig. 1. Block schematic of envelope dereverberation model, the feature extraction module and acoustic model (Here 𝑚𝑟(𝑛), 𝐺̂(𝑛), 𝑚̂𝑟𝑒(𝑛) and 𝐹 (𝑚) are given by
Eqs. ((5), (8)–(11)), the subscript 𝑞 is dropped to indicate the fact that, signals from all the bands are considered). The entire model can be constructed as an
end-to-end neural framework. The black arrows denote the forward pass, the red arrows represent backward propagation with ASR loss (𝐸𝐶𝐸 ), and green arrows
denote the backward propagation with mean square error loss (𝐸𝑀𝑆𝐸 ). Here, 𝑆 is the total number of senone targets. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The analytic signal of a discrete time sequence can be defined using the one-sided discrete Fourier transform (DFT) (Ganapathy,
2012). The analytic signal 𝑞𝑎(𝑡) of the even-symmetric signal 𝑞(𝑡) can be shown to be (Ganapathy et al., 2009) the zero-padded DCT
(up to scale) 𝑦̂[𝑘], where 𝑦̂[𝑘] = 𝑦[𝑘], 𝑘 = 0..𝑁 − 1 and 𝑦̂[𝑘] = 0, 𝑘 = 𝑁,… ,𝑀 .

Further, it can be shown that (Ganapathy, 2012), the auto-correlation of the zero-padded DCT signal 𝑦̂[𝑘] and the squared
magnitude of the analytic signal (Hilbert envelope) of the even-symmetric signal |𝑞𝑎(𝑡)|

2 are Fourier transform pairs (Ganapathy
and Peddinti, 2018). Hence, the application of linear prediction on the zero-padded DCT signal yields the AR model of the Hilbert
envelope of signal.

Let the linear prediction coefficients obtained from the zero-padded DCT signal be denoted as {𝑎𝑘}
𝑝
𝑘=0, where 𝑝 is the order of

the LP. The FDLP model for the envelope is given by,

𝐸(𝑛) = 𝜎

|

∑𝑝
𝑘=0 𝑎𝑘𝑒

−2𝜋𝑖𝑘𝑛
|

2
(7)

where 𝜎 denotes the LP gain. The envelope estimated in above equation represents the autoregressive model of the temporal
envelopes. Note that, when the model is applied on sub-band DCT coefficients, the envelope estimated will be the sub-band temporal
envelope.

In this work, the sub-band envelopes of speech in mel-spaced bands are estimated using FDLP. Specifically, the discrete cosine
transform (DCT) of sub-band signal 𝑟𝑞(𝑡) is computed and a linear prediction (LP) is applied on the DCT components. The LP envelope
estimated using the prediction on the DCT components provides an all-pole model of the sub-band envelopes 𝑚𝑟𝑞(𝑛).

4. Envelope dereverberation and joint modeling

The proposed framework (Fig. 1), consists of three modules, (i) envelope dereverberation, (ii) feature extraction and (iii) ASR
acoustic model.

4.1. Neural dereverberation network

As seen in Eq. (5), the FDLP envelope of reverberant speech can be expressed as sum of the direct component (early reflection)
and those with the late reflection. In the envelope dereverberation model, our aim is to input the envelope of the reverberant
sub-band temporal envelope 𝑚𝑟𝑞(𝑛) to predict the late reflection components 𝑚𝑟𝑞𝑙(𝑛). Once this prediction is achieved, the late
reflection component can be subtracted from the sub-band envelope to suppress the artifacts of reverberation. A similar analogy to
this envelope subtraction approach is the spectral subtraction model where the noise and clean power spectral density (PSD) gets
added in noisy speech PSD. If Gaussian assumptions are made for PSD components (Martin, 2005), the Wiener filtering approach to
noisy speech enhancement provides the minimum mean squared error, where the noisy PSD is multiplied by the gain of the filter.
In a similar manner, we pose the dereverberation problem as an envelope gain estimation problem.
4
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The envelope gain (𝐺𝑞) is defined as,

𝐺𝑞(𝑛) =
𝑚̂𝑟𝑞𝑒(𝑛)

𝑚̂𝑟𝑞𝑒(𝑛) + 𝑚̂𝑟𝑞𝑙(𝑛)
(8)

The gain 𝐺𝑞(𝑛) is estimated using the input sub-band envelope 𝑚𝑟𝑞(𝑛). With the gain estimate, the dereverberated envelope can
be computed as,

𝑚̂𝑟𝑞𝑒(𝑛) = 𝐺𝑞(𝑛)𝑚𝑟𝑞(𝑛) (9)

The product model of enhancement is inspired by Wiener filtering principles. This sub-band envelope gain estimation is achieved
sing a deep neural network model in the proposed work. Following the model training, the dereverberation is achieved by
ultiplying the estimated sub-band envelope gain with the sub-band envelope of reverberant speech.

The block schematic of the envelope dereverberation model is shown in Fig. 1. The input to the dereverberation model is the
DLP sub-band envelope of the reverberant speech. The model is trained to learn the sub-band envelope gain which is the ratio of the
lean envelopes (direct component) with the reverberant envelopes. During the model training, the model inputs are either far-field
icrophone recordings or the simulated reverberant recordings. The model targets are the envelope gain (Eq. (8)) computed using

ither the close talking/near-room microphone corresponding to the far-field microphone data, or the clean close-talking microphone
ata for the simulated reverberant training data. Thus, model is trained with paired data to estimate the gain.

As the envelopes and the gain parameters are positive in nature, the model implementation in the neural architecture uses a
ogarithmic transform at the input and the estimated gain is transformed by an exponential operation. Specifically, the input to the
ereverberation model is the set of sub-band envelopes {𝑙𝑜𝑔(𝑚𝑟𝑞)(𝑛)}

𝑄
𝑞=1, where 𝑄 is the number of sub-bands. The model is trained

to predict the log-gain {𝑙𝑜𝑔(𝐺𝑞)}
𝑄
𝑞=1. The sub-band dereverberated envelope is,

𝑚̂𝑟𝑞𝑒 = 𝑒𝑥𝑝
[

(𝑙𝑜𝑔(𝐺̂𝑞(𝑛))) + 𝑙𝑜𝑔(𝑚𝑟𝑞(𝑛))
]

(10)

where 𝐺̂𝑞(𝑛) is the estimate of the gain from the model.
The entire model developed in Section 3 is applicable only on long analysis windows (which are typically greater than the T60

of the room response function). Hence, the proposed approach operates on long temporal envelopes of the order of 2 s duration.
From the reverberant speech and the corresponding clean speech, the FDLP sub-band envelopes corresponding to 2 non-overlapping
segments are extracted. If the input sampling rate is 16 kHz, a 2s segment will correspond to 32k samples (𝑡 = {1..32000}). The FDLP
envelopes are extracted at a sampling rate of 400 Hz. Thus, 2s segment of audio corresponds to 800 envelope samples (𝑛 = {1..800})
for each sub-band.

The input 2-D data of sub-band envelopes (800 samples from 36 mel sub-bands) are fed to a set of convolutional layers where the
first two layers have 32 filters each with kernels of size of 41 × 5. The next two CNN layers have 64 filters with 21 × 3 kernel size.
All the CNN layer outputs with ReLU activations are zero padded to preserve the input size and no pooling operation is performed.
The output of the CNN layers are reshaped to perform time domain recurrence using 3 layers of LSTM cells. The first two LSTM
layers have 1024 cells while the last layer has 36 cells corresponding to the size of the target signal (envelope gain). The training
criteria is based on the mean square error between the target and predicted output. The model is trained with stochastic gradient
descent using Adam optimizer (Kingma and Ba, 2014).

4.2. Feature extraction and acoustic modeling

For feature extraction, the sub-band envelopes are integrated in short Hamming shaped windows of size 25 ms with a shift of
10 ms (Ganapathy, 2012). A 25 ms slice corresponds at 400 Hz sampling (FDLP envelopes are sampled at 400 Hz) to 10 samples and
the hop size of 10 ms corresponds to 4 samples.

The windowed FDLP envelopes are multiplied with a Hamming shaped window (size of 10) and accumulated. This window is
shifted by 4 samples. A log compression is applied to limit the dynamic range of values. Following this integration, a 2 Schunk of
800 × 36 sub-band FDLP envelopes becomes 198 × 36.

In particular, let 𝑚̂𝑟𝑞𝑒(𝑛) denote the dereverberated sub-band envelope obtained using Eq. (10). Further, let 𝑤(𝑛) denote a
amming window of size 10 (corresponding to 25 ms at 400 Hz sampling). Then, the features for ASR are extracted as,

𝐹𝑞(𝑚) = 𝑙𝑜𝑔(𝑚̂𝑟𝑞𝑒(𝑚) ∗ 𝑤(𝑚)) (11)

here ∗ is the convolution operation, and 𝐹𝑞 denotes the scalar feature of 𝑞th sub-band. Here, 𝑚 denotes the feature frame index at
10 ms sampling (100 Hz). The features for all the 𝑄 sub-bands are spliced to form the final feature vector for ASR model training.

The set of operations described above for short-term integration can be implemented as a 1-D CNN layer with a fixed Hamming
shaped kernel size of 10 and a stride 4. A log non-linearity is applied on the convolution output.

The integrated envelopes are used as time–frequency representations for ASR training. A context of 21 frames, with 10 frames
n the left and 10 frames on the right is used in the acoustic model training.

.3. Acoustic model

The architecture of the acoustic model is based on convolutional long short term memory (CLSTM) networks (Fig. 1). The acoustic
odel corresponds to 2-D CLSTM network described in Purushothaman et al. (2020), consisting of 4 layers of CNN, a layer of LSTM
5

with 1024 units performing recurrence over frequency and 3 fully connected layers with batch normalization.
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Fig. 2. Variation of training loss and cross validation loss with training epochs. The envelope dereverberation model and the ASR model are pre-trained before
the joint learning step.

4.4. Joint learning

As shown in Fig. 1, the three modules of (i) envelope dereverberation, (ii) feature extraction and context formation and (iii) the
SR acoustic modeling can be combined into a single neural end-to-end framework.1 The intermediate envelope integration step is

implemented as a 1-layer of 1-D convolutions with Hamming shaped kernel and log non-linearity. The context creation for acoustic
features in the given segment is also performed as a fixed 1-D convolution layer. In this manner, the entire processing pipeline can
be performed using an elegant joint learning approach.

For generating mini-batches in the model training, a 2s speech segment is read along with the corresponding frame level targets
(198 frames of senone targets for the 2s segment). The entire joint neural network is trained using a combination of ASR cross
entropy training criterion and mean square loss between the clean and reverberant envelopes. The gradients from the ASR loss at
the input of the acoustic model (computed for each senone target) is accumulated over all the frames in the given 2s segment.
This accumulated gradient is of size 198 × 36 which corresponds to the size of the integrated envelopes. This ASR loss function
when further back-propagated through fixed 1-D CNN layer provides a gradient matrix of size 800 × 36. The gradient w.r.t. mean
square error (MSE) between the target envelopes and the dereverberation model outputs is combined with the ASR based gradient
for training the joint model. The two gradients are indicated by two different backward arrows in Fig. 1.

4.4.1. Joint loss function
The separate dereverberation model is trained to minimize the mean square error loss, 𝐸𝑀𝑆𝐸 , which is the squared error between

the reverberant envelope and the clean counter part. For joint training, we have two loss functions, one is the mean square error
loss, 𝐸𝑀𝑆𝐸 for a mini-batch and the cross-entropy loss, 𝐸𝐶𝐸 between the senone targets and the corresponding posteriors for the
same mini-batch. We use a combination of these two losses. Thus the final joint loss, 𝐸𝑇 𝑜𝑡𝑎𝑙 is given by,

𝐸𝑇 𝑜𝑡𝑎𝑙 = 𝐸𝐶𝐸 + 𝜇 × 𝐸𝑀𝑆𝐸 , (12)

where 𝜇 is a regularization parameter, which decides the share of 𝐸𝑀𝑆𝐸 in the joint loss, 𝐸𝑇 𝑜𝑡𝑎𝑙. In all our ASR experiments, we
have used regularization parameter 𝜇 = 0.4. The absolute value of the two loss functions (different dynamic range in Fig. 2) does
not have an impact as the model is trained with the gradient of the losses. Note that the MSE loss changes by 0.014 over the course
of joint training while the combined loss changes by 0.04, so they generally have comparable dynamic ranges, even if these occur
at different offsets from 0. The regularization constant 𝜇 controls the trade-off between the two loss functions.

The variation of the MSE loss in the envelope dereverberation network is shown in Fig. 2. The joint loss function on the training
and validation data is also shown in this Figure. While the MSE loss trained with a higher learning rate exhibits oscillatory behavior,
the joint loss function is relatively smooth. The final joint model is used in our ASR experiments.

A visualization of the dereverberation, achieved for the sub-band envelope of one single sub-band (10 th mel-band), is shown in
Fig. 3. The sub-band envelopes of reverberant signal deviate from their clean signal counterparts (as explained in Section 3). Using
the dereverberation model proposed in this paper, we find that the FDLP envelopes are more closely matched with the clean signal
envelopes. In Section 5, we compare the performance of the CLSTM acoustic model architecture with other model architectures for
dereverberation.

1 The implementation of the work can be found in https://github.com/iiscleap/FDLP_Envelope_Dereverberation.
6
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Fig. 3. Comparison of temporal envelopes, FDLP envelopes for clean, reverberant speech and reverberant speech after proposed joint learning based
dereverberation, recordings from the REVERB Challenge dataset.

Table 1
Word Error Rate (%) in REVERB dataset for different features and proposed dereverberation method. Here prop denotes proposed
work in this paper.
Model Features Dev Eval

Real Simu Avg Real Simu Avg

BF-FBANK 19.1 6.1 12.6 14.7 6.5 10.6
BF-FDLP (Purushothaman et al., 2020) 17.8 6.8 12.3 14.0 7.0 10.5
BF-FBANK + CLSTM derevb. (prop) 17.3 5.5 11.4 13.1 6.9 10.0
BF-FBANK + spectral mapping derevb.(Han et al., 2015) 15.8 5.2 10.5 12.8 6.7 9.7
BF-FBANK + context aware derevb.(Santos and Falk, 2018) 19.6 6.9 13.2 17.5 9.0 13.2
BF-FBANK + end to end derevb.(Wu et al., 2017) – – – 24.8 7.9 16.4
BF-FDLP + CLSTM derevb. (prop) 16.3 5.6 10.9 13.4 7.1 10.2
BF-FDLP + CLSTM derevb. + joint (prop) 15.2 5.6 10.4 12.1 7.1 9.6

5. Experiments and results

The experiments are performed on REVERB challenge (Kinoshita et al., 2013) and CHiME-3 (Barker et al., 2015) datasets.
or the baseline model, we use WPE enhancement (Nakatani et al., 2010) along with unsupervised GEV beamforming (Kumar
t al., 2020). This signal is processed with filter-bank energy features (denoted as BF-FBANK). The FBANK features are 36 band

log-mel spectrogram with frequency range of 200–6500 Hz. This is the same frequency decomposition used in the FDLP and
FDLP-dereverberation experiments. The acoustic model is the 2-D CLSTM network described in Purushothaman et al. (2020).

5.1. ASR framework

We use the Kaldi toolkit (Povey et al., 2011) for deriving the senone alignments used in the PyTorch deep learning framework
for acoustic modeling. A hidden Markov model–Gaussian mixture model (HMM–GMM) system is trained with MFCC (Mel Frequency
Cepstral Coefficients) features (Logan et al., 2000) to generate the alignments for training the CLSTM acoustic model. A tri-gram
language model (Brown et al., 1992) is used in the ASR decoding and the best language model weight obtained from development
set is used for the evaluation set.

5.2. REVERB challenge ASR

The REVERB challenge dataset (Kinoshita et al., 2016) for ASR consists of 8 channel recordings with real and simulated
reverberation conditions. The simulated data is comprised of reverberant utterances generated (from the WSJCAM0 corpus (Robinson
et al., 1995)) by artificially convolving clean WSJCAM0 recordings with the measured room impulse responses (RIRs) and adding
noise at an SNR of 20 dB. The simulated data has six different reverberation conditions. The real data, which is comprised of
utterances from the MC-WSJ-AV corpus (Lincoln et al., 2005), consists of utterances spoken by human speakers in a noisy reverberant
room. The training set consists of 7861 utterances from the clean WSJCAM0 training data by convolved with 24 measured RIRs.

5.2.1. Discussion
Table 1 shows the WER results for experiments on REVERB challenge dataset. The WPE along with unsupervised GEV

beamformed signal is used for all the ASR experiments (denoted as BF). The BF-FDLP baseline by itself is better than the BF-FBANK
baseline (average relative improvements of 2% on the development set and about 1% on the evaluation set). For a fair comparison of
he proposed approach, we have applied a similar dereverberation method on BF-FBANK baseline. Here, we have trained the neural
odel with log-mel features corresponding to 2 duration with all the 36 mel-bands jointly. This approach is denoted as BF-FBANK
CLSTM derevb. (prop). Average relative improvements of 10% on the development set and about 6% on the evaluation set is

chieved compared to the BF-FBANK baseline.
BF-FBANK + spectral mapping derevb. Han et al. (2015) corresponds to the work by Kun Han et al. Here a 3-layer deep neural

etwork of 2570 units is used as the dereverberation neural model. The network is fed with 257-dimensional log-magnitude STFT
7
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Table 2
Word Error Rate (%) in CHiME-3 dataset for different features and proposed dereverberation method. Here prop denotes proposed
work in this paper.
Model Features Dev Eval

Real Simu Avg Real Simu Avg

BF-FBANK 7.8 8.0 7.9 14.0 9.7 11.8
BF-FDLP 7.0 8.1 7.5 12.0 10.0 11.0
BF-FBANK + CLSTM derevb. (prop) 7.2 8.3 7.7 12.9 9.8 11.4
BF-FBANK + spectral mapping derevb.(Han et al., 2015) 8.0 10.0 9.0 14.3 12.3 13.3
BF-FBANK + context aware derevb.(Santos and Falk, 2018) 7.7 9.9 8.8 13.4 13.3 13.3
BF-FDLP + CLSTM derevb. (prop) 7.2 7.9 7.5 13 9.6 11.3

+ spec. reg. (prop) 6.9 8.0 7.4 11.8 9.8 10.8
+ spec. reg. + joint (prop) 7.0 7.7 7.3 11.7 9.3 10.5

Table 3
WER in VOiCES dataset for different features and proposed dereverberation method. Here prop
denotes proposed work in this paper.

Model Architecture Dev Eval

BF-FBANK 55.5 66.6
BF-FDLP 51.5 62.6
BF-FDLP + CLSTM derevb. (prop) 52.8 62.4

+ joint. (prop) 49.9 59.8

features from a frame of 25 m s. A context window of 10-frames (5-left and 5-right) is selected and the network tries to predict the
central frame. The work by Santos et al. is implemented as BF-FBANK + context aware derevb. Santos and Falk (2018). A CNN-GRU
based encoder–decoder model sees the entire utterance at the 257-STFT magnitude level features and trained to predict the clean
tterance. The results for end-to-end dereverberation network (joint learning) proposed in Wu et al. (2017) is also compared with
he proposed work in Table 1.

Finally applying the proposed neural model based dereverberation on BF-FDLP baseline (denoted as BF-FDLP + CLSTM derevb.
prop)) yields average relative improvements of 13% on the development set and about 4% on the evaluation set, compared to the
F-FBANK baseline. After joint training this further improves to 17% and 9% respectively. The improvement in real condition is
uch more than that of simulated data. Average relative improvements of 20% on the real development set and about 18% on the

eal evaluation set, compared to the BF-FBANK baseline is achieved by the proposed method. This suggests that, even though the
ointly learned neural model is trained only with simulated reverberation, it generalizes well on unseen real data.

.3. CHiME-3 ASR

The CHiME-3 dataset (Barker et al., 2015) for the ASR has multiple microphone tablet device recording in four different
nvironments, namely, public transport (BUS), cafe (CAF), street junction (STR) and pedestrian area (PED). For each of the above
nvironments, real and simulated data are present. The real data consists of 6 channel recordings from WSJ0 corpus sampled at 16
Hz spoken in the four varied environments. The simulated data was constructed by mixing clean utterances with the environment
oise. The training dataset consists of 1600 (real) noisy recordings and 7138 (simulated) noisy recordings from 83 speakers.

.3.1. Discussion
The WER results for experiments on CHiME-3 dataset are shown in Table 2. The FDLP baseline, denoted as BF-FDLP is better

han the FBANK baseline (BF-FBANK). We observe average relative improvements of 8% on the development set and about 12% on
he evaluation set when comparing BF-FDLP and BF-FBANK baseline systems. It can also be seen from Table 2 that the proposed
ereverberation method improves the FBANK-baseline system. The results based on the implementation of works done by Han et al.
2015) and Santos and Falk (2018) degrade the word error rates further compared to the BF-FBANK baseline.

In the CHiME-3 dataset, we observed that the significant cause of degradation in the signal quality came from the additive noise
ources. On further investigation, we found that the dereverberation model also resulted in smoothing of the spectral variations
n the FDLP spectrogram. In order to circumvent this issue, we regularized the MSE loss with a term that encouraged the spectral
hannels to be uncorrelated. The regularization parameter was kept at 0.05. Using this regularized MSE loss, we further improved
he BF-FDLP-Dereverberation system results over the dereverberation approach with MSE loss alone. These experiments suggest
hat even when the audio data does not have significant late reflection components (like CHiME-3 dataset), the proposed approach
mproves significantly over the baseline method (average relative improvements of 10.3% over the baseline BF-FBANK system in
he real dev condition and 23.5% on real eval condition).
8
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Table 4
Word Error Rate (%) in REVERB dataset using different model architectures for dereverberation(without joint training).
Architecture Dev Eval

Real Simu Avg Real Simu Avg

BF-FDLP (Purushothaman et al., 2020) 17.8 6.8 12.3 14.0 7.0 10.5

Neural Dereverberation

3 layer DNN 17.3 5.4 11.3 14.2 6.9 10.5
5 layer CNN 16 5.9 11 13.5 7.2 10.3
4 layer CNN + 3 layer DNN 17.9 5.6 11.7 14.4 6.7 10.5
7 layer LSTM (1024 units each) 17 5.3 11.1 14.2 7.4 10.8
7 layer Resnet 17.4 7.9 12.6 14.8 10.3 12.5
CNN + DNN + LSTM [2,2,3] 19.1 6.8 13.0 15.5 7.9 11.7
CLSTM (4-CNN + 3-LSTM) 16.3 5.6 10.9 13.4 7.1 10.2

Table 5
WER for various regularization to alleviate spectral smearing CHiME3 dataset. The regularization term is the cross correlation
of the spectral bands. In absence of reverberation, alleviating spectral smearing improves the WER.
Regularizer weight, 𝜆 Dev Eval

Real Simu Avg Real Simu Avg

𝜆 = 0.3 7 8.1 7.5 12.3 9.9 11.1
𝜆 = 0.1 7 8.2 7.6 12.5 10 11.2
𝜆 = 0.05 6.9 8 7.4 11.8 9.8 10.8
𝜆 = 0.02 7.2 8.4 7.8 12.5 10 11.2
𝜆 = 0 7.2 7.9 7.5 13 9.6 11.3

BF-FBANK 7.8 8.0 7.9 14.0 9.7 11.8

5.3.2. VOiCES corpus ASR
Since the REVERB challenge dataset and CHiME-3 dataset are relatively smaller datasets, we wanted to establish the efficacy

f the proposed dereverberation method in a larger dataset. Thus we experimented with VOiCES challenge dataset. VOiCES
orpus (Richey et al., 2018) is released as part of ‘‘The voices from a distance challenge 2019’’ (Nandwana et al., 2019) of Interspeech
019. For the ASR fixed conditions track, the training set consists of 80-hours subset of LibriSpeech corpus (Panayotov et al., 2015).
he training set has close talking microphone recordings from 427 different speakers from quiet environment. The development and
valuation sets consists of 19 h and 20 h of distant microphone recordings of varying room, environment and noise conditions. The
ignificant difference between the training set and development/evaluation set makes the challenge even more difficult. We have
sed the same acoustic model configurations and hence these results reflect the true acoustic mismatch condition in ASR.

.3.3. Discussion
The WER results for VOiCES corpus is given in Table 3. As seen, the baseline FDLP, denoted by BF-FDLP, provides at a better WER

ompared to the baseline FBANK. denoted as BF-FBANK. This is further improved with joint learning based dereverberation. The
inal WER shows improvement in both development set and evaluation set. A relative WER improvement of 10% in both development

set and evaluation set over the baseline FBANK system is observed in these experiments.

6. Analysis

In this section the effect of different neural network architectures and various parameters like regularization parameter, 𝜆, FDLP
model order, 𝑝 on WER are reported in Tables 4–6 and Fig. 4.

6.1. Architecture of dereverberation model

Table 4 shows the WER for different neural network architectures. We initially explore a DNN of three feed forward layers.
slight improvement in development set is seen over the FDLP baseline, BF-FDLP. The relative improvement in WER becomes

ppreciable as we move to 5 layer CNN. The architecture with LSTM alone is promising. We also explore a Resnet (He et al., 2016)
tyle architecture which was successful in image recognition. A combination of CNN, DNN and LSTM did not perform well compared
o baseline. Finally the CNN + LSTM combination provides the best WER.

.2. Spectral correlation loss

As reported in Table 2 on CHiME-3 dataset, an extra loss function which encourages the spectral bands to be uncorrelated
mproves the ASR performance on noisy data when the data is corrupted by additive noise with minimal reverberation artifacts.
9

ables 5 and 6 shows the effect of the regularization weight, 𝜆 on WER in CHiME-3 and REVERB datasets respectively for the
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Table 6
WER for various regularization to alleviate spectral smearing REVERB dataset. The regularization term is the cross correlation
of the spectral bands. In the presence of significant reverberation, the extra regularization did not improve the performance.
Regularizer weight, 𝜆 Dev Eval

Real Simu Avg Real Simu Avg

𝜆 = 0.0 16.3 5.6 10.9 13.4 7.1 10.2
𝜆 = 0.05 16.6 5.5 11.0 14 6.9 10.4
𝜆 = 0.1 16.9 5.6 11.2 13.7 6.9 10.3
𝜆 = 0.2 17.2 5.5 11.3 14.2 6.8 10.5

BF-FBANK 19.1 6.1 12.6 14.7 6.5 10.6

Fig. 4. WER (%) for various model-order, 𝑝 in FDLP model for REVERB dataset.

pectral correlation loss used in the model learning. The introduction of the spectral correlation loss improves the WER in CHiME-3
ataset. The best results are obtained for a choice of 𝜆 = 0.05.

The introduction of spectral correlation loss does not benefit the REVERB challenge dataset. We hypothesize that this may due to
he more dominant effect of temporal smearing seen in the REVERB challenge dataset. For the experiments on the VOiCES corpus,
he spectral correlation loss is not used.

.3. Choice of FDLP model order

Fig. 4 shows the effect of model order, 𝑝 used in the FDLP envelope estimation on the WER for the REVERB challenge dataset. The
odel order 𝑝 is the number of ‘‘past’’ samples used in the auto-regressive modeling of the sub-band DCT signal for a 2s window.
hile the WER results on the simulated conditions improve with higher model order of the FDLP, the performance on the real

onditions is observed to be the best for about 100 poles per 2s of audio in each sub-band. All the other experiments reported in the
aper use the 100 poles per 2s window of the audio signal.

.4. Discussion on performance gains

All the results reported in Tables 1–3 use a strong baseline system with GEV based beamforming and weighted prediction error
WPE) based enhancement. Hence, we note that all systems use the same pre-processing pipeline and the gains observed over the
aseline system are in addition to these enhancement steps. In addition, we also ensure that the baseline FBANK based system,
eural enhancement methods explored in the past and the proposed approach have the same sub-band decomposition, feature
ormalization, acoustic model and language model settings. In this way, the results reported highlight the effectiveness of the
roposed work in suppressing reverberation distortions.

The methods proposed previously based on neural enhancement and dereverberation improve the performance of the baseline
ystem on the REVERB challenge dataset. However, as seen in Table 2, in the presence of additive noise conditions on the CHiME-

dataset, most of these prior works degrade the performance compared to the BF-FBANK baseline system. In this regard, the
ethod proposed in this paper provides significant performance improvements on all three datasets. Further, the results consistently
ighlight the performance gains of using the joint neural learning framework.
10



Computer Speech & Language 72 (2022) 101277A. Purushothaman et al.

t
a
f
R
a
c
r

D

t

A

R

A

A
B

B
B
C

G
G
G
G
G

G

G

G

H

H

H

H

K
K

K

K

L

L
M

M

M
N

N

7. Summary

In this paper, we propose a new neural model for dereverberation of temporal envelopes and joint learning of the acoustic model
o improve the ASR cost. The joint learning framework combines the envelope dereverberation framework, feature pre-processing
nd acoustic modeling into a single neural pipeline. This framework is hence elegant and the model can be learned using a joint loss
unction. Using the proposed neural dereverberation approach and joint learning, we perform speech recognition experiments on the
EVERB challenge dataset as well as on the CHiME-3 dataset. These experiments indicate that the proposed neural dereverberation
pproach generalizes well on unseen conditions. The analysis of results also highlight the incremental benefits achieved for different
hoice of hyper-parameters and model architecture settings. The application of the proposed approach for large vocabulary speech
ecognition experiments on VOiCES dataset further emphasizes the performance benefits.
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