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Abstract

We present a fast method to detect humans from stationary surveillance videos. It is based on a cascade of LogitBoost classifiers
which use covariance matrices as object descriptors. We have made several contributions. First, our method learns the correlation
between appearance and foreground features and show that the human shape information contained in foreground observations
can dramatically improve performance when used jointly with appearance cues. This contrasts with traditional approaches that
exploit background subtraction as an attentive filter, by applying still image detectors only on foreground regions. As a second
contribution, we show that using the covariance matrices of feature subsets rather than of the full set in boosting provides similar or
better performance while significantly reducing the computation load. The last contribution is a simple image rectification scheme
that removes the slant of people in images when dealing with wide angle cameras, allowing for the appropriate use of integral
images. Extensive experiments on a large video set show that our approach performs much better than the attentive filter paradigm
while processing 5 to 20 frames/sec. The efficiency of our subset approach with state-of-the-art results is also demonstrated on the

INRIA human (static image) database.
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1. Introduction

Detecting and localizing humans in videos is an important
task in computer vision. On the one hand, it is often a first
step upon which more complex activity or behavior analysis is
performed, threfore it has many applications in surveillance or
monitoring of smart spaces such as offices. Indeed, improv-
ing human modeling and detection is crucial for tracking algo-
rithms, especially when scenes become crowded. On the other
hand, human detection can also be used on its own, without be-
ing involved in a more evolved framework like tracking. For
instance, in [2], a human detector was continuously applied to
count the number of people in different places of a metro station
in order to provide usage statistics to metro operators or to de-
tect abnormal situations (i.e. counts which differ from standard
values observed at a given time and a given day of the week).

In this paper, we address the detection of humans in videos
recorded by stationary cameras. This task faces important chal-
lenges given the large variability of appearance and pose gener-
ated by variations in clothing, illumination, body articulations
or camera view points. In addition, as illustrated in Fig. 4, the
image resolution of humans is usually small and humans can
appear slanted due to the use of wide field-of-view (FOV) cam-
eras. Also, humans often occlude each other, and the colors of
their clothes are often similar (and similar to the background as
well).
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Fig. 1: (a)-(d) Appearance and foreground information of four
samples. In (a) the person is camouflaged by the background,
while the foreground is more informative; in (b)-(d), the fore-
ground is noisier but appearance remains discriminative (see
Fig. 2 for more examples). (e)-(h) Three foreground informa-
tion representations for each of the (a)-(d) case. From left to
right: the foreground probability map, this map thresholded
with Ty, or with T, > T;. Notice how the probability maps con-
tains more accurate and detailed information than their thresh-
olded counterparts. Thresholding removes foreground informa-
tion, even with a low threshold (h), adds artificial edges when
there is none, or conversely, removes informative gradients be-
tween body parts present in the probability map (f).

To take advantage of the temporal dimension of videos,
most approaches use background subtraction as a way of reject-
ing detections containing not enough foreground pixels, implic-
itly assuming that such detections correspond to false alarms.
However, foreground images carry much more precise and dis-
criminative information than that. This is illustrated in Figs. 1
and 2, and demonstrated by the research on human pose estima-
tion from clean silhouettes extracted through background sub-
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traction. Thus, foreground images could be used not only to dis-
card false detections but also to help the detection process itself.
Even when people occlude each other or when there is a lack
of contrast between a person and the background, some fore-
ground regions remain characteristic of the human shape (head,
legs), allowing the correct detection of people when combined
with shape and texture cues from the input image. Conversely,
in cluttered regions (e.g. having a highly textured background),
appearance cues might not be sufficient to assess the presence
of a person. In this case, foreground information, which is more
robust to camouflage, is helpful to complement the appearance
cues and make a decision.

The first and main contribution of the paper is a novel hu-
man detection algorithm that jointly learns from appearance and
foreground features, which we claim is a major way to obtain
substantial detection improvements compared to the sole use
of appearance features. Noticing that a high degree of correla-
tion between the appearance and foreground shapes at different
places of a human template (head, body sides and legs) is a reli-
able indicator for human detection, we decided to exploit Tuzel
et al.’s [18] approach which uses covariance matrices as object
descriptors within a cascade of LogitBoost classifiers.

The paper makes also several contributions by extending the
work of Tuzel et al. in several important ways. The first one,
related to the main contribution above, is the actual fusion be-
tween appearance and foreground cues, which is performed by
using features from the still and foreground images. This has
several advantages in addition to performance improvement.
First, due to the cascade approach, the foreground features play
a Region Of Interest (ROI) focusing role allowing for faster
processing. As the decision is based on correlation analysis
between both still image and foreground features, this ROI role
is achieved in a more informative way than in traditional ap-
proaches which only look for the presence of enough foreground
pixels. The second advantage is the use of continuous fore-
ground probabilities rather than background subtraction binary
masks. This choice alleviates the need for setting a foreground
detection threshold, which is a sensitive issue in practice, as il-
lustrated in Fig. 1. The algorithm is thus more robust against
variations in contrast between humans and background.

The use of feature subsets constitutes the second paper con-
tribution as explained below. The importance of mapping the
covariance matrices in an appropriate space to account for the
fact that they lie in a Riemannian manifold was demonstrated
in [18]. However, this mapping, which is performed for each
weak classifier at run time, is slow when the covariance ma-
trix dimension is high. Also, as there might not always exist
consistent relations between the covariance coeflicients of all
features in the training data, the learned weak classifiers may
have poor generalization performance at test time. To address
these two issues we propose to exploit the covariance between
feature subsets (hence resulting in lower dimensional matrices)
to build the weak classifiers, rather than between all features, as
was systematically done in [18]. Embedded in the LogitBoost
framework, subsets with the most consistent and discriminant
covariances are selected. This results in a more robust and much
faster detection algorithm.

In this framework, we also investigated the use of image
features’ means as additional input for the weak classifiers. In-
tuitively, it is useful at describing the presence of strong edges
or foreground information at different positions of the template.
Experiments showed that such features provide similar perfor-
mance at a reduced processing cost.

The third and final contribution of the paper is not related to
Tuzel et al.’s work. It is an image rectification step allowing to
reduce people’s geometric appearance variability in images due
to the use of large FOV cameras. More precisely, in these cases,
people often appear slanted in the border of an image even after
the removal of radial distortions, as illustrated in Fig. 4. This
is a problem for human detectors which often consist in apply-
ing a classifier on rectangular regions, or in other tasks (e.g.
tracking) when integral images are used to efficiently extract
features over boxes. To handle this slant issue, we propose a
method that maps the 3D vertical lines into 2D vertical image
lines, as illustrated in Fig. 4.

Experiments were conducted on large publicly available video
databases to assess the different algorithm components and demon-
strate the validity of our approach. Additional experiments on
the INRIA still image database showed that the use of feature
subsets greatly reduced the computational speed while provid-
ing better detection results.

The rest of the paper is organized as follows. Section 2
introduces related work. Section 3 introduces the covariance
features. In Section 4 we present a brief description of the
LogitBoost classification algorithm for Riemannian manifolds.
In Section 5 we introduce the main novelties of our approach.
Technical details about the training and detection are given in
Section 6. Experimental results are presented in Section 7,
while Section 8 concludes the paper.

2. Related Work

In the following, we briefly survey human detection tech-
niques that apply to still images, and then review more specifi-
cally the works on human detection in videos.

To detect human in still images, an approach consists in
modeling the human by body parts whose locations are con-
strained by a geometric model [12, 10]. As an example, Leibe et
al. [10], proposed a probabilistic human detector that combines
bottom-up evidence from local features with a top-down seg-
mentation and verification step. However, these methods usu-
ally do not lend themselves to fast implementations, and their
modeling of the articulated nature of the human body might be
too detailed when dealing with low resolution images. A more
appropriate approach in these conditions consists in applying a
fixed-template detector at all possible subwindows of an image.
Methods differ by the types of input features and the training ap-
proaches [8, 3, 18]. For instance, Dalal and Triggs [3] proposed
a detector relying on a linear SVM classifier applied to densely
sampled histograms of orientation gradient (HOG), an approach
that was sped up using the cascade and boosting framework [1].
Very recently, Tuzel et al. [18] proposed a cascade of Logit-
Boost classifiers using covariance as object descriptors which
outperformed previous approaches. These techniques proved to



be robust but were mainly applied to images with enough res-
olution. Their performance on surveillance data or the use of
foreground information was not investigated.

Few works have actually investigated human detection from
videos. Optical flow has been the main cue, for instance to first
extract window candidates before applying a still image human
detector [6]. In [16], an SVM was trained on optical flow pat-
terns to create a human classifier. Dalal and Triggs [4] pre-
sented a more robust approach by extending their still image
HOG detector to videos using histograms of differential optical
flow features. While these techniques do not assume a static
camera, they require good quality optical flow which is usually
expensive to compute, and partial occlusion is often an uninves-
tigated issue.

In the surveillance domain, most previous methods for hu-
man detection rely on motion. Temporal changes between suc-
cessive images or between an image and a model of the learned
background are first detected. Then moving pixels are grouped
to form blobs [20, 6], which are further classified into human
or non-human entities using blob shape features if necessary
[24]. This type of approaches works fine for isolated people,
in low density situations. However, in many cases, such an as-
sumption does not hold. To address this issue, techniques have
been proposed to segment blobs into different persons. In [23],
a Bayesian segmentation of foreground blob images by opti-
mizing the layered configuration of people using a data driven
MCMC approach is conducted. Other authors applied a static
human detector [6, 24, 9] on extracted foreground regions, thus
following a common trend of using background subtraction re-
sults as a ROI selection process. However, this results in a sub-
optimal exploitation of the dynamic information and of its cor-
relation with the appearance component of the data, as we show
in this paper.

Finally, the work of Viola et al. [19] is the only one we
found that exploits spatio-temporal features for human detec-
tion. Itis based on Adaboost classifiers relying on Haar wavelet
descriptors extracted from spatio-temporal differences. While
scale invariance is obtained by using pyramids, the method is
not invariant to the temporal scale (e.g. resulting from pro-
cessing one frame out of two). In addition, the Haar features
are somewhat crude and recent works have shown that better
shape features can be exploited (HOG features [3] or covari-
ances [18]).

3. Region Covariance Descriptors

Let I be an input image of dimension W x H, from which
we can define a W X H X d feature image by extracting at each
location p = (x,y) a set of d features expected to characterize
well a person appearance. To detect persons in still images,
Tuzel et al. [18] proposed to use the following d = 8 feature set
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sity derivatives, and atanje represents the orientation of the

gradient at the pixel position p.

Covariance computation: Given any rectangular window R of
the image, we can compute the covariance matrix Cg of the
features inside that window according to:
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where my, is the mean vector in the region R, i.e. mg = ﬁ 2per H(P),

and | - | denotes the set size operator. The covariance matrix is
a very informative descriptor. In addition to the features’ vari-
ance and correlation, it encodes the spatial layout of the fea-
tures inside the window since the correlation with the position
p is also computed. In practice, exploiting the fact that covari-
ance coefficients can be expressed in terms of first and second
order moments, integral images are used to gain computation
efficiency [17]. More precisely, for a feature vector of dimen-
sion d, the number of integral images to be computed is w
for the correlation coefficient (taking into account the symme-
try) and d for the first order moments.

Covariance normalization: Since we rely on image derivative
features and since the covariance operator is invariant to mean
variations of the features, the covariance entries are quite robust
to constant illumination changes. To allow further robustness
against linear feature variations within a detection window, we
normalize the features as follows [18]. Let R represent the de-
tection window in which we test the presence of a person, and
r a subwindow inside R where we want to extract covariance
features as input to a weak classifier (see Fig.6 for illustration).
We first compute the covariance of the detection window Cpg
and the subwindow C,. Then, all entries of C, are normalized
w.r.t. the standard deviations of their corresponding features
inside the detection window R:
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where C!. denotes the resulting normalized covariance. This is
equivalent to (but faster than) first performing a z-normalization
of the features in the detection window R (i.e. transforming the
features to have zero mean and unit variance) and computing
the covariance of the resulting features in the subwindow r.

4. LogitBoost Learning on Riemannian Space

We use LogitBoost classifiers based on covariance features
for human detection. In the following, we first briefly introduce
the LogitBoost algorithm on vector spaces [7]. Then we de-
scribe the modifications proposed in [18] to account for the fact
that covariance matrices do not lie in the Euclidian space.

4.1. The LogitBoost Algorithm

In this section, let {x;, b;)};=1..y be the set of training exam-
ples, with b; € {0, 1} and x; € R". The goal is to find a decision



function F dividing the input space into two classes. In Logit-
Boost, F is defined as a sum of weak classifiers {fi};=1.n,, and
the probability of an example x being in class 1 (positive) is
represented by

F(x)
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The LogitBoost algorithm iteratively learns the set of weak clas-
sifiers by minimizing the negative binomial log-likelihood of
the training data:

=SV [blog(px) + (1 = Blog (1 - p(x)]. (5)

through Newton iterations [7]. At each iteration /, this is achieved
by solving a weighted least-square regression problem:

N
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where z; = % are the response values, and the weights

are given by:
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These weights and responses are computed using the weak clas-
sifiers learned up to iteration [ — 1. As can be noticed, the
weights are close to O for data points whose probabilities are
close to 0 or 1, and maximum for points with p(x) = 0.5 i.e. for
points which are not yet well classified into one category.

4.2. LogitBoost for Riemannian Manifolds

One could use the covariance features directly as input to
the LogitBoost algorithm. This implicitly assumes covariance
matrices to be elements of the Euclidian space R". However,
covariance matrices are more specific and lie in the Rieman-
nian manifold M of symmetric positive definite matrices. Since
the canonical Euclidian distance of R"” may not reflect well the
actual distance between matrices in this manifold, Tuzel et al
[18] introduced a mapping 4 from M into a vector space where
the canonical Euclidian distance reflects the manifold geodesic
distance.

More specifically, the mapping 2 : M — R” is defined
as the transformation that maps a covariance matrix into the
Euclidian tangent space (denoted by 7 ) at a point g, of the
manifold M. More formally [14]:
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where the vec and log operators are defined matrix-wise by
1

vecz(y) = upper(Z~2yZ™2) with upper denoting the vector form

of the upper triangular matrix part, and
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The logarithm of a matrix Z, log(X), is defined as
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Fig. 3: Human detection issues. a) Foreground regions may
contain other objects (e.g. parts of a metro car). b) Specular
reflection and cast shadow generate background false alarms.
People might be partially visible or split into mutiple blobs, and
a given blob may contain several people. Also, there might be
ghosts when people are integrated in the background model and
then leave the scene.

is the eigenvalue decomposition of the symmetric matrix X, and
log(D) is a diagonal matrix whose entries are the logarithm of
the diagonal terms of D [14, 18].

Qualitatively, the manifold geodesic distance is well repre-
sented by the canonical Euclidian distance after the mapping
only in the neighborhood of y;. The selection of this point is
thus important. Intuitively, g, should be as close as possible to
the data points to classify, and one natural way is to select it
as the weighted mean (in the Riemannian sense) of the training
examples X;:

N
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where d(X,Y) denotes the geodesic distance in M between X
and Y. Since the weights are adjusted through boosting (see
Eq. (7)), at iteration / this choice will make the classification
focus on the current decision boundary, by moving the mean to-
wards the examples which have not been well classified yet (in
practice, only the positive samples are used in Eq. (11) [18]).
The minimization of Eq. (11) can be conducted using an itera-
tive procedure [14].
In summary, a weak classifier is defined as:

[X) = gih(X)) = g (vec , (logy, (X)) (12)

where g; can be any function from R” — R. In this paper,
we used linear functions. Thus, at a given LogitBoost iteration,
both the weighted mean y; and the linear coefficients g; of the
regressor g; will be learned.

5. Joint Appearance and Foreground Feature Subset Co-
variance

In this section, we introduce the main novelties of our ap-
proach to perform human detection in videos and increase the
speed and performance of the detector w.r.t. the method de-
scribed in the previous Section.

5.1. Slant Removal Preprocessing

In surveillance videos, due to the use of wide angle cam-
eras, standing people may appear with different slants in the



Fig. 2: Positive examples with corresponding foreground probability maps (light - high probability, dark - low probability).

Fig. 4: Vertical vanishing point mapping. Left: after distorsion
removal and before the mapping. We can observe people slant.
Central: after the mapping to infinity. Right: another example
(see mapped image in Fig. 13).

image depending on their position in the image, as illustrated
in Fig. 4. This introduces variability in the feature extraction
process when using rectangular regions. To handle this issue,
we propose to use an appropriate projective transformation K,
of the image plane in order to map its vertical finite vanishing
point to a point at infinity. As a result, the 3D vertical direc-
tion of persons standing on the ground plane will always map
to 2D vertical lines in the new image, as shown in Fig. 4. This
transformation helps in extracting more accurate observations
and obtaining better detection results while keeping the compu-
tation efficiency of integral images.'

The computation of the homography K is constrained by
the following points. It has to map the image vertical van-
ishing point v, = (x.,y.,1)T to a vanishing point at infinity
(0,Y0,0)" where y,, can be any non-zero value. In addition,
to avoid severe projective distortions of the image, we enforce
that the transformation K acts as much as possible as a rigid
transformation in the neighborhood of a given selected point
Po of the image. That is, the first order approximation of the
transform in the neighborhood of py should be a rotation rather

Note that all computation -background subtraction, gradient computation,
integral images, etc- are done on the transformed image. The resulting black
boundary regions do not introduce specific problems. In practice, we just set
to zero the image derivatives of the boundaries that are artificially created, and
only applied our detector to test windows containing less than 20% of black
boundary regions.

than a general affine transform. An appropriate choice of py to
enforce such a constraint can be the image center. Technical
details for computing K are given in [22].

5.2. Integrating Foreground Information

To detect persons in videos captured from stationary cam-
eras, we propose to exploit the results of background substrac-
tion as additional foreground features in the detector. This is
done by defining the feature vector H'(p) at a given point p as:
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where I, I, and atan 7 o)l have the same meanings as in Eq. (1).
G(p) denotes a foreground probability value (a real number be-
tween 0 and 1 indicating the probability that the pixel p belongs
to the foreground) computed using the robust background sub-
traction technique described in [21], and G, and Gy, are the cor-
responding first-order derivatives. With respect to the features
of Eq. (1) [18], the main difference is the use of the two fore-
ground related measures instead of the second-order intensity
derivatives I, and I,,. We expect the former to be more infor-
mative in the context of video surveillance than the latter ones.”

When examining the features in H’, we can qualitatively ex-
pect the intensity features to provide shape and texture informa-
tion. The foreground features will mainly provide shape infor-
mation, but not only thanks to the use of foreground probability
maps as observations (e.g. notice in Fig. 2 how often there is
some contrast between different body parts in these maps). An-
other motivation for the use of foreground probability as fea-
tures is the following. As people can remain static for a long

2Note that we could have added the foreground features to the features de-
fined in Eq. (1) rather than substituting two of them, leading to a feature vector
of dimension 10. Although this could have increased the detection accuracy,
we did not investigate this choice as it would have required the computation
and storage of 65 integral images instead of 44, generating a 50% increase of
memory and computation of the preprocessing step that would have impaired
our real time objective.



period of time (and thus start being incorporated into the back-
ground), or wear clothes with similar color to that of the back-
ground, the foreground probability can be low (see the top right
example in Fig. 2). If one would extract a binary foreground
map (e.g. by thresholding), important information would be
lost: regions could be labelled as belonging to the background
although they have a small but non zero probability measure
still suggesting the presence of a foreground object. In addition,
shape artefacts would be introduced, like for instance bound-
aries inside people’s bodies (see Fig. 3b). For these reasons, we
prefer to keep the real values of the foreground probability map
as input feature.

The use of covariance features fusing intensity and fore-
ground observations is also extremely useful when multiple peo-
ple occlude each other. In this difficult case, decisions have to
be taken based on regional information, and appearance only
methods might be quite confused. By requiring consistency be-
tween appearance and foreground shape features (as measured
through covariance analysis in subwindows), we expect our de-
tector to be more robust in presence of partial occlusion, and
more generally against false alarms that could be due to human-
like appearance shapes.

Finally, as we use a cascade of classifiers, foreground fea-
tures will also help to quickly discard window candidates con-
taining no or poor foreground information.

5.3. Weak Classifiers with Feature Subsets

Mapping the covariance features to the Euclidian space has
been shown to work better than using the raw covariance co-
efficients as input to the LogitBoost algorithm [18]. However,
one main issue with this mapping is that it involves costly ma-
trix operations at run-time. More specifically it requires to per-
form a singular value decomposition (SVD) to compute a ma-
trix logarithm (cf Egs. (8)-(10)), an operation whose cost in-
creases quadratically with the feature dimension, as illustrated
in Fig. 5. One option to speed up the process could be to de-
crease the overall feature size d, by removing some of the fea-
tures in H’. However, this would be at the cost of performance,
since it is obvious that some information would definitely be
lost. We propose instead to build the weak classifiers from sub-
sets of the complete image feature set. In this way, all the image
features are kept and the most discriminative subset covariances
(defined on lower dimensional Riemannian manifolds) can still
be mapped into Euclidean space for binary classification ac-
cording to the scheme presented in Section 4. Note that weak
classifiers will be based on different subsets, and thus informa-
tion about all image features will be exploited.

The lack of consistent relations between the covariance co-
efficients of all image features is another important motivation
to use feature subsets. In other words, the manifold spanned
by the training data points in the high-dimensional Riemannian
space can be quite complex, resulting in noisy mappings. In
this sense, using low-dimensional covariance matrices can be
interpreted as a dimension reduction technique, and be more
effective for classification.

Relative computation times

1 2 3 4 5 6 7 8
Dimension of used features

Fig. 5: Relative computation time of LogitBoost classifiers
composed of 10 weak classifiers, for different feature sizes.
Size one is taken as reference.
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Fig. 6: Cascade of LogitBoost Classifiers. Each LogitBoost
classifier is composed of weak classifiers relying on feature
subset covariances computed from subwindows.
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5.4. Using Mean Features

The covariance provides the second order moments of the
image features over subwindows. In some cases, we believe
that the first order moments, the means, could be discriminant
as well. For instance, a high mean of the intensity gradient
along some well placed vertical subwindow should be a good
indicator of a human torso, or foreground pixels in the upper
central part could denote the presence of a head. We thus pro-
pose to use these means as additional features in the LogitBoost
algorithm. Since these features lie in a Euclidean space we
don’t need any form of mapping for them. However, to be ro-
bust against illumination changes, we normalize the subwindow
mean vector entries of m, w.r.t. the corresponding entries of the
mean vector my of the detection window R, which results in m/.
Our weak classifiers are thus defined as: f;(X,) £ gi(h(C}), m;)
where & is the mapping function defined in Eq. (8) (cf Sec-
tion 4). In other words, we use the concatenation of the mapped
covariance features with the normalized mean features as input
to the linear function g; used in the LogitBoost classifier.

6. Algorithm Description

In this section, we describe technical aspects of the cascade
training and of our post-processing detection stage. Details can
be found in [22].

6.1. Training the Cascade

The detector was implemented within a standard cascade
of LogitBoost rejection classifiers, as illustrated in Fig. 6. The



procedure to train a LogitBoost classifier is the same for each
level of the cascade (only the training set differs), and follows
the approach described in Section 4.1. Below, we provide de-
tails on the different algorithmic steps.

Algorithm 1 : Training and selection of weak classifiers based
on covariances of m-dimensional feature subsets.
J* = TrainAndSelect({Q;, bi, zi, Wi, }i..v, F)

Input: {Q;,b;,z;,w;}i.x and F. Q; is an image example, y; €
[0, 1] is the class label, z; and w; are the response value and
weight of the example Q;. F is the current version of the strong
classifier.

Output: a weak classifier, defined by a subwindow, a feature
subset, the point g at which the tangent space is defined and the
coefficients of the regressor g.

e Select N,, subwindows

e For each selected subwindow r, select N feature subsets of
size m

* For each selected subset s, learn a f,.; weak classifier:

- Extract the normalized covariance matrices X; and the
normalized mean vectors m’ of the subwindow r from
the examples Q;

- Compute the weighted mean p, ; of all the data points
{Xiti=1..n-

- Map the data points to the tangent space at y, , X; =
vecy (logﬂm X))

- Fit the linear function g, (x,m’) by weighted least-
square regression (Eq. (6)).

- Define F,(Q) = F@Q) + 3£,Q), p@Q) =
eFr,.\'(Qi)/(eFr,.\'(Qi) + e_Fr.S(Qi))

- Compute L, ;, the negative binomial log-likelihood of the
data using Eq. (5).

e Return f*, the weak classifier for which L, ; is the minimum.

Training a cascade level: In the experiments, we used K = 30

cascade levels. At each cascade level k, the number N, ¥ of weak
classifiers is selected by optimizing the LogitBoost classifier to
correctly detect at least d,in=99.8% of the positive examples,
while rejecting at least fi,x=35% of the negative examples. In
addition, we enforce a margin constraint between the probabil-
ity of the positive examples during training and the classifier
decision boundary. This is achieved in the following way. Let
pir(Q) be the probability of an example Q being positive at the
cascade level k, defined according to Eq. (4). Let Q, be the
positive example that has the (dpi, X N))-th largest probability
among all the positive examples and Q, be the negative exam-
ple that has the f,,x/NV,-th smallest probability among all the
negative examples, where N, and N, are the number of positive
and negative examples used for training, respectively. Weak
classifiers are added until pr(Q,) — px(Q,) > th, where we set
th, = 0.2. Finally, at test time, a new example Q will be re-

jected by the cascade level k if p(Q) < 7y, with 74 equal to the
value py(Q,) computed at the last iteration of the training algo-
rithm, i.e. when the margin criterion is met. In practice, adding
this constraint increases the probability for true positives to be
actually detected at run time.

To obtain the N, and N,, training samples for cascade level
k, we used a standard bootstrap procedure. The detector up to
the k — 1" level was applied to a set of N, positive examples,
and the N, examples with the least probability of being positive
at the last level were kept for training. Similarly, negative exam-
ples were selected as the false positive examples of the current
detector applied to negative images containing no positive data
until N, examples are collected.

Training and selecting weak classifiers: A standard modification
to the base LogitBoost algorithm was made: at each iteration /,
there is not only one single weak classifier available. Rather, a
collection of weak classifiers are learned and the one that min-
imizes the negative binomial log-likelihood given by Eq. (5)
is actually added as f; to form the decision function F, as de-
scribed in Algorithm 1. The collection of tested classifiers { f,.;, r =
1...N,,s = 1...N} is constructed by selecting N,, subwin-
dows r of the detection window R, whose sizes are at least of
1/10 of the width and height of the detection window. Then, for
each subwindow, a set of N, m-dimensional feature subsets are
selected for testing as follows.

When using the covariance between all image features, N; =
1, i.e. there exist only one weak classifier for a given subwin-
dow. However, when using subsets, we have the choice between
several feature combinations. Rather than using random selec-
tion of the feature subsets to test, we adopted the following ap-
proach. For subsets of size 2, an exhaustive optimization for all
combinations is feasible, as the training and testing of the weak
classifiers is fast. For subsets of size m > 2, the training cost is
much higher. Thus, we first perform an exhaustive training for
all subsets of size 2, and then use the training results to predict
and select for testing the k best subsets of size m most likely to
provide good results for classification. This approach, detailed
in [22], provides a better way of selecting good m-subset fea-
tures than random selection, and saves a significant amount of
time in training.

6.2. Post-processing

At test time, the binary detector is applied to windows of
different positions and sizes. Usually, for one actual person in
the image, several positive detections are obtained, as shown in
Fig. 7(a). To merge these detections, we propose the following
method. Let X, = {Qp}g=l be the set of P positive detections
and {xg}[f: _, denote their image location. We define the reliabil-
ity of each output Q, as the sum of the weighted probabilities
from each cascade level:

K
dret(Qp) = ) (e ™ X pi(Qy)). (14)
k=1



(b)

Fig. 7: Post-processing of detection outputs: (a) Green dots:
positive detection window centers. Red dots: final detection
extrema found via post-processing. (b) Smoothed reliability
image corresponding to the image in (a).

Then, associating the reliability scores of the detected windows
to their centers, we build a reliability image D,.; according to:

D, (x) = max (drel(Qp) X 0(x — Xj,)) ,

where () is the dirac function. Then, we smooth D,,; with a
Gaussian kernel filter of bandwidth (o, 0,) corresponding to
1/10 of the average window size of all the detections. This is il-
lustrated in Fig. 7(b). All local maxima in the smoothed image
are considered as possible detection results, with their window
sizes obtained as the weighted means of the window sizes of
the neighboring detections. To further filter the detections, ex-
trema are ranked according to their reliability. Then, a detection
is removed if its overlap with another extrema with greater re-
liability is too large, where this removal process process starts
with the less reliable detections.

7. Experimental Results

Different experiments were conducted to evaluate our method.

In Section 7.1, we present a thorough evaluation on our target
applications: the detection of people in surveillance data ac-
quired from stationary cameras. In Section 7.2, we report re-
sults illustrating the benefit of the slant removal step. Finally,
in Section 7.3, we used the INRIA still image database to com-
pare our approach (use of feature subsets and mean features)
against previous works [3, 18].

7.1. Human Detection in Video Sequences

In this section, we present our experiments on a large video
database. We first describe our datasets and evaluation protocol,
and finally report our results.

7.1.1. Training and Testing Datasets

We collected 10 indoor and 5 outdoor video sequences from
the shopping center CAVIAR data®, the PETS data*, and sev-
eral metro station cameras. Around 10000 positive examples
were extracted from this dataset (see examples in Fig. 2). In ad-
dition to the presence of luggage and partial occlusions, there
are large variations of appearances, poses, camera view-points,
and extracted foreground images. Negative examples were ob-
tained by: (i) collecting 1000 still images without people and
coupling them with inconsistent foreground images; (ii) crop-
ping about 10000 regions from the dataset which don’t contain
full human bodies; (iii) bootstrapping, i.e. by collecting more
negative samples which ‘look like’ people after each cascade
level, as explained in Subsection 6.1. In practice, a total of
N, = 4000 positive and N, = 8000 negative examples were
used to train a given LogitBoost classifier.

For testing, we set apart 523 images from video clips be-
longing to the above sequences but not used for training, and
added data from 2 new videos. A total of 1927 humans was
annotated, comprising 327 humans with significant partial oc-
clusion and around 200 humans with a resolution of less than
700 pixels.

7.1.2. Evaluation Methodology

The detectors were applied to image subwindows with dif-
ferent locations, scales, and aspect ratios, according to: the
width ranged from 25 to 100 pixels; the aspect ratio (height
divided by width) ranged from 1.8 to 3.0. Positive detections
were filtered out by keeping local detection maxima (cf Sec-
tion 6.2). Two types of performance curves were measured by
adding cascade levels one by one to the detectors.

Detection Error Tradeoff (DET) curves have been used to quan-
tify the classifier performance at the window level [3, 13, 18].
They plot the miss rate, &%, versus false positives
(here FPPW, the False Positives Per tested Window) on a log-
log scale. The 1927 positive test samples are used to evaluate
the miss-rate, while FPPW is obtained by testing all windows of
the test data overlaping by less than 50% with any positive ex-

; 2
ample. The overlap is measured as the F-measure F,,., = 2~

p+n’
_ 16TnC] _ 16TnC| .
where p = Sz and 7 = === are the area recall and preci

sion, with GT denoting the ground truth region, and C the test
window.

Recall-Precision (RP) curves: RP curves are more appropriate
to measure the detection accuracy from a user point of view
[5, 15]. They integrate the post-processing steps, and thus, de-
tectors with similar miss-rate for the same FPPW value may
exhibit different RP curve behaviours: detectors with multi-
ple but spatially consistent detections tend to produce less false
alarms at the object level than detectors spreading their detec-
tion over multiple locations. Recall and precision are defined
as #TruePos and #TruePos respectively. A de-

#TruePos+#F§lseN§ #TruePos+#FalsePos’ b K .
tected output is said to match a ground truth object if their F .,

3 Available via http://homepages.inf.ed.ac.uk/rbf/ CAVIAR/
4 Available via http://www.cvg.rdg.ac.uk/PETS2006/data.html



1%
Q
T
o
193
2
=
= = Fg-Cov-Avg-8 w o)
= = = Fg-Cov-8 A
0.02t Cov-Avg-8 + Prefilter \
Tuzel et al (Cov-8) + Prefilter| “
1 Tuzel et al (Cov-8) \
Y,
001 -5 ‘74 ‘73 - -2
10 10 10 10
False Positives Per Window (FPPWSs)
1
G, ~
09r L S
S
0.8 ‘\ ‘N
[N
0.7r W
\
S 06} .
(%)
2 B
o L \!
& 05 “
M
Dar - Fg-Cov-Avg-8 Y.‘
0.3] = = =~ Fg-Cov-8
Cov-Avg-8 + Prefilter
0.2 Tuzel et al (Cov-8) + Prefilter
o Tuzel et al (Cov-8)
01 T T N . .
0.4 0.5 0.6 0.7 0.8 0.9 1

Recall
Fig. 8: Performance of different approaches with 8-dimensional
features. Left, Miss rate vs false positive rate. Right, precision-
recall curves.

measure is above 0.5. Only one-to-one matches are allowed
between detected and ground truth regions.

7.1.3. Results

We consider the method of Tuzel et al. [18] as our base-
line. Three main improvements to this method were made:
integration of foreground probability features, use of the fea-
ture average in addition to covariance, and selection of feature
subsets. We trained several detectors with or without these im-
provements and named them accordingly. For example, the de-
tector Fg-Cov-Avg-8 uses the covariance and the average of the
8-dimensional features containing foreground information (cf
Eq. 13).

Foreground features. We trained four detectors with/without the
use of foreground information and average features. To allow
a fair comparison, a prefilter is applied to the baseline [18]:
only windows containing a sufficient percentage of foreground
pixels are tested. A percentage of 20% was used. Thresholds
above this value were reducing the performance, by rejecting
more true positive than false alarms.

The plots in Fig. 8 show that the use of foreground observa-
tions in the learning process rather than as a preprocessing step
provides much better detection performance. For instance, for
a precision of 0.9, 60% of the people are actually detected with
[18], compared to 80% using our approach. In addition, note
that the use of the feature averages provides similar results.

There are two main reasons why the foreground prefilter
does not improve much the detection performance. First, fore-
ground information is only used to reject detection, not to accu-
mulate evidence of a person’s presence. Thus, when the grayscale
image is not sufficient to differentiate a person from the back-
ground clutter, the foreground does not help to take the deci-
sion, as illustrated in the left images of Fig. 9. The second
reason is that the percentage of foreground pixels inside a win-
dow is only a crude indicator for rejection, insufficient to prop-
erly distinguish between false alarms and true detection in the
presence of cluttered foreground (presence of multiple people,
shadow), as shown in the right image of Fig. 9.

Performance of feature subsets. We trained three new detectors
relying on 2, 3 and 4-subset features (Fg-Cov-Avg-2 to Fg-Cov-
Avg-4, respectively), and a combined detector based on 2, 3 and
4-subset features for the cascade levels 1 to 15, 16 to 25, and 26
to 30, respectively (Fg-Cov-Avg-[2,3,4]). Fig. 10(a) shows the
obtained RP curves. Interestingly, the use of subset features re-
sults in detection performance similar to those obtained with the
full 8-dimensional set, with Fg-Cov-Avg-[2,3,4] providing the
best results overall. This confirms our hypothesis that the selec-
tion of the most consistent correlation terms between features
is enough to achieve good detection performance. Figures 11
provide statistics about the frequency of the selected features.
The image gradient orientation is the dominant feature (it con-
firms the importance of edge orientation as in HOG features),
and is often selected along with foreground probability value
and gradient. This further demonstrates the interest of exploit-
ing jointly the appearance and foreground features.

Computational speed. The level of performance achieved by
our detectors comes with a significant computational gain w.r.t.
our baseline. The computational complexity was evaluated by
applying the detectors to the test data and measuring the aver-
age number of windows per second that they can process. The
same computer was used in all the cases. Results are shown in
Fig. 10(b). The first observation is that the mean features of-
fer a speed gain of nearly 30% (e.g. compare Tuzel ef al. [18]
with Cov-Avg-8). Secondly, in addition to improving perfor-
mance, foreground features also increase the speed by rejecting
false hypothesis more quickly (compare Fg-Cov-Avg-8 against
Cov-Avg-8). Finally, the main computational gain is obtained
by using feature subsets. For instance, the detectors Fg-Cov-
Avg-2 and Fg-Cov-Avg-[2,3,4] run around 13 times faster than
Fg-Cov-Avg-8 (and more than 20 times faster than [18]). We
can apply these two detectors to videos of size 384x288 and
process around 5 frames/sec. Indeed, most of the time is spent
on the computation of the image features (background subtrac-
tion, covariance integral images), rather than in the detection
part itself.

Exploiting 3D geometry. Finally, to further speed up the pro-
cess and improve detection performance, we can exploit rough
ground plane geometrical constraints to limit the human heights
from 150cm to 220cm. Results are shown in Fig. 10(a), and
show a consistent gain due to the removal of some of the false
positives windows.




Fig. 9: Results with the Fg-Cov-8 detector exploiting foreground features in the covariances (Top) and Tuzel et al.’s method with

foreground prefilter (Bottom).
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Illustrations. Fig. 12 shows detection examples obtained with
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Fig. 11: Percentage of times a given image feature (left: blue
bars) and a given image feature pair (right: light, high percent-
age; dark, low percentage) is selected as part of a feature subset
for classification.

the Fg-Cov-Avg-2* detector. Despite the large variability of ap-
pearances and view points, partial occlusions, and the overall
small people size, there are only few false positive and false
negative detections. In general, the main errors come from
strong specular reflections and cast shadow, bad foreground
results produced by moving objects (moving escalator in the
Metro scene), or occlusions by other persons or objects.

7.2. Test on Slant Removal Data

To suppress the slant of people in images acquired using
cameras with short focus lenses, we can apply to the input im-
ages the homography transform that we propose (cf Section 5.1)
which maps the vertical vanishing point to infinity. The human
detector is then applied on the resulting video streams.

To evaluate the impact of such a preprocessing step on the
performance, we collected test samples (29 images containing
89 people) from the 3 video streams shown in Fig. 13 repre-
senting a typical case of the issue. We applied the detector Fg-



Fig. 12: Detection examples. Green dots: positive detection. Red dots and bounding boxes: final detections after post-processing.
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Fig. 14: Detection performance on data with slanted people.

Cov-Avg-[2,3,4] on this data with and without the geometrical
correction. Typical results shown in Fig. 13 clearly illustrate the
benefits of the approach. Performance curves plotted in Fig. 14
show that the detection performance on slant-removed images
are always better than those obtained on the original images.

7.3. Test on INRIA database

We further evaluated the efficiency of feature subsets on the
INRIA still image human database [3], following the experi-
mental protocol described in [3, 18]. The database contains
1774 human positive examples and 1671 negative images with-
out people. We used 1208 positive samples (and their reflec-
tions w.r.t. a central vertical axis) and 1218 negative images for
training. For each cascade level, the Logitboost algorithm was
trained using all the positive examples and N,, = 10000 negative
examples generated by boostrapping. The rest of the data (566
positive examples and 453 negative images) was used for test-
ing and building the DET curve [3, 18] (cf Subsection 7.1.2).
To our knowledge, at the time of the paper submission, Tuzel
et al. [18] obtained the best detection results, on this database,
and outperforming the methods of Dalal & Triggs [3] and Zhu
et al. [25].

Fig. 16 shows detection results on challenging images, while
quantitative results are displayed in Fig. 15. They confirm the
performance reported in [18] (e.g. with a miss-rate of 7.5% at
10~* FPPW rate vs 6.8% in [18]). Secondly, unlike in the video
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case, low-dimensional subset features consistently lead to bet-
ter results than full covariance features (e.g. compare Cov-2
with Cov-8 [18]). This result might be explained by the smaller
amount of positive training data (around 2400 here vs 1000 in
the video case) which makes the training of weak-classifiers
in the 33 dimensional full covariance space noisier than when
using subsets. This shows that the selection of the most consis-
tent covariance coefficients instead of using them all is a better
strategy. Thirdly, while the use of mean features provides simi-
lar results for most of the detectors, it actually slightly degrades
the results of the best performing one Cov-Avg-2. Finally, the
use of the mean features and importantly the feature subsets
dramatically increases the detection speed. The Cov-Avg-2 de-
tector can process around 15 times more windows than Cov-8.

8. Conclusions

In this paper, we investigated a fast method to detect hu-
mans from surveillance videos. We proposed to take advantage
of the stationary cameras to perform background subtraction
and jointly learn the appearance and the foreground shape of
people in videos. To this end, we relied on a cascade of Log-
itboost classifier learning framework using covariance matrices
as object descriptors [18].

The novelties of the approach are summarized as follows.
First, we proposed a simple preprocessing step to remove peo-
ple slant in images taken from large field-of-view cameras, al-
lowing to improve the detection performance while keeping the
computational efficiency of integral images. Second, by learn-
ing the correlation degree between appearance and foreground
shape features, the method proved to be powerful and much
better than using the correlation between appearance features
alone, even when using background subtraction to remove false
alarms. Finally, to build our weak classifiers, we proposed to
only rely on subsets of the complete image feature space, and
to exploit the means of the image features along with their co-
variance. This reduced the computational cost by 15 to 22 times



Fig. 13: Detection results on original images (Top) and warped images with infinite vertical vanishing point (Bottom).
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The HOG curve displayed in the left plot are the best results reported in [3].

w.r.t. using the covariance between all features, while provid-
ing equivalent or sometimes even better performance. These
novelties resulted in an accurate and near realtime detector, as
shown by experiments on real, large and challenging datasets.
There are several areas for future work. Although our al-
gorithm is very fast, the bottleneck lies in the number of inte-
gral images which need to be computed. Reducing this num-
ber can be obtained by simply using fewer image features, al-
though this might be at the cost of significant performance de-
crease. A better alternative, possible only when relying on co-
variances of size 2 feature subsets, might be to only build our
weak-classifiers from a reduced number of image feature pairs.
The fixed template approach that we used provided good
results. Yet it does not account for the articulated nature of the
human body and the appearance and shape variability that it
creates in the training data. To account for this, one possibil-
ity is to train a collection of classifiers for different body poses
or learn classification trees, as done for instance in multi-view
face detectors [11].
Finally, most of the errors are made in cluttered foreground
when multiple people occlude each other partially. One promis-
ing direction of research to handle this issue would be to train a
classifier to perform the joint detection of humans in occlusion
situations. This could be done by building different body part
detectors, and by learning their response in different occlusion
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configurations.
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