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“While the objective in defining feature space is to 
reduce the dimensionality of the pattern space yet 
maintaining discriminatory power for classification 
purposes, successful transformations along these 
lines are still i n their infancy”  [1].  

Harry C. Andrews, USC, 1972 
Mathematical Techniques in Pattern Recognition 



 

 

 

 

University of Southampton 

Abstract 

FORCE FIELD FEATURE EXTRACTION 

FOR EAR BIOMETRICS 

 

by David J. Hurley 

Supervisors:   Dr. Mark Nixon and Dr. John Carter 

Department of Electronics and Computer Science 

 

The overall objective in defining feature space is to reduce the dimensionality 

of the original pattern space, whilst maintaining discriminatory power for 

classification. To meet this objective in the context of ear biometrics a novel 

force field transformation is introduced in which the image is treated as an 

array of mutually attracting particles that act as the source of a Gaussian force 

field. In a similar way to Newton’s Law of Universal Gravitation pixels are 

imagined to attract each other according to the product of their intensities and 

inversely to the square of the distance between them. Underlying the force 

field there is a scalar potential energy field, which in the case of an ear takes 

the form of a smooth surface that resembles a small mountain with a number 

of peaks joined by ridges. The peaks correspond to potential energy wells and 

to extend the analogy the ridges correspond to potential energy channels. The 

directional properties of the force field are exploited to automatically locate 

these wells and channels, which then form the basis of a set of characteristic 

ear features. The new features are robust especially in the presence of noise, 

and have the advantage that the ear does not need to be explicitly extracted 

from its background.  The directional properties of the ensuing force field lead 

to two equivalent extraction techniques; one is algorithmic and based on field 

lines, while the other is analytical and based on the divergence of force 

direction. The technique is validated by performing recognition on a database 

of ears selected from the XM2VTS face database. This confirms not only that 

ears do indeed appear to have potential as a biometric, but also that the new 

approach is well suited to their description.  
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Anatomy of the Human Ear 

 

The ear does not have a completely random structure, it is made up of standard 

features just like the face.  The parts of the ear are less familiar than the eyes, 

nose, mouth, and other facial features but nevertheless are always present in a 

normal ear.  These include the outer rim (helix), the ridge (antihelix) that runs 

inside and parallel to the helix, the lobe, and the distinctive u-shaped notch 

known as the intertragic notch between the ear hole (meatus) and the lobe.  

Figure 1 shows the locations of the anatomical features in detail. 

 

 

Figure 1  Anatomy of the human ear 
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Context and Contributions 

 

In machine vision, ear biometrics refers to the automatic measurement of 

distinctive ear features with a view to identifying or confirming the identity of 

the owner.   It has received scant attention compared with the more popular 

techniques of automatic face, eye, or fingerprint recognition.  However, ears 

have played a significant role in forensic science for many years, especially in 

Holland where more than 250 ear print convictions are secured each year [2], 

and to a lesser extent in the United States, where an ear classification system 

has been developed by Afred Iannarelli , and has been in use for more than 40 

years [3,4].    

  More recently in the UK, a burglar was convicted of murder on the 

basis of an ear print left on a window at the scene of the crime [5,6].  The US 

Immigration and Naturalisation Service apparently recognises the value of the 

ear for identification, since it requires that the right ear be clearly visible in 

identification photographs [7].  The University of Glasgow forensic face 

reconstruction expert, Prof. Peter Vanezis, who is pioneering ear print 

evidence in the UK, has attempted to resolve the Grand Duchess Anastasia 

mystery by comparing the claimant’s ear to an old photograph of the Duchess 

[2,8].  A feasibili ty study for an automated system for ear identification has 

been undertaken by Burge and Burger at Johannes Keppler University in 

Austria [9].   

   The potential of the ear for recognition was recognised and advocated 

as long ago as 1890 by the French criminologist Alphonse Bertill on [13]: - 

 
           “ The ear, thanks to these multiple small valleys and hill s that plough 
across it, is the most important factor from the point of view of identification.  
Immutable in its form since birth, resistant to the influences of environment 
and education, this organ remains, during the entire li fe, li ke the intangible 
legacy of heredity and li fe in the womb.”      

      Alphonse Bertill on   
              Legal photography, Paris, Gauthier-Vill ars, 1890 
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Ears have certain advantages over the more established biometrics; as 

Bertillon pointed out, they have a rich and stable structure that is preserved 

well into old age.  The ear does not suffer from changes in facial expression 

and is firmly fixed in the middle of the side of the head so that the immediate 

background is predictable, whereas face recognition usually requires the face 

to be captured against a controlled background.  Collection does not have an 

associated hygiene issue, as may be the case with direct contact fingerprint 

scanning, and is not likely to cause anxiety, as may happen with iris and retina 

measurements.  The ear is large compared with the iris, retina, and fingerprint 

and therefore is more easily captured, although less so than the face or gait. 

  An ear recognition system could be used like other biometric systems, 

say for access control. A database or register would be prepared by processing 

images of the ears of authorised personnel, to extract a set of characteristic 

features for each image. Personnel wishing to enter would have their ears 

scanned at the entrance and the image would be processed and compared for a 

match against the register. The stored features would have to be sufficiently 

distinct so as to be able to distinguish one ear from all the others, and 

sufficiently robust so that the same features would be produced every time the 

ear is scanned.  These are conflicting requirements and present a challenge to 

the system designer. 

There are a number of techniques with potential to find and describe a 

human ear for computer vision recognition.  Clearly, there are application 

constraints, such as occlusion by hair, but here the concern is with basic 

technique. For security systems this problem is easily overcome by simply 

holding the hair to one side during image capture.  Ear extraction could use an 

active contour [14,15] but with initialisation problems that could be relieved 

by a dual active contour [16], but this still requires establishment of inner and 

outer contours.  Once the ear image has been extracted, we need to describe its 

shape for recognition using low-level feature extraction where we seek to 

describe the image with invariance properties.  This can be achieved by edge 

detection [17,18,19], which is invariant for change in the overall illumination 

level.  It can also be achieved by phase congruency [20,21], which can tolerate 



4 

 

 

 

local change in image intensity.  We could also use more global techniques 

such as moments [23] or shape from shading [24].  Burge and Burger [9] have 

combined Canny edge detection with graph matching to describe the ear.  A 

deformable model of the human ear might be used for description, where 

individual ears would be characterised by the model parameter values that 

correspond to the deformations needed to make the model fit the given ear 

shape.   

To address these issues, a novel two-stage approach has been 

developed to provide ear extraction and description concurrently in a reliable 

and robust manner.  Our new approach has new properties and affords a new 

description with different advantages, to be described later. The two stages in 

the new approach are: Image to Force Field Transformation, and Potential 

Well and Channel Extraction.  Firstly, the entire image is transformed into a 

force field by supposing that each pixel exerts an isotropic force on all the 

other pixels, which is proportional to the pixel's intensity and inversely 

proportional to the distance squared to each of the other pixels. Secondly, the 

directional property of the force field is exploited to automatically locate a 

small number of potential wells and channels, which correspond to local 

energy peaks and ridges respectively in the scalar potential energy surface that 

underlies the vector force field, and it is these wells and channels that form the 

basis of the new features.   

Two equivalent feature extraction techniques have been developed; an 

algorithmic approach, based on field lines, and an analytical approach, based 

on the divergence of force direction.  In the first approach, notional test pixels 

spaced evenly around the perimeter of the force field flow towards the centre, 

following the force direction, tracing out field lines.  The field lines flow into a 

small number of channels that eventually terminate in wells, perhaps joining 

up with other channels on the way.  The channel structure can be thought of as 

modulating the natural flow of the field lines towards a single well at the 

centre of the field, which is what would occur if the image consisted of only 

one constant grey level throughout.  This centric property is due to the basic 

dome shape of the energy field, which will be explained later. 
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In the second approach, as a result of analysing the mechanism of the field line 

approach, it was discovered that this approach has an analogous mathematical 

description, with its own unique advantages.  The analysis revealed that the 

channels and wells correspond to ridges and peaks in a mathematical function, 

revealing that they are really manifestations of the same phenomenon.  This 

function, which will be called convergence, maps the force field to a scalar 

field where the output is the additive inverse of the divergence of the direction 

of the force field.  The convergence function provides a richer description than 

just channels and wells because it includes negative versions of channels and 

wells, corresponding to positive divergence ridges and peaks respectively. 

The high dimensionality of the original image is traded for a much 

simpler feature description in the form of a set of channels and wells.  In the 

early stages of this research it was hoped that the wells alone would suffice as 

ear descriptors, which would have led to a particularly attractive solution in 

the form of a small set of coordinates.  However, it became clear that features 

for some ears only included two wells, which is clearly inadequate for realistic 

description and classification.  Also, the technique when applied to arbitrary 

shapes of constant grey level sometimes only found one well.  For this reason 

the richer but more complicated description offered by the channels and wells 

together became the main focus of the research. 

The features thus far described are not in a simple form suitable for 

direct comparison; indeed the precise nature of a channel has not been defined, 

other than to suggest that it is the path shared by two or more field lines that 

happen to converge.  Nevertheless, channels generally take the form of a small 

number of curves, perhaps meeting each other at one or more central wells.  

There is an implicit and reasonable assumption that such a collection of curves 

would be easier to compare than comparing the original image, perhaps using 

techniques from differential geometry [22].  There is also an assumption that 

such curves are sufficiently distinctive and robust to act as good descriptors.  

There is little point in comparing them if they do not adequately describe the 

ear shapes upon which they are based. 

To qualify as good ear features the essential character of the features 

must be preserved when the images are scaled, and they should not suffer 
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unduly from noise problems, as may happen for example with moments [23].  

It would also be an advantage if a certain amount of occlusion by hair could be 

tolerated.  It is confirmed that the new force field features scale correctly when 

the image is resized, and the technique is also found to be very insensitive to 

noise, due to the force at any pixel position being a function of all the other 

pixels, implying large scale filtering.  The field line extraction process is very 

robust since the number and precise location of the initial test pixels does not 

matter as long as the image is adequately covered; field lines always flow 

towards wells, usually forming channels on the way.  Thus the new extraction 

technique does not suffer from the usual initialisation problems encountered 

by other extraction techniques such as active contours [14,15].  

Mathematical modeling techniques traditionally used in physics have 

recently attracted the attention of researchers in computer vision; for example 

[25] describes the use of Vector Potential to extract corners by treating the 

Canny edge map of the image as a current density. Also, a recent approach 

[26] used a Potential Field model in a medial axis transform.  Active contours 

[14,15,16] operate by treating image segmentation as an energy minimisation 

problem, and Xu [27] extends the active contour model by replacing the 

external local force with a force field derived from the image edge map. 

A selection of four samples taken from each of sixty-three subjects 

drawn from the XM2VTS face profiles database has been used to test the 

viability of the technique [28].  A classification rate of better than 91% has 

been achieved so far, using just simple template matching on the basic channel 

shapes, demonstrating the merit of the technique at least at this scale.  It can 

reasonably be expected that the use of more sophisticated channel matching 

techniques would lead to even better results.  As such, a new approach has 

been demonstrated with success in a new application domain.   
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Thesis Hypothesis 

 

The hypothesis is threefold in that there are three separate contributions; each 

allocated a separate chapter.  In a sentence we aim to show that  

 

1. Ear Recognition is viable, 

2. using a New Force Field Feature Extraction technique, 

3. based on a New Force Field Transform.   

 
In more detail we aim to show that in the context of ear biometrics, we have 

developed a new linear transform that transforms an ear image with very 

powerful smoothing and without loss of information, into a smooth dome 

shaped surface, whose special shape facilitates a new form of force field 

feature extraction that extracts the essential ear signature without the need for 

explicit ear extraction, and in the process we aim to verify the recognition 

potential of the human ear for biometrics.   

One potential difficulty is that we are attempting to prove the new 

transform and extraction technique at the same time as trying to demonstrate 

that ears are sufficiently distinctive to act as a biometric source.  No large 

scale study of the feasibility of ear recognition has ever been carried out, and it 

could even be argued that the new technique is being hampered from showing 

its full image processing potential by limiting its use to ear recognition.   
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Thesis Outline 

 

Chapter 1 Introduction 

The first chapter reviews the history of ear identification in the wider context 

of personal identification, from historical cases of impersonation, then on to 

forensic science, through to modern automated personal identification in the 

form of biometrics. 

Chapter 2 Force Field Transform 

This chapter defines the force field and potential energy transforms and 

establishes some useful properties.  They are shown to be linear and invertible 

under certain circumstances. Feature extraction without the requirement for 

explicit ear extraction is shown to be due to the basic dome shape of the 

energy field.  Scale and illumination invariance is analysed, followed by a 

noise sensitivity analysis. 

Chapter 3 Force Field Feature Extraction 

Two equivalent forms of feature extraction are presented; one algorithmic and 

based on field line direction; the other is a convergence function based on 

force direction divergence.  The function is shown to be similar in form to the 

Marr-Hildredth operator, but with important differences. 

Chapter 4 Ear Recognition 

Rudimentary ear recognition is carried out using template matching of 

potential channels in the form of binarised and thresholded convergence 

functions.  The results are analysed and compared with the results for simple 

edge detection. 

Chapter 5 Further Work  

A number of outstanding issues not covered in the main body are briefly 

considered.  A technique based on the statistical moments of the convergence 

functions, and which returns sets of closed contours that are readily adapted to 

be scale and rotation invariant, is discussed.  
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1 Introduction 

This section sets the stage by reviewing the fascinating historical development 

of personal identification from renowned historical cases of impersonation, to 

the development of anthropometrics and forensic science, through to present 

state-of-the art biometric systems and techniques.  

Some famous impersonation cases are reviewed starting with the 16th 

century French case of Martin Guerre who was hanged for impersonating a 

missing husband.  In England there is the Victorian case of the Tichborne 

Claimant, Arthur Orton who was sentenced to 14 years for impersonating the 

missing heir to a large Hampshire fortune. Lastly we will take a look at the 

case of Anna Anderson-Manahan, who claimed to be the Grand Duchess 

Anastasia of Russia, the sole survivor of the Romanov family, who was 

believed to have escaped the cruel fate of her parents and sisters.  An attempt 

was even made to resolve the issue by comparing photographs of their ears 

[8].  It should come as no surprise that all these cases involved considerable 

inheritances, which emphasises the need for reliable personal identification to 

establish rightful ownership or authority. 

 The Tichborne claimant case was very widely reported and followed in 

Victorian times and may have driven early attempts to systematically identify 

people.  Indeed Faulds, who was the first to suggest fingerprint identification, 

actually speculates in his letter [29] published in Nature in 1880, whether in 

fact fingerprints might be used to resolve the Tichborne case.  During the 

second half of the 19th century all the pioneers in personal identification were 

laying its foundations; Adolphe Quetelet the Belgian statistician [30], the 

Scottish missionary, Dr. Henry Faulds in Japan [29], Sir William Herschel in 

India, grandson of the famous astronomer of the same name [31], Alphonse 

Bertillon in France [13,33,34], Sir Francis Galton in England [35,36,37], and 

also Sir Edward Henry in India [38].  

  The system of criminal personal identification and classification 

known as Bertillonage after its founder, eventually gave way to fingerprinting 

in the early part of the last century.  Fingerprint evidence has since then taken 

its place in the public perception as indisputable scientific evidence. However, 
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we shall review some recent court cases that have thrown serious doubts on 

the universal assumption that fingerprint evidence is infallible. The question as 

to whether ears can be used to uniquely identify an individual naturally arises 

and this is also considered in the light of a recent US appeals court ruling on 

the admissibility of earprint evidence.   

We round off this chapter by considering the question of automated 

personal identification in the form of biometrics and the evolving technologies 

of electronic signatures.  Some underlying biometrics issues such as biometric 

uniqueness are considered by viewing biometrics in a classification context.  

Biometric parameters are reviewed, followed by a review of the present state 

of the art in biometric technologies, including some systems that are presently 

deployed and some that are under development. 
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1.1 Famous Impersonations 

One of the earliest and most notorious cases of personal identification is 

recounted in the biblical tale of two women in Jerusalem who were brought 

before King Solomon to resolve the disputed ownership of a baby, whereupon 

Solomon, resorting to his renowned wisdom, ordered that the baby be halved, 

trusting that the true mother would give up her baby rather than accept such a 

drastic solution [39].  Nowadays, with the advent of DNA testing [40], any 

such dispute would easily be resolved without resorting to such drastic 

internecine measures.  Nevertheless, as some of the famous identity disputes 

below will show, up until recently proving one’s identity has not always been 

as straight forward as most of us would take for granted. 

 

1.1.1 The Case of Martin Guerre 

The first case concerns the impersonation of 16th century French farmer 

Martin Guerre by a soldier, Arnaud du Tilh, who closely resembled him, and 

allegedly left him for dead on the battlefield after obtaining his life story.  The 

impostor successfully masqueraded as Guerre, fooling his father and even his 

wife.  But when he tried to claim Martin’s inheritance, the father denounced 

him and the case resulted in two trials.  Arnaud gave a remarkable account of 

himself in the trials with many witnesses testifying on his behalf and it seemed 

that he was about to win his case when the real Martin suddenly returned and 

denounced him, resulting in Arnaud’s hanging.   

Since this remarkable event was first reported in 1561 by the trial 

judge Jean de Coras [41], it has found a place in French popular culture and 

has been retold in various books and films.  Also in France there is the case of 

a woman who claimed to be the deceased marquise de Douhault, who became 

known as la femme sans nom, the woman with no name, after the courts not 

only dismissed her claim, but also declared that she was not Anne Buiret, as 

claimed by the relatives of the marquise.  Given this background, it is perhaps 

not surprising that France gave birth to the father of anthropometric personal 

identification, Alphonse Bertill on. 
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1.1.2 The Tichborne Claimant 

One of the most extraordinary cases in British legal history concerns the case 

of Arthur Orton, who claimed to be the heir to the Tichborne family fortune 

after the real heir had been missing and presumed drowned for more than 11 

years.  Roger Tichborne, born in Hampshire in 1829, was the heir to the 

considerable Tichborne family fortune, which would have made him a very 

wealthy man.  At age 23, having spent most of his youth in France, he 

embarked on a world tour.  His ship left Rio de Janeiro but never made land 

and was presumed lost at sea in 1854.  All on board were eventually declared 

dead but his mother had never given up hope of finding her son alive and 

placed advertisements in the Australian newspapers in 1865, some three years 

after his father had died.  In response to the advertisement a man came 

forward claiming to be her son.  The mother and some of her family believed 

his story, but most of the family believed him an imposter and so he took the 

trustees to court to claim his inheritance.  After a civil trial lasting more than 

three months, the jury found for the defendants and he was then charged with 

perjury.  After a criminal trial lasting more than 6 months he was found guilty 

and sentenced to 14 years in prison. 

 

1.1.3 Grand Duchess Anastasia 

Even more recently there is the case of Anna Anderson-Manahan who was 

believed to be the youngest daughter of Tsar Nikolai Romanov II of Russia.  A 

few years after the execution of the Tsar and his family, Anna Anderson was 

rescued from a suicide attempt in a German canal.  She was taken to a Berlin 

mental hospital where in 1921 she declared that she was the Grand Duchess 

Anastasia, claiming to have been rescued by one of the guards and taken to 

Romania.  She made her way to Germany to seek out her relatives but became 

depressed when she could not find them and tried to commit suicide.  Only a 

few of the Romanov relatives believed her story and it was not until 1967 that 

the courts, in response to the relative’s request to settle the estate, declared that 

she was not Anastasia.  One interesting piece of supportive evidence in Anna’s 

favour came in the form of gait identification.  Gled Botkin, who was a 
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childhood playmate of Anastasia’s, and the son of the family doctor, was when 

he met her ten years later, immediately convinced by the way she walked that 

she was indeed Anastasia. 

In 1993 forensic scientist Peter Vanezis, based at the University of 

Glasgow, performed an identification experiment based on matching of ears 

from photographs of Anna Anderson and Anastasia [8].  The test confirmed 

that the ears in both cases were similar, but a positive ear identification is less 

meaningful than a negative one; it would have been far more conclusive if the 

test showed striking differences.  
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1.2 Personal Identification Evolution 

Despite the evidence to the contrary afforded by the extraordinary cases just 

mentioned, it appears that the most reliable form of personal identification 

historically consisted of confirmation by a close friend or relative that you are, 

or are not, who you claim to be.  This form of identification includes not only 

physiological details mainly in the form of appearance but also a whole host of 

behavioural details including mannerisms, speech peculiarities, and gait.  And 

then there is shared knowledge such as family history or common experiences 

shared by friends.  However, this very reliable form of identification has not 

always been possible or convenient, especially when there is an inheritance at 

stake.  Sometimes it is advantageous not to be identified as one’s former self.  

Such was commonly the case for French habitual criminals, because evidence 

of previous offenses would automatically guarantee a longer sentence.  It was 

to prevent such misrepresentation that Alphonse Bertill on devised his famous 

anthropometric system of cataloguing prisoners. 

1.2.1 Alphonse Bertillon 

One of the earliest systems of measurement and recording of personal traits for 

identification was devised by Alphonse Bertil lon who worked in the French 

penal system [13,32,34].  In an early version of the system described by Sir 

Francis Galton [36] four measurements were taken from each inmate, the 

width and length of the head, and the lengths of the foot and middle finger.  

Each of the measurements was classified as large, medium, or small, leading 

to a total of 81 classes.  Other distinguishing features were noted on a card, 

which was then pigeonholed, thus creating an anthropometrically indexed 

fili ng system.  Later he extended the system to include eleven measurements, 

one of which was the length of the ear.  Galton correctly pointed out that 

Bertill on’s system suffered from correlation of measurements in an individual; 

a long foot is likely to be accompanied by a long finger [36].  However, 

Bertill on’s system was generally successful and was widely used throughout 

the world until i t was replaced by fingerprinting in the early part of the 20th 

century. 
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1.2.2 Henry Faulds 

Henry Faulds was a Scottish doctor who spent some years working in Japan as 

a missionary.  In 1880 he published a letter in Nature [29] describing how his 

discovery of finger-marks, made on a small piece of ancient pottery while the 

clay was still soft, had driven him to investigate the skin-furrows in human 

fingers generally.  He described in detail the loops, whorls, and minutiae that 

are used today in fingerprint identification.  He went on to describe how to 

collect prints from a subject, by pressing the finger on a sheet of tin spread 

thinly with printer’s ink and then pressing the tin sheet on to a sheet of slightly 

damp paper.  He made one remark that starkly contradicts contemporary 

claims for the uniqueness of fingerprints: - 

 
“T he dominancy of heredity through these infinite varieties is sometimes very 
striking.  I have found unique patterns in a parent repeated with marvelous 
accuracy in his child”  
 

Two other remarkable events were also reported.  He used fingerprints to help 

identify a servant who had stolen some rectified spirit, and he also used prints 

to prove the innocence of a suspect in another case.  So, not only was Faulds 

the first person to suggest forensic use of fingerprints, but he was also the first 

person to prove guilt and to prove innocence, using fingerprinting. 

 

1.2.3 Sir Francis Galton 

Francis Galton gave a lecture at the Royal Institution on May 25, 1888 during 

which he described a machine he had developed called a mechanical selector, 

for automatically measuring the profile of the human face [36].  During the 

second part of his lecture he went on to consider other personal characteristics 

that might be used to identify a person.  He made an interesting remark that 

the makers of glass eyes had reported thousands of varieties in the markings of 

the iris of the eye, a somewhat prophetic remark since the iris is now one of 

the most promising biometrics [48].  He went on to briefly mention the 

identification potential of ears: - 
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“ I shall not dwell now upon these, nor on such peculiarities as those of hand-
writing, nor on the bifurcations and interlacements of the superficial veins, 
nor on the shape and convolutions of the ear”  
 

In the same lecture he went on to describe his interest in fingerprints and also 

made reference to Sir Willi am Herschel’s work in India over the previous 28 

years.  Galton published a book in 1892 simply titled fingerprints [35]. 

 

1.2.4 Alfred Iannarelli 

Alfred Iannarelli i s an American consultant in forensic investigation and 

criminal investigation who developed a system of ear classification used by 

American law enforcement agencies.  In late 1949, after spending two years 

with a military security and law enforcement unit and while attending a police 

academy in Oakland, California he became interested in the ear as a means of 

personal identification in the context of forensic science.  He subsequently 

developed the Iannarelli System of Ear Identification, which he published in 

book form [4] in 1964 and updated in 1988.   

 

Figure 2  Iannarelli ear measurements 

 

Essentially his system consists of taking 12 measurements around the ear by 

placing a transparent compass with 8 spokes at equal 45° intervals over an 

enlarged photograph of the ear.  The first part of registration is achieved by 

ensuring that a reference line touches the intersection between the antihelix 

and crus of helix at the top and touches the innermost point on the tragus at the 

bottom.  Normalisation and the second step of registration are accomplished 

by adjusting the enlargement mechanism until a second reference line exactly 

spans the concha from top to bottom.  Iannarelli has appeared personally as an 
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expert witness in many court cases involving ear evidence, or is often cited as 

an ear identification expert by other expert witnesses [3]. 

 

In the preface to his book Iannarelli states, 

 

 “T hrough 38 years of research and application in earology, the author has 
found that in literally thousands of ears that were examined by visual means, 
photographs, ear prints, and latent ear print impressions, no two ears were 
found to be identical – not even the ears of any one individual.  This 
uniqueness held true in cases of identical and fraternal twins, triplets, and 
quadruplets”  
 

 

1.2.5 Fingerprint Evidence Convictions 

It is well over a hundred years since the first conviction was secured on the 

basis of fingerprint evidence [29] and as a result of countless real and fictional 

police dramas most people take the infallibility of fingerprint evidence for 

granted.  If your fingerprints match those found at the scene of the crime, then 

you must have put them there.  Yet in recent years serious doubts have begun 

to arise as to the infallibility of fingerprint evidence [10,42].  Certainly, when 

the patterns of all ten fingers are considered as an ensemble, it seems most 

reasonable to suppose that they are unique. In reality however, convictions are 

very often secured with just a single fingerprint, and even then the latent 

fingerprint is often only a partial print and of poor quality.   

Such was the remarkable fate of Scottish police officer, Shirley McKie, 

who was wrongly convicted of perjury on the strength of fingerprint evidence 

that placed her at the house of Marion Ross, 55, who was murdered at home in 

Kilmarnock in 1997. McKie, who denied ever being at the scene, had her 

conviction overturned [11] after an American fingerprint expert cast doubt on 

the fingerprinting technique used by the Scottish Criminal Records Office.  

The SCRO officers who gave evidence were subsequently suspended, pending 

a review of the fingerprint matching process.    

Science historian Simon Cole points out that no serious scientific study 

has ever been carried out to confirm the uniqueness of fingerprints, and that no 
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error rates are available for fingerprint identification.  He further suggests that 

fingerprint examiners may match prints to the wrong person as much as 20 per 

cent of the time [10,42].    

 

1.2.6 Kunze Ear Decision 

In the 1993 Daubert case, the US Supreme Court ruled that scientific evidence 

has to be testable, subject to scrutiny by other scientists, must be accompanied 

by quantitative estimates of uncertainty, and must be generally accepted by the 

scientific community [43].  This ruling led to pre-trial Daubert hearings, where 

a judge tests the admissibility of scientific evidence.  The admissibility of ear 

print evidence was recently put to such a test. 

In Washington State in 1997 David Wayne Kunze was convicted of 

murder and was sentenced to life imprisonment on the basis of two expert 

witnesses testifying that a latent ear print found on a bedroom door could only 

have been made by Kunze. The murder conviction was subsequently appealed 

and the appeal court ruled [3] that the trial court erred by allowing the expert 

witnesses to testify that Kunze was the likely or probable maker of the latent 

print, on the basis that latent ear print identification is not generally accepted 

in the forensic science community.  A point of interest is that one of the two 

expert witnesses was the veteran Dutch ear print police officer who has 

pioneered ear print evidence in Holland where more than 250 ear print 

convictions are secured annually [2].  In response to the US appeals court 

ruling, a large-scale study involving 10,000 subjects has been proposed by 

Prof. Andre Moenssens to determine the variability of the ear across the 

population [12]. 
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1.3 Automated Personal Identification 

We can look forward to one day enjoying a cashless, keyless, passless society 

thanks to biometrics. As our society becomes increasingly electronically 

networked so will be the need for ever-more reliable and secure biometric 

personal identification.  Many people now routinely purchase products and 

services over the Internet, and banks and building societies are lining up to 

offer electronic banking services.  Yet the lack of a legally binding electronic 

equivalent of the traditional signature has stood in the way of the full-scale 

take up of electronic commerce [45].  This need is being addressed by the 

development of electronic signature protocols, which have recently been given 

legal recognition by legislation in the USA [44] and Europe [45,46].   

In the same way as the behavioural link of the traditional signature to 

its author inspires confidence in its authenticity, so will the ultimate goal of 

including biometric authentication instill public confidence in the electronic 

signature.  Just as an individual signature can be very simple or elaborate, so 

individuals could adjust their own authentication policies, requiring as much 

or as little biometric content in the authentication process, as they see fit. 

Biometrics in the present context refers to the automatic identification 

or confirmation of the identity of a person based on their physiological and 

behavioural characteristics.  It can be considered as a classification problem in 

the overall context of pattern recognition, where each individual represents 

one class.  A successful biometric must therefore have sufficient complexity to 

achieve adequate class separation of a very large number of classes whilst at 

the same time it must be sufficiently stable across samples of the same class to 

ensure low misclassification rates. 

 Most biometric systems operate at a single resolution; a face-based 

system does not work at the level of detail of an iris or retina based system, 

even though these are included in the face.  It is clear from the outset therefore 

that such systems are unlikely to assign a single class to each individual on the 

planet.  It is well known that famous people have look-alikes, so it is 

reasonable to assume that this equally applies to each of us, although we are 

unlikely to ever meet them.  However, the look-alikes are not likely to have 
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the same freckle pattern or the same iris pattern, so by including more and 

more information either by multi-resolution or multi-modal biometrics the 

class size can be expected to be reduced to a size of just one if required, but at 

a higher cost. 

To complete this introduction to automated personal identification, 

some practical biometrics issues will be reviewed in terms of biometrics 

parameters and in terms of typical systems already deployed such as face, eye, 

hand, and fingerprint; and those that are still at the laboratory stage, such as 

gait, ear, and DNA. 

 

1.3.1 Biometric Parameters  

Here we discuss some of the most relevant parameters likely to be encountered 

in literature relating to biometric technology. 

 

FAR or the false accept rate is the fraction of impostors that are passed in 

error as genuine by a biometric system. 

 

FRR or the false reject rate is the fraction of genuine applicants that are 

rejected in error by a biometric system. 

 

EER or the equal error rate is the rate of either FAR or FRR when both rates 

are equal. 

 

ROC or receiver operator characteristic is a parametric plot of FAR against 

FRR with a view to adjusting the system threshold to meet a given security 

policy. 

 

Attributes are the physiological and behavioural characteristics that can be 

used as biometrics.  Physiological examples include weight, height, body 

shape, face shape, hand shape, skin colour and texture, odour, hair colour and 

style, limb proportions, retina, iris, DNA, fingerprint, and of course ear shape.  

Behavioural examples include gait, body posture, gestures (including hand, 
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arm, and shoulder gestures), speech, and handwriting, keyboard typing pattern, 

heartbeat, respiration pattern, and eye blinking pattern. 

 

Universality is the extent to which the biometric is readily collectible across 

the population as a whole.  Ears are sometimes covered by hair especially with 

women.  Or they might be partly obscured by jewelry, but we could equally 

say that eyes might be obscured by spectacles or sunglasses. 

 

Permanence refers to the extent to which the attribute does not change over 

time.  The fingerprint and the ear are very persistent, hardly changing at all 

throughout adulthood.  The face and the iris are much less persistent, one 

changing with expression and the other responding to changes in ambient 

lighting.  Other less persistent biometrics include speech, hairstyle and colour, 

odour, weight, and profile. 

 

Acceptability refers to the degree of intrusion or inconvenience caused to the 

user.  Many users will object on hygiene grounds to contact based biometrics 

such as fingerprint and hand.  Scanning the iris and retina may cause anxiety.  

Users will become impatient if the process takes more than a few seconds. 

 

Collectability refers to ease of acquisition.  The retina requires considerable 

cooperation because the subject is usually required to look through an 

eyepiece at a target.  On the other hand gait, face, and ear measurements can 

be collected more easily from a greater distance.  Some biometrics such as 

keyboard typing patterns can be collected covertly. 

 

Uniqueness is how unlikely a description is to occur more than once in the 

population.  The iris is believed to be one of the most unique biometrics.  As 

mentioned with fingerprints, the degree of uniqueness will also depend on the 

number of fingers being considered. 

 

Circumventability is the ease with which the system can be fooled for 

example by holding a picture of someone else’s face or ear in front of your 
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own.  Counter-measures include vitality testing, for example it is known that 

the pupil diameter undergoes small "hippus" oscillations [47] once or twice 

per second, even under uniform lighting. It is unlikely that ears could be tested 

for liveness, unlike the iris or gait. This might restrict use in high-security 

applications.   
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1.3.2 Biometric Technologies 

Here we review a selection of current biometric technologies together with a 

small selection of those that are still at the research stage. 

Face 

One of the least obtrusive and most collectible biometrics is the human face; 

we are used to having our faces compared with our photographs in passports 

and identity cards [49].  However, the face changes considerably from birth to 

old age, and even ephemerally due to make-up and expression changes.  Even 

though strictly not part of the face, alterations in hairstyle can radically change 

the appearance of the face.   

Fingerprint 

Because fingerprints have been used extensively in forensic science for a long 

time, it is not surprising that this is also one of the most mature biometrics in 

use today [50].  Automatic fingerprint identification systems are available both 

for forensic science and biometrics applications.  Fingerprints have very high 

persistence but have an associated criminal stigma and can be perceived to be 

unhygienic, as contact with a sensor is usually required.  Systems based on 

both the global appearance and minutiae of the friction ridges have been 

developed and laser-scanning systems are also in use.   

 

Voice 

Speech recognition and speech synthesis are two enduring areas of research, 

and this has naturally resulted in speech-based biometrics.  There is a choice 

here whether the aim is to recognise characteristics of an individual voice or 

whether to base it on chosen pre-arranged words [51].  Speech would clearly 

be one of the most natural and unobtrusive biometrics but is easily defeated by 

mimicking and using voice recordings. 
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Hand 

The geometry of the hand can be used as a biometric by capturing its shape in 

the form of a silhouette [52].  The user is required to place the hand in a 

receptacle that has pegs to separate the fingers.  Also in use are systems that 

produce a thermogram of the back of the hand using the vein pattern as the 

biometric [53]. 

Retina 

The vein pattern in the retina at the back of the eye can be used for 

identification but requires considerable cooperation on the part of the subject 

who has to look through an eyepiece and furthermore is required to look at a 

particular location in the visual field [54].  However, to offset this the 

signature is believed to be highly unique. 

Iris 

The iris, which gives the eye its colour, would at first seem to be an unlikely 

choice as a biometric.  Closer inspection reveals considerable texture detail in 

the form of modulation of a basic radial pattern of tiny muscles that cause the 

pupil to adjust its aperture in response to ambient light variations.  Indeed, 

Daugman and Downing use demodulation to extract an iris signature, which is 

believed to be one of the most unique biometric signatures available [55,56]. 

Gait 

Gait is still in the research stages but is very promising especially as it holds 

out the prospect of being one of the most remotely collectible signatures.  This 

would clearly be very advantageous in surveillance situations where known 

criminals could be automatically detected even if they attempt to disguise their 

appearance [57] 

Ear 

There are no known working ear based biometric systems in use at this time, 

however preliminary research has been carried out by Burge and Burger on its 
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viability as a biometric [9].  There are rumours that the US armed services use 

ears for recognition, but this has not been confirmed. 

Odour 

Biometrics based body odour is still very much at the research stage [58].  

Research suggests that body odour can indeed be used for identification [59], 

but problems can be expected due to use of perfumes and deodorants and 

changes in diet and health. 

Hand Writing 

The written signature is an obvious candidate as a behavioral biometric since it 

is readily collected and the user will need very little practice [60].  Also, in 

addition to the geometry of the signature, the sound patterns and velocity and 

acceleration of the stroke can be incorporated in the feature set, thereby 

making the technique more immune to forgery. 

DNA 

DNA is believed to be one of the most reliable and positive forms of personal 

identification, although identical twins share the same sequence [40].  At the 

moment its use for identification is confined to forensic science where it is 

believed that it might eventually replace fingerprinting [10].  At this time the 

procedure is too slow to be of use for biometrics and is very intrusive.  
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2 The Force Field Transform 

This chapter provides the mathematical foundation for the new transforms and 

establishes some useful properties. The transforms are defined and are shown 

to be linear transformations and to be invertible under certain circumstances.  

The basic concepts underpinning the transforms and the mathematics used to 

describe them can be found in various introductory works on physics [61,62] 

and electromagnetics [63,64].   

The energy field equations are first introduced, and then it is shown 

how a potential energy surface is composed of a summation of elementary 

potential functions corresponding to isolated pixels.  The energy surface is 

then used to define potential wells and channels.  An explanation is offered as 

to why the energy surface has an underlying dome shape, which in turn gives 

the force field an advantageous centric property.  It is shown that force can 

also be viewed as the gradient of energy, thus allowing the force field to be 

calculated by differentiating the energy field, and also allows some properties 

established about one to be generalised to the other.  Although the fields can 

be derived by direct application of the defining equations, it is shown that 

treating the process as a convolution, and using the Convolution Theorem to 

perform the calculation in the frequency domain, can gain a considerable 

speed advantage.  The question of transform invertibility is considered before 

rounding off the section by establishing some invariant properties and 

analysing sensitivity to noise. 
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2.1 Potential Energy Transform Definition 

The image is transformed by treating the pixels as an array of N particles that 

act as the source of a Gaussian potential energy field.  It is assumed that there 

is a spherically symmetrical potential energy field surrounding each pixel, 

where Ei(rj) is the potential energy imparted to a pixel of unit intensity at the 

pixel location with position vector rj by the energy field of a remote pixel with 

position vector ri and pixel intensity P(ri), and is given by 
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where the units of pixel intensity, energy, and distance are arbitrary, as are the 

co-ordinates of the origin of the field.  It should be noted that the energy field 

is notional and is not intended to model the propagation of light or anything 

else.  If an exploratory unit intensity test pixel is moved around in the energy 

field generated by a given pixel, energy will be exchanged if the net effect is 

to change the distance of the test pixel from the given pixel.  Thus the field 

consists of concentric rings of equal potential energy known as equipotentials.  

If the test pixel moves to a different location on the same equipotential ring, 

no energy is exchanged.  If it moves to a different equipotential, an amount of 

energy will be exchanged equal to the difference in energy between the two 

rings.  

 

2.2 Potential Energy Function 

The potential energy function of a single isolated pixel looks like the shape 

shown in Figure 3.   

 

 

 

 

 

Figure 3  Potential function of an isolated pixel 
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Horizontal cross sections of the potential function correspond to equipotential 

rings and vertical cross sections correspond to the 2-dimensional double-sided 

1/r inverse function shape. 

 

2.3 Potential Energy Surface 

Now to find the total potential energy at a particular pixel location in the 

image, the scalar sum is taken of the values of the overlapping potential 

energy functions of all the image pixels at that precise location and is given by  
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This summation is then carried out at each image pixel location to generate the 

complete transformation, which is a smoothly varying surface due to the fact 

that the underlying potential functions have smooth surfaces.  The result of 

this process for the energy transform for an ear image is shown in Figure 4, 

where the same surface has been depicted from a variety of different 

perspectives below the lobe. 

 

 

 

 

 

 

 

Figure 4  Energy surface for an ear viewed from below the lobe 

 

2.4 Potential Wells and Channels 

The potential surface undulates, forming local peaks or maxima, with ridges 

leading into them. These peaks we will call potential energy wells since, by 

way of analogy, if the surface were to be inverted and water poured over it, the 
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peaks would correspond to small pockets where water would collect.  Notice 

that the highest of the three obvious peaks in Figure 4 has a ridge that slopes 

gently towards it from the smaller peak to its left.  This corresponds to a 

potential energy channel, because to extend the analogy, water that happened 

to find its way into its inverted form would gradually flow along the channel 

towards the peak.   

2.5 Dome Shape Explanation 

It will be noticed that the energy surface has an elongated dome shape, which 

is modulated by the channels and wells; it looks like a small mountain with a 

few peaks and ridges.  The reason for the dome shape can be easily understood 

by considering the case where the image has just one grey level throughout.  

In this situation, the energy field at the centre would have the greatest energy 

share because test pixels at that position would have the shortest average 

distance between themselves and all the other pixels, whereas test pixels at the 

edges would have the greatest average distance to all the other pixels, and 

therefore the least total energy imparted to them. Because the transform is 

linear the energy surface can be considered to be a sum of two components, 

corresponding to the mean value and variation of the image.  This is illustrated 

in Figure 5. 

 

                    

 (a)  Variational component        (b) Dome component                          (c) Composition 

Figure 5  Energy surface as a sum of components 

 

It is the mean value component that gives the energy surface its dome shape 

and the variational component that modulates this basic shape causing peaks 

+ = 



31 

 

 

 

and ridges.  The dome shape leads to automatic feature extraction, since by 

way of the water analogy once again, water when introduced at the edge of the 

dome shape would always flow towards the centre, finding its way into the 

channels on the way, and eventually ending up in one or other of the wells. 

2.6 Force as Gradient of Potential  

Associated with the scalar energy field there is a vector force field and the 

fields are related by the fact that the force at a given point is equal to the 

additive inverse of the gradient of the potential energy surface at that point.  

This relationship, shown in Equation 3, allows the force field to be easily 

calculated by differentiating the energy field, and allows some conclusions 

drawn about one field to be extended to the other.   

 

( ) )()()( rrrF EEgrad −∇=−=                               (3) 

 

The derivation of this equation can be found in [63] and [64]. 
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2.7 Force Field Transform Definition 

The force field can also be defined directly with its own set of equations.  The 

defining equations are more complicated than those of the energy field but the 

concept is more intuitive.  The image is transformed by treating the pixels as 

an array of N mutually attracting particles that act as the source of a Gaussian 

force field.  In a similar way to Newton’s Law of Universal Gravitation, the 

pixels are considered to attract each other according to the product of their 

intensities and inversely to the square of the distances between them.  Each 

pixel is assumed to generate a spherically symmetrical force field so that the 

force Fi(rj) exerted on a pixel of unit intensity at the pixel location with 

position vector rj by a remote pixel with position vector ri and pixel intensity 

P(ri) is given by 
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Figure 6  Force field calculation at the centre of a 3××3 pixel image 

 

The total force F(rj) exerted on a pixel of unit intensity at the pixel location 

with position vector rj is the vector sum of all the forces due to the other pixels 

in the image and is given by, 

∑ ∑
−

=

−

= 













−

−
==

1

0

1

0
3

)()()(
N

i

N

i
ji

ji
ijij P

rr

rr
rrFrF                            (5) 

F0(r4) 

F(r4) 

r0 

r4 

P(r0) P(r2) 

P(r5) 

P(r8) P(r7) P(r6) 

P(r1) 

P(r3) 



33 

 

 

 

This calculation is illustrated graphically in Figure 6 for the total force acting 

on a unit value test pixel at the centre of a simple 3×3 pixel image.  The actual 

pixel P(r4) is replaced with a unit value test pixel, which is depicted in white.  

The test pixel at the centre of the group is attracted by eight surrounding pixels 

whose forces are depicted by light arrows.  Pixel P(r8) exerts the greatest force 

as indicated by the longest arrow, whereas pixel P(r3) exerts the smallest force 

as indicated by the shortest arrow.  The total force acting on the test pixel is 

the vector sum of the forces exerted by the eight surrounding pixels and is 

depicted in the diagram by a heavy arrow.  In order to calculate the force field 

for the entire image, Equation 5 should be applied at every pixel position in 

the image.   

 

2.8 Force Field Transform Linearity 

It will now be shown that the force field transform is a linear transformation.  

One way of doing this is to show that the transformation has an equivalent 

matrix equation since linear transformations between finite-dimensional vector 

spaces are precisely those transformations that have a matrix representation 

[65,66,67].  It could also be argued that the transformation is linear since the 

force acting on a unit text pixel is defined as a vector summation, which is a 

linear operation.  However, the matrix representation provides further insight 

and may be used to investigate whether the transformation is invertible or not.

 The matrix representation of the transform will be found by 

considering the case of a simple 4-pixel image as depicted in Figure 7. 

 

 

 

 

 

 

Figure 7  Geometry of a simple 4-pixel image 

 

P0          P1 

 

 

P2          P3 

d30 
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Equation 5 is applied at each pixel location to determine the net force acting at 

each of those positions.  Here, the force acting at each location is the sum of 

the three forces exerted by the other three pixels.  For example the net force 

)( 0rF acting at the location of pixel P0 is given by, 

 

         )()()()( 3032021010 rdrdrdrF PPP ++=                            (6) 

 

where the coefficients dji correspond to the inverse square displacement 

vectors given by, 
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Now this sum can be expressed as the inner product of a row vector of inverse 

square displacement vectors, times a column vector of pixel intensities given 

by, 
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where the first element of the row vector is zero, to ensure that )( 0rP makes no 

contribution.   

Now the net force acting at each of the other three pixel positions can 

also be expressed as inner products and if their row vectors are stacked to form 

a matrix, the overall force field calculation can be expressed as a matrix 

equation as follows, 
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The leading diagonal of zeros reflects the fact that no pixel attracts itself.  This 

is a skew-symmetric matrix, of the form 

TAA −=      (10) 

where the skew symmetry is accounted for by the fact that we are dealing with 

a fully connected network but with a pair of equally weighted directed edges 

connecting every pair of nodes.  

 

 

 

 

Figure 8  Skew symmetry is due to mutual attraction between pixels 

 

It is easy to see that this reasoning can be applied to an image of any size and 

therefore it follows that the transformation is linear since it has a matrix 

representation.   

2.9 Potential Transform Linearity 

Because of the simple relationship of Equation 3, or by similar reasoning to 

that given in Section 2.8, the scalar potential energy transform is also a linear 

transformation.  The matrix representation of the transform corresponding to 

the case of the simple 4-pixel image is given by, 
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where the coefficients dji correspond to the inverse distance scalars given by, 

ij

jid
rr −

= 1
                                             (12) 

This is a symmetric matrix with a leading diagonal consisting entirely of zeros 

but the matrix elements are now scalars instead of vectors.   

)( jP r

 dij 

dji 

)( iP r  
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2.10   Force Field Computation by Convolution 

The matrix representation provides a useful insight into the nature of the 

transformation but would not be used in practice to calculate the force, as it 

would be very inefficient to say nothing of the storage requirements.  In 

practice the defining equations would be applied directly, or for even greater 

efficiency, the process can be treated as a convolution of the image with the 

force field corresponding to a unit value test pixel and then invoking the 

Convolution Theorem to perform the calculation as a multiplication in the 

frequency domain, the result of which is then transformed back into the space 

domain.  The force field equation for an M×N pixel image becomes 

 

)]()([1 imageforcefieldunitNMforcefield ℑ×ℑℑ×= −             (13) 

 

where ℑ  stands for the Fourier Transform and 1−ℑ  for its inverse.  The usual 

care must be taken to ensure that dimensions of the unit sample force field are 

twice those of the image dimensions and that sufficient zero padding is used to 

avoid aliasing effects. 

The Mathcad code fragment in Figure 9 shows the convolution method 

for computing the force field associated with an M×N pixel image. The overall 

strategy is to directly compute only the force field associated with a unit value 

test pixel and then to use this to calculate the field associated with each image 

pixel.  Simply scaling it by the pixel value and centring it on the pixel position 

achieves this.  The overall force field is then simply the sum of all the 

overlapping force fields.   

This calculation amounts to the convolution of a 2N-1 × 2M-1 unit 

value force field top-left aligned in a 3N-2 × 3M-2 field of zeros, with the 

image also top-left aligned in such a field. The Convolution Theorem is 

employed so that rather than actually performing convolution in the space 

domain, the calculation is handled as a multiplication in the frequency domain, 

and the answer transformed back into the space domain. 
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Lines 1 to 7 compute upf, the force field associated with a unit value test pixel 

placed in the centre of a 2N-1 × 2M-1 field of zeros. 

 

Line 8 pads upf with zeros so that it becomes located at the top left corner of a 

3N-2 × 3M-2 field of zeroes. 

 

Lines 9 and 10 place the image pic at the top left corner of a  3N-2 × 3M-2 

field of zeroes, inp. 

 

Line 11 performs the transform, multiply, and invert cycle in accordance with 

)]()([1 inpupfoup ℑ×ℑℑ= −MN where ℑ  stands for Fast Fourier Transform. 

 

Line 12 finally extracts the M×N required force field from the centre of the 

3N-2 × 3M-2 result. 

 

 

ff( )pic sr .2 ( )rows( )pic 1

sc .2 ( )cols ( )pic 1

r rows( )pic 1

c cols ( )pic 1

for

for

upf
,rr cc

( )r .c 1j ( )rr .cc 1j 0j

( )r .c 1j ( )rr .cc 1j 3

∈cc ..0 sc

∈rr ..0 sr

upf
,.3 rows( )pic 3 .3 cols( )pic 3

0

inp pic

inp
,.3 rows( )pic 3 .3 cols( )pic 3

0

oup ..rows( )inp cols ( )inp icfft ( ).cfft( )upf cfft( )inp

ff submatrix( ),,,,oup r .2 r c .2 c  

Figure 9  Force field by convolution in Mathcad 
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2.11   Invertibility 

The application of Equation 2 at each of the N pixel positions leads to a 

system of N equations in N unknowns.  Now if the N equations are linearly 

independent, then it follows that the system of equations can be solved for the 

pixel values, given the energy values.  In other words, the transform would be 

invertible.  It may not be so obvious why there should be a need to invert the 

transform, but invertibility is an important property in its own right, and worth 

investigating.  One useful advantage that accrues if the transform proves to be 

invertible is that the original image can be completely recovered from the 

energy surface, thus establishing that the transform is information preserving.   

2.11.1 Numerical Testing for Invertibility 

There are a number of different but equivalent tests that can be applied to 

determine whether or not the transform is invertible, or equivalently, if the 

corresponding representation matrix is invertible.  For a square matrix A the 

following statements are equivalent [67]: - 

 

1. The matrix A is invertible. 

2. The rows and columns of A are linearly independent. 

3. The determinant of A  is non-zero. 

4. All the eigenvalues of A are non-zero. 

5. AAΤ  is positive definite. 

 

We will only consider the question of the invertibility of the energy transforms 

and not of the force field transforms because the representation matrices for 

the force field transforms are skew symmetric, and all odd skew symmetric 

matrices are singular.  To see this for an N×N skew symmetric matrix, notice 

that 

( ) )det()1(det)det( AAA NT −=−=               (14) 

Now when N is odd, )det()det( AA −=  so that 0)det( =A , making A singular. 

Statement 2 says that the transform will be invertible if the system of N 

equations in N unknowns is linearly independent, which is what we have 
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already considered.    Now while it might not be a proof, it can at least be said 

that the rows of the matrix were derived independently in the sense that none 

was made up from a combination of the others; each of the equations was 

derived by the application of Equation 2 at its own unique pixel position. 

Statements 3 allows us to test numerically for the invertibility of the 

transforms corresponding to particular image sizes.  As an example, Figure 10 

demonstrates transform invertibility by showing that the energy transform 

representation matrix of a simple 2×2 pixel image can be inverted.  This is 

done by showing that the product of the matrix with its inverse yields the 

corresponding identity matrix. 
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Figure 10  Energy transform matrix inversion for 2××2 image 

 

Exploiting statement 3, a numerical test for invertibility can be carried out by 

constructing the appropriate matrix and computing the determinant.  If the 

determinant is non-zero the matrix is non-singular, and therefore invertible.  

All the determinants of matrices corresponding to the sequence of square 

images ranging from 2×2 pixels to 33×33 pixels have been computed and have 

been found to be non-zero. It has also been verified that all non-square image 

formats up to 7×8 pixels have associated non-singular matrices.  

Table 1 shows the determinants of the energy transform representation 

matrices corresponding to a sequence of square images ranging from 2×2 

pixels to 33×33 pixels illustrating that since these values are non-zero the 

associated matrices and hence the corresponding transforms are invertible.  

Table 2 shows the result for the matrices corresponding to the first 8 non-

square images, indicating that these also are invertible. Some of the values are 
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rather small, but well above the resolution of the arithmetic system used in 

their calculation. 

 

SIZE DETERMINANT  SIZE DETERMINANT 

2x2 

3x3 

4x4 

5x5 

6x6 

7x7 

8x8 

9x9 

10x10 

11x11 

12x12 

13x13 

14x14 

15x15 

16x16 

17x17 

-1.75 

0.7951 

0.3864 

-1.102 

0.4426 

0.1995 

0.0002739 

1.628 

0.4425 

-0.4079 

-0.00225 

0.8954 

-0.4363 

-1.465 

0.1187 

-0.00876 

 18X18 

19x19 

20x20 

21x21 

22x22 

23x23 

24x24 

25x25 

26x26 

27x27 

28x28 

29x29 

30x30 

31x31 

32x32 

33x33 

-0.00136 

-0.0008128 

0.09267 

-0.00569 

0.000561 

7.198e-006 

-0.03551 

0.05521 

7.446 

-4.993e-006 

-0.00442 

0.1265 

-1.364 

-0.4055 

-1.104e-008 

-0.00749 

Table 1  Determinants corresponding to the first 32 square images 

 

Table 2  Determinants corresponding to the first 8 non-square images 

ROWS 
 

1 2 3 4 5 6 7 

1 1 -1 1 -0.15972 -0.61227 0.64451 -0.06688 

2 -1 -1.75 0.1673 1.54061 0.28055 -1.35533 -0.75388 

3 1 0.1673 0.79512 -1.21593 -0.29127 -0.59947 -0.49042 

4 -0.15972 1.54061 -1.21593 0.38635 -1.30503 -0.29998 -0.61057 

5 -0.61227 0.28055 -0.29127 -1.30503 -1.10237 -0.03096 1.32986 

6 0.64451 -1.35533 -0.59947 -0.29998 -0.03096 0.44255 -0.03878 

7 -0.06688 -0.75388 -0.49042 -0.61057 1.32986 -0.03878 0.19951 

C 

O 

L 

U 

M 

N 

S 
8 -0.46868 0.9216 0.80471 -0.43568 0.25514 -0.0832 -0.08339 
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2.11.2 Condition Number and Invertibility 

In numerical analysis the condition number is a measure of the stability of a 

computational problem.  For example the relative condition number for the 

problem of evaluating the real function )(xf when a perturbation xx δ+  is 

introduced is given by the ratio of the relative changes in the function and the 

dependent variable as given by 

                 Relative Condition Number
x

x

xf

xfxxf δδ
)(

)()(
 

−+=              (16) 

A large condition number indicates that the problem is not well behaved when 

it is said to be ill-conditioned.  More generally the condition number of a 

linear system bAx =  is given in terms of the norm of the matrix A and its 

inverse, as given by      

Condition Number 1−×= AA    (17) 

A matrix is ill-conditioned if the condition number is too large, and singular if 

it is infinite.  If the condition number is one, the matrix is said to be perfectly 

conditioned. In practical terms if one row of a matrix is almost but not quite 

linearly dependent on another, then the matrix will be ill-conditioned.  For 

example using the function Cond(φ) based on the L1 norm we have 

  Cond 20
31

21
=








 

Cond 01.1207
01.21

21
=








     (18) 

Cond 001.12007
001.21

21
=








 

 

We see that the condition number grows larger as the second row becomes 

more linearly dependent on the first row.  In the limit the condition number 

tends to infinity, indicating a singular matrix.  Even though the condition 

number is defined in terms of the matrix inverse, it can be estimated without 

calculating the inverse and due to the inherent instability in calculating the 

determinant, should prove to be a better test for invertibility. 
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2.11.3 Invertibility Conclusions 

Notwithstanding questions of machine accuracy, these results suggest that the 

energy transform is indeed invertible for most image sizes and aspect ratios.  

Since the transform is invertible it may be concluded that the original image is 

in principle completely recoverable from the potential energy surface. This is 

an important result from an information theoretic point of view, because it 

implies that the transformed image conserves all the information contained in 

the original image.  Even if there are some particular combinations of aspect 

ratio and size that yield singular matrices, this should not detract from the 

overall conclusion that the transformation preserves information. 

 It would be nice to provide a general proof of invertibility based on the 

equivalent statements of invertibility, however such a proof has thus far 

remained elusive, and the search must be postponed to further work.  We must 

also remember that it simply may not be true that these matrices are invertible 

in general, and hence a proof will be impossible.  Of course, a proof to this 

effect would also be nice. 
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2.12   Invariant Properties 

For the approach to be of practical use, we require to show that the resulting 

force and energy fields are both illumination invariant and scale invariant.  By 

analysing noise sensitivity, we show that a major advantage of the technique is 

its considerable noise tolerance.  By the nature of the underlying equations, we 

can analyse the properties for the energy field and the results generalise 

naturally to force.  

 

2.12.1 Illumination Invariance 

Should the image intensity be scaled by a factor k then we have that 
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  (19)                

We see that scaling the image intensity does not alter the resulting force field 

distribution but, as expected, only scales the energy intensity by the same 

factor.  As such, the resulting force and potential fields are invariant under 

multiplicative changes in illumination.  

 

Similarly, change in overall brightness by addition gives 
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This suggests that addition of k brightness levels to each pixel results in an 

increment to the steepness of the dome shaped surface component shown in 

Figure 5(b). This will have the effect of a slight non-linear scale stretching of 

the feature distribution, but otherwise will preserve its form. 
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2.12.2 Scale Invariance 

Should the image size be scaled by a factor s  then we have that 
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We see that scaling the image distribution not only results in a scaled force 

field distribution but, as expected, larger distances imply weaker forces, as the 

denominator is proportional to scale. As such, the resulting force and potential 

fields are scale invariant. 

2.12.3 Noise Tolerance 

Next we seek to demonstrate tolerance to noise. Given that the image is 

corrupted by additive zero-mean Gaussian noise v , for field point jr we have 

that  
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We see that the resulting energy at field point jr has two terms, one is the 

uncorrupted energy and the other is the weighted summation of all the noise in 

the image.  However, the magnitude of the noise term with respect to the 

energy term is diminished due to the cancellation effect of zero-mean noise 

summation.  Thus the technique does enjoy very good noise tolerance, due to 

the powerful averaging inherent in the transformation. Note that non-zero 

mean noise can be considered as zero-mean noise with a deterministic offset, 

without loss of generality. 
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3 Force Field Feature Extraction 

The force field and energy field transforms have been defined and some of 

their properties analysed. They have been shown to be linear transformations 

and the energy transform has been shown to be invertible for a variety of 

image sizes and shapes, which leads us to the important conclusion that the 

transforms are information preserving.  The energy transform of an ear image 

takes the form of a smooth surface consisting of just a few wells with channels 

converging upon them.  Because the transform is information preserving, we 

know that this smooth surface contains all the information of the original 

image.  It is therefore argued that these channels and wells, since the surface is 

otherwise smooth, provide much of the descriptive information about the 

surface, and as such make good ear features. Therefore in this chapter we will 

show how the directional properties of the force field can be exploited to 

automatically locate these channels and wells, which will then form the basis 

of the new ear features. 

 Two distinct methods of force field feature extraction are presented, 

each with its own advantages and peculiarities.  The more intuitive of the two 

is an algorithmic approach based on field lines, where notional test pixels trace 

out field lines, which flow across the force field, discovering its structure in 

the form of channels and wells.  In this approach wells and channels appear to 

be distinct entities, and indeed in the preliminary stages of this research, it was 

hoped that wells alone would suffice as compact ear features.  However, this 

proved not to be the case and the reasons will be discussed. 

 The second method is an analytical approach, which resulted from an 

analysis of the field line approach.  The analysis revealed that the channels and 

wells correspond to ridges and peaks respectively in a mathematical function, 

showing that they are really separate manifestations of the same phenomenon.  

This function, which we call convergence, maps the force field to a scalar field 

where the output is the additive inverse of the divergence of the direction of 

the force field.  The convergence function provides a more comprehensive 

description than just channels and wells because it includes negative ridges 

and peaks, which we will refer to as antichannels and antiwells respectively. 
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Even though the force field magnitude is not used in locating the new features, 

the magnitude has interesting properties itself.  The force magnitude leads to a 

form of edge detection with powerful intrinsic smoothing, which we call 

homogeneous cancellation, and this will be described firstly before going on to 

describe feature extraction. 

 The concept of a unit value test pixel, which hitherto has only been 

used as a stationary field gauge of local energy and force, is now extended by 

allowing it to follow the direction of the force field, tracing out field lines, 

eventually forming channels and wells.  A simple force field due to a small 

white cross is demonstrated and the field due to a larger version of the same 

cross is used to illustrate field line formation of channels and wells.  

Field line feature extraction is demonstrated on ears and its advantages 

are considered.  The form and location of the field line features is shown to be 

independent of the choice of test pixel starting positions, and the channels are 

also shown to scale in proportion to the image size.  The features are shown to 

enjoy good noise tolerance due the high degree of intrinsic smoothing inherent 

in the transformation.  The uniqueness of the features for a variety of different 

ears is considered, where the difficulty of using just wells as a description will 

be illustrated.  How to actually compare channels and wells will be addressed 

in the next chapter on ear recognition. 
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3.1  Force Field Magnitude 

The new features rely only on the directional properties of the force field; they 

do not take account of the force magnitude.  This is because the exploratory 

test pixels, to be described in Section 3.2, always move in the direction of the 

local force, without regard to its magnitude.  However, the force magnitude 

clearly also contains information about the image, so it is appropriate to 

consider this before going further.   

Figure 11(b) shows the magnitude of a force field that has been 

generated from an ear image Figure 11(a). The result is still clearly 

recognisable as an ear, albeit an unusual one. The transformation appears to 

provide a remarkable degree of intrinsic smoothing and there also appears to 

be something akin to edge detection.  The latter is attributable to a process that 

we call homogeneous cancellation where local forces are highly symmetrical 

in areas of constant pixel intensity and so tend to cancel.  The inverse square 

nature of the field reduces the effect of forces away from the locality.  An 

imbalance of symmetry in areas of rapid intensity change results in net forces 

that cause peaks in the magnitude response.   

 

       Original image         Magnitude of force field          

(a)            (b) 

Figure 11  Force field magnitude for an ear image 
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Notice how this effect appears to result in a false groove, appearing as a dark 

band, along the length of the uppermost helix especially along the right hand 

side.  Whereas the original image shows solid flesh, the transformed image 

exhibits a form of edge detection so that the outer and inner edges sandwich a 

dark band between them.  Notice also that the two brightest spots in the 

original image of the ear to the left and right of the intertragic notch, just 

above the lobe, have become de-emphasised in the transformed image.  The 

outline of this notch is also clearly depicted as a result of the transformation. 
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3.2 Exploratory Test Pixels 

The concept of a unit value exploratory test pixel is introduced to assist with 

field line description. This idea is borrowed from Physics, where it is common 

to refer to unit value test particles when describing the Gaussian force fields 

associated with gravitational masses and electrostatic charges.  When such 

notional test pixels are placed in a force field and allowed to follow the field 

direction their trajectories are said to form field lines. When this process is 

carried out with many different starting points a set of field lines will be 

generated that capture the general flow of the force field. 

The test pixel positions are advanced in arbitrary increments of one 

unit of distance corresponding to a single pixel width, and test pixel locations 

are maintained as real numbers, producing a smoother trajectory than if they 

were constrained to occupy exact pixel grid locations.  This effect of quantised 

versus continuous test pixel direction of movement is illustrated in Figure 

12(a), which shows the effect of moving in only one of 8 possible directions, 

and in Figure 12(b), which shows the improvement in trajectory smoothness 

obtained if this restriction is removed.   

 

c
 

c2
 

Quantised   Continuous 

         (a)            (b) 

Figure 12  Effect of quantised versus continuous direction of test pixel movement 
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3.3 Field Lines 

Figure 13(a) shows the force field corresponding to a small white cross-shaped 

pattern of pixels on a black background, shown in Figure 13(b). This is an 

11×11 pixel image in which arrows depict the magnitude and direction of the 

forces at each of the 121 pixel positions in the image.  Careful examination 

reveals that there is no force associated with the centre pixel. This is because 

the symmetry of the shape causes all forces at the centre of the image to be 

cancelled. The length of each arrow is proportional to the magnitude of the 

force, although the magnitude of the force is not actually used for our purpose, 

whereas the arrows point in the force direction.  Notice that the forces align 

themselves along the field lines that in turn bend towards the arms of the cross 

where the pixels are located. 

 

 

 

 

 

 

 

 

                            Force field    White cross 

                                         (a)              (b) 

Figure 13  Force field due to a small white cross 
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3.4 Channel and Well Formation 

An important property of field lines is that they never cross, for the simple 

reason that the force vector at any point in the field is unique.   If two or more 

trajectories should happen to arrive at the same pixel location they will follow 

the same trajectory from that point onwards.  As other trajectories meet this 

path then they will also follow it thus forming potential energy channels.   

Now the force acting at any point in a force field is proportional to the 

gradient of the energy surface at that point; hence there is no force acting at 

the bottom of a potential well, since the gradient at that point is flat.  Now the 

surface surrounding a well slopes towards the bottom, so that all the field lines 

surrounding a well will all lead to the bottom.  Thus a test pixel placed in a 

potential well will always work its way towards the bottom of the well, where 

it will be trapped and cannot escape.  For this reason all the field lines will 

eventually terminate in one or other of the wells on an energy surface. 

Channel and well formation is illustrated using a larger scale version of 

the image of a white cross on a black background; Figure 14(a) shows the 

image of the cross.  Four channels can be seen forming along the arms of the 

cross, where Figure 14(b) shows the process at an early stage of formation and 

Figure 14(c) and (d) show an intermediate stage and the completed process.  In 

this example, we see that every field line terminates in a single well at the 

centre of the force field.  All but four of the field lines arrive at the well via 

one or other of the four channels.  The field lines that arrive directly are those 

that start from the midpoints of the sides of the square and whose lateral forces 

cancel due to symmetry. 

 

             

        White cross                                         Potential channel and well formation 

  (a)                       (b)            (c)               (d) 

Figure 14  Formation of potential channels and wells for a cross shaped image 
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3.5 Channel and Well Formation for an Ear 

Figure 15 demonstrates the field line approach to feature extraction for an ear 

image.  A set of 50 test pixels has been arranged in an ellipse shaped array 

around the ear, and then iterated to generate a set of field lines.  Even though 

the associated energy surface, shown in Figure 4, indicates the presence of 

three wells and one channel, it can be seen that field lines are more sensitive 

and have extracted four wells whose positions are indicated in Figure 15(c).  

The well locations have been extracted by observing clustering of test pixel 

co-ordinates so that Figure 15(c) is simply obtained by plotting the terminal 

positions of all the co-ordinates.  Notice how field lines flow into channels and 

continue onwards until they terminate in wells.  See how fourteen field lines 

cross the upper helix, and how each line joins a common channel that follows 

the curvature of the helix rightwards, finally terminating in a well. 

 

 

 

 

 

 

 

 

 

 

 

           Array of test pixels       Field lines, channels, and wells          Well positions 

           (a)     (b)         (c) 

Figure 15  Field line, channel, and well formation for an ear. 

 

Two isolated field lines flow in parallel from the left edge of the image to 

form a short channel terminating in a well at the left-centre of the ear. Thirteen  

field lines flow from the bottom left of the image to form a well at the bottom 

of the ear. The uppermost three of these field lines form a channel leading to 

the well, whereas the other ten flow directly into the well.  This is in contrast 
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with the well at the top of the image, which has a clearly defined channel that 

follows the curvature of the upper rim of the ear.  Twenty-two field lines flow 

from the right-hand side of the image to form the one remaining well at the 

right-centre of the ear. 
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3.6 Invariance Measures 

To assess the results of tests for initialisaton invariance and scale invariance, 

we shall use a measure of the normalised standard deviation of the distance 

between well positions, Nsdist.  The distance between every pair of wells is 

calculated from the well vector coordinates, and then the standard deviation of 

the distances is divided by the mean distance, thus ensuring a scale invariant 

and rotation invariant measure.  Figure 16 shows how the distances between 

all wells have been plotted and also shows the extracted and ordered distances 

as a bar graph in the top left corner.   

 

 

       (a)    (b) 

Figure 16  Inter-well distances as the basis of an invariance measure 

 

For W wells with D inter-well distances idist , we have: - 
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Id:10a  Nsdist = 0.306 
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3.7 Initialisation Invariance 

Figure 17 demonstrates initialisation invariance.  As in Figure 15 a set of 50 

test pixels has been arranged in an ellipse shaped array and iterated to generate 

a set of field lines. To demonstrate initialisation invariance the centre of the 

ellipse has been displaced upwards in Figure 17(a), and downwards in Figure 

17(b), whereas Figure 17(c) shows an initialisation along the edges of the 

image at intervals of 10 pixels.  It can be seen that the force field structure is 

essentially preserved across the three images and that the location of the 

potential wells is the same in each case.  This result is hardly surprising since 

the force field is not altered merely because we choose to enter it at different 

locations.   

 

 

                 High initialisation     Low initialisation             Edge initialisation 

                             (a)                  (b)                               (c) 

Figure 17  Initialisation invariance for 261××170 pixel ear image 

Id:10a  Nsdist = 0.297 Id:10a  Nsdist = 0.300 Id:10a  Nsdist = 0.306 
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It can be seen that it is a matter of chance whether the ellipse starting points 

happen to coincide with one of the edge initialised field lines. This can be seen 

in Figure 17(b), where the left hand well is formed from three field lines as 

opposed to two for the other initialisations.  Clearly the result could vary with 

the number of ellipse points, especially if the number were chosen to be very 

small, where wells naturally would be omitted as no field lines would find 

them.  This suggests simply that the number of initialisation points should be 

sufficiently large and sufficiently widely distributed so as to ensure that all 

wells will be extracted.  The algorithm could perhaps be refined to use a 

regular grid of closely spaced initialisation points, perhaps eliminating one of 

each pair of test pixels when they come within a predefined region of 

convergence. 

 This demonstration also illustrates that the ear features can be extracted 

without the need for explicit ear extraction.  Provided that the ear is roughly in 

the middle of the image, we see that the field lines will always seek out the 

same set of channels and wells.  This can be attributed to the centric property 

of the force field, which derives from the dome shape of the energy field.  The 

centric property comes at a cost, as it tends to de-emphasise details away from 

the centre towards the edge of the image.  The reason for this is that the slope 

of the dome is steepest near the edge of the image and therefore the force is 

stronger there, and tends to pull test pixels across regions, which might 

otherwise form channels if the force were not so strong there.  This aspect will 

be discussed in greater detail in the section on further work. 



57 

 

 

 

3.8 Scale Invariance 

Figure 18 demonstrates scale invariance.  The image in Figure 18(a) is at a 

resolution of 261×170 pixels and this is down scaled in the ratio of 3.4:2:1 so 

that Figure 18(b) has a resolution of 154 × 100 pixels and Figure 18(c) has a 

resolution of 77 × 50 pixels.  It can be seen that the structure of the force field 

is essentially preserved when an image is captured and transformed at lower 

resolution.  This is an important result because it confirms that scale space 

techniques can be employed so that a low-resolution image could be used to 

locate a target’s position and a higher resolution version could then be used to 

refine feature information.   

 

 

 (a) 261××170 

 

                      (b) 154××100                            (c) 77××50  

Figure 18  Scale invariance.  Image ratios (a):(b):(c) :: 3.4:2:1 

Id:10a  Nsdist = 0.306 

Id:10a  Nsdist = 0.314 Id:10a  Nsdist = 0.31 
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3.9 Noise Tolerance 

Noise tolerance is demonstrated in Figure 19 where noise has been modeled as 

additive with a zero mean Gaussian distribution.  It can be seen that the force 

field structure is very tolerant in the presence of severe noise.  

 

 

Figure 19  Zero mean Gaussian noise tolerance 

 

Figure 19(a) has no added noise but is included for comparison.  Figure 19(b) 

has a signal to noise (S/N) ratio (calculated as 20log10(S/N)) of 40dB and 

appears to be unaffected, but careful examination shows that the well on the 

(b)  40dB  Nsdist = 0.304 (a)  None  Nsdist = 0.304 

(c)  30dB  Nsdist = 0.296 (d)  20dB  Nsdist = 0.379 

(e)  10dB  Nsdist = 0.51 (f)  0dB  Nsdist = 0.555 
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left centre of the image now has four field lines converging upon it instead of 

three lines in the uncontaminated image.  Figure 19(c) with 30dB S/N appears 

to be exactly the same as Figure 19(b), but interestingly the Nsdist measure 

has altered slightly from 0.304 to 0.296, indicating some slight shifting of well 

positions.  In Figure 19(d), which has 20dB S/N, we now see that the channel 

running along the upper helix has disintegrated resulting in two wells instead 

of one.  Figure 19(e) has 10dB S/N where we see that the wells have now 

become more chaotic but the channels are still quite recognisable.  Figure 

19(f) has 0dB S/N and we see that the wells have become really degenerate 

and also that the channels are beginning to look rather ragged, but are still 

surprisingly recognisable.   

This confirms that the new technique has excellent noise tolerance, in 

accordance with the earlier observation that the transformation has intrinsic 

smoothing properties, and it is easy to see that even with very severe noise, a 

cleanup algorithm could be used to extract the channel information. This result 

can be viewed as quite significant because noise is a major problem in image 

processing especially when differential techniques are employed.  

 

3.10  Uniqueness of Channels and Wells 

Figure 20 demonstrates force field feature extraction for a set of eight different 

ears (i.e. eight more subjects), indicating that the channel descriptions are rich 

and varied, but we also see here the reason why wells alone will not suffice as 

compact ear descriptors. These ears all differ from the ear of the previous 

subject since its value of Nsdist was within 0.296-0.314 for scaling, 

initialisation, and S/N greater than 30 dB. As such, that ear would not be 

confused with these eight different subjects. However, ears of subjects id:14 

and id:15 both have the same value for Nsdist and as such would be confused. 

This is the difficulty associated with discriminating with a scalar. But this 

scalar has sufficed for our purpose here. 
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Figure 20  Uniqueness of wells and channels as ear features 

 

The reason that wells are degenerate is twofold; their number is quite often 

insufficient for classification, and some are so close together that they could 

easily be absorbed as one.  As shown in Figure 20(id:3), (id:6), (id:11), 

(id:15), and (id:18) most of the images have only produced three wells, which 

is barely enough for classification.  In Figure 20(id:15) the three wells are very 

id:3   Nsdist = 0.193 id:6   Nsdist = 0.121 

 

id:15  Nsdist = 0.355 

 

id:11  Nsdist = 0.363 

 

id:14  Nsdist = 0.355 

 

id:16  Nsdist = 0.582 

 

id:17  Nsdist = 0.485 

 

id:18  Nsdist = 0.333 
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close together, and the one in the middle has only two field lines leading to it.  

This well could easily merge with the right hand well, which would result in 

only two wells, clearly inadequate for classification.  We also note that the 

triangle formed by these three wells, although very different in size, is quite 

similar to the triangle shown in Figure 20(id:11), and this is confirmed by the 

close agreement of their Nsdist measures of 0.355 and 0.363 respectively.  The 

triangle formed by the three wells in Figure 20(id:18) with Nsdist = 0.333 is to 

a lesser extent similar to both of them. 

 On the other hand the channels provide a much more varied and rich 

description that looks far more promising as a biometric.  Notice that in all 

cases that channels form along the upper helix and also along the antihelix, 

although the line of the antihelix is not rigidly followed, especially towards the 

bottom, where the antihelix joins the intertragic notch.  In this small region, 

channel formation appears to behave with medial axis properties; its course 

being influenced both by the corner of the notch and the helix to the left.  This 

property would go some way towards answering a potential criticism that the 

field lines seem to ignore the helix at the lower left of the ear.  Indeed this 

medial axis property tends to dominate in regions where there are no strong 

edges or sometimes between edges.  This is quite noticeable in Figure 

20(id:11) and (id:17) where channel formation can be observed just under and 

to the left of the intertragic notch, where both of these ears have very weak 

lobes. 

 Whilst we have rejected the wells as a direct form of a compact ear 

biometric, we must not dismiss them completely, as they are so central to the 

channel formation process.  It may also be the case that if force field feature 

extraction is applied to general object recognition, that wells may play a more 

stable and important role. 
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3.11  Convergence Feature Extraction 

Here we introduce the analytical method of feature extraction as opposed to 

the field line method.  This method came about as a result of analysing in 

detail the mechanism of field line extraction. As shown in Figure 22(c), when 

the arrows usually used to depict a force field are replaced with unit 

magnitude arrows, thus modeling the directional behaviour of exploratory test 

pixels, it becomes apparent that channels and wells arise as a result of patterns 

of arrows converging towards each other, at the interfaces between regions of 

almost uniform force direction.  As the divergence operator of vector calculus 

measures precisely the opposite of this effect, it was natural to investigate the 

nature of any relationship that might exist between channels and wells and this 

operator.  This resulted in the discovery of not only a close correspondence 

between the two, but also showed that divergence provided extra information 

corresponding to the interfaces between diverging arrows. 

The concept of the divergence of a vector field will first be explained, 

and then used to define the new function. The function’s properties are then 

analysed in some detail, and the close correspondence between the two forms 

of feature extraction is ill ustrated by superimposing one on the other. 

The divergence of a vector field is a differential operator that produces 

a scalar field representing the net outward flux density at each point in the 

field.  For the vector force field )(rF  it is defined as, 

( )
V

d

V ∆

⋅
= ∫
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where Sd is the outward normal to a closed surface S enclosing an incremental 

volume V∆ .  In two-dimensional Cartesian coordinates it may be expressed as 

follows [63,64], 
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Figure 21 illustrates the concept of divergence graphically.  In Figure 21(a) we 

see an example of positive divergence where the arrows flow outwards from 

the centre, and in Figure 21(b) we see negative divergence, where the arrows 

flow inwards, whereas in Figure 21(c) there is no divergence because all the 

arrows are parallel. 

 

 

  

 

 

 

 

 

   (a)            (b)             (c)  

              Positive divergence                   Negative divergence               Zero divergence 

Figure 21  Divergence of a vector field 

 

Having defined divergence we may now use it to define convergence feature 

extraction.  Convergence provides a more general description of channels and 

wells in the form of a mathematical function in which wells and channels are 

revealed to be peaks and ridges respectively in the function value.  The new 

function maps the force field to a scalar field, taking the force as input and 

returning the additive inverse of the divergence of the force direction.  The 

function will be referred to as the force direction convergence field C(r) or 

just convergence for brevity.  A more formal definition is given by 
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                       A∆  is incremental area  

                      ld  is the incremental boundary of A∆  

This function is real valued and takes negative values as well as positive ones 
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where negative values correspond to force direction divergence. Figure 22(b) 

shows an example of the convergence field for an ear, with the corresponding 

field line description shown in Figure 22(a), and a magnified portion of the 

force direction field shown in Figure 22(c).  Small rectangular inserts drawn 

on the field line and convergence images indicate the portion that has been 

magnified.  In Figure 22(b) the convergence values have been adjusted to fall 

within the range 0 to 255, so that negative convergence values corresponding 

to antichannels appear as dark bands, and positive values corresponding to 

channels appear as white bands.  Notice that the antichannels are dominated 

by the channels, and that the antichannels tend to lie within the confines of the 

channels.  Also notice how wells appear as bright white spots. 

The detailed relationship between the convergence function and the 

channels and wells can be clearly seen by observing the patterns in the force 

direction field shown in Figure 22(c).  Notice how a white ridge in the insert 

convergence field running from the top centre to bottom left of the insert 

corresponds to a line of converging arrows in the force direction field.  Closer 

scrutiny of the two figures reveals that there are in fact three channels leading 

to a single well.  The arrows from the top converge downwards and inwards 

forming the upper vertical channel.  Arrows from the right converge leftwards 

and inwards to form a horizontal channel while the arrows from the bottom 

converge upwards and inwards forming the bottom vertical channel.  These 

three channels then meet forming a well with the arrows pointing everywhere 

inwards.  Also, clearly visible in the bottom right quadrant of the insert is a 

ridge of negative convergence that shows up as a black line.  We can see that 

the corresponding arrows in Figure 22(c) clearly diverging. 

It is evident that the convergence map provides more information than 

the field line implementation, in the form of negative versions of wells and 

channels or antiwells and antichannels, although it may be possible to modify 

the field line technique to extract this extra information.  Also, notice that the 

two channels leading upwards and rightwards from the well in the insert are 

not extracted by the field lines because of the shielding effect of the strong 

channel running along the top of the ear.  This illustrates another advantage of 

convergence over field lines. 
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           Field line features    Convergence map           Magnified insert force field   

        (a)                           (b)          (c)  

Figure 22  Convergence field 

Figure 23 shows the convergence field of an ear with the corresponding field 

lines superimposed.  Figure 23(a) is the field line map, and Figure 23(b) is the 

convergence map, while Figure 23(c) is the superposition of one on the other.  

We can see clearly how channels coincide with the ridges in the convergence 

map and that potential wells coincide with the convergence peaks.  Notice the 

extra information in the centre of the convergence map that is not in the field 

line map, again illustrating the advantage of convergence over field lines. 

 

   Field lines     Convergence map   Superposition of (a) on (b) 

          (a)                  (b)           (c) 

Figure 23  Correspondence between channels and convergence 
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3.12  Convergence and Marr-Hildredth 

There is a striking resemblance between the form of the convergence function 

and the Marr-Hildredth edge detection operator [17].  The Marr-Hildredth 

operator takes the divergence of the gradient of a Gaussian smoothed image 

whereas the convergence operator takes additive inverse of the divergence of 

the direction of the gradient of the energy transform of the image.  The energy 

transformation can be viewed as smoothing the image with an inverse function 

1/r shaped kernel instead of a bell shaped Gaussian kernel.  The difference is 

therefore in the form of smoothing used but more importantly using gradient 

direction rather than gradient for the convergence function, thus making it a 

non-linear operator. 

 

Analytically the Marr-Hildredth operator is given by 
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Compare this with the convergence operator given by 
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where                   ( ))(*)()( rrrg IGgrad=                                                    (31) 

                 )(rI is the original image. 

and                       
2
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r

r
−

= eG is a Gaussian kernel. 

 

We are not suggesting that convergence competes with the Marr-Hildredth 

operator, or even that it accrues any advantage from its similarity of form.  We 

merely observe that we notice the similarity and find it interesting.  The kernel 

used by Marr-Hildredth is optimal in Gaussian noise whereas the inverse 1/r 

kernel is an artifact of its force field nature, and the intrinsic smoothing it 

affords is merely a fortunate consequence of its formulation. 
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3.13  Convergence and Curvature 

The shape operator S of a surface M in 3ℜ [22] measures the rate of change 

of a unit normal U in any direction on M and thus describes the way the shape 

of M is changing in that direction.  If p is a point on M, then for each tangent 

vector v to M at p, let 

US vp −∇=)(v     (32) 

where U is a normal vector field on a neighbourhood of p in M, then Sp is 

called the shape operator of M at p derived from U.  The shape operator is a 

linear operator on the tangent plane of M at p.   

The number uuu ⋅= )()( Sk  is called the normal curvature of M in 

the u direction, where u is a unit vector tangent to M at point p. The maximum 

and minimum values of the normal curvature k(u) of M at p are called the 

principal curvatures of M at p, and are denoted by k1 and k2 respectively.  

The directions in which these extreme values occur are called principal 

directions and unit vectors in these directions are called principal vectors.  

Provided normal curvature is not constant then the two principal directions are 

orthogonal, and the principal curvatures are the eigenvalues of S and the 

principal vectors are the eigenvectors of S. 

The Gaussian curvature K is the determinant of the shape operator S   

and mean curvature H is half the trace of S.  Gaussian and mean curvatures 

can be expressed in terms of principal curvature by 

K = k1k2     and     H = (k1+ k2)/2   (33) 

The mean curvature H can be identified with the Laplacian Ixx+Iyy of an image 

function I(x,y), and therefore confirms that the Marr-Hildredth operator, 

otherwise known as the LoG operator (Laplacian of Gaussian) is essentially 

based on image curvature.  However, it must be emphasised that this does not 

equally apply to the convergence operator because this is a non-linear operator 

due to the fact that it is based on the direction of the force rather than the force 

itself. 



68 

 

 

 

4  Ear Recognition 

It is useful to review intermediate results and conclusions at this stage before 

proceeding with the task of ear recognition.  We have developed dual force 

field and potential energy transforms, which enable us to transform an image, 

with powerful intrinsic smoothing but without loss of information, into a 

smooth dome shaped energy surface.  In a similar manner to the popular 

gradient descent algorithm, we can initialise a distribution of exploratory test 

pixels and allow them to traverse the surface gradient until they eventually 

become trapped in a small number of energy wells, forming energy channels 

along the way.  Since these channels and wells dominate the character of the 

otherwise smooth energy surface, we argue that they should make good ear 

features.  Scale invariance, initialisation invariance and noise tolerance have 

been confirmed.  Provided the ear is roughly centred in the image, explicit ear 

extraction is not required, due to the powerful autocentring property 

attributable to the steep sides of the dome shaped surface. 

 An analytic dual of the force field approach has been developed where 

we see that wells and channels are really different manifestations of the same 

phenomenon; they are just peaks and ridges in the value of the convergence 

function.  This approach gives a more comprehensive description in the form 

of antichannels and antiwells, and also extracts information that may have 

been shielded by powerful channels in the field line case.  We will also see in 

this section that with the analytic version we can calculate a centroid whose 

position is fairly stable relative to the features.  The stability of the centroid 

may also be attributed to the dome shape, which tends to exclude outlying 

data.   

The early hope of using just wells as a compact description did not live 

up to its expectation and the richer but more complicated description provided 

by the channels will be used instead.  The problem of comparing ears has been 

reduced to one of comparing channels.  This should be easier than comparing 

ears directly but it is still not a trivial task.  Certainly the dimensionality of the 

channel description is considerably less than that of the original image.  Figure 

24 shows a synthetic image whose principal field lines have been identified, 
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where these could be defined as the field lines that make the most contribution 

to a given channel.  Assuming that a way can be found of easily extracting 

such lines they will still need to be compared.  Perhaps techniques derived 

from differential geometry, which deals with the geometry of curves and 

surfaces, could be exploited to describe the form of the channels [22].  Perhaps 

contour description techniques could be used to describe and compare the 

channels, although it might not be as easy as describing and comparing just 

simple closed contours [68,69].  Principal field lines would appear to offer a 

ready made list of points and directions to facilitate contour descriptions, 

while the convergence approach would require thresholding, thinning, and 

differentiation to extract the same information.  

 

             

          Image          Force magnitude     Convergence          Field lines         Principal lines 

              (a)   (b)     (c)     (d)       (e) 

Figure 24  Principal field lines  

 

Considerations along these lines make it clear that the evaluation of the ability 

of the technique for recognition is very much at the mercy of the method 

chosen to compare channels.  There is no guarantee that the method chosen 

will be the optimal one.  A given technique can at best only establish a lower 

bound on the recognition capability.  For this reason a lower bound on the 

validity of the technique is established by using just basic template matching 

of binarised and thresholded convergence functions, and implemented using 

Fourier cross-correlation techniques.  This approach is not invariant to scale 

and rotation but should nevertheless establish a useful lower bound.  More 

sophisticated techniques will be left for discussion in the chapter on further 

work.  Also, to establish a reference baseline, the same template matching 

technique is applied to the database using binarised and thresholded edge 

detection. 
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4.1 Ear Database 

In order to create a suitable database of experimental ear images the XM2VTS 

face profiles database [28] was chosen, from which 63 subjects were selected 

as being suitable candidates for ear recognition by eliminating those whose 

ears were covered by hair.  The ear database thus consists of 4 samples of each 

of 63 subjects that were captured during 4 sessions over a 5-month period thus 

ensuring excellent natural intra-class variation.  Diffuse lighting was used 

during image capture.  The ear images extracted are at a resolution of 141×101 

pixels, which is a suitable resolution to evaluate the new technique.  Table 7, 

Appendix A4 lists the identification numbers of the subjects selected from the 

XM2VTS database. 

Figure 25 and Figure 26 show how the first two subjects, with the 

XM2VTS identification numbers 000 and 001, have been processed to extract 

the convergence maps.  The original colour profiles were converted to grey 

scale (a) and a 141×101 pixel frame was manually adjusted to surround the ear 

portion and crop the ear images (b).  The force field transforms of the ear 

images were taken, and force field magnitudes calculated (c).  Test pixels were 

arranged around the edge of the force field, at intervals of 10 pixels, and 

iterated to extract field line features (d).  Finally the force fields were 

converted to convergence fields (e). Note that the second subject shown in 

Figure 26 actually changes hair colour, not just shade, during database 

acquisition.  This does not affect the structure of the force field or its 

convergence, as expected. 
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(a) 

(b) 

(c) 

(d) 

 

(e) 

  000-1-L1     000-2-L1     000-3-L1     000-4-L1 

                (a) Profile   (b) Ear   (c) Force magnitude   (d) Field lines   (e) Convergence field  

Figure 25  Feature extraction for subject 000 
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(a) 

(b) 

(c) 

(d) 

 

(e) 

   001-1-L1     001-2-L1    001-3-L1     001-4-L1 

                (a) Profile   (b) Ear   (c) Force magnitude   (d) Field lines   (e) Convergence field 

Figure 26  Feature extraction on subject 001 
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4.2 Template Matching 

This section covers the results of ear recognition experiments on the subset of 

the XM2VTS database.  The aim is to validate the technique by using simple 

template matching to establish a lower bound on the recognition capability.  

Template matching is implemented using Fourier based cross-correlation on 

thresholded and binarised convergence functions.  Thresholding is not only in 

terms of the convergence level but also in terms of a radial exclusion zone 

centred on the convergence centroid shown in Figure 27(b).  The centroid of 

the convergence tends to be stable with respect to the ear features, and this 

property was exploited to offset the lack of rotation invariance in template 

matching by adding the ability to rotate the templates about their centorids 

during matching.  The radial exclusion zone as well as removing unwanted 

outliers such as bright spots caused by spectacles, also results in circular 

templates, which are more suitable for rotation matching.  

 
 

 

 Convergence   Centroid exclusion zone    Binarisation 

 (a)     (b)      (c) 

Figure 27  Binarised thresholded convergence function 

 
Figure 27 shows how the convergence functions are thresholded and binarised 

before Fourier cross-correlation is performed.  First the convergence map is 

thresholded by setting to zero all values with magnitude less than two standard 

deviations, and then binarising the magnitude of the result.  This threshold 

value was chosen experimentally to obtain the template channel thickness 

shown in Figure 27(c), which was felt to be a good compromise for template 

matching.  Figure 27(a) shows the convergence map before further processing 

has been applied, and Figure 27(b) shows where the centroid has been 
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calculated and used to establish an exclusion zone of 30 pixels.  Figure 27(c) 

shows where the result has been binarised resulting in a circular template of 

radius 30 pixels.   

In order to further facilitate the correlation process the thresholded and 

binarised convergence functions are uniformly aligned in 60-pixel × 60-pixel 

frames. This is achieved by translating each one so that its centroid now lies at 

the centre of the new frame.  The results for the first 8 subjects are shown in 

Figure 28 and the results for the remainder of the subject population are shown 

in Appendix A3. These results also confirm the stability of the centroids with 

respect to the features, since visual inspection of the results confirm that all the 

templates are correctly aligned in the middle of their frames.  If a particular 

centroid were unstable, then the corresponding template would appear offset. 

 
 

 
000-1        000-2         000-3         000-4 

 
001-1        001-2        001-3        001-4 

 
004-1        004-2         004-3         004-4 

 
008-1        008-2         008-3         008-4 

 
010-1        010-2         010-3         010-4 

 
012-1        012-2         012-3         012-4 

 
016-1        016-2         016-3         016-4 

 
019-1        019-2         019-3         019-4 

Figure 28  A selection of binarised and thresholded convergence functions 

 



75 

 

 

 

4.3 Classification Results 

The binarised convergence maps were exhaustively cross-correlated to yield a 

252×252 element array of cross-correlations.  The matrix of correlations is too 

large to be displayed directly, but can be illustrated graphically by displaying 

it as a grey scale image.  The template rotation referred to in Section 4.2 was 

not used in practice, owing to time constraints. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29  Cross-correlation matrix depicted as a grey scale image 

 

This is shown in Figure 29, where each row represents the cross-correlation of 

one subject sample against all the other others.  The bright squares along the 

main diagonal correspond to intra-class correlation values and all pixels 

outside these 4×4 pixel squares correspond to inter-class correlation values.   

The pixels corresponding to self-correlations, occurring precisely along the 

main diagonal, have been set to zero, as they supply no useful information.  

The fact that some rows are either darker or brighter than others is thought to 

reflect the fact that the corresponding ears have either far from or close to 

average ear shape where the average is based on the XM2VTS subset.  

This method can be taken further, to illustrate nearest neighbour 

classification, as shown in Figure 30.  The position corresponding to the 

highest value in each row is assigned a white pixel while all the others are set 

ID   000-1                     Subject                      371-4 
000-1 

 
 
 
 
 
 

Subject 
 
 
 
 
 
 
 

371-4 
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to black.  The self-correlations along the main diagonal are excluded, as they 

must obviously yield the highest value for each row.  As expected most of the 

white pixels lie within a 4×4 pixel square centred on this main diagonal 

indicating correct nearest neighbour classification.  White pixels lying outside 

these squares indicate incorrect classifications.   

 

 
 

Figure 30  Nearest neighbour classification matrix

  

 

Out of the 252 trials 230 have been correctly classified corresponding to a rate 

of 91.3%.  Very careful scrutiny of Figure 30 reveals that there are actually 

258 white pixels instead of just 252.  This occurs because six of the trials 

return pairs of identical maximum values, which occurs as a consequence of 

binarisation of convergence values.  This information has been summarised in 

Table 3, where we see that rows 4, 58, and 84 have pairs of identical values in 

their correct squares, whereas rows 52 and 215 have one of a pair of identical 

values in the correct square, and row 69 has a pair both outside the correct 

square. 

Row 4 52 58 69 84 215 

5 53 56 221 86 75 
Columns 

7 244 57 223 87 214 

 

Table 3  Summary of trials resulting in pairs of identical maximum correlation values 

 

ID   000-1             Nearest neighbour            371-4 
000-1 
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4.4 Statistical Analysis of Results 

The mean and standard deviation of the intra-class and inter-class correlations 

give a good indication of the nature of the results.  Table 4 shows these 

statistics.  Note that self-correlations that occur along the main diagonal of the 

cross-correlation matrix have been excluded from the calculations. 

 
Intra-class Inter-class 

Mean Std. deviation Mean Std. deviation 
221 51 138 25 

Table 4  Statistics for intra-class and inter-class convergence correlations 

 
Using these results we may compute the decidablity index after Daugman 

[70].  The decidabili ty index 'd  measures how well separated the distributions 

are, since recognition errors are caused by their overlap. The measure aims to 

give the highest scores to distributions with the widest separation between 

means, and smallest standard deviations.  If the two means are 1µ and 2µ  and 

the two standard deviations are 1σ  and 2σ  then 'd  is defined as 

( ) 2/
'

2
2

2
1

21

σσ

µµ

+

−
=d                                              (34) 

 

Substituting the mean and standard deviation from Table 4, we have 

 

            ( ) 1.2
2/2551

138221
'

22
=

+

−
=d                                          (35) 
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Figure 31 shows the frequency distributions for the intra-class and inter-class 

correlations.  Normal distributions corresponding to their respective means 

and standard deviations have been fitted, suggesting that they might be 

normally distributed.  The cross-correlation axes have been divided into 40 

intervals, between minimum and maximum values, resulting in 40 bins or 

columns.  
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Figure 31  Normal distribution fitted to frequency distribution of cross-correlations

 

 
Since the frequency distributions are shown to be normally distributed, we can 

normalise them and form probability density functions as shown in Figure 32. 
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Figure 32  Probability density functions of intra-class and inter-class correlations 

 

The area of intersection formed between the two distributions, compared with 

the areas of the distributions themselves, gives an indication of the probability 

of misclassification.  The classification threshold can be set to a value in this 



79 

 

 

 

region according to the chosen security policy.  A high threshold corresponds 

to a conservative policy, whereas a low value threshold corresponds to a 

liberal policy. 

Finally, the probability density functions can be combined to produce a 

receiver operator characteristic as shown in Figure 33.  This type of graph 

aims to directly show the tradeoffs involved when adjusting the classification 

threshold, although it does not usually show the threshold value itself.  In this 

particular case equal FRR and FAR error rates of 13.5% are predicted at a 

threshold setting of 165. 
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Figure 33  Receiver operator characteristic 

 

 

 EER = 13.5% @ 165 
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4.5  Edge Detection Template Matching 

In order to provide a baseline with which to compare the force field results, 

the same template matching technique has been applied to the ear database, 

but now using simple edge detection without smoothing, rather than binarised 

and thresholded convergence maps.  The edge detected images have been 

thresholded by setting to zero all those edge values that are less than two 

standard deviations.  The thresholded results are then binarised before doing 

template matching in the form of Fourier cross-correlation.  Figure 34 shows a 

sample of the results for the edge detection process. Notice that hair prevents 

definition of a bounding region, confirming the inherent smoothing advantage 

in the new approach, which is not troubled by hair. 

 

pic

 

000-1-L1     000-2-L1     000-3-L1     000-4-L1 

Figure 34  Sample of results of thresholded and binarised edge detection  

 

 

The mean and standard deviation of the intra-class and inter-class correlations 

are shown in Table 5 where we notice that the correlation values are roughly 

three times the magnitude of those obtained with the convergence functions, 

this being due to the greater area of edge detection templates. 
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Intra-class Inter-class 
Mean Std. deviation Mean Std. deviation 
611 152 351 75 

Table 5  Statistics for intra-class and inter-class edge detection correlations 

 

 

Using these results, we may also compute the decidabili ty index as before. 

Using Equation 34 we have, 

 

( ) 2.2
2/75152

351611
'

22
=

+

−
=d                                          (36) 

 
We see that this result is almost identical to the case for convergence maps, 

which gave a 2.1 decidabili ty index, thus confirming that the new technique is 

comparable to the well established recognition technique of template matching 

using edge detection. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35  Nearest neighbour classification matrix for edge detection 

 

Figure 35 shows the corresponding nearest neighbour classification matrix for 

the cross-correlation of the 252 subjects, where we see that there has been a 

classification rate of 94.4%, which is slightly better than the rate of 91.3% 

achieved with convergence functions.  This confirms the earlier analysis, 

which also suggested slightly better performance on the edge data.  Naturally 

the performance of either approach could doubtless be improved by better 

ID   000-1             Nearest neighbour            371-4 
000-1 

 
 
 
 
 
 

Subject 
 
 
 
 
 
 
 

371-4 res
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selection of the parameters involved, or by other distance measures or by other 

classification strategies.  The interest here is that results by basic 

implementation are of the same order.  However, the new force field approach 

has better invariance characteristics and superior noise performance. 

Figure 36 shows normal distributions fitted to the cross-correlation 

frequency distributions again suggesting that they are normally distributed. 
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Figure 36  Normal distribution fitted to frequency distribution for edge detection 

 
Because the cross-correlation frequency distributions are normally distributed, 

we may compute the corresponding probability density functions as shown in 

Figure 37 where we see that they agree with the decidability index of 2.2 that 

we calculated above. 
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Figure 37  Probability density functions for edge detection 
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Finally, we may also calculate the receiver operator characteristic for the edge 

detection case, which is shown in Figure 38. 
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Figure 38  Receiver operator characteristic for edge detection 

 
Again, performance by edge detection is slightly better than that by our new 

method. However, the edge operators do not enjoy performance attributes 

offered by the force field transform, including robustness to noise and 

preference of centrally located objects, notwithstanding the initialisation 

invariance discussed earlier. As such our contention is that the new approach 

is certainly a worthy contender to describe ears for recognition. 

 EER = 12.6% @ 437 
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5 Further Work 

This section briefly addresses issues that have not been dealt with in the main 

body of the thesis or that have been postponed.  It also includes a detailed 

description of polar functions, which have been designed to take advantage of 

the centroid property of the convergence functions, but which have not been 

completed. 

5.1 Autocentricity 

Provided the ear is roughly centred in the image, explicit ear extraction is not 

required, due to the powerful autocentring property attributable to the steep 

sides of the dome shaped surface.  However, there is a tradeoff involved here; 

it is possible that valuable information is being discarded unnecessarily.  The 

closer the desired data is to the edges of the surface, the more likely it is to be 

overlooked, and conversely the more it is concentrated towards the centre, 

where the slope is shallowest, the more likely it is to be included.  Therefore it 

needs to be investigated to establish how the ratio of the size of the image to 

the size of the target ear can affect the outcome.  The mean value component 

of the dome shape in Figure 5(b) could be extracted, rescaled, and reinserted, 

to modify the behaviour. Removing the mean completely may have the effect 

of completely removing the autocentring property.  

 

5.2 Feature Matching and Indexing 

The template matching method used to establish a lower bound on the 

recognition capability used in Section 4.2 is clearly inadequate for large scale 

biometrics, if only on the grounds of the sheer number of cross-correlations 

involved, and also does not do justice to the features.  More sophisticated 

techniques of feature matching will need to be investigated, and also a method 

of indexing the features to handle very large database searches. 
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5.3 Generating an Ear Database 

In generating a purpose designed ear database it is reasonable to assume that 

the subjects will be enrolled and verified under carefully controlled conditions, 

and therefore the bulk of the database samples should be captured under those 

conditions.  However, it would be prudent to anticipate and include samples of 

as many parameter variations as possible, even if they are not subsequently 

used.  Some of the more important assumptions and considerations are: - 

 

• subjects reasonably cooperative – it is assumed that subjects would 

be prepared to stand in a set place and would be prepared to push their 

hair to one side but would not be prepared to remove spectacles or 

jewelry.  Therefore some samples of bespectacled subjects should be 

obtained both with and without their spectacles.  Some samples of 

subjects with and without their jewelry should also be obtained. 

• diffuse lighting at fixed illumination level – this is a reasonable 

assumption in biometric applications, but some samples should be 

obtained under varying ill umination and using directed lighting.  

• fixed distance and orientation – the distance could be selected to be 

the typical distance one would stand away from a cash machine, one to 

two feet perhaps, although some close-up and more distant samples 

should also be obtained. 

• Same left or r ight ear presented each time – a subject’s left and right 

ears are generally very similar but by no means identical.  Both ears 

should nevertheless be sampled.   

• variation over time - time variation should be accommodated by 

taking samples of the same subjects at regular intervals, perhaps four 

samples at six-week intervals.  This could be arranged to include 

samples captured both in winter and summer to test for any variation 

caused by cold ears.  

• natural variation – the database should include a good mix of ethnic 

variation of both sexes and should include a good subject age spread. 
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5.4 Miscellaneous Further Work 

Other matters that might merit further investigation could include: - 

 

• Magnitude – the new feature extraction technique is based solely on 

force direction; the force magnitude shown in Figure 11 clearly also 

contains significant information that could be incorporated in the ear 

description. 

• Wider application – force field feature extraction has been developed 

for ear biometrics but there is no reason why it should not have wider 

application in image processing and this could be further investigated. 

• Proof of invertibility – this remains incomplete though the transform 

would appear invertible.  If a proof cannot be found then the condition 

number approach to numerical testing should be further investigated, 

as determinant calculation is inherently numerically unstable. 

• Corner detection – the technique would appear to be well suited for 

detecting curvature. This was not revealed by analysis on ears, more by 

the analysis on pentominoes as shown in Figure 43 and as corners are 

important low-level features, this would merit further investigation. 

• Speed of calculation – even using fast Fourier transform techniques 

the speed of calculation is not suitable for real time applications so that 

approximate methods of calculation should be investigated and also 

whether it may be possible to implement the field transforms directly 

in hardware using electrostatic mapping. 
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5.5 Polar Functions 

Polar functions have been designed especially to exploit the stabili ty of the 

convergence function centroid, and are readily adapted to be scale and rotation 

invariant.  The polar functions take the output of the convergence function as 

input and return closed contours representing the moments [71] of the radial 

distribution of convergence with respect to the centroid of convergence.  The 

cases of positive and negative convergence can be processed separately and 

the results combined; or the magnitude of convergence can be taken before 

processing is carried out. 

 

The centroid m of the convergence field )(rC given by 
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Now if the convergence field is divided into sectors centred about the centroid 

m then the mean distance from the centroid for a given sector S is given by 
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If this calculation is repeated for each sector then a sequence of values will 

result that can be associated with the corresponding sector angular position to 

obtain a discrete polar function of mean distance versus sector angular 

displacement.  No attempt is made to prescribe the number of sectors to be 

used or the alignment of the sector boundaries.  For example )(rC  could be 

divided into 60 sectors each assigned one of the angles 0, 2π/60, …, 59×2π/60, 

with the first sector straddling the x-axis. 

In a similar way higher order moments of the convergence distribution 

can be employed such as variance, skewness, and kurtosis [71].  Since these 

measures are firmly based on statistical theory they can be expected to 
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contribute independent information but the effects of noise could be expected 

to become more troublesome as the order increases. 

 

The variance about the mean distance for a given sector S is given by 
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The skewness or asymmetry about the mean distance for a given sectors S is 

given by 
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The kurtosis or peakiness of the distance distribution about the mean distance 

for a given sector S is given by 
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Figure 39 shows the first two polar functions for a synthetic image designed 

especially to test the functions.  The mean distance from centroid shown as the 

outermost of the two curves, is at a maximum towards the bottom right, which 

is as expected, and the variance of distance from centroid, shown as the 

innermost curve, is at a minimum in the top left quadrant, which is also as 

expected since the perimeter segments are much more densely packed there 

than those of the bottom right quadrant. 
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Figure 39  Mean and variance polar functions in operation 
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5.6 Synthetic Shape Recognition 

As a preliminary check on the viabili ty of the polar function technique, a test 

was carried out using just the first of the four statistical measures, the mean 

distance from centroid function given by Equation 38.  The test involved 

attempting to recognise synthetic shapes, in the form of a set of pentominoes, 

at different scales and rotations.  There are only 12 distinct shapes that can be 

formed by placing 5 squares together so that each square always shares at least 

one side with another square.  The 12 shapes are shown in Figure 40 where it 

can be seen that, with 45° rotations in come cases, they resemble the alphabet 

letters f i l p n t u v w x y z. 
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Figure 40  Twelve basic pentominoe shapes 

 

Including the scaled and rotated variations, there are a total of 48 images 

consisting of 4 versions of each of the 12 basic shapes.  Figure 41 shows the 

four variations of the shape corresponding to the letter ‘F’ .  Figure 41(a) is a 

75×75 pixel image with 0° rotation, and this basic template is repeatedly 
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rotated by 90°, and its scale increased in 25×25 pixel increments, to generate 

the other 3 images, so that Figure 41(d) has a scale of 150×150 pixels with a 

rotation of 270°. 

 

 

p1
 

75×75×0° 
pent( ),0 1

 

100×100×90° 
pent( ),0 2

 

125×125×180° 
pent( ),0 3

 

150×150×270° 

          (a)  (b)   (c)       (d) 

Figure 41  Scaling and rotation of the letter ‘F’  

 

The set of 48 shapes are transformed to obtain force and energy fields.  The 

force field magnitudes for the first four, corresponding to the variations of the 

letter ‘F’ , are shown in Figure 42.  The pseudo edge detection effect is very 

evident in these images; this is because pixel intensity is constant both inside 

and outside the perimeters of the basic shapes, thus allowing homogeneous 

cancellation of forces to have maximum effect. 
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          (a)  (b)   (c)       (d) 

Figure 42  Force field magnitudes corresponding to the letter ‘F’  
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The force fields are finally transformed to obtain their convergence fields as 

shown in Figure 43.  Notice also that the corner detection property of the 

convergence functions is very evident here.  The convex corners appear as 

isolated peaks of positive convergence, whereas the concave corners appear as 

isolated peaks of negative convergence.  Notice also that the channels, which 

appear as ridges in the function value, take on the appearance of medial axes. 

 

 

  

  

  

          (a)  (b)   (c)       (d) 

Figure 43  Convergence fields corresponding to the letter ‘F’  
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The convergence fields are thresholded, setting to zero all values more than 

one standard deviation below the mean value, and converted to 60-point mean 

distance from centroid polar functions.  Figure 44 shows the results for the 

letter ‘F’ .  Sets of concentric distance rings have been included to assist in 

verifying that the results have the correct relative scales.  We see for example 

that the maximum mean distance in Figure 44(d) is about 50 pixels compared 

with a maximum value for Figure 44(a) of about 25 pixels, correctly matching 

the 2:1 size ratio of the figures shown in Figure 41 (d) and (a).  We also see 

that the graphs in Figure 44 are very similar in form and that they have the 

correct relative rotations of 90° between successive graphs. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 44  Mean distance polar functions corresponding to the letter ‘F’  
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The polar functions are then Fourier transformed to introduce a measure of 

rotation invariance. By taking the magnitude of the spectral coefficients of the 

transformed data, we take advantage of the inherent shift invariance property 

of the Fourier Transform.  

Finally we seek to compare the results in a scale invariant manner, and 

we can do this easily by treating the spectral coefficient magnitudes as vectors, 

and comparing the pseudo angles between them.  Using the Cauchy-Schwartz 

inequality,  

vuvu ≤⋅                 (42) 

 the pseudo-angle between any two vectors u, v in nℜ can be defined as 

vu

vu ⋅
= −1cosθ      (43) 

The argument of the inverse cosine function varies between 0 corresponding 

to the orthogonal case of maximum vector difference, and 1 for maximum 

similarity. Scale invariance is ensured since the angle is unaffected by the 

magnitude of the vector. 

The pseudo angles of the resulting vectors are exhaustively cross-

compared and the corresponding results for nearest neighbour classification 

are shown in Figure 45, where we see that 100% correct classification has 

been achieved.  As before, the self-comparisons along the main diagonal are 

excluded. 

 

res

 

Figure 45  Nearest neighbour classification matrix 

 

Table 6 shows the corresponding intra-class and inter-class mean and standard 

deviation statistics, based on pseudo angle frequency distributions, where once 

again the self-comparisons have been excluded from the calculations. 
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Intra-class Inter-class 

Mean Std. Deviation Mean Std. Deviation 
0.082 0.049 0.521 0.19 

Table 6  Statistics for intra-class and inter-class angle comparisons 

 

Using these results, we may also compute the decidabili ty index 'd  as 

previously done using Equation 34.  Substituting the mean and standard 

deviation from Table 6 we have 

 

            ( ) 164.3
2/19.0049.0

521.0082.0
'

22
=

+

−
=d                                 (44) 

 

which is a marked improvement on the decidabili ty index of 2.1 obtained for 

template matching in the ear recognition experiment. 
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Figure 46 shows the frequency distributions for the intra-class and inter-class 

pseudo angles.  Normal distribution curves corresponding to their respective 

means and standard deviations have been fitted, where we see that the intra-

class distribution is normally distributed, but we see that the normal 

distribution corresponding to inter-class frequency distribution does not fit 

quite as well. 
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Figure 46  Normal distribution fitted to frequency distributions 

 

However, it is still useful to compute the corresponding probability density 

functions, and these are shown in Figure 47, where we see that there is good 

separation and little overlap, confirming the improvement in the decidability 

index. 
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Figure 47  Probability density functions for pentominoe recognition 
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Finally, we may also compute the receiver operator characteristic for the 

pentominoe recognition experiment, where we see an improved equal error 

rate of 3.5% occurring at an angle of 0.17 radians. 
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Figure 48  Receiver operator characteristic for pentominoe recognition 

 

When the same experiment, using just the mean distance from centroid, was 

carried out on the ear database, the results were inferior to those obtained with 

template matching.  This probably reflects the fact that real life ears are a lot 

more difficult to differentiate than synthetic pentominoes.  Further work to 

incorporate the higher moments may lead to an improvement. 

 FRR = FAR = 3.5% @ 0.17  
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6 Conclusions 

The purpose of this section is to bring together the main conclusions and 

results of the research.  In a nutshell we may say that in the context of ear 

biometrics we have developed a new linear transform that transforms an ear 

image, with very powerful smoothing and without loss of information, into a 

smooth dome shaped surface whose special shape facilitates a new form of 

feature extraction that extracts the essential ear signature without the need for 

explicit ear extraction; and in the process we have verified the recognition 

potential of the human ear for biometrics.  Conclusions about the three distinct 

aspects of this research will now be considered separately in greater detail 

 
 

6.1 Force Field Transform 

The powerful smoothing inherent in the transform is provided by virtue of the 

fact that each point in the transformed output is a function of all the other 

points in the original image, which amounts to very large scale weighted 

averaging, where the weighting is supplied by the inverse 1/r function in the 

case of the potential transform.  Yet this powerful smoothing is achieved with 

no loss of information by virtue of the fact that the potential transform is 

invertible, implying that the original information can be recovered in principle 

from the energy surface.  The dome shape of the energy surface comes about 

because points towards the centre of the surface have a shorter mean distance 

to all their sources of energy than points that are further away. It is this basic 

dome shape underlying the energy field that gives the transform its 

autocentring property, which is the reason that feature extraction without the 

need for explicit ear extraction is possible. 

 The computation is very time consuming even when carried out using 

fast Fourier techniques, but it is interesting to speculate that since it is modeled 

on a natural force field, that it may be possible to implement the transform in 

hardware by mapping the image to an array of electric charges.  Also, because 
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the formulation is couched in terms of vectors, it may be possible to generalise 

to higher dimensional problems. 

 

6.2 Feature Extraction 

We argue that because the energy surface has preserved all the information in 

the original image, and because channels and wells modulate its otherwise 

smooth dome shape, therefore these should make good features.  Two 

equivalent forms of feature extraction have been developed.  One is something 

akin to the popular gradient descent algorithm, where instead of seeking just 

one extremum, a host of exploratory text pixels seek out all the potential wells 

on the surface; the channels formed in the process becoming the force field 

features.  This method has the advantage of producing field lines that take the 

form of integral data objects in the form of a list of points visited, which may 

have advantages for further processing.  For example, a channel might be 

partly defined by selecting the field line that makes the greatest contribution to 

the channel. 

 The convergence method of feature extraction takes the form of a 

function whose ridges and peaks correspond exactly to the field line channels 

and wells, but this function provides an extra tier of information in the form of 

antichannels and antiwells.  Another important property is that convergence 

centroids tend to be quite stable with respect to the features, thus affording a 

way of aligning the features for comparison, or perhaps for other purposes. 

 We observe the similarity in form of the convergence operator to the 

Marr-Hildredth operator, which may also be viewed as a linear shape operator 

due to its Laplacian of Gaussian nature.  However, a very important difference 

is that the convergence operator is a non-linear operator due to its use of force 

direction rather than force itself. 
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6.3 Ear Recognition 

A fairly rudimentary method of classification in the form of simple template 

matching was used just to establish a lower bound on the ear recognition 

capability.  Even without using the template rotation facility we have achieved 

a recognition rate in excess of 91% on the small database of 252 samples from 

63 subjects.  This confirms that ears can certainly be used for recognition but 

does not really give a useful indication of the uniqueness of ears in general.  

Clearly if ears were to be used as the basis of a large scale biometric based 

application, then template matching would not be appropriate due to the sheer 

number of cross-correlations involved, so that some form of indexing scheme 

based on the features would have to be developed. 

As such, a promising new technique has been developed that affords 

some interesting properties. We look forward to examining in future more of 

its capabilities, and extensions to it, as outlined in our further work. 
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Appendices 

A1 Alternative Proof of Transform Linearity  

We now give an alternative proof that the force field transform is a linear 

transformation by appealing to the basic definition of a linear transformation. 

 

Let V and W be vector spaces.   

A function WVt →:  is a linear transformation if it satisfies the following 

two relations: - 

Relation 1: Vttt ∈+=+ 212121 , allfor  ),()()( vvvvvv   (1) 

Relation 2: ℜ∈∈= ααα , allfor  ),()( Vtt vvv    (2) 

 

In vector space V, let v1 = A and v2 = B where A and B are M×N matrices 

whose elements Ai,j and Bi,j are real numbers representing pixel intensities. 

Also, let W be the vector space of M×N matrices where the elements are force 

vectors as defined by the relation  
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Now to check that relation 1 is satisfied, we need to show that 

 Vttt ∈+=+ 212121 , allfor  ),()()( vvvvvv     (4) 

That is, we need to show that the force field of the sum of two images is the 

same as the sum of the force fields associated with the individual images. 

Accordingly, for the sum of the separate force fields associated with the two 

images we have, 
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Where the expression above gives the resultant force acting at a single pixel 

location with position vector ji,r  due to the attraction of all the other pixels at 

position vectors nm,r with pixel intensities ( )nmnm BA ,, + . 

 

On the other hand, for the force field for the sum of two images we have, 
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As such, the results of Equations (5) and (6) are equal so relation 1 is indeed 

satisfied.  

 

Now to check relation 2, we require to show that  

 ℜ∈∈= ααα , allfor  ),()( Vtt vvv      (7)

  

That is, we need to show that the force field of an image whose intensity has 

been scaled is equal to the force field of the original image multiplied by the 

same scale factor. 

 

Accordingly we have 

[ ] [ ] ji

M

m

N

n jinm

jinm
nm

M

m

N

n jinm

jinm
nmji tAAt ,

1

0

1

0
3

,,

,,
,

1

0

1

0
3

,,

,,
,, )()( A

rr

rr

rr

rr
A αααα =















−

−
=















−

−
= ∑∑∑∑

−

=

−

=

−

=

−

=

  (8) 

so relation 2 is satisfied.  

 

Hence, since both relations 1 and 2 are satisfied, the force field transform is 

indeed a linear transformation. 
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A2 Representative Sample of Ear Results 

 

 

 

000-1-L1     000-2-L1     000-3-L1     000-4-L1 
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001-1-L1     001-2-L1    001-3-L1     001-4-L1 

 

 



105 

 

 

 

 

 

 

 

 

004-1-L1     004-2-L1     004-3-L1     004-4-L1 
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008-1-L1     008-2-L1     008-3-L1     008-4-L1 
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010-1-L1     010-2-L1     010-3-L1     010-4-L1 
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012-1-L1     012-2-L1     012-3-L1     012-4-L1 
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016-1-L1     016-2-L1     016-3-L1     016-4-L1 
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019-1-L1     019-2-L1     019-3-L1     019-4-L1 
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021-1-L1     021-2-L1     021-3-L1     021-4-L1 
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026-1-L1     026-2-L1     026-3-L1     026-4-L1 
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030-1-L1     030-2-L1     030-3-L1     030-4-L1 
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A3 Binarised Thresholded Convergence Functions 

 

 
     000-1        000-2         000-3         000-4 

 
     001-1        001-2        001-3        001-4 

 
     004-1        004-2         004-3         004-4 

 
     008-1        008-2         008-3         008-4 

 
     010-1        010-2         010-3         010-4 

 
     012-1        012-2         012-3         012-4 

 
     016-1        016-2         016-3         016-4 

 
     019-1        019-2         019-3         019-4 

 
     021-1        021-2         021-3         021-4 

 
     026-1        026-2         026-3         026-4 

 
     030-1        030-2         030-3         030-4 

 
     031-1        031-2         031-3         031-4 

 
     032-1        032-2         032-3         032-4 

 
     033-1        033-2         033-3         033-4 

pic( )56

 

     036-1        036-2         036-3         036-4 

pic( )60

 

     037-1        037-2         037-3         037-4 
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pic( )n

 

     045-1        045-2         045-3         045-4 

pic( )n

 

     053-1        053-2         053-3         053-4 

pic( )n

 

     054-1        054-2         054-3         054-4 

pic( )n

 

     055-1        055-2         055-3         055-4 

pic( )n

 

     060-1        060-2         060-3         060-4 

pic( )n

 

     061-1        061-2         061-3         061-4 

pic( )n

 

     074-1        074-2         074-3         074-4 

pic( )n

 

     078-1        078-2         078-3         078-4 

pic( )n

 

     082-1        082-2         082-3         082-4 

pic( )n

 

     093-1        093-2         093-3         093-4 

pic( )n

 

     105-1        105-2         105-3         105-4 

pic( )n

 

     111-1        111-2         111-3         111-4 

pic( )n

 

     114-1        114-2         114-3         114-4 

pic( )n

 

     124-1        124-2         124-3         124-4 

pic( )n
 

     126-1        126-2         126-3         126-4 

pic( )n

 

     131-1        131-2         131-3         131-4 
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pic( )n

 

     132-1        132-2         132-3         132-4 

pic( )n

 

     142-1        142-2         142-3         142-4 

pic( )n

 

     143-1        143-2         143-3         143-4 

pic( )n

 

     145-1        145-2         145-3         145-4 

pic( )n

 

     147-1        147-2         147-3         147-4 

pic( )n

 

     153-1        153-2         153-3         153-4 

pic( )n

 

     166-1        166-2         166-3         166-4 

pic( )n

 

     171-1        171-2         171-3         171-4 

pic( )n

 

     174-1        174-2         174-3         174-4 

pic( )n

 

     175-1        175-2         175-3         175-4 

pic( )n

 

     180-1        180-2         180-3         180-4 

pic( )n

 

     188-1        188-2         188-3         188-4 

pic( )n

 

     201-1        201-2         201-3         201-4 

pic( )n

 

     206-1        206-2         206-3         206-4 

pic( )n

 

     216-1        216-2         216-3         216-4 

pic( )n

 

     221-1        221-2         221-3         221-4 
 



117 

 

 

 

 
 
 

pic( )n

 

     231-1        231-2         231-3         231-4 

pic( )n

 

     233-1        233-2         233-3         233-4 

pic( )n

 

     246-1        246-2         246-3         246-4 

pic( )n

 

     248-1        248-2         248-3         248-4 

pic( )n

 

     259-1        259-2         259-3         259-4 

pic( )n

 

     274-1        274-2         274-3         274-4 

pic( )n

 

     285-1        285-2         285-3         285-4 

pic( )n

 

     287-1        287-2         287-3         287-4 

pic( )n

 

     288-1        288-2         288-3         288-4 

pic( )n

 

     293-1        293-2         293-3         293-4 

pic( )n

 

     310-1        310-2         310-3         310-4 

pic( )n

 

     314-1        314-2         314-3         314-4 

pic( )n

 

     324-1        324-2         324-3         324-4 

pic( )n

 

     360-1        360-2         360-3         360-4 

pic( )n

 

     371-1        371-2         371-3         371-4 
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A4 XM2VTS Identification Numbers of Ear Subjects 

000 
001 
004 
008 
010 
012 
016 
019 
021 
026 

030 
031 
032 
033 
036 
037 
045 
053 
054 
055 

060 
061 
074 
078 
082 
093 
105 
111 
114 
124 

126 
131 
132 
142 
143 
145 
147 
153 
166 
171 

174 
175 
180 
188 
201 
206 
216 
221 
231 
233 

246 
248 
259 
274 
285 
287 
288 
293 
310 
314 

324 
360 
371 

 

Table 7  XM2VTS identification numbers of ear subjects 
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