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Abstract

Substantial evidence supports a relationship between gait perception and gait synthesis.

Furthermore, passive mechanical systems demonstrate that the jointed leg systems of humans

have innate oscillations that form a gait. These observations suggest that systems may perceive

gaits by synchronizing an internal oscillating model to observed oscillations. We present such

a system in this paper that uses phase-locked loops to synchronize an internal oscillator with

oscillations from a video source. Arrays of phase-locked loops, called video phase-locked

loops, synchronize a system with the oscillations in pixel intensities. We then test the percep-

tion of the resulting synchronized-oscillator model in various gait recognition tasks. Tools

based on Procrustes analysis and directional statistics provide the computational mechanism

to compare patterns of oscillations. We discuss the possibility of an alternative model for

motion perception based on synchronization with the transient oscillations of temporal

band-pass filters that is consistent with other proposed models for human perception. Syn-

chronization of a kinematic model to oscillations also suggests a path to bridge the gap

between the model-free and model-based domains.
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1. Introduction

Perception of gaits is important for two reasons. First, people continually generate

gaits using an innate ability to produce the necessary coordination ofmotions. Second,

people continually view human gaits as part of their daily interactions. Perception of
gaits thus forms an important part of how people perceive the actions of others.

Evidence for a relationship between gait perception and gait synthesis exists. Ber-

tenthal and Pinto [8] present evidence gleaned from psychological experiments. Fazio

et al. [31] indicate, based on PET studies, that the same parts of the brain that are

used to perform an action are also used in the perception of similar actions. Cohen

et al. [20] observed that while humans can easily recognize human motion, they have

more difficulty recognizing animal motion. Cohen et al. explain this observation by

suggesting that humans rely on the same mechanisms that they use to generate their
own gait to perceive the gaits of others.

Passive mechanical systems that exhibit gaits suggest that walking is an innate

part of the kinetic structure of the human body. For example, McGeer [49,50] de-

scribes two-dimensional passive mechanical models that walk like humans. The

models are two-dimensional because they can move only in the sagittal plane. More

recently, Coleman and Ruina [22], Garcia et al. [34], and Collins et al. [24] describe

passive mechanical machines that walk in three dimensions. Collectively, these sys-

tems demonstrate that the jointed leg systems of humans have an innate ability to
walk with little or no external control. The role of control in a gait is to deal with

deviations from the innate gait made necessary by variations in terrain or the need

to change directions. Laszlo et al. [43] describe such a control system that synthesizes

gaits for computer graphics.

Based on this evidence we form the following two hypotheses related to the per-

ception of gaits.

1. People have an internal gait model that is used to synthesize their own gait. This
model is a combination of a person�s own kinematic structure that has an innate

ability to walk and a control system that produces variations of the gait as needed.

2. Humans use this internal gait model to perceive the gaits of others.

Although the evidence cited above supports these hypotheses, we cannot know if

they are true. However, if they are true, then the hypotheses suggest a way to build

machine systems that perceive gaits by synchronizing an external stimulus with an

internal gait model. We present such a system in this paper. Phase-locked loops
(PLLs) are control systems that synchronize the oscillations of an internal oscillator

with oscillations from an external source. We use arrays of phase-locked loops,

called video phase-locked loops (vPLLs), introduced by Boyd [13], to synchronize

a system with the oscillations in pixel intensities that occur when viewing a gait or

other oscillating stimulus.

We then use the information extracted from the synchronized internal oscillators

to recognize gaits as well as perform other tasks related to gait perception, including

identifying viewpoint, variations in gaits, and individual gaits (Section 4). While ma-
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chine gait recognition is a useful task, it is not sufficient to completely justify the use

of synchronized oscillations. In Section 5 we discuss potential connections between

synchronizing oscillations using vPLLs, and the perception of motion in general,

and the possibility of connecting model-based and model-free representations of hu-

man motion.

1.1. Oscillations and gait perception

A sensitivity to oscillations is a fundamental part of human vision. Watson [69]

documents the temporal band-pass filter properties of the human eye with the center

of the pass band at approximately 10Hz. Geisler and Albrecht [35] also measured

this band-pass effect at the neurological level in monkeys and cats. The band-pass

filter not only attenuates steady-state oscillations outside of its passband, but also
produces a damped oscillation in response to transient inputs. Watson and Ahu-

mada [70], and Adelson and Bergen [1] incorporate this transient response in their

models of motion perception. Recent work by Lee and Blake [45], Usher and Don-

nelly [65], Sekuler and Bennett [58], Farid and Adelson [30], Farid [29], and Shadlen

and Movshon [59] addresses the role of oscillations and synchronization in percep-

tual grouping, referred to as temporal synchrony. Ng and Gong [53] have applied

concepts of temporal synchrony to visual surveillance.

Not only are oscillations an important part of human motion perception in gen-
eral, but they play a critical role in the perception of gaits. Bertenthal and Pinto [8]

identify frequency entrainment (component motions of the gait sharing a common

frequency), and phase locking (constant phase/timing relationships among the com-

ponent motions) as oscillation-related properties of a gait that are essential for hu-

man perception.

The importance of phase in gaits appears in medical literature. Murray et al. [52]

show a detailed analysis of the gaits for several normal humans. The analysis focuses

on the timing of joint and limb movements throughout the cycle of the gait. In sub-
sequent work, Murray [51] shows that the these sinusoidal variations change in phase

for subjects that have abnormal gaits due to some physical affliction. The changes in

the gaits are manifest in the timing patterns.

Systems that synthesize gaits also show the importance of phase. For example,

Laszlo et al. [43] describe a limit-cycle control system for animation of walking fig-

ures. Varying phases in the limit cycles alters the type of synthesized gait. Unuma

et al. [64] describe a Fourier-based system for gait synthesis. Their system derives

Fourier coefficients for periodic joint angles. The phase component of the Fourier
series plays a significant role in the synthesis of the varying gaits.

1.2. Evaluation of recognition

We make the distinction between gait recognition and people recognition (biomet-

rics) using gaits. In this paper we cite people recognition rates in the results. We do

this partly to conform to common practice, but also because we lack a better way of

evaluating machine perception. Just as psychologists measure recognition rates when
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they study human motion perception from moving light displays, we too look at rec-

ognition rates to verify that a system or model exhibits desired properties. Conse-

quently, we suggest that errors in people recognition be treated carefully. For

example, if I wish to analyze a gait to evaluate the effectiveness of an orthotic insole,

then an excellent biometric measure that is invariant to footwear is unlikely to be
useful.

Recognition rates are extremely sensitive to context, including sampling method

and sample size. For example, it is possible to inflate a recognition rate by using a

small sample. Cumulative match characteristics (CMC) also depend on sample size.

Recognition rates may also vary with the classifier used.

In this paper we use the F statistic that is the basis of analysis of variance (ANO-

VA) to address the issue of sample size. Appendix B describes an extrapolation of

ANOVA to get FWW, a descriptive statistic useful for periodic signals like those often
found in gait analysis. Bobick and Johnson [12] characterize gait recognition systems

in a similar manner by computing the expected confusion, E½A� ¼ ri
rp
, (related to con-

fusion matrices) using: where ri is the standard deviation for a group of individuals,

and rp is the standard deviation for the population. From E[A] they predict recog-

nition rates. E[A] captures the same properties of the data as the F statistic. In fact,

F = MSB/MSW, whereMSB andMSW are the between and within group mean square

errors. In the context of gait recognition, MSB and MSW are unbiased estimates of

r2
p and r2

i . Therefore, E½A� ¼ 1=
ffiffiffiffi
F

p
when the sample size is infinite. Alternatively, if

one viewsMSB as the energy in the signal of interest, thenMSW is noise energy and F

is the signal-to-noise ratio.

ANOVA evaluates the significance of a particular F with respect to the null

hypothesis that all groups are identical, for a given sample size. However, we have

observed that features measured by a system that can recognize tend to have a large

F, and the probability of the null hypothesis, P(H0), is infinitesimal. Thus, while we

report P(H0), we use F as a descriptive statistic. The value of this statistic can be

gleaned from recognition rate versus sample size plots in Bhanu and Han [10].
Although it is not reported in these terms, individual curves in the plots characterize

recognition rates over a broad range of sample sizes for a constant F.
2. Gait analysis systems

Machine vision systems for human motion analysis fall into two broad categories,

model-free and model-based, depending on whether or not the system uses a kine-
matic model. This section reviews existing techniques in both categories.

2.1. Model-free

A variety of shape descriptions have seen use in gait analysis. Little and Boyd [46]

use optical flow to identify the moving regions in a gait image sequence. They then

describe the shape of the moving region with a set of scalar features that oscillate

with the gait. The system extracts the relative phases of the scalar oscillations and
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forms a phase feature vector that they use to identify individual gaits. Shutler and

Nixon [61] extended this concept using Zernike velocity moments to compute shape

descriptions over an entire sequence, rather than on a frame by frame basis. Lee and

Grimson [44] partition the moving figure into seven regions, then analyze shape vari-

ations in each region. They apply the resulting feature vector to person and gender
recognition. From a sequence of images, Davis and Bobick [28] compute motion en-

ergy images (MEI) and motion-history images (MHI) that indicate where motion is

occurring and how recently the motion occurred. They describe the shape of the

moving regions with a set of Hu moments, which they in turn use to recognize pat-

terns of motion, such as various aerobic exercises. Cutler and Davis [26] identify

periodicities in a vector of image intensities for a tracked object. As a periodic mo-

tion goes through its cycles, various frames are similar to others. The periodic behav-

ior due to the various self-similarities allows the system to distinguish between
human, animal, and mechanical motion. More recently Ben-Abdelkader et al. [4,7]

extended this method to people recognition. Vega and Sarkar [56] measure spatial

relationships among moving edge pixels, which they encode into histograms. They

then compare the histograms to recognize individuals.

Several existing methods focus on the use of a silhouette of a moving figure.

Baumberg and Hogg [2] describe a method that extracts the silhouette of a moving

figure. They extend the concept by treating changes in shape with a vibration model

[3]. More recently, Kale et al. [41], Tassone et al. [63], Wang et al. [67,68], and Hay-
fron-Acquah et al. [38] use a variety of metrics derived from points on the outline of

a person to recognize individual people, and various walking and running gaits. Col-

lins et al. [23] recognize individuals by comparing the shapes of silhouettes at the

both the double-support (two feet on the ground) and mid-stride phase of a gait

using a spatial cross-correlation.

Observations of a tracked gait produce oscillations in pixels. For example Polana

and Nelson [55] examine oscillations in the magnitude of the optical flow in a se-

quence containing periodic motion. They compute a coarse resolution (four by four)
flow magnitude image at six points in the period of the motion. From this they form

a 96-element vector that is used to recognize a broad range of periodic motions.

Also, Liu and Picard [47] examine oscillations in pixel intensity for a gait sequence

using fast Fourier transforms (FFT). Their analysis identifies the amplitude of the

fundamental frequency of the gait.

2.2. Model-based

Oscillations in a kinematic model occur in the joint angles and also in the posi-

tions of the limbs. Fujiyoshi and Lipton [33] use a very simplified kinematic model

they call a star skeleton. While they estimate the skeleton on a frame-by-frame basis,

the skeleton reveals period limb motion. Bissacco et al. [11] use Bregler�s method [17]

to extract joint angle information from a motion sequence. They then compute an

auto-regressive moving-average (ARMA) model of the joint movement which they

in turn use as a feature vector. Their method recognizes different types of gaits such

as running, walking, or walking a stair case. Tanawongsuwan and Bobick [62] use
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joint angle trajectories derived from a motion capture system. They synchronize tra-

jectories to a common reference point in the gait and then re-sample so that all sub-

jects have the same sample size. Trajectories for the various joints combine to form a

feature vector used to recognize individual gaits. Cunado et al. [25] measure the angle

motion of a subject�s thigh. Fourier coefficients extracted from the temporal se-
quence of angles recognizes act as features for recognition of individuals.

Bobick and Johnson [12,40] describe a system that uses static parameters derived

from a gait such as stride and torso length for biometric recognition. Similarly, Ben-

Abdelkader et al. [5,6] measure height and stride characteristics, also with applica-

tion to biometrics. Davis [27] uses stride length and frequency to distinguish between

gaits of adults and children. Although these methods make minimal use of the dy-

namic characteristics of the gait, they can recognize individuals.

Several methods do not exploit the periodic nature of gaits, but take the more gen-
eral approach of estimating a series of poses that may or may not be periodic. These

methods include work by Hunter et al. [39], Rowley and Rehg [57], Wachter and Na-

gel [66], Wren et al. [71], and Bregler and Malik [18].
3. Synchronization with image oscillations using vPLLs

Video phase-locked loops are a mechanism that synchronizes an array of oscilla-
tors to intensity oscillations in an image. This section describes their operation and

design.

3.1. Phase-locked loops

Fig. 1A shows a block diagram for a basic PLL. PLLs are found primarily in com-

munications systems where they are used to lock on carrier signals. Its basic compo-

nents are a phase detector (PD), a low-pass (LP) loop filter, and a voltage-controlled
oscillator (VCO). The literature on PLLs is extensive. Best [9] provides an excellent

introduction to PLLs.

To understand a PLL, suppose we initially know nothing about the frequency of

the VCO output. The phase detector produces a phase difference signal, ud(t), that is

proportional to the difference between the phases of u1(t) and u2(t). If u1 and u2
oscillate at different frequencies, ud will increase or decrease at a constant rate.

The loop filter removes high-frequency components of ud to obtain the filtered

phase difference signal, uf(t). uf feeds back to the VCO, changing the frequency
of VCO oscillations until the frequencies of u1 and u2 are equal. At this point

the phase difference will remain constant, and the loop reaches a steady state

and is said to be locked. One can think of a PLL as a control system in which

the phase of u1 controls the phase of u2. The PLL has two outputs: the VCO out-

put, u2, and the LP loop filter output, uf. Fig. 1B shows the linear relationship be-

tween the VCO control signal, uf, and the frequency it oscillates at. K0 is the slope

of the line, while the intercept, x0 = 2pf0, is the center frequency of the oscillator.

Fig. 1C shows the linear relationship between the phase-detector output, ud, and



Fig. 1. The basic phase-locked loop: (A) a block diagram of the loop, (B) the transfer function of the

voltage-controlled oscillator, and (C) the transfer function of the phase detector. The loop filter is usually a

low-pass filter.
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the phase difference between u1 and u2, he. The slope is Kd and the intercept is zero.

Best gives a set of PLL design equations summarized in Table 1.

There are many ways to implement PLLs. For the video PLLs described here we

have opted for a software implementation using quantized signals sampled at dis-

crete, uniform time intervals, referred to as an all-software PLL. This allows us to

use a digital-averaging PD, Fig. 2. The oscillator produces both an in-phase and a
quadrature signal (labeled I and Q, respectively), each of which is multiplied with

the input signal. The loop filter is brought inside the phase detector and averages

or smooths the in-phase and quadrature products. A division and inverse tangent

operation give the phase angle between u1 and u2 as required. The digital-averaging

PD is not sensitive to the magnitude of u1 (as is the case with other PDs) giving

Kd = 1 always. The in-phase and quadrature products can also be used to derive

the magnitude of u1 by computing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
.

Table 1

Design equations for PLLs [9], based on linear PLLs with passive lag loop filters

Parameter Description Equation

x0 Oscillator center frequency

s1,s2 Loop filter time constants

xn Natural frequency of PLL xn ¼
ffiffiffiffiffiffiffiffiffi
K0Kd

s1þs2

q

f Damping factor f ¼ xn
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

K0Kd

q

DxH Hold range DxH = K0Kd

DxL Lock range DxL � 2fxn

TL Lock-in time T L � 2p
xn



Fig. 2. Phase-locked loop using a digital-averaging phase detector.
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3.2. Video phase-locked loops

A video PLL consists of a set of independent PLLs, each operating at a single pix-
el site. The intensity value of a pixel taken over time gives a temporal sequence. Pixel

intensities are non-negative so that when observing an oscillating motion the tempo-

ral sequence consists of a constant background value with a sinusoid (or perhaps sev-

eral sinusoids) superimposed on top. Since the PLL locks on sinusoids only, the

video PLL uses a temporal band-pass filter to preprocess the signal to remove the

background and pass only the sinusoid. This temporal band-pass filter is consistent

with the temporal band-pass properties of human vision [70].

At first it might appear the independent operation of the PLLs would be trouble-
some. It turns out that this is not the case, at least for gait analysis, for several rea-

sons. The band-pass filter allows sinusoids only in a given frequency band to pass

through to the PLL. Also, the PLL can lock only within a given frequency band

(the PLL and band-pass filter must have matching frequency bands for this reason).

This combination restricts the range of frequencies that the PLL can lock. Given that

a gait has only a fundamental frequency and harmonics [15] the individual PLLs are

likely to all lock to the same frequency, since the band-pass filter and PLL locking

range can only lock on a single frequency component of the gait. Still it may be pos-
sible that other frequency components show up in the background of a gait. The Pro-

crustes shape analysis (see Appendix A) sees these stray frequencies as noise that

obscures a signal, then recovers the signal by averaging over time. Thus, there is little

need to couple the individual PLLs.

This small innovation has a significant impact on machine perception of gaits and

other oscillatory motion. Video PLLs can perform frequency entrainment and phase

locking quickly. Furthermore, they extract sufficient information to enable recogni-

tion of gaits and other oscillatory motions.

3.3. Signals in the phase-locked loop

Within a video PLL there is an abundance of signals useful in the perception of

oscillating motion. The output of the loop, uf, is a phase error, but also gives an

instantaneous estimate of the frequency of oscillation in a pixel. The relationship be-
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tween uf and the frequency is given by the VCO transfer function, Fig. 1B. As stated

previously, for a gait, all pixels for the walker will lock to the same frequency.

With all oscillators locked on the same frequency, the only difference between

oscillators is phase. The oscillator produces its output by computing the phase of

the oscillation at each time interval, and from there, computing the in-phase and
quadrature components of u2. The relative phases of the oscillators throughout

the image give the relative phases of the intensity oscillations.

The use of a digital-averaging PD has the added benefit of computing both the

phase difference between u1 and u2, and the magnitude of u1. The magnitude indi-

cates the amplitude, or strength, of the locked signal. By combining the magnitude

with the phase, we get a phasor (phase vector, see Appendix A) at each pixel site. The

combination of phasors over several pixels forms a phasor configuration that rotates

at the entrained frequency. We can use the configuration to classify and recognize
oscillatory motion.

Fig. 3 shows phasor configurations for a sample gait sequence. While a temporal

gait sequence results in a single phasor configuration, the figure shows the config-

urations expanded in time to highlight the temporal relationships in pixel intensi-

ties. Each configuration is first computed from an input image sequence at full

resolution, then down sampled and centered in a 21-by-21 pixel square. Most of

the configuration is background with approximately 150 pixels covering the mov-

ing figure.
Fig. 3. Example phase configurations for a gait sequence. Each configuration is a 21-by-21 pixel array of

complex phasors, each phasor representing the magnitude and relative phase of a sinusoid. The top row

shows the phase configuration as images expanded in time through one complete cycle. The middle row

shows the phase configuration as images, with the relative phases forced to zero, also expanded in time. In

the configurations, gray is zero, dark is negative, and bright is positive. The bottom row shows the

silhouette frames for the gait sequence corresponding to the above configurations.
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3.4. Alternatives to phase-locked loops

We use PLLs to synchronize internal oscillators with the oscillations of an external

source. However, we could do that with any system that can measure the frequency

and phase of a sinusoidal signal. The most obvious alternative is the discrete Fourier
transform (DFT). In the manner described by Liu and Picard [47], one can capture

and store n frames, do an n-element DFT for each pixel, identify the fundamental fre-

quency, and record the amplitude and phase at that frequency. If n = 2r, where r 2 I+,

then using the fast Fourier transform algorithm we can compute the DFTs in O(n lgn)

time, using O(n) storage. We reject this for three reasons.

First, the DFT is fundamentally more complex. It uses n quadrature oscillators to

estimate a single sinusoid, with a frequency resolution of 1/n (normalized to the sam-

ple rate). A PLL uses a single oscillator and feedback in a closed-loop control system
to accurately lock to the correct frequency.

Second, the PLL operates as a causal system. We can turn a non-causal DFT sys-

tem into a real, causal system by incorporating an n-frame delay, then scanning back

in time. In contrast, a PLL can track phase continuously throughout a gait cycle. For

a subject with an asymmetric gait, the vPLL phase configuration will track the

changes in alternate left and right strides. A DFT can only look at steady-state prop-

erties of a signal.

Last, causality and continuous operation mean that a PLL can respond to tran-
sient events. While this may not be essential for biometric gait analysis, it appears to

be an important part of human motion perception, as shown by Watson and Ahu-

mada [70] and Adelson and Bergen [1].
4. Application to gait recognition

To evaluate the gait recognition capabilities of vPLLs we employ the system
shown in Fig. 4. The system applies a vPLL to a gait image sequence, producing a

sequence of phase configurations. The Procrustes mean (Appendix A) of a subset

of the frames gives a more stable phase configuration that represents the sequence

(where sufficient frames are available). A database of exemplars is processed the

same way. The Procrustes distance (Appendix A) is used to compare the test se-

quence phase configuration to the exemplars. We use a nearest-neighbor (NN) rec-

ognition system that selects the exemplar with the shortest Procrustes distance to the

test configuration. Although it is possible to employ methods other than NN, we re-
strict ourselves to NN for simplicity and uniformity in the evaluation.

We test the vPLLs using two databases: the Carnegie Mellon University (CMU)

Motion of Body (Mobo) [37], and the University of Southampton [60] gait databases.

4.1. CMU Mobo database

The CMU Mobo database [37] contains gait sequences for 25 subjects. Six cam-

eras record each subject performing four different activities while walking on a tread-



Fig. 4. Nearest-neighbor exemplar recognition system for gait phasor configurations.

Fig. 5. Camera placement for CMU Mobo database.
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mill. Fig. 5 shows the camera viewing angles, labeled vr03, vr05, vr07, vr13, vr16, and

vr17. The four activities are a slow walk, a fast walk, walking up an incline, and
walking while carrying a ball. Each sequence is about 11s long sampled at 30 frames
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per second. Thus the database contains variations in subject, viewing angle, and

activity. The database provides full color images of the sequences for each sub-

ject–view–activity combination, as well as a binary foreground–background image

that separates the subject from the background.

Clothing and background affects a vPLL in two ways. First, the contrast between
the clothing and the background determines the magnitude of the observed oscilla-

tions. Second, a change in polarity of the contrast, i.e., switching from white-

on-black to black-on-white, results in a 180� phase shift. We take advantage of

the segmented binary images in the Mobo database to eliminate these effects. Ignor-

ing segmentation errors, each subject appears as a white silhouette on a black back-

ground. The multiple factors in the database allow one to test recognition of viewing

angles and activity in addition to recognizing individuals.

Since each sequence is approximately 11s long, we compute two or three phase
configurations from each sequence by finding the Procrustes mean for frames 101

through 140, 201 through 240, and, where the sequence is long enough, 301 through

340. Table 2 gives the design parameters for the vPLL used to process the sequences.

We subsample the region of the walking figure in the vPLL output to get phasor con-

figurations that are 21-by-21 pixels, as shown in Fig. 3. Thus, the database contains

multiple exemplars for each person–view–activity combination, although these

exemplars are taken only a few seconds apart and do not necessarily represent the

true variation possible for a particular individual.
To see what is gained by using phase information, we also test the recognition sys-

tem using phase configurations in which the phase is forced to zero. The result is a

configuration that indicates where there are oscillations, but without timing informa-

tion. These zero-phase images (examples in middle row of Fig. 3) are analogous to

the motion energy images described by Davis and Bobick [28] and could be called

oscillation energy images.

In our evaluation, we look at two figures of merit. The first is FWW = MSB/MSW,

the ratio of the mean square error between and within groups, given in second Table
of Appendix B, and its associated probability. The second is the recognition rate

based on the confusion matrix produced using a k-fold cross-validation [21].

Viewing angle. The ANOVA for viewing angle yields MSB = 90.7, MSW = 0.6,

and FWW = 159. Such a high value for FWW corresponds to P(H0) < 0.001 within

the precision of our computations. It is reasonable to conclude that the configura-

tions for at least one viewing angle are different than the others. This observation
Table 2

vPLL design parameters

Symbol Definition Value

X1 Lower cut-off for band pass 0.0375

X2 Upper cut-off for band pass 0.075

f Damping factor 0.7

TL Locking time 40 frames

f0 VCO center frequency 0.05625

Frequencies are normalized to sample rate.
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is borne out by the recognition rates. Table 3 shows the confusion matrix resulting

from a k-fold cross-validation test of viewing angle recognition. Sequences for the

same person in the test image are dropped from the training set, requiring that cor-

rect matches be due to different people viewed from the same angle. The table indi-

cates a recognition rate of 98.7%. We can make things even harder for the
recognition system by biasing the test and dropping sequences from the training

set that match the test sequence activity. This means that correct matches can only

occur between different people doing different things, but viewed by the same cam-

era. Table 4 shows the confusion matrix for this test. The recognition rate is 94.2%.

The zero-phase configurations ANOVA yields MSB = 40.0, MSW = 0.3, and

FWW = 139, which also gives P(H0) < 0.001. Recognition rates for the k-fold cross-

validation test were 96.3 and 92.9% corresponding to the two cases above.

We can conclude that vPLLs can recognize the viewing angle extremely well. Use
of the phase information corresponds to a modest improvement in recognition rate.

Activity. When computing FWW for activity recognition with the Mobo database,

it is essential to account for variations in viewing angle. There are two approaches

one can take: compute a separate FWW for each of the six viewing angles, or compute

FWW where there are 24 categories corresponding to all the combinations of viewing

angles and activities. Table 5 shows the results for both approaches.

The result in the last column of Table 5 represents a combination of the sensitivity

to viewing angle combined with any additional sensitivity to activity. Therefore, it is
not surprising that FWW is so large. The tests for the individual viewing angles isolate
Table 3

The confusion matrix showing results of cross-validation test of viewpoint recognition in Mobo database

vr07 vr13 vr17 vr03 vr16 vr05

vr07 286 0 3 0 0 0

vr13 0 274 0 0 6 0

vr17 4 0 282 1 0 2

vr03 0 1 0 287 0 0

vr16 0 5 0 0 284 0

vr05 0 0 0 0 0 289

The test excludes matches of sequences for the same subject.

Table 4

The confusion matrix showing results of cross-validation test of viewpoint recognition in Mobo database

vr07 vr13 vr17 vr03 vr16 vr05

vr07 284 0 5 0 0 0

vr13 0 247 0 0 33 0

vr17 7 0 278 1 1 2

vr03 0 1 0 287 0 0

vr16 0 46 0 0 243 0

vr05 0 0 0 4 0 285

The test excludes matches of sequences for the same subject or same activity.



Table 5

ANOVA results for activity recognition

vr03 vr05 vr07 vr13 vr16 vr17 All

MSB 5.22 9.94 3.81 8.06 10.0 3.16 25.0

MSW 0.39 0.49 0.56 0.46 0.47 0.67 0.51

FWW 13.3 20.4 6.8 17.7 17.1 4.68 49.3

P(H0) <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001
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dependence on activity and although the values of FWW are lower, they are high en-

ough to indicate a strong dependence. We note that vr07 and vr17 show the weakest
dependence, indicating that it is most difficult to recognize the activity when viewing

directly from the front or rear.

Table 6 shows the confusion matrix for the k-fold cross-validation test of activity

recognition. Again, we drop sequences for the same person from the training set so

that matches are only possible with other subjects performing the same activity. The

data indicate a recognition rate of 70.7% (random guessing is 25%). Note that over

one third of the errors occur due to confusion between slow and fast walk (phase

configurations are frequency invariant), and approximately one fifth are due to con-
fusion between fast walk and carrying a ball.

Table 7 shows FWW computed for activity recognition with zero-phase data. A k-

fold cross-validation test gave a recognition rate of 65.3% (random guessing is 25%).

While FWW indicates a small advantage to dropping the phase information, the rec-

ognition rate improves by including it.

People. As is the case for activity recognition, we must account for the variations

in the data due to viewing angle. Thus we compute FWW for each of six viewing an-
Table 6

The confusion matrix showing results of cross-validation test of activity recognition in Mobo database

Incline Fast walk Carrying ball Slow walk

Incline 378 22 12 25

Fast walk 19 293 44 79

Carrying ball 12 47 313 46

Slow walk 25 103 71 235

Exemplars from the same person are dropped from the training set.

Table 7

ANOVA results for activity recognition with zero-phase data

vr03 vr05 vr07 vr13 vr16 vr17 All

MSB 3.59 8.04 1.92 6.52 7.69 1.93 12.6

MSW 0.22 0.23 0.23 0.25 0.23 0.27 0.24

FWW 16.0 35.4 8.4 26.6 33.0 7.08 52.6

P(H0) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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gles, and one for all the data combined. Summaries of FWW for both with-phase and

zero-phase configurations are tabulated in Tables 8 and 9.

We test the recognition rate of individual people from the Mobo database under

three conditions:

1. using the full training set,

2. dropping sequences with the same activity as the test sequence, and

3. dropping sequences with the same activity and same person as the test sequence.

Table 10 summarizes the k-fold cross-validation recognition rates for both with-

phase and zero-phase configurations. Condition one allows matches with exemplars

taken from the same sequence but at different points in time. We would expect this to

be fairly easy, and it is, with a recognition rate of 90.5%. Condition two excludes
matches to the same activity and thus prevents matching to the same sequence. At

the same time, condition two also prevents matching to another person doing the

same activity, which makes it easier than condition three where it is possible to

match a different person doing the same activity. Condition two yields a recognition

rate of 59.7% and condition three yields 47.3%. Recognition rates for the zero-phase

configurations are lower under all conditions. Thus both FWW and cross-validation

tests indicate an advantage in using the phase information.

Note that case three is particularly difficult. Consider a test sequence where the
subject is walking on an incline. To register a correct match, the system must find
Table 8

ANOVA results for people recognition

vr03 vr05 vr07 vr13 vr16 vr17 All

MSB 1.77 1.66 3.16 1.86 1.68 3.68 3.41

MSW 0.32 0.49 0.36 0.41 0.41 0.43 0.80

FWW 5.5 3.4 8.7 4.5 4.5 8.6 4.28

P(H0) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 9

ANOVA results for people recognition with zero-phase data

vr03 vr05 vr07 vr13 vr16 vr17 All

MSB 0.99 0.82 1.22 1.02 0.94 1.41 1.57

MSW 0.19 0.26 0.16 0.25 0.25 0.19 0.39

FWW 5.1 3.1 7.7 4.2 3.7 7.5 4.05

P(H0) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 10

Summary of people-recognition results

Test condition With phase (%) Zero phase (%)

All 90.5 88.8

Drop same activity 59.7 55.4

Drop same person–activity 47.3 43.0
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a good match to a sequence for the same person, but not on an incline, while

avoiding potential matches to similar subjects that are on an incline. The ANO-

VA clearly indicates that the configurations have a strong dependence on individ-

ual gaits.

Biometric benchmarks. Creators of the Mobo database recommend a set of bench-
marks for evaluation of biometric algorithms with their data. We report a subset of

these benchmarks here. The benchmarks partition the data into probe and gallery

sets, and report recognition results in the form of CMC plots [54] to investigate vari-

ates of interest for biometrics. We deviate from the Mobo recommendations only in

specific selection of images within a sequence to accommodate the continuous oper-

ation of the vPLL.

Fig. 6A shows the results when recognizing a person from data within the same

sequence from camera vr03. Fig. 6B shows results for recognizing a person from data
within the same sequence, always for a slow walk, but from camera angles vr03, vr05

or vr07. Fig. 6C shows the results for recognizing an individual doing a fast walk or

walking with a ball from a gallery of slow walks, from camera vr07.
Fig. 6. CMC curves for a subset of recommend biometric benchmarks on the Mobo and Southampton

databases: (A) Mobo within sequence, varying activity, vr03, (B) Mobo within sequence, varying camera,

slow walk, (C) Mobo match from different sequence, vr07, and (D) k-fold cross-validation on the

Southampton database. Mobo results are for with-phase only.
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4.2. University of Southampton database

Shutler et al. [60] provide a gait database with 115 subjects acquired at the Uni-

versity of Southampton. There are several sequences acquired for each subject from

multiple camera views. We restricted our tests to the subset of the database using a
single camera aimed perpendicular to the subject�s motion. All subjects walked in

front of a green backdrop to facilitate chroma-key segmentation. The sequences

are approximately evenly split between toward-the-left (L) and toward-the-right

(R) motion. We reverse the horizontal axis for the R sequences so that the orienta-

tion of the subject matches for all sequences. The Southampton database does not

contain forced variations in a subject�s gait such (like the activities in Mobo), so

we can only test people recognition.

As with the Mobo database, we register the silhouettes of the sequence, compute
phase configurations, then subsample and center the date to a common size of 21-by-

21 pixels. The Southampton database sequences are significantly shorter than those

in the Mobo database, typically 31 frames or fewer. For this reason, we omit the Pro-

crustes averaging step, reduce TL for the PLLs (shorter lock time), and use only the

last frame of vPLL output for the phase configuration.

The omission of the Procrustes averaging and shorter lock time increases mea-

surement errors, MSW, thereby reducing FWW and recognition rates. Whereas in

the Mobo trials, Procrustes averaging blurs asymmetries in a gait, in our Southamp-
ton trials an asymmetric gait can appear to be different depending on whether the

sequence ends with a left- or right-foot swing. This happens because the vPLL tracks

phase continuously.

For with-phase configurations, we measure MSB = 2.09, MSW = 0.197, and

FWW = 10.6, and for zero-phase configurations we get MSB = 1.21, MSW = 0.104,

and FWW = 10.4. The corresponding recognition rates based on k-fold cross-valida-

tion are 85.8% with phase, and 80.6% for zero-phase. Fig. 6D shows the correspond-

ing CMC plots.
There is a strong preference to match L sequences to L and R sequences to R. If

we bias the test to force recognition to match only sequences of opposite orientation,

the recognition rate drops to 39%. This suggests either a strong sensitivity to asym-

metries in the gaits, or that the camera was not aimed precisely perpendicular to the

motion.
5. Discussion

5.1. Recognition rates and FWW

The results in Section 4 present a mixed view of recognition capabilities of the

vPLL-based system with numbers ranging from 47 to 86% for recognition of individ-

ual gaits. To shed light on the issue we offer the following observations.

We used a nearest-neighbor classifier for all tests. Other classifiers may give differ-

ent rates.
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Randomization of a sample is essential to external validity of an experiment [19].

George Gallup based his polling success on the realization that sample bias is far

more critical than sample size. Unfortunately, we do not know of any databases con-

taining a randomized sample of human gaits, and it would not be trivial to assemble

one. The ratio of male to female subjects in both the Mobo (23/2) and Southampton
(91/24) databases suggests that neither is a random sample of the general population.

FWW provides a useful descriptive statistic for recognition. The values of MSB

indicate that the inclusion of phase information leads to larger variation between

views, activities, and individuals. However, MSW indicates that the inclusion of

phase increases variability in measurements, i.e., noise. In all but one trial, the net

effect of including phase was to reduce FWW and improve recognition.

In one anomalous case, activity recognition in Mobo, inclusion of phase reduces

FWW, but recognition still improves. There are only four activities present in the
Mobo database, so the number of degrees of freedom in this test is small. Given that

FWW and recognition rates are statistics, and that we have only three degrees of free-

dom in our estimate of MSB, neither FWW nor the recognition rate is very accurate.

However, the values of FWW appear consistent across all camera views, so we con-

clude that for activity recognition, the signal gained by including phase was negated

by increased measurement error, and that the improved recognition rate is a statis-

tical anomaly.

5.2. An alternative model for motion perception

In gait analysis a vPLL synchronizes to a steady-state oscillation. However, when

presented with a transient change in pixel intensity, a vPLL will lock to the transient

oscillations of the band-pass filter. Boyd and Little [16] showed that it is possible to

estimate translational motion by comparing the detected phases of the transient

oscillations in adjacent pixels. This can be understood by comparing the operation

of a PLL temporal filters used by Fleet and Jepson [32] to compute phase-based opti-
cal flow. However, Fleet and Jepson require a bank of filters tuned to separate veloc-

ities to cover a range of possible inputs. A PLL uses feedback to track phase and

frequency, and thus requires only one filter.

Watson and Ahumada [70], and Adelson and Bergen [1] describe models for hu-

man motion perception that, among other things, depend on the transient response

of temporal band-pass filters in the human vision system. It is interesting to note that

both the vPLL system and the human models can detect motion from band-pass

transients. Although we have not investigated the possibility of a vPLL-like model
for human vision, the idea bears consideration.

5.3. Synchronization with kinematic models

While it is possible to divide human motion analysis methods into model-free and

model-based categories, it is clear that neither approach can be considered complete

in the sense that it can solve all vision problems related to human motion. It is evi-

dent that both approaches are necessary at least some of the time. The concept of



J.E. Boyd / Computer Vision and Image Understanding 96 (2004) 35–59 53
synchronization suggests a path to connect the model-free and model-based do-

mains. If we assume that a kinematic model has an innate gait, as demonstrated

by passive mechanical walkers [22,24,34,49,50], and that the model�s gait can be al-

tered by an external control system, as demonstrated by Laszlo et al. [43], then syn-

chronization of the model gait to oscillations in a model-free representation of the
gait is possible. Boyd [14] describes a system that synchronizes a simple, two-dimen-

sional kinematic model to gait sequences. Yam et al. [72] describe a system that syn-

chronizes a parametric oscillating gait model with an image sequence, then uses the

parameters to recognize gaits. Much of the synchronization process could be done

directly from vPLL-based phase configurations.
6. Conclusions

In Section 1 we pose the hypotheses that humans have a built-in gait model and

that humans perceive motion by using that model. Inspired by these hypotheses, we

created a system that synchronizes an array of vPLL oscillators to oscillations in an

image sequence. The magnitude and phase of the synchronized oscillations gives fea-

ture vectors that can distinguish various properties of a gait such as viewing angle

and activity, and also recognize individual gaits.

The ability to synchronize oscillations suggests an alternative model for motion
perception based on measuring the phases of the transient oscillations of temporal

band-pass filters. Synchronization of a kinematic model to oscillations in model-free

representations suggests a path to bridge the gap between the model-free and model-

based domains.
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Appendix A. Directional statistics

A phasor allows us to represent a sinusoid as a complex number of the form

V = Aei/, where A is the amplitude and / is the phase of the sinusoid. The implica-

tion is that we can treat sinusoids as vectors in the complex number plane, with a

magnitude and direction. Consequently, we can analyze sinusoids derived from a

gait by treating them as directional data. Procrustes shape analysis [42] is a method

in directional statistics [48] that can summarize (by finding means) and compare
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(using distance measures) shapes. By virtue of using phasors, we can represent a

phase or timing pattern in a gait as a set of directions, which is mathematically equiv-

alent to a shape, making Procrustes analysis a useful tool for analyzing the phasor

patterns that emerge from gaits.

The following is a summary based on Mardia and Jupp [48]. Describe a shape in
two dimensions using a vector of k complex numbers, z = [z1,z2, . . . ,zk]

T, called a

configuration. Two configurations, z1 and z2, represent the same shape if by a com-

bination of translation, scaling, and rotation, their configurations are equal, i.e.,

z1 ¼ a1k þ bz2; a; b 2 C

b ¼ jbjei\b;

as shown in Figs. 7A and B. That is, a1k translates z2, and Œb Œ and \b scale and ro-

tate z2. It is convenient to center shapes by defining the centered configuration

u = [u1,u2, . . . ,uk]
T, ui ¼ zi � �z, and �z ¼

Pk
i¼1zi=k. From here we can define the rota-

tion-invariant full Procrustes distance between two configurations, dF(u1,u2) as:

dF ðu1; u2Þ ¼ 1� ju�1u2j
2

ku1k2ku2k2
; ðA:1Þ

where u* denotes the transpose conjugate of u. Note that 0 6 dF 6 1. The Procrus-

tes distance allows us to compare two shapes independent of position, scale, and
Fig. 7. Procrustes analysis applied to shape and phase configurations. In the conventional application, a

shape is represented by a vector of complex vertices. The shape in (A) is the same as the shape (B) because

one is a translated, scaled, and rotated version of the other. A phasor configuration is also a vector of

complex numbers. The configuration in (C) is the same as that in (D) because one is a rotated and scaled

version of the other. Rotation is always about the origin so translation is omitted.
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rotation. To find the Procrustes mean shape, l̂, which is an estimate of of a mean, l,
based on a sample of n shapes, we compute the matrix

Su ¼
Xn

j¼1

ðuju�j Þ=ðu�jujÞ: ðA:2Þ

The Procrustes mean shape is the dominant eigenvector of Su, i.e., the eigenvector

that corresponds to the greatest eigenvalue of Su. Note that the power method allows

fast computation of the dominant eigenvalue and vector without forming Su directly

[36].

A vector of complex phasors, or a phasor configuration, is equivalent to a shape
configuration, as illustrated in Figs. 7C and D. Shapes are invariant through trans-

lation, scaling, and rotation. Translational invariance is achieved by using the cen-

tered configuration u. When using phasors the issue of translation becomes

irrelevant. All phasors rotate about the origin, 0 + 0i, at the entrained frequency,

and the configurations, z, are already centered, i.e., z = u.
Appendix B. Analysis of variance on directional data and phase configurations

Mardia and Jupp [48] describe ANOVA for highly concentrated directional data,

summarized in first Table. The analysis applies to q groups of directional data,

hi1, . . . ,hini, i = 1, . . . ,q. Each sample has a resultant length, Ri, where

Ci ¼
Pni
j¼1

cos hij; Si ¼
Pni
j¼1

sin hij;

C ¼
Pq
i¼1

Ci; S ¼
Pq
i¼1

Si;

R2
i ¼ C2

i þ S2
i ; R2 ¼ C2 þ S2:

ðB:1Þ

FWW, as given in first Table, is approximately distributed as Fq � 1, n � q. A correction

factor is applied to FWW if the data are not sufficiently concentrated on one part of

the unit circle.

We extrapolate directional ANOVA using Procrustes analysis for application to

phase configurations. The eigenvalue decomposition of the matrix Su (Eq. (A.2))

yields the Procrustes mean shape, l̂, the eigenvector that corresponds to the largest

eigenvalue, k̂. When a sample of configurations have identical shapes, k̂ ¼ n, where n
is the sample size. For orthogonal shapes all the eigenvalues are one. Therefore, k̂
gives a measure of variation in a shape sample that is analogous to R in Eq.

(B.1), and we define the ANOVA procedure shown in the second Table that is anal-

ogous to first Table. k̂ is the largest eigenvector for the entire sample while k̂i is the
largest eigenvector for group i.

Using Monte Carlo simulation, we have determined that for configurations of two

phasors, FWW under the null hypothesis is distributed approximately as Fq � 1, n � q.

This is to be expected since the situation is equivalent to basic directional ANOVA.

However, we observed that the degrees of freedom added by increasing the number
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of phasors in the configuration yield a narrower distribution than Fq � 1 ,n � q. Lack-

ing an analytical model, we use Fq � 1, n � 1 to give an upper bound on P(H0) and use

Monte Carlo simulation to get a lower bound. We expect the truth to lie somewhere

in between since gait configurations contain many zeros that do not contribute addi-

tional degrees of freedom. Computation time limits our Monte Carlo probability
estimates to a precision of 1/1000.

ANOVA table for highly concentrated directional data. df is degrees of freedom, SS

is sum of squares, MSB is mean square error between groups, and MSW is mean
square error within groups
Source
 df
 SS
 Mean square
 F
Between

samples
q � 1

Pq

i¼1Ri � R
 MSB ¼ ð
Pq

i¼1Ri � RÞ=ðq� 1Þ
 FWW = MSB/MSW
Within

samples
n � q
 n�
Pq

i¼1Ri
 MSW ¼ ðn�
Pq

i¼1RiÞ=ðn� qÞ
Total
 n � 1
 n � R
ANOVA table for highly concentrated shape configuration data
Source
 df
 SS
 Mean square
 F
Between

samples
q � 1

Pq

i¼1k̂i � k̂
 MSB ¼ ð
Pq

i¼1k̂i � k̂Þ=ðq� 1Þ
 FWW = MSB/MSW
Within

samples
n � q
 n�
Pq

i¼1k̂i
 MSW ¼ ðn�
Pq

i¼1k̂iÞ=ðn� qÞ
^
Total
 n � 1
 n� k
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