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Abstract

This paper presents a real-time vision-based system to assist a person with de-
mentia wash their hands. The system uses only video inputs, and assistance is given
as either verbal or visual prompts, or through the enlistment of a human caregiver’s
help. The system combines a Bayesian sequential estimation framework for track-
ing hands and towel, with a decision theoretic framework for computing policies
of action. The decision making system is a partially observable Markov decision
process, or POMDP. Decision policies dictating system actions are computed in
the POMDP using a point-based approximate solution technique. The tracking and
decision making systems are coupled using a heuristic method for temporally seg-
menting the input video stream based on the continuity of the belief state. A key
element of the system is the ability to estimate and adapt to user psychological
states, such as awareness and responsiveness. We evaluate the system in three ways.
First, we evaluate the hand-tracking system by comparing its outputs to manual
annotations and to a simple hand-detection method. Second, we test the POMDP
solution methods in simulation, and show that our policies have higher expected
return than five other heuristic methods. Third, we report results from a ten-week
trial with seven persons moderate-to-severe dementia in a long-term care facility
in Toronto, Canada. The subjects washed their hands once a day, with assistance
given by our automated system, or by a human caregiver, in alternating two-week
periods. We give two detailed case study analyses of the system working during
trials, and then show agreement between the system and independent human raters
of the same trials.
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1 Introduction

Older adults living with cognitive disabilities (such as Alzheimer’s disease or
other forms of dementia) have difficulty completing activities of daily living
(ADLs). Such older adults are usually assisted by a human caregivers, either
family members or professionals, who monitor the activity in question and
guide or prompt them when necessary. The dependence on a caregiver is dif-
ficult for the older adult, and can lead to feelings of anger and helplessness,
particularly for private ADLs such as using the washroom. The demands and
stress placed on caregivers is also significant due to the need for constant
monitoring.

Computerized cognitive assistive technologies (CATs) are devices or systems
that have the potential to allow this elderly population to complete such ADLs
more independently by monitoring the users during the task, providing guid-
ance or assistance when necessary, and in some cases alerting a caregiver when
circumstances warrant. Ideally, such a system or device should be relatively
non-invasive (e.g., not require special preparation for the user or constrain the
user in any way), promote independent ADL completion (or partial comple-
tion) by the user, and relieve the caregiver of the burden of continual moni-
toring and guidance.

This paper presents a real-time system for assisting persons with dementia
during handwashing, an important ADL that often poses difficulty with this
population. The system described here was built upon three previous versions,
each relaxing restrictive assumptions present in its predecessor [1,2]. In par-
ticular, the current system removes the need for worn markers to aid visual
tracking (as used in [1]) and includes an explicit model of uncertainty not
present in [2]. Our system for assisting persons with dementia during hand-
washing consists of four basic components, as shown in Figure 1. Video from a
camera mounted above a sink is input to a system to track objects of interest
(e.g., hands and towel). Object positions are passed to a belief monitor that
estimates the progress of the user in the task as well as the user’s mental state
(see below). This is represented as a belief state or distribution over possible
task points and mental states. A policy then maps the belief state to a system
action: this can be a no-op, an audio or video prompt, or a call for human
assistance. The system action is fed back to the belief monitor to enable se-
quential updates of the belief state. Finally, the prompter plays the prompt or
makes the assistance call as appropriate.
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Fig. 1. Schematic of the system showing hand tracker, belief monitoring, policy,
and prompting. The images shows the laboratory test washroom with camera and
video terminal.

A key feature of our system is the use of computer vision to ensure that moni-
toring is as non-invasive or as “passive” as possible. The user is not required to
perform any special steps while performing an ADL, wear or activate a special
device, or otherwise change their routines. Our approach has been motivated
in part by the desire to see how far computer vision can be pushed to create
such non-invasive assistive technologies.

For tracking, we use a mixed-state data-driven Bayesian sequential estimation
method using flocks of color features [3], which allow objects to be robustly
tracked over long periods of time, through large changes in shape and through
partial occlusions. Our belief monitoring and policy systems use a partially
observable Markov decision process (POMDP). We show how the handwash-
ing task can be modelled using a POMDP, with rewards and costs associated
with specific actions and states reflecting their relative value (in terms of task
progress, annoyance, inconvenience, etc.). The solution to the POMDP deter-
mines a decision policy—that associates actions with specific belief states—
that optimizes long-term expected accumulated reward. The POMDP includes
a model of the user’s mental state, such as responsiveness or awareness, and
allows monitoring of these user traits. We denote these mental states in this
paper as the user’s attitude. We use a heuristic for the temporal abstraction
between tracking and behaviours.

Our previous work has demonstrated the effectiveness of the handtracker [3], a
fully observable version of the POMDP model [2], and our initial tests with the
current version of the system [4]. This paper expands on the work presented
in [4] by showing results of the system performance taken from an eight-week
trial of the system working with our target users: six persons with moderate to
severe dementia in a long-term care facility in Toronto, Canada. The subjects
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washed their hands once a day, with assistance given by our automated system,
or by a human caregiver, in alternating two-week periods. We give two case
study analyses of the system working during trials. We then show the rewards
gathered by the system, based on human annotations of the true state during
each trial, and we show how the system is able to estimate the user’s context
and psychological state by comparing the system’s state with that given by
independent human raters of the same trials. Our clinical findings (i.e. the
effect of the system on users) are reported in [5].

The remainder of this paper is structured as follows. In Section 2, we give
details about our computer vision system for tracking hands and towel. Sec-
tion 3 discusses the POMDP, including specification, belief monitoring, tem-
poral abstraction, and solution methods. Section 4 describes our experiments,
and Section 5 shows our results both in simulations and in trials with our
target users. Finally, we discuss related and future work and conclude.

2 Hand and towel tracking

Tracking an object in the presence of occlusions and distractions is a pervasive
problem for computer vision applications. Objects to be tracked usually have
some consistent features, are spatially compact, and move cohesively. Typi-
cal tracking methods use some model of the appearance of an object to be
tracked, and estimate the fit of the model to the object over time. However,
in many applications, the object’s shape and appearance may change over
the course of a sequence. For example, human hands need to be tracked for
many human-computer interaction tasks, but change shape and velocity fairly
quickly, differences which must be accounted for. The method we present uses
a generic type of model: a flock of features [6]. The features are characteris-
tics of the local appearance of the object to be tracked, and they are loosely
grouped using flocking constraints.

A flock consists of a group of distinct elements that are similar in appearance
and that move congruously, but that can exhibit small individual differences.
A flock has the properties that no member is too close to another member, and
that no member is too far from the center of the flock. The flocking concept
helps to enforce spatial coherence of features across an object, while having
enough flexibility to adapt quickly to large shape changes and occlusions.
The flock is only a very weak shape model, and adapts the distribution of its
members to the current object distribution, which may even be non-contiguous
(e.g., in the case of partial occlusions). To allow for very long-term tracking of
multiple objects, we use three mixed-state particle filters [7], with data-driven
proposals [8] to enable re-initialisation after a track is lost. We use one particle
filter for each hand, and one for the towel. This method is robust to partial
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Fig. 2. Three flocks of 5 color features, or specks, tracking hands and towel. Images
are labeled by frame number.

occlusions, distractors, and shape changes, and is able to consistently track
objects over long sequences. Figure 2(a) shows three flocks of 5 color features
tracking two hands and a towel. At the start, the members of each flock are
distributed across the objects they are tracking. Figures 2(b)–(d) show the
same three flocks later in the sequence, during occlusions and shape changes.
The flocks maintain the track, even though the object shapes have changed.

2.1 Flocks of Features

More formally, a flock, φ, is a tuple {Nf ,v,ωf ,W, ξc, ξu} where Nf is the
number of features in the flock, v is the mean velocity of the flock, ωf is a global

color model for all flock members, W is a set of Nf features, wi = {xi,ωi}
Nf

i=1,
with image positions xi, and feature parameters ωi. Finally, the flock has a
set of collision parameters ξc, and a set of union parameters, ξu. The collision
parameters are used to define a function of the distance between members of
the flock that indicates when two members are too close. An example is a
threshold function, in which case ξc is a threshold on the distance. The union
parameters, ξu, are similar, except they define when a member is straying
from the flock center.

The likelihood of observing an image z given a flock φ, assumes that each
feature generates parts of the image independently,

L(z|φ) =
Nf∏
i=1

L(z|wi,ωf ). (1)

We use a simple type of feature, a color speck, which is a set of Ns = 4 pixels
in a 2 × 2 square, with a local Gaussian color model, ωi = {ci,Σi}. We use
a global Gaussian color model ωf = {cf ,Σf}, and the likelihood of image z,
given a speck, wi, in a flock with color model ωf , is a product over Ns speck
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pixels of two Gaussians

L(z|wi,ωf ) ∝
Ns∏
j=1

e−γo min(cp,
1
2

(zj−ci)
′Σi(zj−ci))e−γc min(cp,

1
2

(zj−cf )′Σf (zj−cf )) (2)

where zj = z(xj) is the image color value at speck pixel xj. The ith speck
conforms to the flock’s color model, ωf , as well as to its own local color
distribution through ωi. Finally, a constant “background” density, cp, gives
better performance under occlusions, allowing some members of the flock to
be “lost” (e.g., on an occluding object). The parameters γo and γc control the
tradeoff between the local and global color models.

2.2 Sequential Estimation of Flock Density

This section describes how we can estimate the flock density over time using
a sequential Markovian process. Let φt denote the flock at time t, and zt =
{z1 . . . zt} be the observations (images) up to time t. Tracking is the estimation
of the filtering distribution p(φt|zt). This distribution is updated sequentially
using the standard two-step recursion [9], in which p(φt|zt) is updated given
p(φt−1|zt−1) and a new measurement zt.

predict : p(φt|zt−1) =
∫
φt−1

D(φt|φt−1)p(φt−1|zt−1) (3)

update : p(φt|zt) ∝ L(zt|φt)p(φt|zt−1) (4)

where L(zt|φt) is given by Equations 1 and 2, and D(φt|φt−1) is the transition
dynamics of a flock. There are three terms in the dynamics,

D(φt|φt−1) = D′s(φt|φt−1)ψu(φt)ψc(φt), (5)

each of which describe a flocking behavior. First, due to the dynamics, D′s,
each feature moves according to the mean velocity of the flock, v, but with
added Gaussian noise:

D′s(φt|φt−1) = e−γd

∑Nf
i=1(∆x)′Σ−1

v (∆x) (6)

where Nf is the number of specks in the flock, ∆x = (xt,i − xt−1,i − vt−1),
vt−1 is the mean velocity of the flock and Σv is the covariance of the noise in
the dynamics, assumed constant for all flock members. The third term in (5)
is a penalty for being too close to another flock member, and is implemented
using pairwise potentials between members of the flock, expressed as a Gibbs
distribution

ψc(φt) = e−γc

∑Nf
i=1

∑Nf
j=1 δ(i 6=j)gc(xt,i,xt,j ,ξc),
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where gc(xt,i,xt,j, ξc) is a sigmoid penalty function that varies inversely with
the distance between xt,i and xt,j, with threshold ξc. A similar type of penalty
function was also used in [10] to model interaction penalties between different
particles in a multi-target tracking example.

The second term in (5) is a penalty for being too far from the center of the
flock, also implemented using a potential over the feature locations and the
flock mean location:

ψu(φt) = e−γu

∑Nf
i=1 gu(xt,i,xt,ξu),

where xt is the mean position of the flock, and gu(x,x, ξu) is a penalty function
that is proportional to the distance between x and x, and can be implemented
using an inverse sigmoid function.

2.2.1 Particle Approximation

The general recursions introduced in the previous section yield closed-form
expressions only in a limited number of cases, such as when dynamics and
likelihood functions are linear Gaussian. In the general case, we wish to deal
with functions that may be non-linear and/or non-Gaussian, and so adopt
a sequential Monte-Carlo approximation method, also known as a particle
filter [9], in which the target distribution is represented using a weighted set of
samples. We use a standard importance sampling method [9], with resampling
in cases of degeneracy [11]. We also use a data-driven proposal distribution in
order to locate a new object entering the scene, and to find an object to track
again after it has been lost. The proposal distribution therefore includes two
processes. The first is a commonly used dynamics proposal [12]: the expected
mean flock dynamics D′s given by Equation (6). The second is a process that
generates new samples directly from a new image The complete proposal
combines these two distributions with a weight, α, that gives the probability
a sample will be drawn from the data-driven proposal [13].

We sample from this combined proposal by randomly sampling from one of
the component distributions according to α. Data samples are re-weighted
using a prior weight of (αNp)

−1, assuming all of the expected αNp particles
will be drawn equally, and a null dynamics D0(φt) = D′0(φt)ψu(φt)ψc(φt). D0

includes the collision and union penalty functions, and a prior distribution,

D′0 = N
−Nf

d , which is the probability of drawing Nf features independently at
random from a set of Nd possibilities, where Nd is the number of valid pixels
used in the data proposal.

Samples are drawn from the data by first thresholding the image using a
fixed set of thresholds obtained from the global Gaussian color model, ωf ,
as: cf ± diag(Σf ). The resulting binary image is median filtered to remove
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small components. We then remove all components that are unlikely to have
arisen from the current filter, or are unlikely to represent a new object a-priori.
Finally, we build a normalised map Po(zi|ωf ) = kPr(zi|ωf ) where k is the
normalising constant summed over the component being used.

Finally, we draw a flock sample from the joint distribution over the Nf fea-

ture locations, Pr(x
Nf

i=1|z,θ), by sampling each feature independently from Po,

giving a sample φ(i) = {Nf ,w,v0, ξc,o, ξu,o}, where w = {xi,ωi}
Nf

i=1, ωi are
the feature parameters for the image region at xi, and v0 is drawn from a
zero-mean Gaussian distribution with variance σv (the expected variances of
the mean velocity of appearing flocks): v0 ∼ N (v; 0, σvI). The flocking pa-
rameters are set to be some constant a priori values, ξc,o, ξu,o, although in
general they could also be computed from the image given the sample.

Once a new set of samples has been drawn, we set the value of α for the data-
driven proposal by looking at the filter’s current strength, ν, and whether a
connected component was found that corresponds to that filter (denoted by
a Boolean comp). The strength, ν, of the particle filter is based on the total
(unnormalised) weight of the prior (m∗,pt ) and data (m∗,dt ) particles as:

ν = max(0,min(1,
log(m∗t/m

−)

log(m+/m−)
))× 10, (7)

where m∗t = m∗,dt +m∗,pt , m+ and m− are the maximum and minimum weights,
respectively, and the weights are clamped to lie between [0, 1]. If no component
was found, then α = 0, since there will be nothing to draw samples from
anyways. Otherwise, we set α closer to 0 the higher the strength. If ν > 8,
then we set α = 0. In general,

α = (comp > 0)(1−min(1, ν/8)). (8)

2.3 Multiple Objects

In our application domain, we wish to track a number of objects simulta-
neously, such as the hands and the towel. Since the number of objects will
be bounded above by a small number (e.g., three), we can simply use inde-
pendent filtering processes. Each particle filter operates exactly as described
above, but if multiple objects have the same global models, ωf , then we will
have to slightly modify our assignment procedure for building the data-driven
proposals. The idea is that, given a number of connected components in the
image, we want to assign components to filtering processes in a suitable way.
We do so by computing the distance from each connected component to each
filter mean, and adding a small penalty for filter strength, to allow the weaker
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ininitialise all particles evenly and t = 0, then repeat
1. get new image zt+1

2. smooth image and convert to HSV color space
if any filter’s strength is small

3. threshold HSV color and get connected components
4. assign components to filters

while two filters assigned to same component:
5. break the component in two using K-means
6. assign components to filters
7. set α values for all filters (Eqn 8)
8. construct data-driven proposal samples for all

filters with α > 0 (Sec. 2.2.1)
else

9. set α to 0 for all filters
end if

10. update all filters, compute new strengths (Eqn. 7)
13. t← t+ 1

Fig. 3. Sequential Monte-Carlo algorithm

filters more access to new data, all else being equal. Components are then
assigned to their closest filter. In some cases, two filters will be assigned to the
same component. For example, when the hands are together during rinsing or
applying soap, they appear as a single connected component. In such cases,
we use a K-means procedure, initialised with the current filter means, to break
the large components into two pieces, and then re-assign. We also ensure this
happens if the two hand filters are strong and very close together (less than
30 pixels apart), as may sometimes happen if the two hand filters get locked
onto the same hand. Finally, we add an interaction penalty to the likelihood
function that penalises the two hand trackers for being too close together.
When the hands are touching one another, we track this with a single tracker,
the other tracker will have a low strength and will be encouraged to look for
something else to track. An outline of the algorithm is in Figure 3.

3 POMDP model

A discrete-time POMDP consists of: a finite set S of states; a finite set A
of actions; a stochastic transition model Pr : S × A → ∆(S), with Pr(t|s, a)
denoting the probability of moving from state s to t when action a is taken,
and ∆(S) is a distribution over S; a finite observation set O; a stochastic ob-
servation model with Pr(o|s) denoting the probability of making observation o
while the system is in state s; and a reward assigning R(s, a, t) to state transi-
tion s to t induced by action a. Intuitively, the system actions cause stochastic
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state transitions, with different transitions being more or less rewarding (re-
flecting the relative desirability of the states, the costs of taking actions, or
some combination). States cannot be observed exactly: instead the stochas-
tic observation model relates observable signals to the underlying state. The
POMDP can be used to monitor beliefs about the system state using standard
Bayesian tracking/filtering. A variety of techniques can be used to compute a
policy that maximizes (or approximately maximizes) the expected discounted
sum of rewards. Since the system state is not known with certainty, a policy
maps belief states (i.e., distributions over S) into choices of actions. We refer
to [14] for an overview of POMDPs.

The model we currently use is specified manually, using prior knowledge of
the domain. The model was built iteratively on two previous versions, the
first a fully observable (MDP) [15] and the second a POMDP evaluated only
in simulation [2].

3.1 Handwashing States

The handwashing task is modelled as a POMDP with nine state variables,
three observation variables, and 25 actions. There are 207360 states and 198
observations. The set of state variables can be divided into three groups: task,
attitude and bookkeeping variables. We use the term sequence to denote a
single handwashing event, and trial to denote a set of handwashing sequences,
possibly on different days over the course of many weeks. Figure 4 shows the
POMDP as a Dynamic Bayesian network. Only task and attitude variables are
shown, as well as observations, actions, and rewards.

The task is described by two variables, planstep (PS) and behavior (BE).
The plansteps break the handwashing task down into eight situations, each a
characterization of the state of the task: are the hands dirty, soapy or clean;
are the hands wet or dry; is the water on or off. The plansteps are depicted as
nodes in the planstep graph in Figure 5. User behaviors cause transitions in the
planstep graph as shown in Figure 5, and correspond to one of six activities:
using soap, at water, at tap, at sink, drying, or away. Whereas the planstep
is sufficient to characterise the state of the hands, behavior is needed to fully
monitor the progress. For example, a user can be in planstep a with hands at
the soap (trying to get to planstep e) or at the tap (trying to get to b).

The user attitude has three factors: dementia level (DL) = {low,med,high},
giving the user’s overall level of dementia (low dementia means more de-
mented), awareness (AW) = {never,no,yes}, telling whether the user is aware
of what they are doing, and responsiveness (RE) = {none,max,med,min},
giving what type of prompts the user is responsive to. We assume that de-
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Fig. 4. Dynamic Bayesian network representation of the POMDP model, showing
only a subset of variables (the task and attitude). Observations (rectangles on right)
are shown only from time t, but are replicated across all times. The actions are A,
and are prompts or caregiver calls. The diamond R is the reward function, with
dependencies shown as dashed lines. The variables are DL: dementia level, AW:
awareness, RE: responsiveness, BE: behaviour, PS: planstep. The observations are
TO: timeout, HL: handlocations, PSO: planstep ovservation.

mentia level does not change over a clinical trial (eight weeks). However, as we
discuss in Section 3.1, and as we show in our results, our model can be used to
estimate a particular user’s level of dementia over the course of a clinical trial.
A user’s responsiveness does not change over the course of a single handwash-
ing sequence, but can change from sequence to sequence (e.g., from day to
day). However, the POMDP beliefs can change over the course of a sequence.
Finally, the user’s awareness can change during a sequence, depending on a
number of factors, such as whether she is given prompts, whether a human
caregiver intervenes, and also her dementia level. If dementia level is low, the
user is less likely to gain awareness. If dementia level is high (less demented),
the user is more likely to become and remain aware.

Finally, two book-keeping variables are used. The first, last prompt, ensures
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Fig. 5. Simplified view of the planstep transitions for the handwashing problem.
The plansteps are shown along with the state of the hands (dirty,soapy,clean), the
wetness of the hands (dry,wet) and the water flow (on/off). Transitions are for pairs
of pre/post action behaviors for the null action. Transitions for prompting actions
are slightly different (see text). The model is simplified for presentation in that
some additional transitions and regressions are possible. An underscore ( ) means
any behavior and ∼b means any behavior other than b. A question mark, ? indicates
a probabilistic transition.

that the effects of the prompts persist for more than one time interval. This
allows for the user to respond to the prompt after two time intervals. The
other book-keeping variable, hands washed gives whether the task is complete
or not. This is used for the reward function.

3.2 Handwashing System Actions

category transitions prompt effect

wet hands d→ g wet hands put hands under water to rinse

water on a→ b,e→ d
turn on water

tap on

move hands to taps

push up on the tap to turn on

water off g → h,j → k
turn off water

tap off

move hands to taps

push down on the tap to turn off

soap a→ e,b→ d
use soap

use pump

move hands to soap

push down on soap to apply

dry hands g → j,h→ k dry hands take towel and dry hands

caregiver any caregiver human assistance: next planstep
Table 1
Prompt categories showing the transitions in the plansteps intended by the prompts
(see Figure 5), the different prompts for each category and what the prompt is meant
to help the user do.

There are three types of action the system can take: to do nothing, to prompt,
or to call for human assistance. The prompts come in five categories, corre-
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sponding to the transitions shown in Figure 5, as shown in Table 1. In each
category, there are one or two prompts. In the case of turning the taps on or
off, or using the soap, there are two prompts. The first is meant to advance the
user to the object in question (taps or soap), the second to help them finish
that step. Each prompt comes in three levels of specificity: minimal, maximal,
and video, giving the level of detail in the prompt. Each prompt is preceded
with a reminder that the user is washing their hands. A minimally specific
prompt gives a basic verbal instruction (e.g., “Use the soap now”). A maxi-
mally specific prompt adds the user’s name, and more detail (e.g., “John, use
the soap on your left in the pink bottle”). The video (most specific) prompts
add a video demonstration to the maximally specific prompt’s audio track.

3.3 Observations and observation function

There are three observation variables in the model. The planstep observa-
tion (PSO) is the caregiver’s indication of the planstep after an intervention.
The system must gain information after an intervention to avoid repeatedly
calling for assistance. The second observation is a timeout (TO) that indi-
cates that the user has not changed behavior for a fixed (long) interval. The
hand location observation (HL) comes from the hand tracker as described
in Section 2, and gives the current locations of the hands and towel. The
mean positions of the three tracks are spatially discretised into a coarse and
pre-defined set of areas using threshold distances to each object (e.g., taps,
soap), as shown in Figure 6, and combined to form the values for HL. Exam-
ples include both at soap and water towel meaning one is at water and one at
towel. These observations are conditioned on the behavior through the prob-
ability distribution P(hand locs|behavior). We have also investigated methods

Fig. 6. Handwashing regions for observation discretisation. These regions have to
be manually specified for each sink-soap configuration. The towel region is not used
if the towel is being tracked.

for learning this discretisation automatically using top-down value-directed
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information from the POMDP, but have not fully integrated these techniques
into the working system yet [16].

3.4 Dynamics

Mapping the actions of the hand tracker to the state of the POMDP requires
a form of temporal abstraction. The hand tracker operates at 10-20 frames
per second and a new hand location estimate can be made every 50-100 ms.
However, it is not appropriate to update the state of the POMDP that quickly.
One of the main reasons for this difference is the time scale at which prompting
actions themselves occur. A typical prompt (e.g., “use the soap now, John”),
takes about a second or more to state (depending on its level of specificity).
We take this to be a rough estimate of the time scale at which the POMDP
should operate. This temporal abstraction step can be integrated into the
model directly by adding explicit temporal segmentation variables that can
be treated as random variables in the dynamic Bayesian network [17]. However,
this imposes an unacceptably large computational burden on POMDP solution
techniques by causing an unnecessary blow up in the size of the state space
(this holds even when performing belief state monitoring/inference alone).
Therefore, we adopted a simple heuristic to decide when the policy should be
consulted in the POMDP, and thus when the belief state should be updated.

Our heuristic approach updates the belief state in one of two situations. First,
when the hand positions have changed and this change will cause a significant
change in the belief state. At each belief state update, the reported hand posi-
tions are recorded. At each subsequent frame, the hand positions are compared
to those recorded at the previous belief update. If there is any change, then
a belief update is simulated, and the resulting, new belief is compared with
the previous one using the Kullback-Leibler divergence. If the belief is going
to change significantly, then this new belief is tested over a fixed number of
frames to make sure that it persists. The fixed number changes based on the
planstep, allowing some behaviors to be recognised more quickly. A persistent,
new belief triggers a real belief update for the system, a policy lookup, and
possibly a system action (prompt).

The second cause for a belief state update is if the person has not changed her
behavior (e.g., has not moved) for a long period of time, termed a timeout.
These explicit timeouts are the third observation, and are an indication that
the user is not aware. In the POMDP, we condition the timeout observation on
the joint pre- and post-action behaviors being identical. Since the behaviors are
conditioned on the awareness, a timeout will give evidence for lower awareness.

There are two important factors in the dynamics of the POMDP. The behavior
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dynamics is the distribution over behaviors given the current state and the
action taken by the system. These reflect the probability that the user will
behave (or respond) appropriately given a particular system prompt (or no
prompting at all) and the user’s responsiveness and awareness levels. The
planstep dynamics characterize the distribution over updated plansteps given
the previous planstep, an observed behavior pair (pre- and post-action) and
the system action taken. These reflect the fact that behaviors cause planstep
transitions (see Figure 5). Some transitions (marked with a ? in Figure 5)
include the probability that the user has abandoned her attempt to complete
the step. For example, if the user is in planstep a, and moves her hands from
the taps to the sink, then the probability that she turned the water on may
be less than one—she may have abandoned the step of turning on the water.
Specific values can be set for particular users and tap/soap configurations.

The transitions shown in Figure 5 are only for the do nothing action (no
prompt). Prompting actions essentially remove transitions that cannot be in-
ferred after a prompt since the user may be responding to a prompt instead of
changing behaviors due to a step completion. For example, suppose the user
is in planstep a, and that their hands are currently at the tap (they are trying
to get the water on). If they are observed to be returning from the tap on
their own volition (no prompt), we can assign some probability, say q, to the
water having been turned on, based on the user’s characteristics and the tap
configuration. If, on the other hand, they are observed returning from the tap
as a response to a prompt to use the soap, then we can no longer assign q to
the water being on, because the prompt makes it much more likely that they
abandoned the task in response to the new request to do something different.

3.5 Estimating User Attitude

The POMDP model also estimates a particular user’s attitude over time. In
particular, the model can estimate a user’s level of dementia by watching
her long-term handwashing behavior over multiple sequences. The ability to
estimate user traits allows the model to report such findings to carers, and can
also give the model information that can be leveraged in the policy. When a
new user starts using the system, the dementia level variable has some prior
distribution set based on the population of users. Over the course of each
handwashing sequence, this distribution will shift slightly. If we then propagate
this information from sequence to sequence (this is the only variable whose
information is propagated), then we get a long-term estimate of the user’s
dementia level. We show examples of this in Section 5.

It is important to note that the model’s estimate of the dementia level vari-
able is not a clinical evaluation of the user’s level of dementia, but rather
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only a functional measure of how independently a user can wash their hands.
In this study, we investigate whether any correlation can be noted between
this functional measure and the Mini-Mental State Examination (MMSE) re-
sults [18]. Given the small quantity of data, we can only make some qualitative
evaluations, leaving more quantitative measures to future clinical trials.

3.6 Rewards

The reward is a combination of three main factors. First, a large reward for
task completion (planstep k). Second, prompts are costly, and more specific
prompts cost more, due to the inducement of feelings of reduced independence
in the user. Prompts are also more costly if the user is more aware. Caregiver
calls are expensive if the user is aware or responsive. Third, prompting twice
in a row incurs an additional cost.

3.7 Policy Optimization

In this section, we describe how a policy is computed for a specific POMDP
model. The size of our model puts it well beyond the reach of any exact
solution techniques. We used the SymbolicPerseus package [19] 1 . It imple-
ments a point-based approximate solution technique based on the Perseus
algorithm [20] combined with Algebraic Decision Diagrams [21] as the un-
derlying data structure. As mentioned earlier, a policy for a POMDP model
consists of a mapping from beliefs (e.g., distributions over states) to actions.
We denote a belief by b and a policy by π. Assuming an infinite planning
horizon and a discount factor (a number γ between 0 and 1 indicating by how
much future rewards are reduced), the value V π(b) of a policy for some belief
b may be written recursively as follows:

V π(b) = Eπ
b (R) + γ

∑
o

Pr(o|b, π(b))V π(bπ(b),o)

where Pr(o|b, a) =
∑
s b(s)

∑
s′ Pr(s′|s, a) Pr(o|s′), ba,o denotes the belief reached

from b after executing a and observing o, and π(b) = a is the action that
policy π maps b into. Given a POMDP model, an optimal policy π∗ is a pol-
icy that maximizes the expected sum of discounted rewards (i.e., V π∗(b) ≥
V π(b) ∀b, π). Note that this value function gives an estimate of the value of
being in a particular belief state, and is used to compute the best possible

1 code available at http://www.cs.uwaterloo.ca/∼ppoupart/software
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action, and not as a direct performance evaluation measure when the system
is in use.

The SymbolicPerseus package uses dynamic programming to compute the op-
timal value function Vn for n steps-to-go from the optimal value function Vn−1

for n− 1 steps-to-go:

Vn(b) = max
a
Ea
b (R) + γ

∑
o

Pr(o|b, a)Vn−1(ba,o) (9)

However, since b is continuous, the above computation will only be feasible if
Vn(b) has a closed form parameterization. Sondik and Smallood [22] showed
that the optimal value function for finite horizons is piecewise linear and con-
vex. This means that there exists a set Γn of linear segments α such that
Vn(b) = maxα∈Γn α(b). Here α can be represented by a vector indexed by
states such that α(b) =

∑
s b(s)α(s). Since the set Γn often grows exponen-

tially with the horizon, it is common practise to approximate Vn with a subset
of Γn. The class of point-based value iteration algorithms achieves this by se-
lecting a set of beliefs B and computing for each b ∈ B the α that has the
highest value at b. This is done by decomposing Equation 9 in three steps.
Given a belief b and the set Γn−1 representing Vn−1, we can compute the best
αb ∈ Γn at b (and hence Vn) as follows:

(1) αb,a,o = arg maxα∈Γn−1 α(ba,o) for all a, o
(2) ab = arg maxaE

a
b (R) + γ

∑
o Pr(o|b, a)αb,a,o(b)

(3) αb = Eab
b (R) + γ

∑
o Pr(o|b, ab)αb,ab,o(bab,o)

Among the class of point-based value iteration algorithms, Perseus [20] is very
simple and yet quite effective. The algorithm selects a set B of reachable beliefs
by executing a default (or random) policy for a number of steps. Then, at each
iteration it computes a set Γn by selecting beliefs in a randomized order and
performing a point-based backup for each belief that doesn’t already have an
α-vector in Γn that improves on the best α ∈ Γn−1 at b.

Symbolic Perseus improves on Perseus by representing α-vectors symbolically
with Algebraic Decision Diagrams (ADDs) [21] instead of by enumerating
the values for each state. The transition probabilities, rewards and α-vectors
are represented with decision trees that aggregate identical values and al-
low branches to merge, potentially reducing memory and computation by an
exponential factor. This idea was used successfully for MDPs [23] and for
POMDPs [19]. SymbolicPerseus makes three additional approximations. First,
we put a cap on the complexity of Vn (e.g., size of Γn). This is done by retaining
only the k α-vectors that improve the most the value function at some belief in
B. Typically, this bound only causes minimal decrease in the quality of a solu-
tion. Second, we merge states with values that differ by less than the Bellman
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error [24]. This allows the resulting algebraic decision diagrams to be more
compact. Note that the error introduced shrinks to zero as the computation
converges, preserving optimality. Third, we only sum over observations with
a non-negligible probability of occurrence in Steps 2 and 3 above. More pre-
cisely Pr(o|b, a) is negligible if Pr(o|b, a)(Rmax−Rmin)/(1−γ) < bellmanError,
which again preserves optimality. This fast technique is related to a general
method for dealing with large observation spaces [16].

We solved the POMDP with SymbolicPerseus by using 150 alpha vectors and
65 iterations in 42 hours on a dual Intel R© 2.40GHz XEONTM CPU with 4Gb
of RAM, using about 2Gb of memory maximum.

4 Implementation and Experimental Methods

This section presents the three experiments we have done. The first (Sec-
tion 4.1) evaluates the performance of the tracking system, the second (Sec-
tion 4.2) evaluates the performance of the decision making component (the
POMDP policy) and the third (Section 4.3) evaluates a full working system
during an eight-week user trial conducted with six persons with moderate-
to-severe dementia. Results from these three experiments are presented in
Sections 5.1, 5.2, and 5.3, respectively.

4.1 Tracker Evaluation Method

The performance of the hand-and-towel tracking system is evaluated on three
handwashing sequences by manually checking each frame in the sequences
for tracker failures, and comparing against a simple hand-position estimator
using only color (no tracking). We show how the trackers are robust over long
periods of time, and can recover from failures.

4.2 POMDP Evaluation Methods

Simulations were used to evaluate the POMDP policy with respect to the
POMDP model in simulation and show that the policy is reasonable. This
demonstrates that, if the POMDP is an accurate model of the real world,
then we expect our policy to perform fairly well.

Simulations use two models: the first is the true user model, and the second is
the system’s model. The true user model has a fixed user attitude: dementia
level, responsiveness and awareness. The system’s model then interacts with
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the true model, and attempts to estimate the state of the user and take actions
accordingly. We evaluate the simulations by looking at the average discounted
reward over time. We compare this reward to that obtained by the optimal
policy for the fully observable version of the true user model, solved using a
fast, structured, factored value iteration method [23]. This fully observable
version has access to the actual state of the true user model, and so represents
a utopian upper bound on the value that can be achieved. Note that this upper
bound does not take any observational uncertainty into account and is there-
fore higher than the value that would be obtained by the optimal POMDP
policy. Also, as discussed in Section 3.5, we look at whether the estimated
dementia level converges to the dementia level of the true user model.

We compare five different policies. The first is the computed POMDP policy,
while the other four are heuristic policies. The first heuristic has a fixed set
of hand-crafted thresholds on the belief distribution, and attempts to prompt
when the user is not aware, and does so at whatever level of responsiveness is
most likely. If the user is unaware and unresponsive, then the human caregiver
is called. The other heuristic policies that we compare against are the Null
policy, which always does nothing, the CG policy, which always calls the care-
giver, and the certainty-equivalent (CE) policy, which looks at the most likely
state given the current belief, and then acts according to the policy derived
for the fully observable model (MDP).

We compute two different estimates of the discounted rewards obtained in
simulation averaged over all 36 possible attitudes (values of dementia level,
awareness and responsiveness). The first, ρ0 is the expected discounted reward
given a uniform distribution over user attitude. The second, ρδ is the expected
discounted reward using the initial belief distribution over attitudes, which
gives a more accurate (slightly lower) estimate since the actual user population
will consist of more persons with lower dementia levels. Standard deviations of
the averages are computed using the differences between the POMDP policy
rewards and that of the fully observable (utopian) MDP upper bound.

4.3 User Trial Methods

A modified withdrawal-type, single-subject research design was used to test
the system. This research design consisted of a baseline phase (no computer
guidance), A, and an intervention phase (with computer guidance), B, tested
in the order A1 − B1 − A2 − B2. For each test phase, data were collected
describing the ability of the participants to independently perform the re-
quired task (handwashing), and caregiver burden and workload. Data were
also collected on the performance of the system itself, including its accuracy
in determining the type of assistance required by the users, and the effects of
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the chosen system response.

Participants were recruited from a long-term care facility in Toronto, Canada,
where the trials were conducted. The primary inclusion criteria were clinical
diagnosis of moderate-to-severe dementia (from our experiences this group
requires, and benefits from, cuing during ADL completion). Six older adults
participated in the study—5 females, 1 male, average age 86.3 ± 8.8. Using
the Mini-Mental State Examination [18], five of the subjects were classified as
having moderate-level dementia, with the one remaining classified as severe.

As shown in Figure 8, a fully functional washroom located in the long-term
care unit was retrofitted with the necessary system hardware, specifically a
ceiling-mounted IEEE-1394 digital video camera (Point Grey Research Drag-
onFly2), a 21 inch LCD screen and speakers (to play/display the required
prompts), and a Dell Latitude laptop computer (2 GHz processor, 2 Gb RAM)
as the processing unit for the system software and hardware. This computer
also served as the primary graphical user interface (Figure 7), displaying in-
formation about the system variables (e.g., estimated plan steps, response
provided), and the user’s progress through the task, and allowing the human
operator to input observations during caregiver calls (details in Section 4.3.1).
The laptop was located in an office adjacent to the test washroom, where the
researchers monitored the trials and system operation. The trials were also
recorded using an independent video recorder from a view above and slightly
behind the sink (see Figure 8). This video is not used by the system, but is
used for the manual annotations. All system actions were logged, including
the flock particles, actions, times stamps, and images.

Fig. 7. Graphical User Interface (GUI) for monitoring user and system progress
during the trials. Three screenshots are shown during a trial. The system video
showing the flock trackers is in the top left. The POMDP belief state is shown as a
set of bar plots in the bottom left quadrant. The pull-down menus along the right
side are for entering state information to the system after a caregiver call.
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4.3.1 Trial Methodology

Handwashing sequences involved two assistants. The first assistant is the care-
giver, whose role was to assist the user either when instructed to do so by the
system (during intervention phases) or when she thought it was necessary
(during baseline phases). The second assistant is the technician, whose role
was to start/stop the system, and to monitor the system running through the
interface (Figure 7). Each subject was required to sit in a wheelchair before
being positioned by the caregiver in front of the sink within the test washroom
and asked to complete the task of hand washing, at which point the device
was started by the technician. During the intervention phases the caregiver
was instructed to leave the subject alone inside the test washroom and to join
the technician in the adjacent room. The caregiver provided a subject with
assistance only after an audible signal from the device’s GUI directed her to
do so, at which point the system would pause. The caregiver would then assist
the subject with that particular step only and return to adjacent room. The
technician would then input the current planstep observation, restart the sys-
tem, and the sequence proceeded. Finally, the caregiver was instructed to veto
the system in case of any circumstance where the person’s health or well-being
was being jeopardized, or if they started to move away from the sink (e.g.,
attempting to leave the room). This occurred in only two cases, which were
removed from the data discussed below. Each subject’s sequence took approx-
imately twenty minutes to complete, which included time to accompany him
or her to and from his or her room. The caregiver and technician wrote logs
of the sequences, documenting any special events for each day.

The user’s dementia level was estimated using the Mini-Mental State Ex-
amination [18] before and after the POMDP trials. The Mini-Mental State
Examination (MMSE) is a standardized written assessment instrument that
measures and evaluates cognitive function and mental impairment, often given
serially to determine the current abilities and disabilities of an older adult from
the effects of time. The MMSE includes a series of thirty questions with stim-
uli that measure comprehension, reading, writing, memory, and drawing, each
of which scores points if answered correctly. If every answer is correct, a max-
imum score of 30 points is possible. A user’s score classified him or her into
one of three categories: (1) mild 20-25; (2) moderate 10-19; (3) severe 0-9.

4.3.2 Annotation Methodology

The videos and logs were manually annotated for the unobservable aspects of
the POMDP state (planstep, behavior, awareness and responsiveness). Anno-
tations of the data were made by a single human rater using the utility shown
in Figure 8. The screen depicting the trial video would pause at the moments
in the sequence when the POMDP updates were made. At each pause, the
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human rater would annotate the subject’s behavior, hand locations (left and
right), attitude and the planstep. The rater was briefed on the different hand
locations and behaviors prior to starting. An additional behavior of N/A was
available if the annotator could not decide what behavior was being executed.
The variables awareness and responsiveness were annotated using sliders with

Fig. 8. Example during handwashing sequence annotation showing played video
and annotator utility GUI. The picture is taken from an independent video camera
(not used by the system), and shows the sink, soap, towel, a user, the video display
behind plexiglass and two speakers mounted above the display. The system camera
is out of sight, above the sink, looking down.

the range [0-1] in 0.01 unit increments. Higher values on the awareness scale re-
flected stronger belief that the subject would not need any assistance (prompt)
from the device. Higher values on the responsiveness scale reflected a higher
level of confidence by the rater that the subject had been responsive to any
correct or incorrect assistance (prompt) they may have received. The slider
associated with the variable awareness was updated at every pause. In con-
trast, the responsiveness variable was only updated after a complete sequence,
at which point the human rater input whether she believed the subject was
responsive or not to any assistance or prompts given by the COACH (0.5 was
given if no prompts were issued). This responsiveness annotation was then
used for all steps during the sequence. It is important to note that currently
there is only one manual annotation, and so the annotations represent only
one human’s (possibly biased) estimates. We are currently working on more
annotations, and will include these in future versions of the paper.

4.3.3 Performance Evaluation

We evaluate the performance of the system by looking at examples, at the
correlation between POMDP estimates of the behaviors and manual annota-
tions of the behaviors, at the reward gathered, and at the correlation between
MMSE scores and the POMDP’s estimated dementia levels.
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The correlation between the manual annotations and the POMDP belief es-
timate how well the computer vision system is able to predict the manual
observations of behaviors. This gives us some information about the computer
vision system’s interface to the POMDP model. However, note that better cor-
relation here does not necessarily indicate better performance for the POMDP,
because the strength of the POMDP model is to estimate the entire distri-
bution over states. Thus, we do not look at other correlations (e.g. between
annotated plansteps and POMDP estimates).

The expected reward, based on the POMDP belief state, is

V (b0) =
1

N

∑
j∈sequences

∑
i∈steps

∑
s∈states

γibji(s)R(s, aji), (10)

where N is the number of sequences, γ is the discount factor, bji(s) and aji
are the POMDP belief and action taken, respectively, at step i of sequence
j, and R(s) is the reward function for state s. This estimate gives what the
POMDP believes its reward to be, and may be an over or under-estimate of
the actual reward. The actual reward can be computed based on the manual
annotations as

V (s∗) =
1

N

∑
j∈sequences

∑
i∈steps

γiR(s∗ji, aji), (11)

where s∗ji is the manual annotation of step i in sequence j. This is our best
estimate of the actual value of the POMDP’s actions, since it is based on
independent manual annotations of each sequence. The expectations can be
compared to the POMDP simulation results described in the previous section
(4.2). These simulation results give the expected reward for a POMDP acting
in a world that is simulated using the POMDP model itself (so the POMDP
has a perfect model of the world dynamics and observation distributions). On
the other hand, V (s∗) gives the reward for a POMDP acting in the real world,
and so the difference gives us an indication of how well our POMDP model
approximates the real world.

The correlation between the MMSE scores and the POMDP’s estimated de-
mentia levels is a first attempt to validate the use of handwashing as a method
to estimate a user’s overall dementia level. The system was designed to have
the belief in the dementia level variable propagated across trials for each user,
to see if it would converge to a value that correlated with the MMSE scores, as
described in Section 3.5. In this experiment, this belief propagation was done
offline after the trials, by simulating the POMDP belief state using the actual
logged data, including the actual system actions that were performed during
the trials. This method is sound, and gives the true belief in the dementia level
that would have been obtained using the actions that were performed by the
system during the actual trial. We use this as a proof of this belief propagation
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concept, in preparation for using it in real-time during future user trials.

5 Results

5.1 Tracker Evaluation Results

We used sequences taken from a user trial (completed in 2006) in which an
automated prompting system (a predecessor of the one reported here) moni-
tored and prompted persons with moderate to severe Alzheimer’s disease [25].
The video was taken from an overhead SONY CCD DC393 color video cam-
era at 30fps, and a 570 × 290 pixel region around the sink was cropped.
We used 200 particles and could perform updates of all three filters at over
13 frames per second. We evaluated the tracker by looking at whether the
mean flock position was inside the hands or towel region in each frame for
1300 frames from a single user’s sequence during which the user was drying
their hands. We compare our method to a simple heuristic that looks only at
the connected components from the thresholded images (using θf ). We find
our method makes no errors (0%) in locating the towel during the extreme
occlusions compared to 7.4% for the heuristic method. The error rates for
hand locations were 2.4% for our method vs. 5.3% for the heuristic method.
The errors for our method in locating the hands were due to one hand’s flock
migrating close to the other hand when the hands were close.

We also tested our method on six sequences from two different users, and
measured the number of tracker failures. We only looked at frames in which
both hands were present and at least one was partially visible, and in which
the caregiver was not present. A tracker failure was noted either if the hands
were separated but one was not tracked, or if both hands were present and
together (e.g., when being rubbed together) but neither hand was tracked, or
if the towel was not tracked. We found error rates of only 1.9% over a total of
16986 frames in 3 sequences for one user and 0.8% over a total of 7285 frames
in 3 sequences for the other. The majority of tracker failures happened after
an abrupt change in hand motion, due to our constant velocity assumption.
The tracker was consistently able to recover after all tracker failures within
about 10 frames.

Figure 9 show a close-up of an example where the data-driven proposal is
used. The hands are being tracked in the sink region at frame 2144. The
strength of the right hand filter is weak (6), since the hand has begun to move
forward, and the particles do not adjust to the new velocity fast enough. The
corresponding value of α is 0.3 at frame 2145, meaning that about a third of
the particles at the next frame will be drawn from the data-driven proposal,

24
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2147  (0,0,0)α=
2151  (0,0,0)α==(9,8,8)  =(9,7,9)

 =(9,4,9) =(9,0,9)

ν

ν ν

ν

ν

Fig. 9. Example sequence showing the data-driven proposal being used for the right
hand (at frame 2145) and showing a complete reset (with α = 1) for the left hand
at frame 2155. The α values and strengths ν are shown for (towel, left hand, right
hand). The lightly colored region shows that both hands are estimated to be at the
sink region.

qd, with the remaining coming from the prior dynamics. Indeed, we see the
newly proposed particles at frame 2145, well distributed across the right hand.
However, the weights of these particles, although sufficient to remain in the
filter, do not significantly affect the mean of the filter immediately. By frame
2147, these new particles have gained all the filter’s weight, however, and the
hand is well tracked again through frame 2155, where the left hand filter is
losing strength. At frame 2154, the left hand filter has dropped to 0 in strength,
and gets completely re-initialised by the data-driven proposal at frame 2155.

5.2 POMDP Evaluation Results

A simulation experiment involved a set of 20 simulations of handwashing, each
for 100 steps (or until the true user had her hands washed). The dementia level
belief was propagated across the 20 simulations, and we did 10 experiments
with different random seeds. Table 2 shows the expected rewards over the 10
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DL/RE/AW PO- Heur- Null CG CE fo-

MDP istic MDP

lo/none/never 3.8±1.2 −1.1±0.9 −2.0±0.0 −75.2±3.2 6.8±0.6 9.1±0.4

lo/max/no 3.0±0.5 2.3±0.7 −0.9±0.1 −92.1±4.2 2.8±1.2 6.3±0.7

lo/med/yes 4.5±1.1 3.9±0.6 0.1±0.5 −117.8±4.0 −0.2±0.7 7.4±0.7

med/max/no 1.1±1.0 1.4±0.7 0.2±0.3 −93.6±3.9 3.4±0.8 6.0±0.8

med/min/yes 5.1±0.9 6.3±0.7 3.1±1.5 −118.4±4.3 0.9±0.9 8.1±0.6

hi/med/no 7.1±0.7 5.6±0.4 0.4±0.3 −95.6±3.9 7.2±0.7 9.3±0.6

hi/min/yes 8.3±0.7 9.8±0.6 9.7±0.9 −118.5±4.3 3.7±1.0 9.1±0.7

ρ0 4.9±1.1 3.8±2.8 0.9±3.3 −97±16 4.2±2.5 8.3±1.1

ρδ 4.8±0.6 4.6±1.0 0.5±2.1 −105±13 2.9±2.4 7.9±0.8

Table 2
Mean discounted rewards gathered over 20 simulation trials, with expectations

computed over 10 experiments, for the POMDP policy, the heuristic policy (Heur.),
the policy that does nothing (Null), the policy that always calls the caregiver (CG),
and certainty equivalence approach (CE), and the expected value for the fully ob-
servable (MDP) version. Results are shown for a sample of different simulated user
attitudes (values of DL, RE, and AW). The bottom two lines give the two ex-
pectations: unweighted (ρ0) and weighted by the initial belief (ρδ), as described in
Section 4.2.

experiments for representative user types, comparing the POMDP policy, the
four heuristic policies, and the MDP upper bound. Table 2 also shows the
average over all user types, showing that overall, the POMDP policy performs
best, but not significantly better than the heuristic or certainty equivalent
(CE) policy, while the call-caregiver policy (CG) is an expensive lower bound.
For particular user types, we see that the CE approach does better if the user
starts the trial less aware. This is because the CE approach uses a more ag-
gressive prompting strategy due to the collapse of the belief to a single state.
For example, if the belief state is close to uniform, the optimal (POMDP)
policy may be to wait and see what the user does, to try to gain some infor-
mation, whereas the CE approach will commit to some state, possibly causing
a prompt to be issued. The CE strategy works poorly when the user is more
aware. The Null policy works best when the user is least demented and most
aware (since doing nothing is close to optimal in this case).

Figure 10 shows the progression of the belief that the dementia level is equal to
the true dementia level over the 20 simulations, averaged over 10 experiments.
The maximum, mean and minimum values at each time step are shown. We see
that for the extreme dementia/responsiveness/awareness levels, the POMDP
learns the correct dementia level quickly. However, for intermediate demen-
tia levels, the POMDP learns more slowly. This is reasonable since for these
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Fig. 10. Top 4 plots: Progression of dementia level estimates over 20 simulations
for different user attitudes, with the solid line indicating the mean and the dashed
lines giving the max and min over 10 experiments. Bottom plot: belief in dementia
level being the true DL value over 20 simulations, averaged over all user attitudes,
with dashed lines giving the first standard deviation, and shown relative to the 1

3
probability that would be obtained using random guessing.
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intermediate cases, behaviors that could be in either extreme may be observed.

5.3 User Trial Results

5.3.1 User Trial Results: Examples

Figure 11 shows key frames and belief states from an example sequence of
subject 4 (Avg. MMSE of 11.5) during trial 34 (the first day of the first system
trial). In this case, the user independently uses the soap (Figure 11-a), then
turns the water on and rinses her hands (11-b). The system correctly infers
she is in planstep g by 11-c. It gives her time to rinse, then her awareness
shifts to no, and it prompts her to turn the water off, using a video prompt in
Figure 11-c . She responds, but then gets momentarily stuck with her hands
at the taps during the act of turning them off (11-d). The system gives her a
further prompt to turn the taps off (11-e), cuing her to continue to the towel.
She follows this prompt, using the towel to finish the task (11-f).

Figures 12 and 13 show key frames and belief states from an example sequence
of subject 8 (Avg. MMSE of 10.5) during trial 59 (during the second system
trial). The user immediately turns on the water (Figure 12-a) and rinses her
hands, but the system has low certainty that the tap was used. The user then
proceeds to dry her hands 12-b), and the system has an even distribution over
plansteps a or b showing that it is uncertain about whether the water is on or
off. It is, however quite certain that the user awareness is not yes, so prompts
for soap use with minimal specificity after 31 seconds (the least costly option
given the current responsiveness belief). The user does not respond to this
prompt, and the responsiveness shifts towards video or max. After a timeout,
the system tries the most specific (video) prompt to use soap (Figure 12-c).
Given the user’s current dementia level, this is potentially a more effective
prompt than a maximal prompt. Again, the user does not respond, and the
system’s belief is that the user has awareness never and responsiveness none,
and so calls for human assistance after about 70 seconds (Figure 12-d). The
caregiver intervenes and points explicitly to the soap which gets the user to
use soap (Figure 12-e), and the belief is “collapsed” to planstep e (by the
technician behind the scenes) after 92 seconds (Figure 13-a). Notice how, in
Figure 12-d, one tracker starts to track the caregiver’s right hand when one
of the user’s hands is completely occluded. This is not a problem for the sys-
tem, which is temporarily paused during caregiver interventions. The tracker
automatically resets about a second after the occluding hand dissapears.

The user then completes the trial during which she is given two prompts to
turn the water on (Figure 13-b), then off again (Figure 13-d). These prompts
happened because the user took a bit too long after using soap, and during
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11-a (8 seconds) (frame 246)

11-b (22 seconds) (frame 673)

11-c (40 seconds) (frame 1213)

11-d (51 seconds) (frame 1544)

11-e (61 seconds) (frame 1823)

11-f (80 seconds) (frame 2398)

Fig. 11. Key frames from subject 4, trial 34, showing (right) the overhead video
and flock trackers (center) the marginal belief state over planstep and user attitude,
and (left) the camcorder view (not used by the system). See text for description.
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12-a (2 seconds) (frame 60)

12-b (31 seconds) (frame 942)

12-c (49 seconds) (frame 1474)

12-d (73 seconds) (frame 2207)

12-e (76 seconds) (frame 2296)

Fig. 12. Key frames from subject 8, trial 59, (part I - continued in Figure 13),
showing (right) the overhead video and flock trackers (center) the marginal belief
state over planstep and user attitude, and (left) the camcorder view (not used by
the system). See text for description.

rinsing, causing the system to opt for a prompt. However, in this case, the
prompts started simultaneously with the user beginning the behavior that
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13-a (92 seconds) (frame 2775)

13-b (98 seconds) (frame 2941)

13-c (121 seconds) (frame 3631)

13-d (127 seconds) (frame 3808)

13-e (129 seconds) (frame 3886)

Fig. 13. Key frames from subject 8, trial 59 (part II - continued from Figure 12).

was prompted. It is unclear whether she was actually responding to prompts,
or whether the prompts were played just slightly too late to make a difference.
The system interprets this as the user responding to prompts, but it may be
giving itself too much credit. The final frame at (Figure 13-e) shows the system
has correctly estimated that the user has finished the task.
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5.3.2 User Trial Results: Annotations

Most likely behavior (POMDP)

away sink wet taps soap dry

N/A 33 53 11 31 23 107

away 142 103 7 7 3 56

sink 62 277 89 79 30 43

wet 10 35 276 44 3 0

A
n
n
ot

at
io

n

taps 2 18 46 226 23 14

soap 0 33 2 3 93 3

dry 19 48 0 18 27 523
Table 3
Confusion matrix showing the most likely behavior given the POMDP belief

(columns) correlated with the annotations (rows), averaged over all user trials. The
data in row n is taken from all timesteps in which the behavior annotation was n.
The darkly shaded entries are the maximum for each row.

Table 3 shows a confusion matrix for a comparison of the annotated behaviors
with the POMDP’s best estimate. The entry at row i, column j is the number
of times the most likely behavior given the POMDP’s belief was j when the
handwashing scenario was annotated as behavior i. The largest number in each
row is highlighted. We see that the behavior estimates are fairly good, with
some confusion between away and sink, and the most confusing annotated
behavior being sink. This is because the sink behavior can most easily be
interpreted as either wet, taps or away: the differences in hand positions are
small. The annotation of N/A was fairly evenly distributed across beliefs for
the POMDP, most often being interpreted as dry.

5.3.3 User Trial Results: Rewards

Table 4 shows the average reward gathered during the user trials, for each of
the six users. The two columns show the rewards based on the POMDP’s belief
state, V (b), and on the manual annotations, V (s∗), as defined in Equations 10
and 11, respectively. The averages can be compared to the POMDP simulation
results shown in the leftmost column of Table 2, that yielded a weighted
average score of 4.8. We can see that the POMDP policy achieves nearly 80%
of the value it does in simulation, implying that our POMDP model is a fairly
good model of this domain, as far as its ability to be used to achieve value
goes.
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expected actual

reward reward

subject V (b) V (s∗)

1 1.84 0.51

3 7.66 11.77

4 3.93 3.22

5 1.00 1.12

6 5.22 3.41

8 2.73 2.42

avg. 3.82 3.74
Table 4
Discounted rewards gathered during actual user trials. The first column shows

the expected reward over all sequences based on the POMDP’s belief state (the
POMDP’s expected reward, see Equation 10). The second column shows the actual
reward gathered, based on the manual annotations, averaged over all sequences
(Equation 11).

final estimated expected

subject MMSE MMSE MMSE dementia level

number Before After Average low med

1 5 3 4 0.9992 0.0008

3 12 18 15 0.986 0.0136

4 10 13 11.5 0.9998 0.00002

5 19 20 19.5 0.016 0.984

6 12 14 13 0.9997 0.00024

8 11 10 10.5 0.9997 0.00024
Table 5
Mini-mental state examination (MMSE) scores before and after the trials, the

average value of the MMSEs, and the final estimated expected dementia level (DL),
as computed by the POMDP, using corrected dementia level belief propagation
across trials. The belief is shown as a distribution over DL=low,med only.

5.3.4 User Trial Results: Estimated Dementia Level and MMSE Results

Table 5 shows the final estimated dementia level (DL), compared to the Mini-
Mental State Examination (MMSE) scores for each subject before and after
the trials. Figure 14 shows the estimated level of dementia over the course
of the trials, with the average MMSE scores shown as well. First, we see
from Figure 14 that the DL variable converges over the course of the 21
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Fig. 14. Convergence of the estimated level of dementia.

handwashing sequences in the user trial. Most subject’s DL converged to
DL=low, and only one (subject 5, MMSE=19.5) converged to DL=med. This
is encouraging, as it indicates that the DL’s measure of functional performance
in handwashing may correlate with the MMSE scores, although we cannot
make any further conclusions based on this limited data. That is, this data is
not inconsistent with the hypothesis that the DL correlates with the MMSE.
It appears, however, that since most subject’s DL converged to DL=low, the
model needs to be modified to include a “lower” level of DL. Perhaps this
additional range will result in a greater spread of final converged DL values
across this population of users, allowing for more precise correlation analyses.

6 Discussion and Related Work

The handwashing system described in this paper makes contributions both in
computer vision modeling of human activities, and in decision making under
uncertainty. However, the system is most significant for its combination of both
of these contributions into an integrated, real-time, working system that has
been tested on its intended user population. There are several other intelligent
systems currently being developed for the older adult population. These in-
clude the Aware Home Project [26], the Assisted Cognition Project [27], Nurse-
bot Project [28], the adaptive house [29], and House n [30], These projects are
similar to the work described in this paper in that they incorporate AI and
a decision-theoretic approach. In particular, the Autominder System [31], one
aspect of the Nursebot Project, applies a POMDP in the development of the
planning and scheduling aspect of the system [28]. However, these systems
are mainly used as scheduling and memory aids, and do not incorporate user
attitude modelling or planning for prompting. Furthermore, they have not at-
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tempted a full integration of the sensing and planning components in a unified
framework such as we describe here.

Computer vision research into human behavior tracking and understanding
is a very active field. A notable example is a system developed to monitor
hand washing quality [36], where the processes of lathering and rinsing are
modeled as a detailed sequence of steps. Systems have been developed for
inferring human activities [32,33,34,35], but few have used this information to
interact with users. Instead, most focus on tracking and recognising human
behaviors as a task in and of itself, without explicitly considering any larger
goals. Exceptions are the Nursebot [28], and the adaptive house [29], but these
systems have used limited computer vision.

Our tracking system is situated in a large computer vision literature on the
pervasive problem of tracking an object in the presence of occlusions and dis-
tractions. Objects to be tracked usually have some consistent features, are
spatially compact, and move cohesively. Typical tracking methods use some
model of the appearance of an object to be tracked, and fit the model to the
object over time. However, in many applications, the object’s shape and ap-
pearance may change over the course of a sequence. For example, human hands
change shape and velocity fairly quickly, differences which must be accounted
for. Our method uses a generic type of model: a flock of features [6]. Flocking
concepts have been applied in computer graphics [37,38], and in determinis-
tically tracking an object with a moving camera using KLT features [6]. Our
previous work described an approximate Bayesian sequential tracking method
that used flocks of features to implement spatial, feature and velocity cohesive-
ness constraints [3]. We used a Monte Carlo approximation with a data-driven
proposal distribution [8]. The idea of a multi-modal proposal was used success-
fully in [13], where an Adaboost process generated particles for the proposal
distribution of a mixture of particle filters. The particles were adopted only if
their distribution overlapped with one of the particle filter’s mixture compo-
nents. We found our tracking method to work fairly well, and is well suited for
integration into the generic planning modules, as it makes few assumptions
about the shapes of objects to be tracked, and so requires less human design
and engineering a-priori.

Partially observable Markov decision processes (POMDPs) [39] provide a rich
framework for planning under uncertainty. In particular, POMDPs can be
used to robustly optimize the course of action of complex systems despite
incomplete state information due to poor or noisy sensors. For instance, in
mobile robotics [40], spoken-dialog systems [41] and vision-based systems [42],
POMDPs can be used to optimize controllers that rely on the partial and
noisy information provided by various sensors such as sonars, laser-range find-
ers, video cameras and microphones. The handwashing system described here
has led to a number of contributions to the POMDP literature. We have shown

35



how to solve POMDPs with continuous or large observation spaces [16], and
how to approach the handwashing problem with Bayesian reinforcement learn-
ing [43]. This paper specifically introduces a number of methods for speeding
up or improving the accuracy of the point-based solution methods introduced
in [44,20,19].

7 Conclusions and Future Work

This paper described a system for assisting a person with dementia complete
the task of handwashing that combines a flexible object tracker with monitor-
ing and decision making using a partially observable Markov decision process
(POMDP). The system was demonstrated during an eight-week user trial in
Toronto, Canada, in summer 2007. The results showed that the system can
provide assistance to this user group. However, a number of important chal-
lenges remain.

The first challenge is endowing assistive systems such as this one with the
ability to adapt to users, both in the short and long term. Adaptivity implies
the ability to adjust or modify the interaction strategy with a user over time,
based on the changing abilities, needs or preferences of the user. Alzheimer’s
disease, as with many forms of dementia, is progressive: the capabilities and
needs of sufferers change over time, requiring assistive technologies to adapt
in order to provide sustained support. Our current system only has a limited
adaptivity in that it can only learn a user’s attitude based upon a fixed dy-
namics model. We have begun investigating Bayesian reinforcement learning
methods in the context of handwashing assistants to make this system adap-
tive to users and able to learn their specific patterns of behaviors [43]. This
learning method comes with a high complexity cost, however, and work is cur-
rently ongoing into reducing this. We believe that this complexity challenge is
related to a second challenge: ensuring the computer vision models can gener-
alise to other tasks. Adaptivity depends on input generality, since constraints
posed by input specificity will reduce the potential for exploration by the sys-
tem. At the same time, adaptivity is a key to reducing complexity, since new
representations can be acquired “on the fly” and so the system does not need
to take all possibilities into account a priori. We are currently beginning to
address both of these key challenges, and will leverage their inter-dependence
to develop novel algorithms for adaptivity and for computer vision.

A second major challenge is the specification or learning of the reward func-
tion. We currently specify this reward function by hand. However, the reward
function encapsulates a great deal of prior information from carers and users,
that should be carefully elicited from the target population. The benefit of
framing the problem using a decision theoretic model is that it provides a the-
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oretically well founded model within which we can start to investigate ques-
tions of preference and value tradeoffs that are inherent in cognitive assistive
technologies.

A number of other avenues are open for future work.

• In this paper, we described very preliminary results showing that a hand-
washing assistant could be used to monitor general user health (e.g., de-
mentia level). We hope that this monitoring capability can be extended and
improved, rendering these technologies doubly useful to carers and users.
• A benefit of the system we have developed is its ability to generalise to other

ADL. We are currently looking at implementing the same system for other
important washroom ADL, such as toothbrushing, and eventually, toileting.
• We are investigating methods for learning the model from data, and for

integrating the tracker uncertainty into the decision making.
• Using stereo depth information for tracking
• The prompts are currently “canned” and do not change over time. We are

investigating methods for making the prompts adaptive to specific users.
• The system currently has no “ears”, and so cannot respond when users say

something (which they often do). We plan to add some speech recognition
capabilities to the system to overcome this.
• Finally, we are looking into other non-invasive sensors to provide more in-

puts to the POMDP models. One example is the use of sound (microphones)
to detect if the water is running or not.
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