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Abstract

Symmetry is an important geometric cue for 3-D reconstruction from perspective images. In
this paper, we introduce a unified theoretical framework for extracting poses and structures of
2-D symmetric patterns in space from calibrated images. The framework uniformly encompasses
all three fundamental types of symmetry, i.e., reflective, rotational, and translational, based on a
systematic study of the homography groups in image induced by the symmetry groups in space.
We claim that if a planar object admits rich enough symmetry, no 3-D geometric information is
lost through perspective imaging. Based on two fundamental principles that utilize common
spatial relations among symmetric objects, we have developed a prototype system which can
automatically extract and segment multiple 2-D symmetric patterns present in a single perspec-
tive image. The result of such a segmentation is a hierarchy of new geometric primitives,
called symmetry cells and complexes, whose 3-D structures and poses are fully recovered.
Finally, we propose a new symmetry-based matching technique, which can effectively establish
correspondences among the extracted symmetry cells across multiple images. We demonstrate
the application of the proposed algorithms on image segmentation, matching, and 3-D
reconstruction with extensive experimental results. The algorithms and systems are more
accurate and easier to implement than existing point- or line-based methods.
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1. Introduction

Reconstruction of scene structures and camera poses from one or multiple images
is a fundamental problem in computer vision literature. In the most extant methods,
scene structures and camera poses are reconstructed based on structure from motion
techniques (e.g., [1]) by exploiting geometric relations of point and line features
among images, such as the epipolar constraint. However, we observe that humans
have remarkable ability in inferring 3-D information from even single 2-D perspec-
tive images, which suggests the existence of other, probably more effective, cues for
retrieving geometric information from perspective images. For example, in Fig. 1,
people can effortlessly find the most probable 3-D interpretations for the first two
images, and the elaborate effort to generate a “regular” 2-D perspective image with
irregular 3-D structures creates the famous Ames room illusion in Fig. 1C.

This observation poses the following interesting questions: What kind of assump-
tions make human beings so capable and willing to derive 3-D information from sin-
gle perspective images, despite the potential for failure? To what extent can we use
these assumptions to reconstruct the most important 3-D information, such as scene
structures and camera poses, only from single images. In this paper, we will examine
the computational basis for one such assumption.

Much of the “regularity” in 3-D space can be characterized mathematically by the
notion of symmetry. For example, two parallel lines in space are translationally sym-
metric, a human face is reflectively symmetric, and a cube is both reflectively and
rotationally symmetric. If points and lines are viewed as the basic primitives that
one uses to model an arbitrary scene, different types of symmetry can be considered
as high-level primitives that can be used to model a variety of regular objects and
scenes, especially in man-made environment. Psychologically symmetry serves as a
strong cue for human visual perception [2,3], and its computational advantages have
also been addressed in the computer vision community [4-7]. However, there is still a
lack of a unified effort to demonstrate how all types of symmetric primitives can be

Fig. 1. (A,B) In man-made environments, symmetric patterns and structures are abundant. (C) The Ames
room illusion.
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detected, segmented, and matched in perspective images. In this paper, we propose a
novel approach to automatically detect and segment all types of planar symmetry
from single calibrated images, and match them across multiple images.'

1.1. Structure from symmetry

One fundamental difficulty for inferring 3-D information from a single 2-D
image is that infinitely many structures in space may give rise to exactly the same
perspective image. Therefore, to make the problem well-conditioned, additional
assumptions on the scene need to be imposed.

As we have learned from a general study of the relations between symmetry
and multiple-view geometry [8], if an object admits rich enough symmetry, no
3-D geometric information (including structure and pose) is lost through per-
spective imaging except a scaling factor. This serves as the very basis for the
entire symmetry-based reconstruction process. However, in this paper we are
more interested in the inverse problem for planar symmetry: how to automati-
cally detect and extract symmetric objects from each image, and further match
them across multiple images. As we will show, a successful extraction of sym-
metric structures from single images relies on the interaction of the following
two principles:

1. Symmetry hypothesis testing. Given a region of interest, to what extent can we
claim that it could be the image of an object with certain types of symmetry in the
space? An answer to this question requires us to understand how symmetry is locally
encoded through perspective imaging so that we can verify whether all geometric
relations for a valid image of a symmetric object are satisfied and consistent. From
this we deduce the principle of “symmetry hypothesis testing.”

2. Global symmetry testing. Nevertheless, a region that passes certain types of local
symmetry testing does not automatically imply that it must be an image of a symmet-
ric object. Although each individual tile in Fig. 1 will pass any local testing as a
square, what really makes the square interpretation ‘“‘unquestionable’ is the fact that
this interpretation is also overwhelmingly consistent among all the tiles. This leads to
the principle of “global symmetry testing’” that we rely on in order to robustly derive
3-D structure from images.

In an image, the local symmetry hypothesis testing eliminates all regions which
cannot be the perspective projection of any symmetric structures, hence gives correct
focus to the regions which are the candidates of symmetric structures and thus con-
tain richer 3-D information. The global symmetry testing carries the global con-
straints of the symmetric structures, which will resolve the inconsistency between
multiple candidate regions, and also group the regions that contain the same symme-
try type and spatial orientation.

! In this paper, we assume the intrinsic parameters of the camera have been calibrated. However, our
research also shows the parameters can be calculated through a self-calibration process using symmetry [8].
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1.2. Relation to the literature

A lot of research has been done on extracting general features or regions of
interest from images. For the general problem of image primitive detection,
there are feature-based methods, such as points [9] and lines [10], and pixel-
based methods , such as active contours [11,12] and region segmentation [13—
15]. If the segments sought can be parameterized, several techniques have been
introduced, such as the well-known Hough transform [16] and nonlinear param-
eter estimation [17]. On the other hand, [18-20] addressed the topic of global
object structure extraction from single images. Furthermore, there are methods
that deal with other special kinds of invariant structures from perspective images
[21-23].

Various instances of symmetry have been studied for the purpose of recogniz-
ing and recovering structures under the perspective, orthogonal and affine pro-
jections. This paper is by no means the first to notice that symmetry,
especially reflective (or bilateral) symmetry, can be used to retrieve 3-D informa-
tion. Mitsumoto et al. [24] were among the first who studied how to reconstruct
a 3-D object using mirror image-based planar symmetry; Francois et al. [5] pro-
vided a more complete study of the reflective symmetry; Vetter and Poggio [25]
proved that for any reflective symmetric 3-D object, one nonaccidental 2-D
model view is sufficient for recognition; Zabrodsky and Weinshall [6] used bilat-
eral symmetry assumptions to improve 3-D reconstruction from image se-
quences; and Zabrodsky et al. [26] provided a good survey on studies of
reflective symmetry and rotational symmetry in computer vision. In 3-D object
and pose recognition, Rothwell et al. [19] pointed out that the assumption of
reflective symmetry can also be used in the construction of projective invariants
and is able to eliminate certain restrictions on the corresponding points. For
symmetry detection, [4,27,28] presented efficient algorithms to find axes of reflec-
tive symmetry in 2-D images, Sun and Sherrah [29] discussed reflective symmetry
detection in 3-D space, and Zabrodsky et al. [26] introduced a so-called symme-
try distance to classify reflective and rotational symmetry in 2-D and 3-D spaces
(with some insightful comments given in [30]). Glachet et al. [31] are on locating
general 2-D reflective contours under perspective imaging. For more about
2-D and 3-D symmetric curve deformation and reconstruction, please refer to
[32].

On the role of symmetry groups in computer vision, Liu et al. [33] proposed a
computational model to detect and represent all 17 Frieze patterns under the af-
fine projection assumption. The limitation of their work is that the image can
only be taken from the frontal view, and the repeated patterns must cover the
majority of the image, although certain level of noise can be tolerated. On the
study of symmetry in multiple-view geometry, Mundy et al. [34] presented a the-
oretical framework which is close to our work. It develops the epipolar geometry
for repeated similar structures under the translation, rotation, affine, and bilateral
relations. The key difference between [34] and this paper is: we show that an
image of one symmetric structure itself is equivalent to multiple images by
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investigating the geometric relations between the original image and its “hidden”
counterparts. The relation between repeated similar structures in one image is
presented in this paper under the concept of translational symmetry under the
perspective projection. And most importantly, we propose a theoretical frame-
work to extract 2-D symmetric structures from images and discuss the ambiguity
in matching one or multiple symmetric patterns across a set of images, which are
not covered in [34].

1.3. Contribution of this paper

In the literature, reflective, rotational, and translational symmetries have been
primarily studied and used independently, often not under the exact perspective
projection. However, our research shows that the key to consistent detection
and segmentation of symmetric structures from their 2-D perspective images
is to examine the relations among all types of symmetry as an algebraic group.
By introducing symmetry group as a geometric cue into conventional image
segmentation techniques, we are able to, for the first time, segment an image
based on the precise and consistent 3-D geometry of the segmented regions.
The output of such a segmentation is a hierarchy of geometric primitives (called
symmetry cells and complexes) whose 3-D geometric information is fully
recovered.

It is also well known that if multiple images of point and line features are
provided, we can reconstruct general 3-D structures through classical structure-
from-motion technique. But points and lines themselves contain little 3-D infor-
mation in single views, and matching across images is ill-conditioned in many
cases. Nevertheless, symmetry-based segmentation enables the use of symmetry
cells as new geometric primitives for 3-D reconstruction from multiple views.
From the system point of view, these symmetry cells can be treated as landmark
features, which themselves contain rich 3-D information. If one common cell is
detected in an image sequence, the reconstruction process will become more ro-
bust and much faster. Our study reveals the inherent ambiguities in matching
symmetry cells as well as offers effective solutions to resolve the ambiguities.
The outcome is a complete process for symmetry-based 3-D reconstruction and
modeling: from extraction of symmetry cells in each image, matching them
across multiple images, to a full reconstruction of 3-D camera poses and scene
structures.

1.4. Paper organization

We apply the theory of multiple-view geometry to single views of symmetric struc-
tures in Section 2. In Section 3, a hierarchical symmetric pattern extraction algo-
rithm is introduced. The algorithm will segment a perspective image based on its
geometry information. Section 4 presents a novel method to achieve fast 3-D match-
ing across multiple images using the symmetric patterns extracted. We show several
other experimental results in Section 5.
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2. Geometry for a single image of a planar symmetric structure
2.1. Planar symmetry and its group representation

We first define what symmetry is for a rigid body in 3-D space. Mathematically,
the symmetry of an object is usually described by a symmetry group. Each element in
the group represents a symmetric transformation under which the object is invariant.

Definition 1 (Symmetric structure and its group action). A set of 3-D features (points
or lines) S ¢ R? is called a symmetric structure if there exists a nontrivial subgroup G
of the Euclidean group E(3) that acts on it. That is, for any element g € G, g defines
an automorphism on S (i.e., a one-to-one map from S to itself). In particular, we
have g(S) =g '(S) =S for any g € G.

Generally, there are three types of symmetry for a rigid body: reflective symmetry,
rotational symmetry, and translational symmetry. In this paper, we will only focus
on 3-D recovery of symmetric planar structures. The reader is referred to [8] for
the discussion on other symmetry properties of general rigid bodies (e.g., a cube)
and [32] for deformable surfaces (e.g., a leaf).

When the structure S is on a plane P, the symmetry group G is instead a subgroup
of the 2-D Euclidean group E(2). If we choose a coordinate frame (x, y, z) attached
to the structure S such that the z-axis is a normal vector of the plane P, then any
point on the plane is determined by its (x, y) coordinates. Using homogeneous rep-
resentation, any element g € G can be expressed as

R T
_ c R4X4, 1
=g 1] )
where R € R¥? is an orthogonal matrix representing the rotation or reflection on the
xy-plane, and T € R? is a vector for translation on the xy-plane with z = 0.

Example 2 (The symmetry group of a rectangle). The symmetry group of a rectangle
shown in Fig. 2 can be represented with respect to the canonical object frame by the
following four matrices:

Fig. 2. A rectangle whose symmetry includes reflections along the x and y axes and a rotation about o by
180°. These transformations form a symmetry group of order 4.
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100 0 1 0 0 0
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where g, and g, denote the reflections along the x and y axes, respectively, and g. the
rotation about the z-axis by 180°. For example, the permutation result of
g.((1,2,3,4)) is (4,3,2,1), which is exact the point correspondence of the structure S
before and after action g,.

Elements in the group G = {g,,g..g,.&-} satisfy the group relations

6=8 =8 =8 &8&=88& =8 &L =8& =&, &8 =88 =&

These relations will be used later as the criteria for local symmetry testing. Only
those regions that satisfy these group relations (under the homography representa-
tion to be precise, which will be introduced in the next section) can be considered
as candidates of planar rectangle structures to the global symmetry testing.

2.2. Homography group in a perspective image

Now we consider a perspective image of the planar object S that is taken by a camera
at a vantage point (or pose) go = (R, Tp) € SE(3) with respect to the object frame,
where R, € SO(3) and T, € R*. This section will show how to represent the symmetry
group relations described in the previous section under perspective imaging.

Fig. 3 shows a rectangle S on the plane P and a vantage point at go. We can de-
note the image as /(S). Since the rectangle is reflectively symmetric and g, is a reflec-
tion along the yz-plane, then there exists an equivalent vantage point o’ from which
we would get exactly the same image /(S) after g, acts on S, and the transformation
of the camera frames from o to o' can be represented as g..

e,
? L 9z o
o f
“t d
o “d 0

Fig. 3. Equivalent images of a rectangle, before and after a reflection g,. (left) Frontal view; (right) top
view. P, is the plane of reflection and t is its (unit) normal vector.
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In general, in a calibrated perspective image, we know under the homogeneous
coordinates

X = H0g0X7 (2)

where I1y = [I5.3 0] is the projection matrix and gy is the vantage point. After apply-
ing a symmetry action g € G, the new image of the new point gX, denoted by g(x),
satisfies the following equation:

Vg(x) = Iogy(gX) = IMo(g0gg, ' )ge X (3)

The second equality expresses the fact that the image of the structure S will remain
the same, which is projected from the original point X, if the image is taken from a
vantage point different from the original one by g,gg;'. The transformation g,gg;" is
exactly the action of g on S expressed with respect to the camera coordinate frame.
Then the symmetry group G on the plane P in space is naturally represented by its
conjugate group G' =g,Gg,"'. We call G' the homography group (we will explain why
it is called so later in this section).

Example 3 (The homography group of a rectangle). For the rectangle case studied in
Example 2, the homography group G = g,Gg,' is given by {I,g,2.2", 208y
20t 80880 ={1,4., g),&.}, and its elements satisfy the same set of relations as G in
Example 2 since they are isomorphic:

/

2 2 2
(€)' =(g) =) =1 g8=88=8, £8=88=8, £8 =88 =8

On the other hand, any element g’ € G itself is nothing but a linear transformation in
SE(3) with

R T
/I €R4X4 4
¢=(5 1) @

under the homogeneous coordinates, where R’ € R** is a rotation or reflection ma-
trix, and 7’ € R* a translation, both in 3-D space. Hence, R’ and T’ can be repre-
sented by the following equality:

(R, T’) (Ro T0><R T><R0 T0>1 (5)
0 1 0 1 0 1 0 1 ’
which gives

R = RyRR],
{1t 0

T' = (I — RyRR})To + RyT.

Our goal in recovering the pose of the symmetric pattern is to find Ry and T, the
transformation between the structure and the camera. To use the relation described
in Eq. (6), we first need to know R’ and 77, and they can be solved from the homog-
raphy relation between the two image planes with respect to the two camera frames
at o and o'.
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Since S is planar, there exists a homography Hy mapping the plane P o S in space
to the image plane with H, given by

Ho=[Ro(1) Ry(2) Ty, (7)

where Ry (1) and Ry(2) are the first two columns of Ry. Given a point X =[X, Y, Z]"
on the object plane, its coordinates on the image plane are given by go(X) = HyX.

Furthermore, a symmetry action g € SE(3) is restricted to planar rotations and
reflections, and it can be represented with respect to the object frame by a 3 x 3 ma-
trix H, although H is not a homography matrix from the object to the camera in
space. That is,

H= {R T} € R¥ (8)
0 1

where R € R**? is a rotation or reflection matrix on the xy-plane and 7 € R*. Hence,
a reflection or rotation of a point on the xy-plane can also be represented in matrix
form as: g(X) = HX. It is easy to see that all the A’s form a group isomorphic to G.
By abuse of language, we can denote g = H (in the sense of isomorphism), and hence
G consists of all the H matrices.

Due to the symmetry of S, for any g € G, we have g(S) = H(S) = S, and therefore
Hy(H(S)) = Hy(S). For a particular point X € S with coordinates [X, ¥, Z]" in the
object frame, we have

Hy(HX) = HyHH' (H((X)). 9)

The quantity on the left can be viewed as the image of X taken at H, after a symme-
try transformation H has been applied to S. This is equivalent to that the image is
taken at a “‘new” vantage point HoHH," - Hy = HoH. Hence, the homography trans-
formation between the two image planes with respect to the two camera frames can
be represented as

H' = H.HH;' € R*. (10)

We say H' is the homography transformation of the two images induced by g’, the
3-D transformation of the two vantage points. Notice that H' plays the role of the
relative transformation between the real image and the equivalent “hidden” view.
This relation is illustrated in the following diagram:

S o=H, S

o £

1(s) =R g

By abuse of language, we can denote ¢’ = H', and G’ is the group consists of all the
H' matrices. Hence G is a conjugate group of G, that is, G' = H,GH,, . Now we are
clear that G’ as a conjugacy class is actually describing the homography relations be-
tween the real image and its hidden counterparts supposing the planar structure
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undergoing symmetry actions on the object plane. That is the reason G’ is called
homography group acting on an image of a symmetric structure.

Suppose the object plane P is defined by the equation N'X = d for any point
X € R® on P, where N € R? is the unit normal vector of the plane, and d € R, is
its distance to the center of the first camera frame (e.g., see Fig. 3). We know that
a 3-D transformation in O(3), g = (R, T), and its associated homography matrix
between two image planes, H’, satisfy the following relation:

1
H :R'+3T'NT € R¥3, (12)

Computationally, with more than four corresponding points between any pair of
equivalent views, such as the four corner features of the rectangle in Fig. 3,
{R',T",N} can be linearly recovered from the following equation with two possible
solutions up to scale [35]:

X ~H'x < xH'x =0, (13)

where x and x’ are the images of the corresponding symmetric points on X and g(X),
respectively, and ¥ € R**? is the skew symmetric matrix of the vector x'. The homog-
raphy relation in Eq. (13) can also be expressed as x' X (H'x) = 0.

We have shown that R’ and 7" can be calculated by decomposing the homography
H' with more than 4 pairs of image points. In the next section, we will discuss how to
get the camera pose (R, Tp) under the three different symmetry assumptions. we will
also show that by introducing extra symmetry constraints, the solution to the 3-D
pose recovery is unique up to a scale indicating the unknown distance between the
camera and the plane P.

2.3. 3-D pose recovery of planar symmetric structures

In this section, we study the ambiguities in recovering g, from a single reflective,
rotational, or translational symmetry.

2.3.1. Reflective symmetry

A reflection on a plane can always be described by a motion g = (R,0), where
det(R) = —1. Hence in its homography representation, R' = R\RR; and T =
(I — RoRR;)T.

Lemma 4 (Relative camera pose from reflective symmetry). Let n= T'/|T|, then
R =1—2nn". The induced epipolar constraint becomes
(x)"T'x = 0. (14)

The proofs of the lemmas and propositions in this section are given in Appendix A.
We conclude that 7" can be recovered from two pairs of symmetric points using
Lemma 4, and R’ is uniquely determined by 7. Accordingly, by decomposing the
associated reflective homography matrix H’, only one solution

1
H —{R,-T,N
)
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preserves symmetry of the pattern, that is, the reconstruction of image points from
only one of the two possible solutions results in a symmetric pattern that is consistent
with our assumption.

Then the camera pose gy = (Ry, 7o) can be solved by the following proposition:

Proposition 5 (Canonical pose from reflective homography). Given an image of a
planar structure S with a reflective symmetry R in 3-D space, R = RyRR}, and N all
known, if the origin of the object frame is chosen to be on the object plane, the initial
pose go can be determined up to an arbitrary translation of the frame along the
intersection line of the object plane and the plane of reflection. If we set the x-axis to be
the normal of the reflection plane and the z-axis to be the normal N of the planar
structure, as shown in Fig. 3, we get a solution for Ry:

Ry = [+v1, £N v, N] € SO(3), (15)

where vy is the eigenvector of R' corresponding to the eigenvalue 1 = —1.

The vector T, can always be set to be the average of four vertices in the space,
which are recovered by a reprojection from the image using R and 7.

2.3.2. Rotational symmetry
Given a rotation g = (R,0), where det(R) = 1, its homography representation is
R = RoRR} and T' = (I — RyRR})T,.

Lemma 6 (Relative camera pose from rotational symmetry). If o € R* is the scaled
rotational axis of R', i.e., R = e®, we have o L T'.

Since o L T’, the motion between equivalent views is an orbital motion. Hence,
only four points are needed to recover the degenerated essential matrix £' = T'R’
[35]. By decomposing the associated rotational homography matrix H’, only one
solution

H — R'lT’N
ad )

is consistent with our symmetry assumption in reconstruction. Similar to the previ-
ous section, we have the following proposition:

Proposition 7 (Canonical pose from rotational homography). Given an image of a
planar structure S with a rotational symmetry with respect to an axis » € R, the initial
pose gq is determined up to an arbitrary rotation around the axis (i.e., SO(2)). If we
assume vy, v, and vs are three eigenvectors of R’ that correspond to the eigenvalues +1,
e and e, Ry is of the form

[Im(v,) cos(a) + Re(vp) sin(a), Re(vp) cos(a) — Im(v,) sin(e), £vy], (16)
where o € R is an arbitrary angle. So Ry has infinitely many solutions. Geometrically,
the three columns of R' can be interpreted as the three axes of the world coordinate

frame that we attached to the structure. The ambiguity in Ry then corresponds to an
arbitrary rotation of the xy-plane around the z-axis.
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Since rotating a solution of Ry by an arbitrary angle is still a valid solution, we
may choose one with the simplest form: Ry = [Im(v,), Re(v,), +v1], and the sign
of the third column is chosen such that det(Ry) = 1. The vector T can be set to
be the average of four vertices in the space, which are recovered by a reprojection
from the image using R’ and T".

2.3.3. Translational symmetry

In this case, R=1 and T # 0. We have R' = RyIR] =1 and T' = RyT. Further-
more, if the origin of the world frame is chosen in the object plane, the plane normal
as the z-axis, and T' as the x-axis, we have

Ry=[T" NT N]eSO®3), (17)

where both 7" and N can be uniquely recovered by decomposing the translational
homography equation assuming d = 1:

H—-I=TN". (18)

We end up with a two-parameter family of ambiguities in determining gy, that is,
translating o arbitrarily inside the plane. An extra translational symmetry along a
different direction does not help reducing the ambiguities.

2.3.4. Summary
To summarize the above results, we have the following theorem:

Theorem 8 (Structure from symmetry). For any (planar) symmetric object, its 3-D
structure and pose are already encoded in a single 2-D perspective image. As long as the
assumption of symmetry is correct, no 3-D information is lost through perspective
imaging except a scaling factor.

The next example will demonstrate how to recover the pose of a regular polygon
from its image using one rotational symmetry assumption.

Example 9 (3-D pose recovery of a regular pentagon). Suppose a pentagon shown in
Fig. 4 is on the x, y-plane with z = 0, and its vertices have the coordinates in space:

Fig. 4. A pentagon whose symmetry transformations form a dihedral group of order 10, i.e., Dyy.
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X1 =[0.101, X>=Ry(X1, X3=R, (X1, Xs=R,(HX1, X5 =R ()X,
where R, (0) is the rotation matrix on the x, y-plane by 0. We set

cos(f;) 0 —sin(f) 2
RO = 0 1 0 B TO == 3
sin({5) 0 cos({5) 1

as the unknown camera pose. After the perspective projection Ax = RyX + T, the
homogeneous coordinates of the five points in the image become x, =[2, 4, 17",
x, =[1.0955, 3.3090, 0.7061]", x5 =[1.4410, 2.1910, 0.8184]", x, =[2.5590, 2.1910,
1.1816]", and xs = [2.9045, 3.3090, 1.2939]".

The symmetry group of the pentagon isomorphic to the dihedral group Djo can be
represented by the following matrices:

H =1, Hy=oa, Hy=0o>, Hy=0o, Hs=o"
Hl:ﬁa szﬁa7 1:13:B062, I:I4:ﬁ063, H5:ﬁ0547

where
cos(¥) —sin(ZF) 0 -1.0 0
= |sin®Z) cos(E) 0|, =0 1 0
0 0 1 0 0 1

We assume the object to be rotationally symmetric, so the point correspondence in
the image with respect to H, is

/ / / / /
X, = X, X, = X3, X3 = Xy, X, = Xs, X5 = X1.
And the homography matrix of this set of points is:

—3.4913 —-0.9045 11.6960
H' = 09323 0.3090 0.2083
—1.4593 —0.2939 4.8003

Next we decompose H' into four solutions by the standard method[35], and two of
them give positive depths of the normal vector N of the pentagon under the perspec-
tive projection. However, we use these two sets of (R, T”) to reconstruct the points
{X;} in 3-D space from the image by assuming d = 1, only one set gives symmetric
points with the edges having the same length:

0.3750 —0.9045 —0.2031 12.5115 —0.3090
R'=1 09045 03090 0.2939 |, 7'=|-0.0900|, N = |—0.0000
—0.2031 —-0.2939 0.9340 4.0652 0.9511

Finally, we solve for Ry and T, using Proposition 7

0.9511  0.0000 —0.3090 6.0056
Ry = 0 1.0000  0.0000 |, T,= |9.0084
0.3090 —0.0000 0.9511 3.0028
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T, may be fully recovered by normalizing T, using the true distance scale
d= N"x; = 0.3330. In summary, no 3-D information but one scaling factor is lost
by the perspective projection of symmetric patterns in single views.

People may wonder why the other solution did not pass the symmetry test. The
four-point algorithm computes (R',7") by decomposing the matrix product
H'™ H'. If there exists another homography matrix H”, such that H""H' = H"H',
its corresponding relative position (R”,T”) is another valid solution based only on
the positive depth constraint [35]. However, if the planar structure is symmetric,
as in this case a pentagon, there are five 3-D camera positions that are qualified to
have a correct “hidden” view. In general, (R”,T"”) does not coincide with these
positions, hence the reconstructed pattern is not symmetric. Theoretically, the other
solution can be another valid “hidden” view. But if one more symmetric pattern is
available in the scene, this ambiguity can be easily resolved. We will discuss this issue
in Section 4.

In this example, we use one rotational symmetry assumption to recover the rela-
tive pose of the pentagon (Ry, T) up to an unknown distance scale. It shows that if
the symmetry assumption of a planar structure is correct, the pose of the structure
with respect to the camera can be fully recovered. However, in this paper, our goal
is to automatically detect symmetric structures only from their perspective images.
Without knowing the 3-D information, applying reflective and rotational symmetries
to the image of an irregular polygon will give inconsistent pose recoveries of the same
object. The consistency is the key to the local symmetry testing we will propose in the
next section. We claim a planar structure to be a symmetry cell candidate only when
the poses recovered by all the elements of its homography group are consistent, espe-
cially the normal vectors recovered shall be the same.

Without loss of generality, in the following sections, we will use rectangle/square
examples to demonstrate 3-D pose recovery of arbitrary planar symmetric struc-
tures. This simplification is valid in our discussion because the pose recovery method
only relies on the correspondence of corner points of any polygon from its real view
to its “hidden” views. It is trivial to extent the rectangle example to any polygons
with 2n (n > 2) vertices, and extent the pentagon example to polygons with 2n + 1
(n = 2) vertices.

3. Symmetry-based hierarchical image segmentation

Based on the theory we have in the previous sections, we are now ready to show
how it may help us to segment a 2-D image of a scene in terms of 3-D geometric
information encoded in it. Our goal is to segment the image into regions, identify
the regions which potentially have a consistent interpretation as symmetric objects
in space, and recover relative 3-D geometric relations between these regions.

Fig. 5 outlines the architecture of a prototype system that we have developed
to achieve these tasks. The hierarchical architecture consists of three main levels.
In this section, we will demonstrate how to implement the low-level symmetry cell
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Fig. 5. The system diagram of the symmetry-based geometric segmentation algorithm.

extraction and middle-level symmetry hierarchy construction. We will also introduce
a novel method to match symmetric cells across multiple images as an example of
high-level applications in the next section.

3.1. Low-level symmetry cell extraction

As we know from the previous chapter, the homography matrices associated to
different symmetry elements in G must preserve the same group relations. Further-
more, each homography should lead to the same 3-D reconstruction of the structure
S. This is a very important condition and it leads to the following principle.

Principle 1 (Symmetry hypothesis testing). To verify if (part of) an image can be
interpreted as that of an object with a symmetry group G, we need to verify for all
the elements in the group G whether the resulting homography matrices preserve the
same group structure and all lead to a consistent 3-D structure and pose (in
particular, surface normal) recovery for the object.

To “recognize” or “detect” symmetry in an image, we first select some candidate
image regions, which we call cells, and determine whether each cell passes the testing
of certain types of local symmetry criteria. For instance, we can choose any set of
four connected line segments that enclose a homogeneous region in the image as a
cell. It may correspond to a 3-D quadrilateral that falls into one of the following
cases: (1) nonsymmetric quadrilateral, (2) one reflective symmetry (G = Z;), (3) a
rectangle (G = Dy), or (4) a square (G = Dg). Using the algorithms provided in the
previous section, we can test the cell against all four cases and determine which types
of symmetry this cell admits. If it falls into the first two categories, we can simply
discard it, since we cannot distinguish the solution with the correct reflection



A.Y. Yang et al. | Computer Vision and Image Understanding 99 (2005) 210-240 225

assumption from the ones with the incorrect assumptions when the reconstruction
results are all inconsistent. That is to say, the first two cases are not distinguishable.
A cell that belongs to any of the other two categories has consistent pose recovery
solutions, and is called a symmetry cell for a quadrilateral region, with the type of
symmetry labeled on it. Similar definitions may apply to other polygon regions with
more than 4 edges.

To make our explanation intuitive, we will use the image shown in Fig. 6 to dem-
onstrate the process of the overall system. In Section 5, other examples will be given
for more generic scenes.

Polygon extraction. To obtain candidate regions for symmetry cells, we use a color-
based mean shift algorithm [14] to obtain homogeneous color pattern regions from the
image. The two primary parameters for the mean shift algorithm are set to be g = 7,
gr =9. Forevery region that is larger than a minimal size, we compute the convex hull
of the region in order to guarantee its convexity and reduce the noise on its boundary.

Since the contour of a polygon consists of piecewise line segments as special
curves with zero constant curvature and corners with local curvature peaks, we
developed a polygon fitting technique based on the constant curvature criterion pro-
posed in [36]. The result for Fig. 6 is shown in Fig. 7. Compared to the original im-
age, some of the “cells” are missing due to noise. Here we want to point out again
that the overall algorithm is not restricted to quadrilaterals, and in fact from the con-
stant curvature criterion, we directly know how many edges a convex region con-
tains. The convex hull plus constant curvature technique is not essential to the
proposed algorithm, it can be replaced by any other boundary smoothing and poly-
gon fitting methods.

Fig. 7. (Left) The output of polygon extraction. (Right) Details.
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Local symmetry testing. For each extracted quadrilateral, using Principle 1, we
can test whether it satisfies the symmetry of, for instance, a rectangle or a square.
Fig. 8 shows cells extracted from the image in Fig. 7 that pass the testing as squares
with their object frames attached. However, in generic images, the normal vectors
obtained from segmentation at this level can be noisy, as experiments in Section 5
will show.

3.2. Middle-level symmetry hierarchy. geometric segmentation

A cell that passes the local symmetry testing of a rectangle or a square does not
necessarily corresponds to the image of a rectangle or square in space. We should
further verify its validity in the context of the whole scene. For this purpose, we pro-
pose the following principle:

Principle 2 (Global symmetry testing). Symmetry cells which have consistent 3-D
geometric properties (e.g., orientation) with other adjacent cells more likely
correspond to symmetric 3-D structures in space.

For example, if a number of neighboring symmetry cells have mutually consistent
normals, it is likely that these cells come from the same 3-D plane. Furthermore, a
set of cells together may correspond to a 3-D structure which admits a new symmetry
at a higher level. For example, two neighboring cells can be translational copies of
each other in space, which is often the case for window patterns on the side of build-
ings. This leads to the notion of symmetry complex: a group of (preferably neighbor-
ing) cells with consistent 3-D geometric properties. Different geometric properties
may lead to different types of symmetry complex segmentation. In this paper, we
consider three properties as examples: orientation, topology (connectivity), and
coplanarity.

In our prototype system, we first use the ISODATA algorithm [37] to cluster the
spherical coordinates of the normal vectors of the obtained planar symmetry cells.
The outliers are discarded. We further relate the symmetry cells by their connectivity
relations. For two cells in the same orientation group, if their edges or corners are

Fig. 8. Cells that pass the local symmetry testing are marked with their 3-D object frame (x,y,z)-axes
drawn in red, green, and blue arrows, respectively.
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adjacent to each other, they can be considered as “connected.” Finally, for those
connected cells with the same local reflective and rotational symmetries, we can ver-
ify if they are coplanar by considering the translational symmetry among them. If
two cells are coplanar and congruent, the plane normal recovered from the transla-
tional homography between the two cells needs to be the same as the normals of both
cells.

Collective adjustment. Coplanar cells within the same group must share two
things: a common normal vector N and the same distance d from the camera center
to their supporting plane. We take N to be the average of all the normal vectors with-
in the group. For each cell in the group, the rotation R of its object frame is adjusted
such that the z-component is N. The translation T of its object frame is then scaled
such that 7TN = d. Such an adjustment may significantly improve the 3-D recon-
struction of cells in each group. Fig. 9 shows the result that symmetry cells extracted
from the example image become collectively adjusted based on their coplanarity.

Through the above segmentation process, every image gives rise to a hierarchy of
symmetry cells and complexes that resembles a tree-like structure, as shown in
Fig. 10. One can view such a tree-like hierarchy of symmetry cells and complexes
as a “(24)-D” representation of the image: Although the hierarchy is not yet a full

Fig. 9. (Left) Cells that pass the local symmetry testing are marked with their 3-D normal vectors drawn in
blue arrows. (Middle) The output of the geometry-based grouping. Coplanar cells are grouped together,
with yellow lines connecting cells in the same group. (Right) The final output of collective adjustment. The
normal vectors of the cells within the same group are unified. The normal vectors in both the left and right
figures were reversed for better visualization result.

A 2-D image

jon

[ Complex 1 ] ( Complex 2]

x (Complex1) (Complex2) . | ) ( )

Fig. 10. A hierarchical segmentation of an image by 3-D geometric properties.
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reconstruction of the entire scene, 3-D geometric information on regions of the scene
is already available, and relations between these regions are also encoded within the
hierarchy. This kind of hierarchy can also be used as landmarks from single images
to allocate the possible position of the camera (and hence the robot) in the Simulta-
neous Localization and Mapping (SLAM) problem. We will elaborate this idea in
the next section.

4. 3-D matching from images of symmetric structures

In this section, we deal with the situation when multiple views of (parts of) an ob-
ject are given, and multiple symmetry cells on the structure are detected in the
images. We will derive the conditions for matching multiple cells across the images.

4.1. Two-view reconstruction from one matched cell

We start with the simplest case. Suppose two images of the same cell are given, as
shown in Fig. 11. For i = 1,2, the pose (R;, T;) of the ith camera frame with respect to
the object frame of the rectangle can be determined separately using the method gi-
ven above. However, the reconstructed 7;’s have adopted different scales. The cause
of this difference is that for each image, the distance d; from the ith camera center to
the supporting plane of the rectangle was set to be d; = 1 to fix the unknown scale in
translation.

Suppose that the four corners of the cell recovered from the first image have coor-
dinates (x;y,)" and those from the second image have coordinates (u;,0)",
j=1,2,3,4. Due to the difference in the adopted scales, the recovered coordinates
of corresponding points differ by the same ratio. Since the corresponding points
are physically the same points, the ratio o« = Z—? can be found in

=

; 4 =
L(me Ts) &
09 21, 151)

Fig. 11. The case for one rectangle in a two images. Usually the distance ¢ from the first camera center o,
to the plane is set to be unit 1. Then the key is to recover ds, the distance from o, to the plane with respect
to the reference d;.

—
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lx"'_x] =oc[””_f‘} j=1234, (19)

Yi—Y v —v

where X = izé;zlxj and similarly for y, #, and o. In the presence of noise, o can be
easily calculated using the least-square method. Therefore, if the first image is chosen
as the reference image, then the relative pose of the second camera frame with respect
to the canonical object frame becomes (R, T,) < (R»,27>), and the distance from
the second camera frame to the supporting plane of the rectangle is d» = a.

4.2. Multiple views of multiple symmetry cells

First let us consider m perspective images 1;(.S) of a symmetry cell S taken at van-
tage points (R, T;) € SE(3),i=1,2, ... ,m. For each (R;, T;), there is a homography
H,; = [R,(1) Ri(2) T;] € R** which maps the plane P2 S in space to the ith image
plane. The homography between the ith and jth images is denoted by H,;=H,;H;".
We also denote H € R** as a matrix representation of the symmetry action g on
the xy-plane, although it is not a homography transformation in space. That is,

. R T 3x3
H_[O I}ER ) (20)
where R € R*? is a rotation or reflection matrix on the xy-plane and 7 € R*.

Since S has a symmetry group G, for each 7, the matrices A forms a homography
group G, = H;,GH jl that is conjugate to G. The key observation is that the homog-
raphies H| = H,HH; "' with respect to the action g only depend on the ith image, but
both H; and H;; can be determined from them by solving the following set of Lyapu-
nov type linear equations:

with H, H,, and H ; known (see the proof of Proposition 5 in the Appendix A for de-
tail). The benefit of symmetry then becomes clear: the relative poses between different
views or the pose between each view and the object can be recovered from informa-
tion that is encoded in individual images—no point matching across different images
is needed. This confirms our observations in the previous sections.

However, some ambiguity remains in the above equations. It is easy to see that if
H; is a solution to the Eq. (21), so is H;H for any element A in the orientation-pre-
serving” subgroup G=G N SE(2). This is because

H/(HH) — (HH)(H 'HH) =0 (22)

and A 'GH = G. Fora proper rectangular cell (i.e., not a square), there are only two
possibilities:

2 Because H; needs to be orientation-preserving.
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1 0 0] -1 0 0
G=<{10 1 0[,|0 —1 0fp~27, (23)
00 1 0 0 1

This comes at no surprise since if the rectangle is rotated by 180° about its center,
one obtains the same image of the cell from the same vantage point. Similarly, for
a regular pentagon, G = {g, = I3.3,8, = o,g, = o, gy = o’, g, = o'}, where o repre-
sents a rotation by & about its center

cos(¥) —sin(ZF) 0
o= |sin(Z) cos(E) 0
0 0 1

From m images of a rectangular cell, we can get up to 2" possible solutions to the
camera poses (relative to the object frame) if we only rely on the homography group
G’ from each view. Nevertheless, this problem can be mostly resolved if the images
contain more than one cell.

Theorem 10 (Cell-to-cell matching). From m = 2 different views of n = 2 symmetry
cells, given that each cell is matched correctly across different views, the solution of the
camera poses is unique if and only if at least one cell has a different rotation axis.

Proof. The proof is by examining every two views of two cells. To have a second
solution, there must exist the same rigid-body transformation g’ € SE(3) that is the
homography conjugate g’ = g,gg;! of the same g € G on each cell. This situation
is possible only when the two cells share the rotation axis, as we have illustrated in
Fig. 12. O

The above theorem requires that each cell is correctly matched across different
views. If we relax this condition and allow a set of cells, i.e., a cell complex, to be
matched among themselves, we have the following theorem.

Theorem 11 (Complex-to-complex matching). Given a set of n = 2 symmetry cells
matched among themselves across m = 2 views, the ambiguity in a valid solution for the

Y

2 01

Fig. 12. Multiple views of multiple cells matching. o; and o0, are two real vantage points. In solving for the
translation between o, and 0,, 0,, and o), are the two possible solutions for cell S;, while 0, and 0] are the
two possible solutions for cell S,. When the two cells do not share a rotation axis, the two ambiguous
solutions 05 and of can be eliminated since they are not consistent, i.e., g} # g.
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camera poses is only caused by the global rotational symmetry group of the set of cells
as a single 3-D structure.

The proof is similar to Theorem 10. Obviously, Theorem 10 is a special case of
Theorem 11. The latter stipulates that the only valid set of matching among a set
of symmetry cells are caused by the global symmetry of all the cells. Notice that point
features in general do not have the same nice properties as symmetry cells.

Finally, it is also possible that certain cells can be completely mismatched across
different images, outside of a given set of cells. This is particularly the case when
there are multiple repeated patterns in the scene. Since we know the 3-D pose and
structure of each cell up to scale from each view, given the camera positions, there
is essentially only one configuration in which a mismatch could occur. As shown
in Fig. 13, the cell S can be matched either to the cell S3 or S3 in the second image
if the cells S and S° in space are parallel to each other and their shape and texture
differ by a similarity transformation. Such cells form exactly a 1-parameter family in
the second image. This relation can be thought of as the “epipolar constraint’ for
cell matching between two views. Notice that a mismatch causes only a “depth’ illu-
sion in space. However, these types of mismatches can be easily eliminated once we
know something about S? in relation with any other matched cells, for example, the
relative size or depth between S' and S°.

4.3. Pictorial matching

The previous sections have covered the geometry for reconstruction of symmetry
cells. However, several pictorial properties that the cells possess can further eliminate
possible mismatches. For example, consider the shape similarity, a symmetry cell can
only be matched to another one with the same number of edges and similar length
ratios of the edges. For two cells which pass the shape matching, we can align their
scales and compare the color texture inside the cells. This kind of 2-D information is
not available for matching points, lines and certain local affine invariant regions, and
it further highlights the advantages of aligning multiple images using symmetry cells.

Combining all the pictorial measurements, we can easily construct a matching ma-
trix M for every two images, whose (i,j) component is the similarity of the ith and jth
cells in two images, respectively. Nevertheless, the method searching for the optimal

Fig. 13. “Epipolar constraint” for symmetry cells.
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match in this matrix is not the focus of this paper, and the interested reader is
referred to [38].

5. Experiments
5.1. Symmetry cell extraction

We first demonstrate the performance of the symmetry cell extraction algorithm by
applyingit to a variety of images of generic scenes. The images are shown in Fig. 14. For
all the experiments, there is no manual interference at all. The system uses the same set
of parameters for mean shift segmentation, polygon fitting, and symmetry testing. All
images are 1280 x 960 pixels RGB color images. The speed for low-level cell extraction
is within 1 min on a 1.4 GHz Pentium4 PC running Matlab, which includes the mean
shift segmentation and polygon fitting. The computation of symmetry hierarchy with-
out nonlinear optimization takes less than 5 s, but the optimization version usually
needs several minutes, depending on how many cells are extracted from the image.

The order we select in our demonstration is from the easiest to the most difficult.
The second and third images both contain multiple cells and complexes which are
obviously the most salient rectangular objects in the scene. The system also success-
fully groups coplanar cells in the same groups. The last image taken from an aged
book shelf is the most challenging one. Most of the geometric meaningful patterns
contain characters inside the regions and they sit on the book contours which are
not strictly planar surfaces. Some of the cell boundaries are not so well-defined
and their 3-D geometric relations are not precise. The system still does a decent
job of extracting and segmenting most cells.

5.2. Symmetry-based 3-D reconstruction

This section shows the experiments on matching symmetry cells across multiple
images. Section 5.2.1 demonstrates the results of automatic cell matching and recon-
struction with or without ambiguities across images. Section 5.2.2 demonstrates how
to achieve fast 3-D image-based rendering by manually selecting several symmetry
cells.

5.2.1. Automatic cell matching

Fig. 15 shows that two symmetry cells are automatically extracted and matched
across three images of an indoor scene. Correspondence of the corners of the cells
are derived from the only consistent solution for the camera poses found by our sym-
metry extraction algorithm. Notice that there is a very large translation between the
first view and the last two views but a very large rotation between the second and third
views. Classical feature tracking becomes noisy for such large motions. But the prob-
lem becomes very well-conditioned if the reconstruction of symmetry cells is first ap-
plied between the real images and their “hidden” counterparts, and then match them
across the multiple views with the relative poses already extracted.
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Fig. 14. Experiments. (Left) Original images; (Middle left) geometric cell extraction and local symmetry
testing, cells without frame attached fail the test; (Middle right) local symmetry testing with nonlinear
optimization. (Right) grouped symmetry cells, each with its object frame pose recovered and marked.
Different groups of symmetry cells are identified by bold arrows with different colors for the normals.

Fig. 15. Two symmetry cells matched in three images. From the raw images, symmetry cell extraction, to
cell matching, the process needs no manual intervention.

Our algorithm gives very accurate solutions. The ground truth for the length ra-
tios of the white board and table are 1.51 and 1.00, and the recovered length ratios
are 1.506 and 1.003, respectively. Error in all the right angles is less than 2.5°.

In Fig. 16, multiple solutions are found automatically by our algorithm for
matching and reconstructing symmetric cells detected in two images of an indoor
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Fig. 16. From top to bottom: Different matches for four rectangles in each image with the first row
showing the correct matchings. The right side shows the top view of the reconstructed 3-D scene with
camera poses.

Fig. 17. Five images used for reconstruction of a building.The last image is used solely for obtaining roof
information.

o
i ]
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Fig. 18. (Top) The four coordinate frames show the recovered camera poses from the first four images in
Fig. 17. The roof was substituted by a “virtual”” one based on corners extracted from the fifth image with
the symmetry-based algorithm. Blue arrows are the camera optical axes. (Bottom) Reconstructed 3-D
model rendered with the original set of the four images.
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scene. The top set of images shows the correct matching of four rectangles in the
scene and the two camera poses are correctly recovered. The middle row is an ambig-
uous solution caused by the translational symmetry of the rectangular complex, in
which each of the four rectangles in the left image is matched to the one to its right
without using their color (texture) information. As a result, the recovered camera
poses are shifted towards the right. The bottom row demonstrates another ambiguity
that not only the matching is shifted due to the translational symmetry, but it is also
mismatched due to the rotational symmetry of the four rectangles as a whole com-
plex. Both the last two situations are examples of geometric ambiguities character-
ized by Theorem 11. Fortunately, both ambiguous solutions can be avoided when
texture information is used in matching.

5.2.2. Semi-automatic scene reconstruction

The ambiguities displayed in Fig. 16 could become extremely complicated if many
similar cells are present in a scene. For instance, the symmetry complex of the win-
dows shown in Fig. 17 may lead to many ambiguous matches. In such cases, manual
intervention is necessary if a realistic 3-D reconstruction is sought. Our algorithm
still helps to minimize the necessary manual interaction.

For images in Fig. 17, the user only needs to point out which cells (not points)
correspond to which in the images and our algorithm will then automatically find
a consistent set of camera poses from the matched cells, as Fig. 18 top shows. Based
on the recovered camera poses, the subsequent 3-D structure reconstruction is shown
in Fig. 18 bottom. The 3-D model is rendered as piecewise planar with parts not on
the building manually cut. The angles between the normal vectors of the two orthog-
onal walls differ from 90° by an average of 1° error even without any nonlinear opti-
mization. The whole process (from taking the images) takes less than 20 min.

6. Conclusion

This paper demonstrates that it is computationally feasible to represent an im-
age of man-made environment based on accurate 3-D geometric information. The
key to this is that symmetry groups admitted by (planar) symmetric objects in
space are precisely encoded in the image through the homography groups. This
stipulates that no 3-D information is lost through the perspective projection for
symmetric objects. The result of such geometry-based segmentation is a hierarchi-
cal representation of symmetric objects in terms of their spatial geometric proper-
ties and relations.

Correspondingly, the architecture of our symmetry detection method is also hier-
archical. This allows the development of the algorithms for each layer to be relatively
independent. Computationally, local and global symmetry testings are introduced
between different layers to guarantee the consistency of the geometric hierarchy.
Although this mechanism will probably reject some valid cells due to noise, it does
significantly reduce the number of false positives in symmetry cell extraction, which
is important for high-level applications such as matching.
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If multiple images of the same scene are given, it is much easier to establish cor-
respondence between cells and complexes than using only point or line features. This
leads to the multiple-view geometry of symmetry cells. We have discussed the possi-
ble ambiguity in matching cells across images, and the extra geometric and pictorial
information in symmetry cells allows us to recover them more easily.

A prototype reconstruction system based on the proposed algorithms is also
developed. Experiments show that it gives very accurate 3-D recovery of the camera
poses and scene structures. Although the proposed method is limited to scenes with
symmetric objects, the type of symmetries can be very flexible and the number of
symmetric objects needed is very small.

Appendix A

Proof of Lemma 4. First, it is easy to check that 7" = —R'T". Since det(—R') = 1, we
use a property of the skew-symmetric matrix,

T — —RT =RTR".

Then we have R'T' =T'R' = T'.

Next, we assume 7’ has unit length. Since 7'7"" is an orthogonal projection
matrix with respect to 7, and we have the constraints: det(R') = —1 and T'R' =T,
R =1-2T'T'". The epipolar constraint induced becomes x7'7"x = 0. [

Proof of Proposition 5. We first denote the Lyapunov map L:R>3 — R¥3,
Ro— R'Ry — RoR associated to the condition

R = RyRR} <> R'Ry — R\R = 0.

Without loss of generality, we assume the reflection matrix R is with respect to the
yz-plane and has the form

-1 0 0
R=|0 1 0| e R,
0 0 1

Therefore its eigenvalues are
m=-1 m=p=1

Let {u;,ur,u3} be the left eigenvector of R. Hence the left eigenvector associated with
wy=—11s u; =[100]. The two real left eigenvectors associated with the two re-
peated eigenvalue pu, =puz;=1 are u,=[010] and u3=[001] If we denote
{v1,0v5,03} to be the right eigenvectors of R’, and their corresponding eigenvalues
are {1,/,,43}, we have

R'v; = RoRRv; = Jv; <= R(Ryv;) = 4(Ryv,).

From the equation above, the eigenvalues of R’ are the same as the eigenvalues of R,
i.e.,
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M=-1, L=74=1,
and their associated eigenvectors can be represented by
U; :R()ui, i= 1,2,3.

We have a total of five combinations of 7,j such that A; = p;. Thus, the kernel of Lis a
5-D space that has a basis consisting of the elements

e =vup = [Ul, 0, 0]7 € = D = [0, U2, OL €3 = iz = [0> 0, 02]7
e4 = V3Uy = [0, U3, 0], es = 3U3 = [0, 07 Ug] € R33.

Any linear combination of the basis elements
5
Ry = Za,e,- eR™, 4 eR
i=1
will be a solution of the equation R'Rq — RoR = 0. Since we assume the normal to be
in the direction of the z-axis, we get a solution for R,

Ry = [+v,,£Nv;,N] € SO(3),
and Ty is recovered up to the following form:
Ty € (I — RoRRY)' T+ Null( — RoRR}),

where (I — RORRg)T is the pseudo inverse of 7 — RORROT. Since both v, and v are in the
null space of the matrix /— RyRR] (since their associated eigenvalues are
Jo=J3=1), we have Null(/ — RyRR}) = span{v,, v3}.

Such ambiguity in the recovered go= (R, Ty) is exactly what we should have
expected: with a reflection with respect to the yz-plane, we in principle can only
determine the y-axis and z-axis (including the origin) of the world coordinate frame
up to any orthonormal frame on the yz-plane. If S itself is on a plane, we may choose
the z-axis of the world frame to be the normal to the plane and the origin of the
frame to be on the plane. Thus, we can reduce this ambiguity to a 1-parameter
family. Only the origin 0 now may translate freely along the y-axis, the intersection
of the plane where S resides and the plane of reflection. [

Proof of Lemma 6. Notice that 77 = Ty, — R'T,, so we denote Ty = T, + T», where
T, is perpendicular to w and T5 is parallel to w. It is easy to check that the parallel
components of Ty and R'T| cancel each other, hence T" is perpendicular to . [

Proof of Proposition 7. We first denote the Lyapunov map L : R¥3 — R¥3; Ry
R'Ry — RyR associated to the condition
R = RyRR} <= R'Ry — R\R = 0.
Without loss of generality, we assume the rotation is with respect to the z-axis, so R
is of the form
cosf —sinf 0
R=e¢""= |sinf cosf 0
0 0 1



238 A.Y. Yang et al. | Computer Vision and Image Understanding 99 (2005) 210-240

with w = [0, 0, 17T and 0 < 0 < n. Hence it has three distinct eigenvalues {1, e™’, ¢’} .
The left eigenvector associated with u; = lisu; = [0, 0, 1]thatis real. The other two left
eigenvectors associated with the two complex eigenvalues y, = fi; are u, = [—i, 1, 0],
uy =[i, 1, 0] with u, = ;. Notice that Im (u,) is orthogonal to Re (u5).

For the R, we have

R/U,‘ = R()RRZUI' = i,-l),— S ad R(Rgv,) = /l,(Rgv,)

From the equation above, the eigenvalues of R’ are the same as the eigenvalue of R
which are

;L] = 1, )»/2 = €+j0, /l3 = e*"e.
The eigenvector associated with /; = 1 is v; which is a real vector. The other two eigen-
vectors associated with the two conjugate complex eigenvalues 1, = A3 are v,, v3, where
v, = 03. Furthermore, Im(v,) is orthogonal to Re(v,) since Rg is a rotation matrix.

We have three pairs of (4, i) such that 4; = y;, i = 1,2,3. Thus, we get three bases
for the kernel of L

iUy = [0,0,Ul] S R3X3,
Voy = [—iDz,Dz,O], UiUz = [iU3,U3,0] = [117)2,17)2,0} € C3X3.

The real and imaginary parts of the two complex bases

Re[vaus] = [Im(vz), Re(vy), 0],

Im[vu,] = [-Re(v2), Im(v,), 0],

RC[U3M3] = [Im(l}z), RC(UQ),O} = Re[vguz],
Im[U3u3] = [Re(Uz), —Im(vz),O} = —Im[Uzuz]

are also in the kernel of L. Then the real kernel of L is a 3-D space which has the set
of bases

{[07 07 Ul]v [Im(v2)a Re(UZ)v 0]7 [_Re(UZ)a Im(u2)7 0]} € R3X3‘
The solution of Ry will be the linear combination of the bases:
Ro =a) [07 07 Ul] =+ a [Im(l)z), RC(Uz), 0] =+ Ll},[—Re(Uz), Im(l)z), O],

where coefficients a;, a», a3 € R.
Because R,y € SO(3), we can impose the constraint of it being a rotation matrix.
We have shown that Im(v,) is orthogonal to Re(v,), then R, is of the form

[Im(v,) cos(a) + Re(vy) sin(a), Re(vy) cos(a) — Im(v,) sin(ar), +vy],

where o € R is an arbitrary angle, and the sign of the third column is chosen such
that det(Ry) = 1.

So Ry has infinitely many solutions. Geometrically, the three columns of R’ can be
interpreted as the three axes of the world coordinate frame that we attached to the
structure. The ambiguity in R, then corresponds to an arbitrary rotation of the xy-
plane around the z-axis. [
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