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Object Localization using the Generative

Template of Features

Moray Allan, Christopher K. I. Williams ∗

School of Informatics, University of Edinburgh,

5 Forrest Hill, Edinburgh EH1 2QL, UK

Abstract

We introduce the Generative Template of Features (GTF), a parts-based model for

visual object category detection. The GTF consists of a number of parts, and for

each part there is a corresponding spatial location distribution and a distribution

over ‘visual words’ (clusters of invariant features). The performance of the GTF

is evaluated for object localisation, and it is shown that such a relatively simple

model can give state-of-the-art performance. We also demonstrate how a Hough-

transform-like method for object localisation can be derived from the GTF model.
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1 Introduction

Over the last few years there has been a surge of interest in the problem

of object recognition for object classes (as opposed to specific objects). We

can distinguish between two related problems for object class recognition:

classification, meaning detecting whether an object of the given class is present

in an image, and localisation, meaning determining the position of an object

in an image.

We focus on object localisation using the Generative Template of Features

(GTF) model. We assume that each input image has been preprocessed by

running a region-of-interest detector and matching the results to some set of

‘visual words’. The model, described fully in section 3 below, consists of a

number of parts, with each part having a spatial location distribution and a

distribution over visual words. Our main contributions are explaining how to

train the model in a supervised manner, evaluating its performance on clut-

tered images, and showing how pose-space prediction methods can be derived

from the GTF.

Section 2 below gives a summary of related work on object class recognition.

Section 3 describes the GTF model and the relationship between the GTF

and scanning window and pose-clustering methods. Section 4 describes some

experiments on learning and recognising object classes using the GTF. Section

5 discusses the experimental results and some ways to enhance the GTF’s

performance.

2



2 Related work

This section discusses approaches to object category localisation, grouping

them as scanning-window methods, pose-clustering methods, and correspondence-

based methods.

Scanning window methods run an object detector at different possible object

scales and locations across an image, considering each object bounding box

hypothesis and searching for maxima in the detector output. For example, Le

Cun et al. [1] used a scanning window approach with a neural network-based

handwritten-digit detector trained using backpropagation. More recently scan-

ning window approaches were used for example with a face detector using local

image patches trained by boosting [2], and a car detector using clustered in-

terest regions [3]. Kapoor and Winn [4] used a located hidden random field

to learn discriminative object parts to detect cars and horses. The located

hidden random field is a conditional random field extended to assign pixels

unobserved object part labels, and to model the spatial relationship between

these parts.

Pose-clustering methods (see [5], §18.3) allow individual image features to vote

on object instantiation parameters, then look for maxima in the summed vot-

ing space. For example, straight lines can be recognised by allowing noisy line

segment features to vote for a range of line orientations passing through each

feature’s location, then looking for vote responses above some predetermined

threshold [6]. This approach can be generalised to detect arbitrary shapes [7].

Lowe [8] matches images to models for individual objects using a Hough trans-

form approach. Leibe et al. [9] take a similar approach to the case of object
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category recognition. They extract image patches at Harris interest points,

cluster them using normalised greyscale correlation, and then vote based on

the offsets within the object bounding boxes at which a given patch cluster

was seen in the training data.

Correspondence-based methods [10] match image features to features in a

model. For example, the ‘constellation model’ [11–14] uses a number of ob-

ject parts which are found in characteristic positions relative to each other,

matching each part to a region in each image. For example, for faces we might

think of having the eyes, nose, and mouth as parts. The constellation model

learns the joint probability density on part locations. The constellation model

can be slow to train, and at test time potentially requires a search over all

possible correspondences between image features and object parts. As this is

a combinatorial search it is exponentially slow unless aggressive pruning of

the search tree can be achieved. Star models [15] and other structures from

the more general class of k-fans [16] allow larger number of object parts to be

used.

3 Generative Template of Features

This section describes the Generative Template of Features model. We first

discuss the main points of the model, then give some information on modelling

choices we have made in modelling the background features (section 3.1),

object scale (section 3.2), and mixing proportion (section 3.3).

We assume that a region-of-interest detector has been run on each image,

and that a local image descriptor like Lowe’s SIFT descriptor [17] has been
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computed for each region of interest. Regions could also be sampled from

the images at random [18]. We cluster the descriptors obtained from a set of

training images to create a dictionary of ‘visual words’ (as for example in [3,9];

our clustering procedure is described below in section 4.1). Thus for image m

with Nm interest points we have pairs (xmi, wmi), i = 1, . . . Nm, where xmi

denotes the position of feature i in image m, and wmi denotes the visual word

to which it matches. Xm is a matrix of Nm feature positions for image m, and

Wm is a vector of the Nm corresponding visual words for the image.

Consider an object which has pose variables θ. Here θ could denote for ex-

ample the (x, y) position of the object in the image, position plus scale and

rotation, or it could be more complex and include information on an object’s

internal degrees of freedom. Under the model defined in [19] we have

p(θ, Xm, Wm) = p(θ)
Nm∏
i=1

p(xmi, wmi|θ), (1)

i.e. each feature (xmi, wmi) is generated conditionally independently given θ.

Since image features may be generated either from background clutter or from

a foreground object of interest, we propose a mixture model

p(xmi, wmi|θ) = (1− α)pb(xmi, wmi) + αpf (xmi, wmi|θ), (2)

where pb denotes the background model, pf the foreground model for the

object, and α is the probability of choosing to generate from the foreground.

The background model may, for example, generate features anywhere in the

image and with a broad distribution of visual word types, with pb(x, w) =

pb(x)pb(w). We use a more complex background model, which assigns lower

background probability to the foreground area (Figure 1(b)), as described in

section 3.1 below.
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The term pf (xmi, wmi|θ) can be further decomposed using the notion of parts.

If zmi determines which of the P possible parts of an object a feature is

generated from, then under the object foreground model we have

pf (xmi, wmi|θ) =
P∑

zmi=1

pf (xmi|zmi, θ)p(wmi|zmi)p(zmi). (3)

This equation means that the location of feature mi, xmi, depends on the part

from which it is generated and the object’s instantiation parameters, while the

visual word wmi is generated from a multinomial distribution that depends on

only the identity of the part that the visual word is generated from. Note that

it is not absolutely necessary to cluster the descriptors into a discrete set of

visual words; one could define p(w|z) over real-valued descriptors, using for

example a mixture of Gaussians, and possibly make p(w|z) also vary with the

object pose θ.

In our GTF implementation we use a spatial grid of Gaussians pf (xmi|zmi, θ)

as the object parts which generate foreground feature locations, with each

part generating visual words from an associated multinomial p(w|z). Figure

1(a) shows a 6× 4 GTF. The part locations are transformed to fit the object

template by translations (t1, t2) and x and y scalings s1 and s2; the variance

of the Gaussians also scales proportionally to changes in s1 and s2. A similar

generative model was defined in [20] for black (ink) pixels, without the visual

words component.

For any set of images of a particular class of objects which has been normalised

to a common reference frame (by translation, scaling, etc.), we expect to see

regions which have propensities to generate particular visual words. For ex-

ample, if we normalise a set of side views of cars, there will be regions towards

the bottom left and right of the views which tend to generate visual words
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associated with wheels. While we define a spatial grid of object parts, it would

also be possible to adapt part locations during GTF training.

Support for the hypothesis that there is one object of a given type Oj in the

scene, plus background features, can be evaluated by computing

p(Xm, Wm|Oj) =
∫

p(θ, Xm, Wm|Oj)dθ (4)

for each object model, including a pure background model O0 to account for

the case where there is no object of a known type present. In general the

integral in equation 4 is not analytically tractable but if θ is low dimensional

it can be approximated, for example by using numerical quadrature based on

a grid of points in θ-space, or by using Laplace’s approximation at a mode of

p(θ|Xm, Wm, Oj). Localization of an object with respect to the θ parameters

such as position and scale can be carried out with the GTF by scanning the

template over the image at a dense grid of θ settings, and detecting maxima

of p(θ|Xm, Wm, Oj) in this space, or alternatively by using a coarse grid in θ

space with hill-climbing search.

Unlike correspondence-based methods, the GTF model does not enforce gen-

eration from each part. The conditional independence assumption in the gen-

erative model gives a non-zero probability that a part is not chosen on any

of the draws from the foreground. This is useful behaviour when part of an

object is occluded, but it can also lead to incorrect detections. This problem

was observed by [20] where it was called the ‘beads in white space’ problem,

as ink generators (beads) could occur without penalty in regions where there

were no black (ink) pixels. One way to deal with this would be to use the GTF

to find promising regions of θ space, and then evaluate potential detections

with these bounding boxes using a separate discriminatively-trained classifier.
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This strategy was used by Revow et al. [20] on the digit recognition prob-

lem, and more recently has been used, for example, by Fritz et al. [21] for the

recognition of cars, motorbikes, cows and horses.

Most scanning window methods use discriminatively-trained classifiers, but

we can also use a scanning window approach with the GTF. Unlike discrim-

inative classifiers, the GTF is capable of being trained in an unsupervised

manner. Note that even if we scan an object hypothesis across an image,

evaluating possible object bounding boxes in turn, the GTF’s likelihood term

p(Xm, Wm|θ) still considers the probability of the ‘background’ features out-

side the enclosing bounding box, while most discriminative methods only learn

the equivalent of the GTF’s object foreground model.

3.1 GTF background model

The background model used in our experiments below generates feature loca-

tions from a mixture, with probability β assigned to a uniform distribution

across the image (in our experiments β = 0.05), and probability 1−β assigned

to a distribution that generates approximately from a uniform distribution

across locations in the image outside the object bounding box, as illustrated

in Figure 2.

If we have indicator functions If (x), Ib(x), I(x) which are respectively one

inside the object’s enclosing bounding box, one in the background (outside

the object’s bounding box), and one anywhere in the image, and which are

zero elsewhere, we can declare a background feature-location distribution, in-
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dependent of visual word identity:

pb(x) =
β

A
I(x) +

1− β

A− Af

Ib(x) =
β

A
I(x) +

1− β

A− Af

(I(x)− If (x))

=

(
β

A
+

1− β

A− Af

)
I(x)− 1− β

A− Af

If (x), (5)

where A is the area of the image and Af = s1s2 is the foreground area.

To give a differentiable function we approximate If (x)/Af using the GTF’s

foreground grid of Gaussians, using the same visual word distribution pb(wmi)

across all the object parts, such that

pb(xmi, wmi|θ) =

(
β

A
+

1− β

A− Af

)
pb(wmi)−

1− β

A− Af

Afph(xmi, wmi|θ), (6)

where ph(xmi, wmi|θ) gives a ‘hole’ the same shape as the foreground:

ph(xmi, wmi|θ) = pb(wmi)
P∑

zmi=1

pf (xmi|zmi, θ)p(zmi). (7)

Compare equation 7 with 3, where each foreground object part had its own

visual word distribution p(wmi|zmi).

3.2 Scaling the model

We define the GTF template as 1 × 1 pixels, and scale it by x and y scale

factors s1 and s2 to fit each object bounding box. The grid of GTF component

parts is also scaled by s1 and s2, so that the parts retain their positions relative

to the template bounding box. The location variance with which the Gaussian

for each foreground part generates feature locations is scaled similarly.

To model the probability of seeing an object bounding box of a given width
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s1 and height s2, we fit a Gaussian in log scale space:

p(s1, s2) =

√
|S|

2π
× (8)

exp
(
−1

2

(
S11(log s1 − µ1)

2 + S22(log s2 − µ2)
2 + 2S12(log s1 − µ1)(log s2 − µ2)

))
(9)

where µ and S are the mean and the inverse of the covariance matrix of the

Gaussian. The SIFT descriptors used to create visual words are not invariant

across all aspect ratio changes, but as this model expresses we do not expect

to see extreme variations in aspect ratio between objects of a single class.

We assume that the object centre is generated uniformly across the image.

3.3 Mixing proportion model

We learn a model for the mixing proportion α (see equation 2) from the

training data, parameterised by the proportion of the image area covered by

the foreground object. The model, learnt by linear regression, is of the form:

α = γ
s1s2

A
(10)

where A is the area of the image.

3.4 Relation to scanning window methods

The translation and scale invariant probabilistic Latent Semantic Analysis

model used in [22] is similar to our model, except that it uses hard ‘cells’

(or box basis functions) instead of overlapping Gaussians, and is applied in

an unsupervised learning context. Fergus et al. [22] concentrate on object
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categorisation; the average precision scores they report for object localisation

(their Table 3) are quite poor.

The model of Sudderth et al. [19] does use a mixture of Gaussians. They

learn general spatial offsets for the parts rather than using a grid, though

note that a sufficiently fine grid of parts can approximate the effect of any

learnt part distribution. Their focus is on learning parts which can be shared

across object categories such as various kinds of animal. Our system can learn

to generate the same visual words for multiple classes, but Sudderth et al.

also use a Dirichlet process to share part visual word distributions across

multiple classes. They sample over object location hypotheses to estimate

the probability that an image is generated by a given object category, where

our GTF implementation uses a grid search followed by hill-climbing then

calculates an approximate integral.

Fergus et al. [22] and Sudderth et al. [19] carry out training using unsuper-

vised learning. In section 4.1 below we evaluate the performance the GTF

can achieve using supervised learning, where examples of the object classes of

interest are annotated with bounding boxes in the training data.

3.5 Relation to making predictions in pose-space

To consider different possible object pose parameters in the localisation task,

we have to compute p(θ|Xm, Wm). Taking logs of equation 1 we obtain

log p(θ, Xm, Wm) = log p(θ) +
Nm∑
i=1

log p(xmi, wmi|θ). (11)

As the data (Xm, Wm) are fixed we have p(θ, Xm, Wm) ∝ p(θ|Xm, Wm), with

p(xmi, wmi|θ) viewed as a function of θ. Thus the generative model can be used
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to hypothesize detections in θ-space by finding the maxima of p(θ|Xm, Wm),

for example by hill-climbing. Such an explanation of the probabilistic Hough

transform can be found, for example, in [23], although without the use of

specific visual word features, which provide more information and thus tighter

distributions.

To spell this out further, consider a distinctive visual word which occurs in only

one position on an object. This feature will be predictive of the location of the

centre of the object, but as it can also be generated from the background part

there is also an associated broad outlier distribution as derived from quation

3.

Equation 11 shows how to run the generative model backwards to provide

predictions in parameter space. However, given training data with features

{(xmi, wmi)} it is natural to build predictors for p(θ|xmi, wmi), for example by

creating a Parzen windows estimator for p(θ|xmi, wmi) [9]. How should we then

combine these predictions from each feature in order to obtain p(θ|Xm, Wm)?

Fortunately Bayes’ rule comes to our aid, as

p(xmi, wmi|θ) =
p(θ|xmi, wmi)p(xmi|wmi)p(wmi)

p(θ)
. (12)

Here p(θ|xmi, wmi) is obtained from the predictive model, p(wmi) is just the

marginal probability of visual word wmi over the training set, and p(xmi|wmi)

is the probability of seeing a visual word of type wmi in position xi. This

could be estimated using a density estimator for the location of features of

a given type in the collection of training data. Alternatively, if p(θ) has a

non-informative location component, then we might expect that p(xmi|wmi)

should be uniform across locations in the image. This use of Bayes’ theorem

to replace likelihood terms with predictive distributions has been called the
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scaled likelihood method, see for example [24].

Putting equations 11 and 12 together we obtain

log p(θ|Xm, Wm) =
Nm∑
i=1

log p(θ|xmi, wmi)− (Nm − 1) log p(θ) + c, (13)

where c is a constant independent of θ. Thus we have shown rigorously how

to obtain p(θ|Xm, Wm) from individual predictions p(θ|xmi, wmi) up to a

normalization constant. Note, however, that to compute the marginal like-

lihood (equation 4) from equation 13 additional terms involving p(xmi|wmi)

and p(wmi) must be included.

Recently, Leibe et al. [9] have used such ideas to predict an object’s location

based on the observed position of visual words. However, we note that the

equation they use (their equation 6), is, in our notation,

scorem(θ) =
Nm∑
i=1

pf (θ|xmi, wmi). (14)

Equation 14 does not at first sight agree with equation 1: for a start it sums

probabilities rather than multiplying probabilities or summing log probabili-

ties. However, using equation 2 we have

Nm∏
i=1

p(xmi, wmi|θ) =
Nm∏
i=1

pb(xmi, wmi)× (15)

[
(1− α)Nm + α(1− α)Nm−1

Nm∑
i=1

pf (xmi, wmi|θ)

pb(xmi, wmi)
+ O(α2)

]
.

If α is small and p(θ) is non-informative w.r.t. location then using equation

12 for pf (xmi, wmi|θ) we obtain to first order

p(θ|Xm, Wm) = c0 + c1

Nm∑
i=1

pf (xmi, wmi)

pb(xmi, wmi)
pf (θ|xmi, wmi), (16)

where c0 and c1 depend on the image features but not on θ, and pf (xmi, wmi) =
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∫
pf (xmi, wmi|θ)p(θ)dθ. Minka [25] has also discussed how a robustified prod-

uct of probabilities gives rise to a sum of probabilities to first order.

Furthermore, if p(θ) has a non-informative location component then the spa-

tial part of pf (xmi, wmi) will be non-informative and we can refine equation

16 to obtain

p(θ|Xm, Wm) = c0 + c2

Nm∑
i=1

pf (wmi)

pb(wmi)
pf (θ|xmi, wmi), (17)

where pf (w) =
∑P

z=1 p(w|z)p(z), the weighted average of the multinomial vec-

tors in the foreground parts. Equation 17 is close to equation 14, though

note the weighting of each predictive distribution pf (θ|xmi, wmi) by the factor

pf (wmi)/pb(wmi). If visual word wmi is more probable under the background

model then its prediction will be discounted. We note that Dorko and Schmid

[26] have discussed selecting discriminative foreground features for use in equa-

tion 14, but that their criterion is based on intuitive arguments rather than

on a formal derivation.

4 Experiments

In the experiments below we use the data from the PASCAL 2005 Visual Ob-

ject Classes challenge 1 [27]. The data set consists of a large set of images, each

of which contains at least one labelled object against cluttered backgrounds

of many unlabelled objects. The labelled objects belong to four categories:

bicycles, cars, motorbikes, and people. In the first set of experiments we use

the ‘train’ and ‘val’ data sets as training and test sets respectively to see how

the GTF’s performance varies with different parameter choices, while in the

1 http://www.pascal-network.org/challenges/VOC/voc2005/
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second set of experiments we use ‘train’ and ‘val’ combined as a training set,

and the ‘test1’ data set as test data. Note that the PASCAL data set has dif-

ferent properties from many other data sets used in image classification tasks,

such as the ‘Caltech 5’ data: there may be multiple objects in each image, and

there is a high degree of background clutter.

The task is to detect objects of the four categories in test images: each detec-

tion should state the type of the object, as well as its position in the image and

the width and height of its bounding box. A detection is accepted as correct

if the intersection between the prediction and true object covers at least half

the area of a bounding box drawn to enclose both, as in [27]. Each detection

must be assigned a confidence value. The PASCAL challenge uses two evalua-

tion measures to compare object detection systems: localisation performance

is measured by average precision, while image classification performance is

measured by the area under the receiver-operating-characteristic curve. The

GTF is primarily an object localisation system, but by assigning confidences

to the detections it makes we can also use it as a classifier.

4.1 Implementation details

This section gives some details about the GTF implementation used in the

experiments below (additional explanation is given in [28]).

We used a GTF with a grid of 8 by 8 Gaussian components for the GTF

parts. x and y scale factors s1 and s2 are used to bring the template into

registration with objects in training images, and to fit it to object instantiation

hypotheses in test images. For any given object centre and scale factors we
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can translate and scale the template and its component Gaussians to calculate

p(θ, Xm, Wm), where θ = (t1, t2, s1, s2).

To search for θ to optimize p(Xm, Wm|θ), we initially search over a coarse

grid of positions at a number of scales. The scales for grid search are chosen

based on the range of scales seen in the training data, with a factor of
√

2

between each scale, and the grid step size for the search at each selected scale

is given by tiling the image with object hypotheses of that scale. We then use

conjugate gradient ascent to refine θ = (t1, t2, s1, s2), taking the maximum

probability object locations found at the various scales as initialisations for

gradient ascent. Expectation maximisation could also be used for this search.

After finding local maxima by gradient ascent, we use Laplace’s method to

estimate the probability mass in each region, fitting a Gaussian to the second

partial derivatives at each maximum (see [28] for details). The maximum cor-

responding to the region with highest mass is chosen as the best detection for

the image.

In general learning the GTF requires estimation of the distributions p(z),

p(x|z) and p(w|z) for each part. However, we fix p(x|z) using a spatial grid

of Gaussians, rather than adapting the object part locations. Given training

images for each object class annotated with bounding boxes we can use super-

vised learning to estimate p(w|z). Each bounding box for a given object class

is rescaled so as to be centered and have the same area as the template. (We

use separate x and y scaling factors, so the rectangular bounding boxes can be

brought into perfect alignment.) Given these aligned data it is straightforward

to learn the parameters of the template by EM. Since we keep the background

model’s uniform distribution mixing proportion, β, small (see section 3.1), we

can learn the foreground and background visual word distributions separately,
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using training features from only inside or only outside bounding boxes appro-

priately, making training much faster. p(w|z) is found by the following update

equation:

p(w = a|z = j)←
∑M

m=1

∑Nm
i=1 p(zmi = j|xmi, wmi)δ(wmi = a)∑M

m=1

∑Nm
i=1 p(zmi = j|xmi, wmi)

(18)

where δ(wmi = a) is a zero/one indicator function.

Figure 6 illustrates a trained 600-cluster 8 × 8 GTF for each object class,

by showing the visual words most strongly associated with each component

part (highest p(z|w); sorting by p(w|z) favours frequently-seen uninformative

visual words). A representative image is chosen for each visual word from the

foreground for the object class in question. The bicycle GTF shows a variety

of wheel features all over the template, as bicycles are seen in many different

poses in the training images, from diverse viewpoints. For the car GTF various

wheel features can be seen at the bottom left and bottom right of the template.

Wheel and handlebar features can be seen on the motorbike GTF. The person

GTF shows some face features near the top of the template, and foot features

at the bottom.

4.2 Learning visual words

We preprocess the data by scaling down larger images to fit within a 640×640

pixel square, preserving their aspect ratios, and then use two interest point

detectors to find the Harris affine [29,30] and maximally stable extremal [31]

regions of interest. 2 For each image we run the two region detectors, combine

2 We thank the Oxford Visual Geometry Group for making their feature detector

code available at http://www.robots.ox.ac.uk/~vgg/research/affine/.
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the lists of regions which they find, then calculate a descriptor for each region.

We use a 128-dimensional SIFT descriptor [32,17] to represent each region’s

appearance.

To create ‘visual words’ we cluster features from training images. We take

separately the features found within the bounding boxes of each object type

(the PASCAL training data includes manually-drawn bounding boxes for the

object classes of interest), and the features found in the background of images

outside all object bounding boxes, running k-means clustering on the descrip-

tors for each set of features. With four object classes, we run five separate

clusterings, one for each class and one for background features, then finally

combine the five sets of cluster centres. For example, if we use k-means cluster-

ing to find 120 cluster centres for each class, we then combine these to obtain

an overall clustering with 600 cluster centres.

Each object’s k-means clustering was run 12 times, with the cluster centres

which gave the lowest mean descriptor-to-centre distances chosen to go into

the final combined clustering. On each run the cluster centres were initialised

to a different randomly-chosen set of k feature descriptors.

Figure 3 shows the foreground feature count per cluster within car training

set bounding boxes, the background feature count per cluster in training set

images where cars occur, and the foreground count as a proportion of the sum

of the two counts. This proportion is the ‘purity’ of the cluster, describing

how strongly cluster membership identifies a feature as foreground rather than

background, and thus how useful it is in object localisation. Since the cars are

the second object class, clusters 81–160 of the 400 are those derived from

k-means clustering of the car foreground features. These clusters have the
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highest counts in the foreground, and the highest car purity, while clusters

321-400, which were derived from clustering background features, have the

highest counts in the background, and lowest purity.

Figure 4 shows a representative image for each cluster of a combined clustering

with 80 k-means clusters per class, giving a total of 400 clusters. For each

cluster, the image region whose SIFT descriptor is nearest the cluster centre

is displayed, rotated and scaled from the original image region to a fixed-size

square image. The images are shown sorted by the clusters’ purity for the car

class, left-to-right, top-to-bottom.

Using the same clustering, Figure 5 shows the 12 highest purity clusters for

the car class. The features from the cars in the training set which match to

each cluster are shown, with each region represented by a scaled image of

the region contents displayed at the region centre’s position in a normalised

object bounding box. Normalising the object bounding boxes to a unit square

brings the objects into approximate correspondence, although the objects vary

in shape, their pose is not fully labelled, and the bounding boxes sometimes

exclude truncated parts of objects.

The highest-purity clusters largely correspond to wheel-like features, which

are rarely found in the background. These features tend to occur towards the

bottom left and bottom right of the bounding box. Note that the multi-scale

character of the features in use mean that some features describe large regions

of objects, such as a wheel in context with the car bodywork, or even an

entire car. Features belonging to the same cluster may look dissimilar, since

cluster membership is based on distance in SIFT descriptor space rather than

on direct comparisons between image patch appearances.
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4.3 Evaluation measures

The performance evaluation below uses the measures defined in sections 4.1

and 5.1 of [27], calculating the performance of each object category detector

in terms of average precision (AP) and the area under the receiver-operating-

characteristic curve (AUC). The average precision evaluates object detection

and localisation performance, while the area under the receiver-operating-

characteristic curve evaluates image classification performance. The average

precision here is the mean precision at a set of 11 equally-spaced recall levels.

Both performance measures give values in the range [0, 1], with perfect results

giving a score of one. Each object category detector is run on the whole set of

test images, including images where there is no object of the given category.

To generate precision-recall curves we need to assign a confidence to each hy-

pothesis. We set this confidence value based on the ratio between the proba-

bility of the hypothesis under the fitted GTF model and its probability under

a GTF where the foreground and background components share the same

‘background’ visual word distribution. Making this comparison between the

probability under class and non-class models prevents the confidence values

being dominated by the probability assigned to the locations of the image fea-

tures. We find the log of the ratio of the probabilities, then set the confidence

to its average per region of interest, to allow a fair comparison between images

where different numbers of regions are detected.

In the experiments here we only look for a single object in each image. Higher

recall could be achieved by allowing multiple detections per image.
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4.4 Results

This section looks at the GTF’s performance on the PASCAL Visual Object

Classes Challenge 2005 test data. We use a single set of parameters, which

were chosen by looking at the performance on the validation data, with the

aim of finding a compromise which gives good localisation performance for all

the object categories. A GTF with 8×8 component parts was used, with each

part generating feature locations from a Gaussian with variance
(

1
8

)2
. The

image regions were left at their detected scales, and visual words were created

with 120 clusters for each of the four classes and 120 for background features.

(These experimental results are examined in more detail in [28].)

Table 1 shows evaluation scores for the performance on the PASCAL test data

of four GTF object category detectors trained with the same parameters on

the combined training and validation data. The AP and AUC rows give the

average precision and area under the ROC curve.

The AP2 and AUC2 rows show results with the additional assumption that

there is only one class of object present in the image. Each model’s output

is compared with the maximum output from the other class models on the

same image. Since in the PASCAL 2005 Visual Object Classes data there are

relatively few images with more than one object, this increases performance

in all cases except when the model for the class in question is much better

than the other classes’ models.

The recall row shows the number of images where the chosen bounding box

prediction corresponded to a true object of the class in question. Since we

only make one detection per image, the maximum number of objects we could
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detect would be the number of images, while the maximum AP score we could

achieve would be the number of images divided by the number of objects, if

we detected this proportion of the objects with precision one.

Figures 7 and 8 show the precision-recall and ROC curves corresponding to

the AP2 and AUC2 numbers in the Table. The ROC curves make clear that

there is a large variation in classification performance across the classes, with

the motorbike classifier by far the best, then the bicycle classifier, then the car

classifier, with the person classifier significantly worse again. The precision-

recall curves for the bicycle and car detectors show a similar fall-off to different

recall levels. As well as reaching a much higher recall, the precision curve for

the motorbike classifier remains much flatter, at a high precision level, until

its final rapid fall. The precision-recall curve for the person detector shows

that only a few people are found, with a low level of precision.

The images where the highest-confidence correct detections are made are unoc-

cluded views of objects from typical viewpoints, such as side-views of cars and

motorbikes. The highest-confidence motorbike images also have plain back-

grounds. The highest-confidence bicycles are all fairly large in their images,

with both wheels clearly visible. The highest-confidence people are also com-

paratively large in their images, and are dark against light-coloured back-

grounds.

A few of the highest-confidence images with incorrect localisations are spurious

detections. Other high-confidence incorrect localisations are seen in unusual

poses or from unusual viewpoints, or show only part of the object in question.

Some of the highest-confidence incorrect detections have multiple objects of

the class at similar scales, a case not dealt with by our current implementa-
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tion of the model. In the highest-confidence person images there are several

insufficiently-accurate localisations where a head- or torso-sized bounding box

prediction has been made although more of the person is in fact visible in the

image.

Table 2 shows evaluation scores for object category detectors trained using the

same parameters but tested on the PASCAL 2005 Visual Object Classes ‘test2’

data. This data set contains images collected from Google Image Search, with

different properties from the training set or main test set. The degradation in

performance seen here also occurs with other methods – as well as perhaps

including objects that are harder to detect than the manually compiled images

in the main data sets, the ‘test2’ set presents a transfer learning problem.

Table 3 shows the evaluation scores obtained when the true object locations

are used instead of predicted object locations. This isolates classification from

localisation. Since the overall system is not changed, we still only make one

object detection per image. The AP and AP2 numbers improve significantly

due to the higher recall level from using the true object locations. The AUC

and AUC2 numbers are slightly improved. The classes where our detection

performance is worse improve more: the scores improve least on motorbikes,

and most on people.

Figure 9 shows p(θ|Xm, Wm) for some example images, scanning the object

hypothesis centre across the image while keeping the object hypothesis scale

fixed at the true object size. The pixel intensities represent the log probability

for each location, normalised to use the whole range of intensities from full

black to full white. The motorbike example shows a clear distinction between

class and non-class features, so that the probability density is a roughly Gaus-
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sian blob around the true object location. The bicycle and car examples show

significant noise in textured regions of the background, though the true object

position can still be clearly seen. The person example has the highest relative

probability level in the background, as some of the background texture such as

the window shutters on the building match quite well with the person GTF.

Figure 10 compares p(θ|Xm, Wm) under each of the four class GTFs for the

bicycle image from Figure 9. The four plots are shown using the same inten-

sity scale. The probability mass for the correct object class’s GTF is more

concentrated than the other classes’, as well as this class distribution’s peak

being higher than the others’.

Figure 11 compares p(θ|Xm, Wm) as the scale of the object hypothesis changes,

for the bicycle image as in Figures 9 and 10. Each plot shows the probability

distribution across the image for an object hypothesis based on the true object

bounding box’s proportions, but scaled by some factor in x and y. The four

plots are shown using the same intensity scale. There is a higher probability

across the image at the correct object scale than for the smaller or larger

object hypotheses. A maximum is visible at the true object location in each of

the plots, but in the plots for smaller object hypotheses there are an increasing

number of local maxima, as it is easier for the image background to match the

learnt GTF when it is examined at smaller scales.

Figure 12 shows p(θ|Xm, Wm) for two example images with multiple objects.

The two cars in the first image are in fact clearly visible in the plot of the

probability distribution, and multiple maxima are visible for the image with

people. This suggests that even without extending the model search to deal

with multiple objects, a ‘greedy’ approach that removed image features respon-
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sible for a detection and searched again could find some additional objects and

increase performance. Local probability maxima can also be seen for each of

the people in the second image.

Figure 13 compares p(θ|Xm, Wm) for a number of object hypothesis scales, for

the highest-confidence car image with an incorrect detection. The top left plot

shows the location probability distribution for the scale of the left-hand car,

132× 53. As in the example in Figure 12, both cars are clearly visible; a lower

peak can also be seen midway between the two cars, for a hypothesis which

uses the back wheel of the first car and the front wheel of the second. Unlike

the example in Figure 12, where a correct localisation was made (so plots for

different object hypothesis scales would show lower probabilities), the global

maximum for this image corresponds to a stretched bounding box of 365×35,

much wider than, and less tall than the true objects. The plot for this scale is

shown at the bottom right. Here the maximum probability location is between

the two cars, with the bounding box now including both cars.

Table 4 compares the AP and AUC performance of the GTF as in Table

1 with the performance achieved by other methods. The Table includes AP

and AUC scores for the Darmstadt Implicit Shape Model entry in the Visual

Object Classes challenge, and for the best entry for each class in each category,

taken from [27]. The ISM result is included as it is the method in the challenge

most similar to the GTF.

For object detection and localisation, as measured by average precision, the

GTF beats all the methods from the challenge on the bicycle, motorbike and

person classes. On the cars, the class where we lose most from not dealing

with multiple objects per image, we have a performance level similar to the
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ISM.

The GTF is primarily a detection method, and its classification performance,

as measured by the area under the ROC curve, is less competitive. It performs

better than the ISM, but is beaten by the best support vector machine-based

bag-of-features methods from the PASCAL challenge. The GTF parameters

we have been using here were chosen primarily to give good localisation perfor-

mance; further exploration of the GTF parameter space would give improved

classification results.

Both the AP and AUC scores here could probably be improved by optimising

the parameters for each class GTF separately, rather than using the same com-

promise GTF parameters for all four classes, and by optimising the parameters

for AUC separately from AP.

5 Discussion

This paper described the Generative Template of Features (GTF), a parts-

based model for visual object category detection. We showed how to use the

model in a supervised manner, evaluated its localisation and classification

performance on cluttered images, and examined its relation to pose-clustering

methods.

The GTF’s performance could be improved by learning multiple aspects for

each class (see for example [33]), rather than combining all views of a class into

a single GTF as we do here. For example, we could learn separate visual word

distributions for front, side, and rear views of cars. It would also be possible

to alter the GTF to use a 3D geometric model. In either case additional
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annotation data could be provided to label the object aspect, or unsupervised

learning could be used.

It is straightforward to extend the Generative Template of Features model

to allow multiple objects. One way to handle multiple objects in a scene is

to follow the treatment of Sudderth et al. [19]. They extend θ to hold the

instantiation parameters for each object, and define mixing proportions for

each object and the background. This approach ignores occlusion, but it would

be quite straightforward to use a layered model and to reason about occlusion

so as to generate only from visible parts. Alternatively, we might expect that

individual models could be run to find good regions of θ-space for the given

model, and that the robust background model would explain features from

other objects. This parallels the work of Williams and Titsias [34] where such

an approach was used to propose good locations for sprite models individually,

and a layer ordering was determined in a second pass. Extending the model to

allow multiple objects directly makes the search space much larger, but object

detection can be sped up by using a greedy approximation to this model: we

can start by searching for a single object, then discount image features which

have been used in the foreground of the first detection and search again.
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bicycle car motorbike person

AP 0.265 0.411 0.760 0.014

AP2 0.467 0.422 0.888 0.030

AUC 0.855 0.936 0.908 0.822

AUC2 0.966 0.943 0.995 0.890

Table 1

Test data performance evaluation of 8×8 GTF, variance =
(

1
8

)2, region scale factor

= 1, 120 clusters per class.

bicycle car motorbike person

AP 0.084 0.118 0.092 0.008

AP2 0.147 0.114 0.360 0.009

AUC 0.618 0.704 0.558 0.628

AUC2 0.713 0.740 0.852 0.693

Table 2

Performance evaluation on ‘test2’ data of 8× 8 GTF, variance =
(

1
8

)2, region scale

factor = 1, 120 clusters per class.

Fig. 1. (a) GTF foreground model with grid of Gaussians; (b) background model.
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bicycle car motorbike person

bicycle car motorbike person

AP 0.547 0.775 0.823 0.345

AP2 0.766 0.781 0.897 0.455

AUC 0.859 0.970 0.929 0.877

AUC2 0.962 0.975 0.992 0.938

Table 3

Classification-only test data performance evaluation of 8×8 GTF, variance =
(

1
8

)2,
region scale factor = 1, 120 clusters per class.

bicycle car motorbike person

GTF AP2 0.467 0.422 0.888 0.030

ISM AP — 0.468 0.865 —

best PASCAL AP 0.119 0.613 0.886 0.013

GTF AUC2 0.966 0.943 0.995 0.890

ISM AUC — 0.578 0.919 —

best PASCAL AUC 0.982 0.992 0.998 0.979

Table 4

Comparison of performance of GTF as in Table 1 with other methods’ performance.
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Fig. 2. Background feature-location model: uniform across image plus uniform out-

side the object bounding box.
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Fig. 3. Cluster purity for car features in example clustering.
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Fig. 4. Representative image for each cluster in an example clustering, with clusters

sorted left-to-right, top-to-bottom by purity for cars.
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Fig. 5. Highest-purity car clusters for an example clustering, showing matching

training set features, each represented by a scaled image of the local region displayed

at the feature’s location in a normalised object bounding box.
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Bicycle Car

Motorbike Person

Fig. 6. Visual words most strongly associated with the component parts of example

600-cluster GTFs. Each GTF has an 8× 8 grid of component parts.
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Fig. 7. Precision-recall curves for GTF as in Table 1.
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Fig. 8. ROC curves for GTF as in Table 1.
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Fig. 9. Example probability surface for each class GTF as in Table 1. Top to bottom:

bicycle, car, motorbike, person.
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Bicycle GTF: Car GTF:

Motorbike GTF: Person GTF:

Fig. 10. Example probability surfaces for bicycle image from Figure 9, for each class

GTF as in Table 1.
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Fig. 11. Example probability surfaces at various hypothesis scales for bicycle image

from Figure 9, for GTF as in Table 1.
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Fig. 12. Example probability surfaces for car and person GTFs as in Table 1.
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132× 53 (true object scale) 365× 53

132× 35 365× 35 (detected scale)

Fig. 13. Example probability surfaces at various hypothesis scales for highest-prob-

ability car image with an incorrect detection, for GTF as in Table 1.
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