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A semantic-based probabilistic approach for real-time video event

recognitionI
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Abstract

This paper presents an approach for real-time video event recognition that combines the accuracy
and descriptive capabilities of, respectively, probabilistic and semantic approaches. Based on a
state-of-art knowledge representation, we de�ne a methodology for building recognition strategies
from event descriptions that consider the uncertainty of the low-level analysis. Then, we e�ciently
organize such strategies for performing the recognition according to the temporal characteristics
of events. In particular, we use Bayesian Networks and probabilistically-extended Petri Nets for
recognizing, respectively, simple and complex events. For demonstrating the proposed approach,
a framework has been implemented for recognizing human-object interactions in the video moni-
toring domain. The experimental results show that our approach improves the event recognition
performance as compared to the widely used deterministic approach.

Keywords: Video event detection, Semantic video analysis, Bayes Network, Petri Net, Low-level
uncertainty

1. Introduction

The recognition of human-related events has recently become a relevant research area motivated
by the variety of promising applications such as video surveillance, human-computer interaction
and content-based indexing. Moreover, this interest can be also explained by the maturity of the
employed low-level tools. Nevertheless, it still presents many challenges such as the uncertainty of
the low-level tools (e.g., object detection and tracking), the limited availability of training data, the
similar appearance of di�erent events and the modeling of complex relations.

Many approaches have been proposed for event recognition which can be roughly classi�ed into
semantic and probabilistic. Semantic (or deterministic) approaches are based on de�ning rules to
model the events [1]. However, current approaches only describe a small portion of semantics (e.g.,
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scene layout [2], event de�nitions [3]), they do not suggest the appropriate recognition strategies
and they do not consider the uncertainty inherent to low-level observations and event de�nitions.
On the other hand, the probabilistic approaches have shown a superior performance as compared
to the semantic ones [4]. They accurately learn event models from training data achieving high
precision within a domain and allowing an intrinsic uncertainty handling. However, they are not
able to model complex relations and their usage is limited for di�erent, albeit related, domains. In
this situation, a combination of both approaches would be desirable for solving these limitations.
Although this combination is gaining attention in the recent years, current approaches are limited
to the de�nition of simple events [5], the assumption of accurate low-level analysis [6] and the
use of domain-dependent recognition strategies [7]. Thus, their extension to generic recognition of
complex events considering low-level uncertainty is not a straightforward task.

This paper addresses the above-mentioned limitations by introducing a new approach for event
recognition that takes advantages of the accuracy of probabilistic approaches as well as the descrip-
tive capabilities of semantic-based approaches. We start from previous work [8] in which Bayesian
Networks (BNs) are manually de�ned for real-time recognition of simple events. We propose a
framework for complex event recognition based on hierarchical event descriptions that can be ap-
plied to a large variety of domains. This framework extends [8] in three aspects. First, a state-of-art
approach is integrated for event representation [9]. The hierarchy of this representation model al-
lows to apply recognition strategies suitable to each event type. Hence, a two-layer structure is
de�ned for recognizing simple and complex events. Simple events are recognized by means of BNs
as in [8], but in this work BNs are created automatically. The second extension regards the recog-
nition of complex events by coupling the BNs with probabilistically-extended Petri Nets (PNs).
The third extension de�nes a methodology to convert the event descriptions into their recognition
models. Thus, BNs and PNs are built automatically from respectively, simple and complex event
descriptions. We demonstrate the validity of the proposed approach for recognizing human-object
interactions in the video monitoring domain. Experimental results show that it outperforms the
widely used deterministic approach for recognizing events performed by di�erent people in diverse
scenarios whilst operating at real-time.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section
3 overviews the framework for video event recognition whilst section 4 describes the two-layer
recognition structure. Then, section 5 illustrates its application to the video surveillance domain
and section 6 presents some experimental results. Finally, section 7 concludes this paper.

2. Related work

Recently, several surveys have been published focused on the recognition of human-related video
events [1][4][10][11]. We build on [4] and discuss the approaches based on Pattern Recognition (PR),
Graphical Modeling (GM) and Semantic Modeling (SM). Additionally, Hybrid Modeling (HM) is
included to describe combinations of them

2.1. Pattern Recognition approaches

PR approaches recognize events as a traditional classi�cation problem in which few semantic
knowledge is needed and therefore, they are simple, well understood and easy to implement. Ac-
curate event models can be learned from training data. There are many examples such as nearest
neighbor [12] and neural networks [13]. Their advantages are the automatic learning of event mod-
els, the high-precision within a domain and the management of the low-level analysis uncertainty.
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On the other hand, they tend to increase the computational complexity, they are not able to model
complex spatio-temporal relations and their usage is limited for di�erent, albeit related, domains.

2.2. Graphical Modeling approaches

GM approaches model the spatio-temporal event structure as a sequence of states by using
semantic knowledge. Their descriptive capability is highly increased as compared to PR approaches.
Current literature can be classi�ed into deterministic (DGM) and probabilistic (PGM).

DGM approaches assume fully observable event states and accurate low-level analysis. Their
structure is typically speci�ed by expert knowledge. For instance, Finite-State-Machines (FSMs)
have been proposed for modeling the sequential order of single activities such as monitoring of
parking lot scenarios [14] and human-object interactions in indoor settings [2][15]. In addition,
Petri Nets (PNs) are presented to coordinate multiple activities and to model relations such as
sequencing, and concurrency for outdoor video surveillance [16].

PGM approaches consider the uncertainty of the low-level analysis. Their structure is learned
from training data or explicitly de�ned. Bayesian Networks (BNs) are PGM approaches assuming
observable states that have been applied, among others, for person-person interactions [17] and out-
door surveillance [14]. However, BNs do not model temporal composition of events. Furthermore,
Hidden Markov Models (HMMs) are proposed to combine the advantages of FSMs (temporal evo-
lution) and BNs (probabilistic model) for non-observable states. Due to its simplicity and e�cient
parameter learning, they have been widely used for event recognition based on motion [18] and
trajectories [19]. However, they are restricted to simple and sequential temporal patterns (Marko-
vian model) and they may fail to recognize the same event performed in a di�erent manner (as
they rely on training data). Moreover, Dynamic Bayesian Networks (DBNs) have been introduced
for temporal sequencing of BNs [20]. However, their use is limited due to the high computational
complexity and the requirement of large amounts of training data.

2.3. Semantic Modeling approaches

SM approaches model an event as a structured description speci�ed by the domain expert.
These models are deterministic and the reasoning under uncertainty is not feasible. Among existing
literature, Syntactic Models (SyM) represent complex events as hierarchical strings of symbols and
detect them using simple routines such as Context-Free-Grammar (CFG) [21]. Moreover, Constraint
Satisfaction Models (CSMs) de�ne a set of rules derived from the hierarchical event description,
among others, for airport monitoring [3], human-object interactions [22] and bank surveillance [23].
Another limitation of SM approaches is that they do not suggest the strategies to recognize the
events from their descriptions.

2.4. Hybrid Modeling approaches

HM approaches combine the previously described categories for solving their limitations. For
example, CFG extensions for handling low-level uncertainty have been proposed using BNs [7] and
HMMs [24]. However, their descriptive capabilities are limited as they rely on the CFG approach
and the employed analysis tools are domain speci�c (e.g., human interactions in close views that
require speci�c training data [7]). No suggestion is given for their application to other domains
or for the use of other low level tools. Furthermore, [6] extended the PN approach by measuring
how well the event observations (e.g., PN states) �t to a prede�ned probability distribution of the
observations for simple events. However, it assumes absolute certainty in the low-level analysis and
does not de�ne the computation of this distribution for complex events. Another enhancement of
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Cat. Approaches Recognition from Uncertainty Event Real-time Domain
event descriptions Low-level Semantics Simple Complex analysis speci�c

PR KNN[12] No Yes No Yes No Yes Yes
GM BN [17] No Yes No Yes No No Yes

PN [16] Partial No No Yes Yes Yes No
DBN [20] No Yes No Yes Yes No Yes
FSM [15] No No Yes Yes Partial Yes No
HMM [18] No Yes No Yes No Yes Yes

SM SyM [21] No No No Yes Yes Yes No
CSM [3] No No No Yes Yes Yes No

HM P-PN [6] No No Yes Yes Yes - No
P-PN [5] No No Yes Yes No - No
CFG-BN [7] No Yes Yes Yes Yes No Yes
P-CSM[26] No No Yes Yes Yes - No
Proposed Yes Yes Yes Yes Yes Yes No

Table 1: Comparison between the main reviewed approaches for video event recognition. (Key. PR: Pattern Recog-
nition, GM: Graphical Modeling, SM: Semantic Modeling; HM: Hybrid Modeling, A: Automatic, M: Manual).

PNs is proposed in [5] for detecting events with variable duration. Simple semantics are de�ned
without providing a structured model for semantic representation. Hence, their extension to describe
complex events and consider low-level uncertainty is not straightforward. Probabilistic extensions
are proposed to handle the uncertainty of simple event de�nitions for PNs [25] and CSMs [26].
In both approaches, the objective is to de�ne a certainty measure for the observations associated
to the event description components (e.g., map the certainty of a person being close to a zone
of interest by using sigmoid [25] or Gaussian [26] functions). However, they do not consider the
low-level uncertainty and they do not de�ne the relation between the event descriptions and their
recognition strategies.

Our approach �ts into this category that combines semantic and probabilistic approaches. We
propose a framework for representing and recognizing human-related video events. Its main con-
tribution is a generic solution for event recognition in which event descriptions are converted into
suitable recognition strategies that consider the uncertainty of low-level analysis. Unlike the re-
viewed literature, we formalize the principles to build graphical recognition models (generally ad-hoc
requiring high level of expertise) from descriptions of simple and complex events. Therefore, we
apply the most adequate strategy to each event type incorporating the uncertainty of low-level
analysis. Furthermore, the uncertainty of the semantic de�nitions is addressed by including the
speci�c recognition problems for each modeled event as proposed in [15]. Although our approach
is demonstrated in the video monitoring domain, it is not restricted to a speci�c domain or imple-
mentation as opposed to many existing approaches. Table 1 summarizes and compares the main
reviewed approaches.

Note that, although there exist other approaches for converting event descriptions into the
PN formalism [16][27], our approach di�ers by building recognition strategies for short and long
term human-related events as well as by providing a framework to consider the uncertainty of
low-level analysis ([16] and [27] are only valid for long-term events assuming accurate analysis
without considering its uncertainty). Hence, both approaches provide a partial solution for event
recognition.
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Fig. 1. Entity relationships exploited for event recognition.

3. Proposed framework

A complete framework has been designed for the event recognition task. In this section, we
overview the event representation approach and the framework structure.

3.1. Event representation

For event representation, we have selected a state-of-art approach [9]. It is composed of an upper
ontology that describes the structure of each knowledge type and leaves explicit the information
that has to be inserted for modeling each domain. We use the Scene entity that represents the each
domain by means of hierarchical descriptions of the scene objects (Object entity), their relations
(Event entity) and additional information (SceneContext entity). We propose to exploit their
relations (depicted in Fig. 1) for achieving an e�ective recognition of events.

The Object entity represents the physical scene objects. Mobile and Contextual objects are
distinguished by their ability to initiate motion. Furthermore, Contextual objects are divided into
Fixed and Portable objects (if they can be displaced). Therefore, events can be de�ned considering
relations with moving entities (e.g., person), stationary objects (e.g., luggage) and �xed scene
parts (e.g., open a window). The Event entity represents spatio-temporal relations between Object
entities. Each Event entity is related to Object entities by the hasObjectList property. Furthermore,
it is sub-classed depending on the number of agents involved (single and multiple) and the temporal
relation with its events (simple and complex). In this work, we use the latter classi�cation to
e�ciently organize the event recognition strategies. Hence, we develop strategies for recognizing
simple and complex events. The SceneContext entity de�nes all the information that may in�uence
the way a scene is perceived and can not be described using the Object and Event entities. In this
work, we are interested in the SpatialContext and EventContext entities to provide, respectively,
the scene layout and the event relations not described using the Event entity.

Among the related literature, the selected approach shares the basics for representing event-
related semantics with the ViSOR ontology [28]. Both de�ne entities such as objects, events and
context. However, the ViSOR ontology is oriented to semantic annotation whereas [9] is focused
on the description of the relations among entities. Hence, [9] de�nes events as spatio-temporal
object interactions. Moreover, [9] de�nes di�erent types of events (according to temporal and
action thread characteristics) and contextual relations whilst ViSOR ontology only presents a list
of concepts what prevents the use of the ViSOR ontology within the proposed approach. Finally,
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Fig. 2. Proposed framework for the recognition of events.

ViSOR ontology only describes domain knowledge and [9] includes additional knowledge sources
(such as system capabilities) that allows to de�ne the available recognition strategies.

3.2. Framework structure

In this paper we propose an event recognition framework composed of four modules as shown in
the Fig. 2. The �rst module detects the objects of interest (i.e., the de�ned Object entities) from a
video sequence. Then, the second module extracts the features required for event recognition. After
that, a two-layer structure recognizes events considering the uncertainty of the analysis process be-
ing guided by the hierarchical event representation (described as in [9]). First, the short-term layer
performs the detection of simple events that are characterized by their occurrence in short-time pe-
riods. A BN is de�ned for each event based on its description. Then, the long-term layer recognizes
the complex events that present a temporal relation among its counterparts. A probabilistically
extended PN is de�ned for each hierarchical event representation composed of simple and complex
events. This event recognition structure is detailed in the section 4. The proposed combination
addresses the limitations of the BN (not being able to model temporal event composition) and PN
(deterministic detection) approaches. Note that this framework can �t the needs of a large vari-
ety of application domains by representing the prior knowledge and implementing the appropriate
techniques for object detection and feature extraction.

4. Recognition of events

We propose a hybrid modeling to handle the low-level analysis uncertainty guided by the domain
knowledge descriptions as de�ned in [9]. It establishes a common structure to recognize events that
share similar characteristics. It consists of the short-term and the long-term layers that are described
as follows.

4.1. Short-term layer

The short-term layer recognizes the events composed of hierarchical combinations of sub-events
without temporal relations (e.g., blob-inside-zone). In the selected representation model [9], they
correspond to the simple events types SimpleWithSingleObject and SimpleWithMultipleObject .
This layer extends [8] by formalizing the building process of the recognition structure and its
inference capabilities.
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SSE_Event car-illegally-parked

object_list: 

(c: entity), (z1, z2: zone)

sub-events:

e1: appears (c)

e2: IsCar(c)

e3: Stopped(c)

e4: InsizeZone (c, z1)

e5: InsizeZone (c, z2)

relations:          

AND (e1, e2, e3, OR(e4, e5)

(a) (b)

e1 e2

e4

e3

e5

H

max

Fig. 3. Example for the Car-illegally-parked event. (a) Event description in which two zones were considered for
detecting a car illegally parked. (b) Corresponding BN (bottom node and ei nodes represent, respectively, the event
occurrence and the described sub-events).

4.1.1. Layer modeling

For modeling this layer, we have chosen the BN approach as it o�ers several advantages such
as the uncertainty handling and the knowledge-based structure de�nition. Each simple event is
recognized with a hierarchical BN. The BN lower levels correspond to the observed features, the
sub-events and their relations, whilst the upper level represents the event occurrences.

The BN structure is usually hard-coded relying on expert knowledge. This structure is repre-
sented with a directed acyclic graph (DAG), G = 〈N , T 〉, where N is the set of nodes representing
the states and T is the set of transitions between states. We simplify this design by proposing a
formal process based on the event description models [9], where each event is represented using
relations between objects (sub-events) and events (spatial and logical).

For each event description, a root node is included to de�ne its recognition with a binary
value (denoted with H and H̃ for, respectively, indicate its occurrence or not). Then, additional
nodes are included into the BN based on the event description (hereafter called evidences, Ei) as
follows. Firstly, sub-events or feature changes that compose the event description are included in the
network structure as nodes and are forced to produce an output probability P (Ei/H) for indicating
its contribution to the modeled event. This probability can be computed using a threshold function
(e.g., the probability is either 0 or 1 if a feature value is above a threshold), other learned distribution
forms (e.g., Gaussian or uniform) or using the likelihood of the associated classi�cation problem
(e.g., likelihood of the people recognition task). Secondly, spatial relations among the sub-events or
the objects of the de�nition are included in the structure as additional nodes and their probability
is computed using a threshold function. Finally, logical event relations are included in the BN
structure. For each logical OR relation, an additional node is included connected to the root node.
Then, the transitions of the nodes that compose this relation (e.g., sub-events) are redirected to this
node (they were initially connected to the root node). Thus, the compounds of this logical relation
are connected to the root node through the recently included node. Its probability is computed
as the maximum value of all the incoming nodes P (EOR/H) = max(P (Ej/H)). For each logical
NOT relation, an additional node is placed between the negated sub-event and the root node. Then,
its probability is computed as P (ENOT /H) = 1 − P (Ej/H). Finally, no operation is performed
for the logical AND relation because it is intrinsically modeled in the BN approach. Algorithm 1
summarizes this building process for the short-term layer and Fig. 3 shows the description of the
Car-illegally-parked event under the formalism proposed in [9] and the obtained BN structure.
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Algorithm 1 Short-term layer structure composition

Input: Domain knowledge description D.
Output: A set of BNs, S = {BN i}, that represent the short-term layer structure.

1: begin

2: S = {/O}
3: for each simple event ei in D do

4: Add root node Hi to BN i

5: for each sub-event sej of ei do
6: Add a node Ej in BN i

7: Connect the node Ej to Hi

8: end for

9: for each spatial relation srj of ei do
10: Add a node Ej in BN i

11: Connect the node Ej to Hi

12: end for

13: for each logical relation lrj of ei do
14: Add a node Ej in BN i

15: Identify the Ek nodes that compose the relation
16: Redirect the Ek node transitions to the node Ej .
17: if logical relation is 'OR' then
18: P (Ej/Hi) = max(P (Ek/Hi)).
19: end if

20: if logical relation is 'NOT' then

21: P (Ej/Hi) = 1− P (Ek/H).
22: end if

23: end for

24: S = {S, BN i}
25: end for

26: end

4.1.2. Probability computation

The probability of a BN, composed of N variables (H1, ...HN ), is de�ned as a product of con-
ditionally independent probabilities as follows:

PBN =

N∏
i=1

P (Hi/pa(Hi)) (1)

where pa(Hi) is the set of parent nodes of Hi (i.e. those nodes directly connected to Hi via
a single transition). This conditional probabilities can be learned from training data or derived
from the process associated to each node. In this work, we compose a BN for each event and
therefore, only one variable Hi exists in each BN (hereafter called H). The probability of the each
BN corresponds to the computation of the P (H/pa(H)) term. In such case, pa(H) represents the
evidences Ei, ...EN of the event that are connected with the node H.

Finally, the BN probability, P (H/E1...N ), is computed using Bayesian inference as follows:
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PBN = P (H/E1...N ) =

N∏
i=1

P (Ei/H)P (H)

N∏
i=1

P (Ei/H)P (H) +
N∏
i=1

P (Ei/H̃)P (H̃)

(2)

where H is the hypothesis (or event) and Ei are its linked evidences (i = 1...N). Similarly to
[29], we assume no prior information about event occurrence (P (H) = P (H̃) = 0.5) and we use a
default value for probabilities that are complex to estimate (P (Ei/H̃) = 0.5).

4.2. Long-term layer

The long-term layer recognizes events that span across frames and, therefore, they describe
logical combinations of spatio-temporal relations. This layer complements the short-term layer by
introducing temporal relations in the BN approach. In the selected representation model [9], they
correspond to the ComplexWithSingleObject and ComplexWithMultipleObject events.

4.2.1. Layer modeling

For modeling this layer, we have selected the PN approach as it provides a robust formalism
to express structured semantic knowledge. According to [16], it has several advantages such as its
use for deterministic and stochastic inference of event occurrences, its top-down representation for
the levels of abstraction of hierarchical semantic de�nitions (allowing sequencing, concurrency and
synchronization) and its incremental event recognition without re-evaluating past event occurrences.

Similarly to the short-term layer, we reduce the high dependency on expert knowledge for the
design of the PN structure by using descriptions of complex events. We recognize each complex
event with a PN. Speci�cally, we use Plan-PNs [5] that model the occurrence of each sub-event
(opposed to Object-PNs that represent the evolution of object features with a unique PN [5]). In
a Plan-PN, the places represent sub-events and their occurrence is indicated by a token in a place.
Transition nodes de�ne the conditions for their recognition. Observe that the end of this sub-event
recognition is not modeled in this approach (unless de�ned in the PN with a transition). Hence, we
include the temporal information of the detected sub-events for each token. For modeling relations
between sub-events, we employ hierarchical and conditional transitions [16]. The Firing status
of these transitions indicates the recognition of the associated sub-events. Finally, a sink place is
added for modeling the event occurrence. The structure of each PN is determined as follows.

Firstly, a root and a sink places are included in the PN structure to de�ne the start and end
of the recognition of the event. Secondly, the event description is inspected to identify its action
threads, de�ned as a sequence of event executions performed by a single moving object (e.g., a car).
Thirdly, each thread is processed to be included in the PN structure. For each one, two elements
are included for the recognition of the moving object (e.g., car detection): a conditional transition
and a place. This transition describes the classi�cation problem (e.g., algorithm for car detection)
and the place with its success (e.g., a car is detected). Then, the event relations of the thread
(temporal, logical and spatial) are converted into the PN formalism. For the temporal relation
before between two events, we use a chain of four sequential nodes (two places and two transitions).
Starting from the previous place in the PN, we add a conditional transition for recognizing the �rst
event and a place to indicate its occurrence. Then, we similarly include an additional transition
and a place for the second event. For the other temporal relations (overlaps, during, starts, equals,
meets and ends), we assume that an object can only perform one event at the same time and
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Algorithm 2 Long-term layer structure composition

Input: Domain knowledge description D.
Output: A set of PNs, L = {PNei}, that represent the long-term layer structure.

1: begin

2: L = {/O}
3: for each complex event ei in D do

4: Add a root place PR to PNei
5: Add a sink place PS to PNei

//De�ne each thread
6: for each action thread aj of ei do
7: Add a transition Tj1 linked to a place Pj1 to PNei for object recognition and its success
8: for each temporal relation trk of aj do

9: Add sequences of four nodes
10: end for

11: for each spatial relation srk of aj do

12: Add a transition Tjk linked to a place Pjk to PNei
13: Identify the Pn places of the related events
14: Link the Pn places with the transition Tjk

15: end for

16: for each logical relation lrk of aj do

17: Identify the Pn places of the related events
18: if logical relation is 'AND' then
19: Add a hierch. transition Tjk linked to a place Pjk to PNei
20: Link the Pn places with the transition Tjk

21: end if

22: if logical relation is 'OR' then
23: Add a place Pjk to PNei
24: Link the Pn places with the place Pjk

25: end if

26: if logical relation is 'NOT' then
27: Add a transition Tjk linked to a placePjk to PNei
28: Link the Pn places with the transition Tjk

29: end if

30: end for

31: end for

//De�ne thread relations
32: for each temporal relation trk between aj and ai do

33: Add a transition Tk for the temporal conditions to PNei
34: Link the sub-event places to Tk

35: Add a place Pk linked to Tk for its occurrence
36: end for

37: for each spatial relation srk between aj and ai do

38: Develop the relation as for an action thread
39: end for

40: for each logical relation lrk between aj and ai do

41: Develop the relation as for an action thread
42: end for

43: L = {L, PNei}
44: end for

45: end

10



therefore, these relations de�ne dependencies between di�erent action threads. Their modeling is
done by connecting the places of the two events to an additional conditional transition that checks
the conditions over their temporal intervals as de�ned by Allen's Algebra [30] (this temporal data
of each detected sub-event is available for each token). We also include a place to indicate the
occurrence of the relation. For spatial relations, a transition and a place are included in the PN to
represent, respectively, this relation and its occurrence. Then, arcs are drawn from the places of the
events that compose the relation to this additional transition. Logical relations are straightforward
to model using the PN formalism. The logical AND relation is modeled as incoming arcs (from the
related events) connected to an included hierarchical transition. The logical relation OR is modeled
as a place with incoming arcs from the transitions corresponding to the events of the relation.
The logical NOT relation is de�ned as a condition included in the corresponding transition and
the event probability is modi�ed with its complementary value similarly to the short-term layer.
Finally, the junctions between action threads are established as de�ned in the event description.
For converting these thread relations, we use the previously mentioned rules de�ned for the event
relations. Algorithm 2 summarizes this composition procedure.

In addition, we overcome well-known event recognition problems or uncertain event de�nitions
by including solutions in its de�nition as suggested by [15]. However, this operation is hard to be
formalized as it relies on expert knowledge. Sub-section 5.2 illustrates an example of this strategy
in which a PN represents the Abandoned-object event.

Fig. 4 shows the description and the corresponding PN of the Pickup-train event. First, three
transitions are included on the top of the PN to describe the classi�cation stage for each object
involved. Then, sub-events are represented as conditional transitions and connected to places
through arcs. These connections are guided by the relations given in the event de�nition. As
it can be observed, the temporal relation before is represented using a sequential combination of
places and transitions. The OR logical relation is represented as incoming arcs from two transitions
(T8 and T9) to the P6 place. The recognition of the event is de�ned by the AND operator that
is represented with two incoming arcs from places P6 and P7 to transition T11. Observe that
transition T11 is marked with a null as it is a hierarchical transition (it �res when all of its input
places have at least one token).

4.2.2. Probability computation

Standard PNs do not handle the uncertainty associated to the analysis. As a �rst approach, we
propose a simple combination of probabilities to include the uncertainty of the event recognition.
We assume that a probability P (Ti) is obtained from each activated transition Ti. This probability
can come from a simple event (modeled as a BN), a complex event (modeled as a PN) or the
relations between them (temporal, logical and spatial). For logical relations, we compute their
probability using the following rules:

P (Ti) =


∏
k

P (Tk) if Ti ⇐⇒ AND

max
k

(P (Tk)) if Ti ⇐⇒ OR

1− 1
k

∑
k

P (Tk) if Ti ⇐⇒ NOT

(3)

where Ti is the transition introduced for the logical relation, P (Ti) is the resulting probability
and P (T1...k) are the probabilities of the k transitions connected to Ti (through arcs and places).

Traditional transition activation (or �ring) is deterministically performed (i.e., the associated
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P1

P4

P7

P2

P5

P3

P6

P0

T4:Train-enters

T7:train-stops

T5:person-enters

T8: dissapears-

near-train

T6:group-enters

T10:train-leaves

CME_Evt Pickup-train

object_list: 

(t:train), (p:Person), (g:group

(z1:zone), (z2:zone)

sub-events:

e1: SSE_evt train_enters (t,z1)

e2: SSE_evt train_stops(t)

e3: SSE_evt train_leaves (t)

e4: SSE_evt person_enters (p, z2)

e5: SSE_evt group_enters (g, z2)

e6: SSE_evt dissapears_near_train (t, p)

e7: SSE_evt dissapears_near_train (t, g)    

relations:          

before(e1, e2)

before(e2, e3)

before (e4,e6)

before (e5,e7)

AND (e3, (e6 OR e7))

(a)

(b)

P6

P5

P8

T11:null

T1:Is-Train T2:Is-person T3:Is-group

T9: dissapears-

near-train

Fig. 4. (a) Description of the Pickup-train event (complex and multiple thread). (b) Corresponding Petri Net
(each PN conditional transition corresponds to each sub-event of the description). Note that the transitions T1, T2
and T3 have been included in the top of the PN to de�ne the classi�cation of each object involved in the event.
Additionally, a hierarchical transition T11 is included at the bottom of the PN to re�ect the recognition of the event.

conditions are satis�ed). For considering low-level uncertainty, we use a con�dence level to threshold
P (Ti) as follows:

Firingi =

{
1 if P (Ti) > τi

0 if P (Ti) ≤ τi
(4)

where Ti is the transition to be �red and τi is a threshold (con�dence value). This operation
allows to reduce the computational load of the event recognition structure by discarding events
with low probability that can be due to errors of the low-level analysis (e.g., non-accurate object
extraction). Note that a speci�c threshold can be de�ned for each PN transition based on expert
knowledge (e.g., determining the error-prone event recognition modules). In this work, we use the
same value for all the transitions in the PNs (τi = 0.1).

Finally, event probability is obtained when a token reaches the PN sink place as follows:

P (H/T1...N ) =

N
1

N

∑
i=1

P (Ti) (5)
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where P (H/T1...N ) is the probability of the event H, T1...N are the �red transitions that the
token has passed, N is the number of �red transitions and P (Ti) is their probability.

4.3. Contextual information

Furthermore, we extend the ontology by implementing the SceneContext entity that de�nes all
the information that a�ects the way a scene is analyzed and consists of the SpatialContext, Object-
Context and EventContext concepts. In our work, we use the SpatialContext concept to provide
the initial environment layout in terms of the existing Contextual Objects and to de�ne the location
of events (e.g., leave objects on the Table object). ObjectContext concept determines relations be-
tween objects for each speci�c scenario (e.g., the size ratio between Mobile and Contextual objects).
EventContext concept is used to de�ne relations between events (e.g., mutually exclusive events or
prede�ned occurrence order for events). These context de�nitions are introduced to save compu-
tational cost (i.e., not analyzing events that can not happen due to the model constraints) and
decrease the false positive event rate by limiting the system response (i.e., adding more conditions
for event occurrence).

5. Application to the video monitoring domain

We demonstrate the proposed framework for recognizing human-object interactions in the video
monitoring domain. In this section, we overview the selected tools for object detection and feature
extraction as well as the de�ned events.

5.1. Object detection and feature extraction

Currently, the processing capabilities rely on the analysis proposed by [8]. Firstly, it applies
background subtraction and then, shadows are removed from the foreground segmentation map.
After blob extraction, a �rst-order Kalman �lter is used for blob tracking. Finally, several blob-
based features are extracted to feed the proposed event recognition framework. Further details
about the extracted features are given in [8].

5.2. Event modeling

For this domain, we have modeled three simple and two complex human-object interactions.
The three simple events are Leaves-object, Gets-object and Uses-object. Their occurrence is

determined for each frame. For their de�nition, we have speci�ed some simple routines that compose
their representation. Thus, the BelongToFG routine uses the feature Foregroundness to indicate
the degree of belonging to foreground by means of a trained Gaussian model. In a similar way,
the BelongToBG routine uses the feature Backgroundness to provide a probability of belonging to
the background. Moreover, IsOwner routine calculates the agent (e.g., person) that is performing
the event and interacting with an object (e.g., blob with low PeopleLikelihood). This owner is
detected as the closest blob with high-people likelihood and determined when the object appeared
in the scene. The IsPerson routine uses the PeopleLikelihood feature. The IsContextualObj routine
checks if the blob under analysis belongs to the de�ned Contextual Object entities by using the
Compactness feature and speci�c appearance-based models (if the information is available). The
OverlapSkinRegion routine calculates the spatial overlap between an entity and the skin regions of
another entity. Finally, the Stopped routine uses the BlobVelocity feature to determine whether a
blob is moving or not. Fig. 5 presents their descriptions and the associated (naïve) BNs. As it can
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SSE_Evt Leaves-object

object_list: 

(p,o: entities)

sub-events:

e1: SSE_evt Appears (o)

e2: SSE_evt BelongToFG (o)

e3: SSE_evt IsContextualObj (o)

e4: SSE_evt IsPerson(p)

e5: SSE_evt IsOwner (p, o)

relations:          

AND( near (e, o), e1,e2, e3,e4,e5)

(a) (b)

�� �� ���� ��

�

��	

SSE_Evt Gets-object

object_list: 

(p,o, co:entities)

sub-events:

e1: SSE_evt Appears (o)

e2: SSE_evt BelongToBG (o)

e3: SSE_evt ExistContextualObj (co)

e4: SSE_evt IsPerson(p)

e5: SSE_evt IsOwner (p, o)

relations:          

AND( near (e, o),e1,e2,e3,e4,e5 )                     

(c)

CSE_Evt Uses-object

object_list: 

(p: entity), (co: entity)

sub-events:

e1: SSE_evt ExistContextualObj (o)

e2: SSE_evt IsPerson(p)

e3: SSE_evt OverlapSkinRegion(p, o)

e4: SSE_evt Stopped (p)

relations:          

duration (AND(e1,e2,e3,e4), t1)

�� �� ����

�

�� �� ���� ��

�

��	

(d) (e) (f)

Fig. 5. Events models for the experiments in controlled environments. Data correspond to the semantic de�nition
of the (a) Leaves-object, (b) Gets-object and (c) Uses-object events. Their naïve BN are depicted in, respectively,
sub�gures (d), (e) and (f). Nodes marked with * represent the spatial relation near.

be observed, additional nodes are included in the BN to represent the spatial relation near (marked
with *). Furthermore, the Uses-object event included the relation duration that de�nes the length
of event using the parameter t1 to detect its occurrence.

For complex events, two common events in public video surveillance have been described:
Abandoned-object and Stolen-object. Fig. 6 depicts the description and the PN for the Abandoned-
object event. As proposed by [15], we overcome existing event recognition problems by including
strategies for their solving. For the Abandoned -object PN, the left side de�nes the typical model
for detecting abandoned objects [31] whilst the right side describes their detection considering that
the action owner is not likely to be identi�ed (di�cult in crowded scenarios). In addition, PN loops
correspond to two temporal relations: before (before(e4, e5) and before(NOT(e5), e4)). Besides,
the stationary routine is de�ned to detect stationary objects for a given time period, represented by
the relation duration(e9, 30) (i.e., remains stationary for 30 seconds) and uses the BlobStationarity
feature. The Stolen-object event de�nition and its associated PN are similarly de�ned by replacing
the Leaves-object and BelongToFG events with the Gets-object and BelongToBG events.

5.3. Contextual information

For providing such information, we assume that two kind of environments exist in the video
monitoring domain: controlled and uncontrolled. The former consists on the monitoring of places
characterized by the presence of few people and the availability of contextual information useful
for event recognition such as the object types that can appear. The latter covers the monitoring of
public places that are usually crowded (e.g., train stations). They present high data variability (as
opposed to the meeting domain) and few contextual information is available. In this sub-section,
we describe the contextual information de�ned for each situation.
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CME_Event Abandoned-Object

object_list: 

(p: person), (o:object).

sub-events:

e1: appears(p)

e2: appears(o)

e3: Leaves-object(p,o)

e4: IsOwner(p,o)

e5: IsObject(o)

e6: BelongToFG(o)

e7: Far(p,o, tao1)

e8: Close(p,o, tao2)

e9: Stationary(o)

relations:          

before(e1, e2)

before(e2, e3, e7, e9) 

before(e8, e3)

before(e7, e8)

before(e2, (NOT(e4), e5, e6, e9)

(a)

P0

P4

e4:NOT(IsOwner)

e5:Is Object

e3:Leaves-object

P2

P3

e7:Fare8:Close

P6

e6:BelongToFG

P5

P7

e9:stationary

P1

e9:stationary

(b)

e1&e2:appear

Fig. 6. Complex event Abandoned-object modeled for the video surveillance domain. Data correspond to (a)
semantic de�nition and (b) the corresponding PN.

5.3.1. Controlled environments

For theObject entity, we distinguishMobile Objects (Group and Person) and Contextual Objects.
Among the latter, we discriminate between Fixed (Wall, Window, Floor, Table, Door, Blackboard,
Screen and ProjectionArea) and Portable Objects (Chair, Laptop, MobilePhone and Generic).

Furthermore, the SceneContext entity is exploited to represent the contextual information of
this scenario. SpatialContext is used to provide the location of the existing Contextual Objects. An
example of such layout is depicted in Fig. 7. Moreover, the ObjectContext entity determines rela-
tions between objects for each speci�c scenario (e.g., the size ratio between Mobile and Contextual
objects for detecting Groups). The EventContext entity is used to de�ne relations between events
(e.g., mutually exclusive events or prede�ned occurrence order for events). Currently, we have
implemented a constraint for the event location by using the spatial relation overlap between the
Leaves-object event and the Table object. Furthermore, the ExistContextualObj routine, that checks
if a Contextual object exists in the same spatial location as the blob under analysis, is included as
contextual information for the Gets-object and Uses-object events. These constraints are included
in the BN of each event as additional nodes. Observe that these constraints require the knowledge
of the location of the existing objects and the �xed elements of the scene (that is impractical for
uncontrolled environments). They are introduced to decrease the false positive event rate by adding
constraints to recognize the event and to save computational cost by avoiding possible occurrences
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Object tags Bounding Boxes

1

2
3

4

5

1

2
3

4

5

Object categories

1 Object\ContextualObject\FixedObject\Door

2 Object\ContextualObject\FixedObject\ProjectionA

3 Object\ContextualObject\FixedObject\Blackboard

4 Object\ContextualObject\FixedObject\Table

5 Object\ContextualObject\FixedObject\Table

Fig. 7. Annotated scene layout example.

of complex events that include the context-modi�ed simple events (e.g., Abandoned -object event
includes the Leaves-object event).

5.3.2. Uncontrolled environments

Unlike the controlled situation, little prior information is available. Although it is assumed that
some types of objects are known (e.g., person, trains), the variability of the features of the objects
of interest is not known (e.g., luggage appearance). Moreover, the relation of events with the layout
of the scene is more di�cult to estimate as, in these settings, the recording device (e.g. camera)
is typically placed at a medium or long distance from the action. Therefore, the type of events
that can be recognized with enough accuracy is limited to the ones related to trajectory analysis
in most of the cases. For these reasons, objects and events have to be de�ned in general terms
without considering detailed types. Due to complexity of extracting contextual information in this
situation, the SceneContext entity is not exploited.

For theObject entity, we distinguishMobile Objects (Group and Person) and Contextual Objects.
Among the latter, we discriminate between Fixed (Wall, Window, Floor, and Area) and Portable
Objects (generic).

6. Experimental results

We evaluate our approach on the video monitoring domain for the controlled and uncontrolled
conditions modeled in the previous section. It has been implemented using the OpenCV library1.
Tests were performed on a standard PC (P-IV 2.8GHz and 2GB RAM).

For comparison purposes, we have selected the widely used CSM approach [3][23][31][22][32]. It
de�nes rules for each component of the event description that provide a binary decision on whether
these components happened or not. These rules are based on thresholding the con�dence of the

1http://sourceforge.net/projects/opencvlibrary/
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analysis task or feature associated to the event description component. However, the evaluation
of the accuracy of the event recognition strategies requires to use the same low-level analysis to
be independent to the di�erent analysis (or features) proposed in each work. In our case, we have
applied the same blob-based analysis for object and feature extraction. Then, we have implemented
two CSM approaches for the conditions considered in the experiments.

6.1. Performance evaluation criteria

For matching event annotations and detections, we have used a criteria de�ned as follows:

Match(EGT , ED) =



1 if score > ρ
∧∣∣TD

start − TGT
start

∣∣ < τ1
∧∣∣TD

end − TGT
end

∣∣ < τ2
∧

2|AGT∩AD|
|AGT |+|AD| > σ

0 Otherwise

(6)

where EGT and ED are the annotated and detected events; score is the probability of the de-
tected event; (TD

start, T
D
end) and (TGT

start, T
GT
end) are the frame intervals of the annotated (GT) and de-

tected (D) events;
∣∣AGT

∣∣ and ∣∣AD
∣∣ represent the average area (in pixels) of each event;

∣∣AGT ∩AD
∣∣

is their average spatial overlap (in pixels); ρ, τ1, τ2 and σ are positive thresholds (heuristically set to
the values ρ = 0.75, τ1 = τ2 = 100 and σ = 0.5). For event annotation and performance evaluation,
we have used the ViPER toolkit [33].

For evaluation purposes, we use the Precision (P) and Recall (R) measures. Precision is the
ratio between the correct and the total number of detections. Recall is the ratio between the correct
detections and the total number of annotations. We also use the F-score measure, β, to combine
Precision and Recall which is de�ned as follows:

β = 2 · P ·R
P +R

(7)

6.2. Controlled environments

For this situation, we evaluate the proposed approach for the recognition of the previously
de�ned three simple events: Leaves-object (LEA), Gets-object (GET) and Uses-object (USE). For
comparison purposes, we have selected [22] (hereafter called CSM1) that de�nes two human-object
interactions, insertion and removal, that are similar to, respectively, the Leaves-object and Gets-
object events. Their detection is based on three simple rules: the detection of a blob splitting into
two blobs, the detection of a static blob (i.e., same position for 10 frames) and the computation of
the edges around the boundaries of the static blob to decide whether it is an insertion or a removal.

6.2.1. Dataset

A dataset has been collected from selected sequences of the VISOR2, the HERMES3, the
WCAM4, the CANDELA5 and the MR6 public datasets. For discussing the achieved results,

2http://www.openvisor.org/
3http://iselab.cvc.uab.es/indoor-cams
4http://wcam.epfl.ch/
5http://www.multitel.be/~va/candela/abandon.html
6http://www-vpu.eps.uam.es/EDds/
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Fig. 8. Sample frames of the selected content for the experiments in controlled environments. Rows 1, 2 and 3 cor-
respond to categories C1, C2 and C3. (From top-left to bottom-right) AbandonedObject (VISOR), Indoor_activity1
(WCAM), S1_0001 (MR), Indoor_activity2 (WCAM), Cam1_indoor (HERMES), S2_0004 (MR), S3_0001 (MR),
Indoor_1.07 (CANDELA) and S3_0002 (MR).

we have classi�ed the sequences into three categories attending to an initial complexity estimation
of the analysis stages that compose the proposed framework. Table 2 summarizes all the selected
content (in terms of number of frames, annotated events and estimated complexity) and Fig. 8
show sample frames of selected sequences.

6.2.2. Results

In total, our approach detected 657 event occurrences. Fig. 9 shows their probability distribu-
tion. As it can be observed, a high amount of events are detected with extremely low probability
(score < 0.1). They can be easily discarded as most of them correspond to false detections. How-
ever, the events with intermediate probability (0.2 < score < 0.8) present high uncertainty as it is
di�cult to decide whether they are correct or not. Low event probability can be due to non-accurate
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Cat. Frames Events Occurrence Complexity

LEA GET USE FG BT FE ED

C1 41753 28 21 9 M L M M
C2 36446 25 15 10 M M M H
C3 35570 29 28 35 V H V V

Total 113769 82 64 54 - - - -

Table 2: Dataset description for controlled environments (Key: LEA: Leaves-object, GET: Gets-object, USE: Uses-
object, FG:Foreground seg., BT:Blob tracking, FE:Feature Extraction, ED:Event recog., L:Low, M:Medium, H:High
and V:Very High).

Cat. LEA GET USE

CSM1 Proposed CSM1 Proposed CSM1 Proposed

P R β P R β P R β P R β P R β P R β

C1 .96 .85 .90 .93 .93 .93 .95 .90 .92 .90 .95 .92 - - - 1 1 1
C2 .77 .68 .72 .74 .80 .77 .72 .53 .61 .71 .66 .68 - - - .63 .70 .64
C3 .40 .34 .36 .48 .51 .49 .50 .21 .29 .58 .35 .43 - - - .58 .40 .47

Total .74 .65 .69 .71 .74 .72 .76 .51 .61 .75 .63 .68 - - - .68 .55 .37

Table 3: Recognition results for the analysis of controlled environments (Key: LEA: Leave-object, GET: Get-object,
USE: Use-object, CSM1: rule-based approach [22]).
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Fig. 9. Probability distribution of the detected events for the experiments in controlled environments. In total,
657 events were detected (�ltered to 183 with a threshold of ρ = 0.75).

low-level analysis or event occurrences that can not be described with their semantic models (i.e.,
event model inconsistencies). Finally, we �ltered the initial detections by thresholding the event
probability with ρ = 0.75 (see Eq. 6), obtaining 183 event occurrences.

The obtained results are reported in Table 3. The framework presents high �gures for scenarios
in which foreground blobs are well detected and tracked; so the events can be easily recognized
(C1 and C2). Furthermore, the included spatial constraints (SceneContext entity) increases the
accuracy of the results by avoiding false detecting in non-prede�ned locations. Figures notably
decrease in complex scenarios (C3) mainly due to multiple occlusions, group blobs and segmentation
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Cat. FG BT FE ED Total

C1 26.2 (59.4%) 0.5 (1.1%) 16.2 (36.7%) 1.2 (2.7%) 44.1 (100%)
C2 25.4 (47.8%) 0.9 (1.6%) 24.4 (45.9%) 2.4 (4.5%) 53.1 (100%)
C3 25.8 (42.6%) 2.1 (3.4%) 29.1 (48.1%) 3.5 (5.7%) 60.5 (100%)

Table 4: Average system execution time for controlled environments (ms) (Key: FG:Foreground segmentation,
BT:Blob tracking, FE:Feature Extraction and ED:Event detection).

Cat. Frames Occurrences Complexity

ABA STO FG BT FE ED

C1 204408 54 52 L L M M
C2 43632 10 4 M M M M
C3 40951 15 - H H H M
C4 61951 14 - V V V V

Total 350942 93 56 - - - -

Table 5: Dataset description for uncontrolled environments (Key: ABA:Abandoned-object, STO:Stolen-object,
FG:Foreground seg., BT:Blob tracking, FE:Feature Extraction, ED:Event recog., L:Low, M:Medium, H:High and
V:Very High).

errors (resulting in the fragmentation of foreground blobs). Additionally, non-modeled events (e.g.,
sitting or standing) adversely a�ect the detection of the modeled events. Compared to CSM1,
we can observe that our approach improves the overall performance of the event recognition (β
measure). However, CSM1 obtains higher Precision in simple categories due to the de�ned hard
rules. This enhancement is reduced with increasing scenario complexity and for the C3 category,
the proposed approach gets better accuracy. Sample results are shown in Fig. 10.

The computational cost of the proposed approach is summarized in Table 4; data correspond
to the average execution time for each category and stage (normalized to the size of 320x240). As
it can be seen, real-time analysis is achieved with an execution time between 44.1 ms (22.6 fps)
and 60.5 ms (16.6 fps) for the best and the worst cases (categories C1 and C3 respectively). The
foreground segmentation stage, FG, has a (quasi) constant computational cost independently on
the sequence complexity because it works at pixel-level and is blob-independent. On the contrary,
blob-level analysis, BT to ED, presents a dependency on the quantity and size of blobs of interest
in each sequence being feature extraction (FE) the most execution time demanding stage.

6.3. Uncontrolled environments

For this situation, we evaluate the accuracy of the proposed approach for the recognition of
the previously de�ned two complex events: Abandoned -object (ABA) and Stolen-object (STO).
For comparison purposes, we have selected [32] (hereafter called CSM2) that de�nes a rule-based
detection of the two complex events. It uses the following rules: the detection of a static blob
(i.e., same position for 30 frames), the detection of the blob as non-people (by means of a speci�c
classi�er), the detection of a person as the individual of the action and the use of edge and color
information of the static blob to decide whether it is abandoned or stolen.
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Fig. 10. Event detection examples for controlled environments. Rows 1, 2 and 3 correspond to categories C1, C2
and C3. (From top-left to bottom-right): VISOR_AbandonedObject_06 (frame 213), WCAM_indoor_activity_3
(frame 1121), S1_0003 (frame 1974), HERMES_cam1_indoor (frame 616), S2_0004 (frame 2582), S2_0006
(frame 2737), CANDELA_1.04 (frame 260), S3_0001 (frame 7263) and S3_0002 (frame 5790). The color codes
correspond to the leave-object (blue), get-object (green) and use-object (red).
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Fig. 11. Sample frames of the selected content for the experiments in uncontrolled environments. Rows 1, 2,
3 and 4 correspond to categories C1, C2 C3 and C4. (From top-left to bottom-right) CantataMultitelCam1_018
(CANTATA), CantataMultitelCam2_004 (CANTATA), CantataMultitelCam2_016 (CANTATA) , Cam2_outdoor
(HERMES), S2-T3-C_3 (PETS2006), Cam5_outdoor (HERMES), AVSS_AB_Easy (AVSS2007), S2-T3-C_4
(PETS2006), S7_abandoned_bag (PETS2007), AVSS_AB_EVAL (AVSS2007), S2-T3-C_1 (PETS2006), and S2-
T3-C_2 (PETS2006).
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6.3.1. Dataset

The evaluation dataset is composed of sequences from the CANTATA7, HERMES8, i-LIDS for
AVSS20079, PETS200610 and PETS200711 public datasets. These sequences range from simple
sequences with one individual to challenging sequences in crowded situations. For solving the well-
known problem of background initialization [34], each sequence was preprocessed using a median
�lter to capture this background. Additionally, a region of interest was de�ned for each sequence
to indicate the possible location of the event12 (contextual information).

Similarly to the previous experiment, we have classi�ed the sequences into four categories at-
tending to an initial complexity estimation of each analysis stage of the proposed framework. Table
5 summarizes all the selected content (in terms of number of frames, annotated events and estimated
complexity) and Fig. 11 shows sample frames of selected sequences.

6.3.2. Results

In total, our approach detected 2229 event occurrences. This high number of detections can be
explained by the absence of the context-based constraints (opposed to controlled environments).
Fig. 12 shows their probability distribution. As it can be observed, the probability of the events
are concentrated in two ranges of values. The �rst one consists of events with low probability
(score < 0.1) and they can be easily discarded as most of them are due to small segmentation errors.
The second concentration is observed for intermediate-high probability (0.6 < score < 0.8). During
experiments, it was observed that some of them were correct and some of them were due to wrong
analysis of the classi�cation modules (e.g., people recognition). Additionally, 274 events fell into an
intermediate-low value (0.2 < score < 0.6) presenting a high uncertainty and therefore, additional
mechanisms should be used for accepting or rejecting them. After �ltering their probability by
using a value of ρ = 0.75 (see Eq. 6), 202 event detections were considered as valid.

The obtained results are summarized in Table 6. It shows how event recognition in simple situ-
ations, such as category C1 and C2, performed reasonably well. On the contrary, the performance
decreased in complex situations such as crowded scenarios. The high number of objects (moving and
stationary) and the occlusions between them are the main problems that a�ect all the segmentation
and tracking of moving objects. A high number of False Positives is obtained and the Precision
measure is decreased. A post-processing stage would be desirable to �lter these detections. How-
ever, the system is able to recognize most of the events presenting acceptable Recall values for
complex categories. Compared to CSM2, our approach obtained better results demonstrating that
the rules applied are less robust to recognize the event under the uncertainty of the low-level anal-
ysis. Hence, CSM2 accuracy highly decreases as the complexity of the scenario increases (and the
low-level uncertainty). These results demonstrate that the modeling of relations Fig. 13 shows event
recognition examples for the di�erent categories. It should be noted the increase in the number of
false positives as we analyze more complex categories.

The computational cost of the proposed approach is summarized in Table 7; data correspond
to the average execution time for each category and stage (normalized to the size of 320x240).

7http://www.multitel.be/~va/cantata/LeftObject/
8http://iselab.cvc.uab.es/indoor-cams
9http://www.avss2007.org/

10http://www.cvg.rdg.ac.uk/PETS2006/
11http://www.cvg.rdg.ac.uk/PETS2007/
12This was mainly done to avoid detections in highly re�ective surfaces or non-interesting spatial locations.
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Fig. 12. Probability distribution of the detected events for the experiments in uncontrolled environments. In total,
2259 events were detected (�ltered to 202 with a threshold of ρ = 0.75).

Cat. ABA STO

CSM2 Proposed CSM2 Proposed

P R β P R β P R β P R β

C1 .85 .90 .87 .85 .94 .89 .91 .80 .85 .85 .86 .85
C2 .44 .40 .41 .57 .80 .66 .28 .50 .35 .33 .75 .45
C3 .21 .46 .28 .24 .67 .35 - - - - - -
C4 .16 .21 .18 .23 .42 .29 - - - - - -

Total .53 .67 .59 .52 .79 .62 .83 .78 .80 .77 .86 .82

Table 6: Recognition results for the analysis of controlled environments (Key: ABA: Abandoned-object, STO:Stolen-
object, CSM2: rule-based approach [32]).
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Fig. 13. Event detection examples for uncontrolled environments. Rows 1, 2, 3 and 4 correspond to cat-
egories C1, C2, C3 and C4. (From top-left to bottom-right): CantataMultitelCam2_018 (frame 950), Can-
tataMultitelCam1_013 (frame 1548), CantataMultitelCam1_013 (frame 1745), AVSS_AB_Easy (frame 2451),
HERMES_Cam3_outdoor (frame 972), PETS06_S7_T6_B3 (frame 1641), PETS06_S5_T1_A4 (frame 2128),
AVSS_AB_Medium (frame 2332), PETS07_S7 (frame 1755), AVSS07_hard (frame 3543), PETS06_S6_T3_H3
(frame 2329) and AVSS_AB_EVAL (frame 13430). The color codes correspond to the Abandoned-object (brown)
and Stolen-object (yellow).
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Cat. FG BT FE ED Total

C1 26.0 (59.4%) 0.4 (1.1%) 16.4 (37.4%) 1.0 (2.2%) 43.8 (100%)
C2 25.9 (43.6%) 1.1 (1.8%) 28.9 (48.6%) 3.5 (5.8%) 59.4 (100%)
C3 25.8 (39.4%) 2.4 (3.6%) 32.2 (49.2%) 4.8 (7.3%) 65.4 (100%)
C4 26.1 (29.4%) 6.5 (7.3%) 48.4 (54.6%) 7.4 (8.3%) 88.5 (100%)

Table 7: Average system execution time for uncontrolled environments (ms) (Key: FG:Foreground segmentation,
BT:Blob tracking, FE:Feature Extraction and ED:Event detection).

As it can be seen, real-time analysis is achieved with an execution time between 43.8 ms (22.8
fps) and 88.5 ms (11.3 fps) for the best and the worst cases (categories C1 and C4 respectively).
Similarly to controlled environments, pixel-based analysis stages such as foreground segmentation
present a (quasi) constant computational cost. The rest of the stages are blob-based and therefore,
their computational cost varies with the complexity of the sequence (e.g., the number of blobs).
A notable increase of the computational cost can be observed as compared with the controlled
situation (between 11-46%) due to the high density of moving objects in the scene.

7. Conclusion

This paper has described a single-view video event recognition framework guided by hierarchical
event descriptions. It has been presented how the formalization of knowledge relevant to video
analysis within a speci�c domain can be used to de�ne strategies for the event recognition. A two-
layer strategy is proposed to recognize events handling the uncertainty of the low-level analysis.
The short-term layer uses hierarchical BNs to recognize timeless events that consist of changes
in object features. The long-term layer is in charge of detecting events with a temporal relation
among their counterparts by using the PN approach. A simple extension of the basic PN structure
is proposed to manage uncertainty obtained by the sub-events (related with the uncertainty of the
low-level analysis). Formalisms are proposed to obtain the graphical recognition models (BNs and
PNs) from event descriptions.

The accuracy of the proposed framework has been tested for the recognition of human-object
interactions in controlled (short-term events) and uncontrolled environments (long-term events) for
the video monitoring domain. The results showed that the proposed approach outperformed the
traditional rule-based approach. A high recognition rate was achieved by exploiting the spatial
relations between the persons and the scene layout. However, a performance decrease was observed
in complex situations where the accuracy and consistency of the segmentation and tracking tasks
are low. In general, the recognition rate in controlled scenarios was higher, as expected, than in
uncontrolled ones. Real-time operation was achieved in both situations. Furthermore, an in-depth
study of the probability of the event detections showed that there is a high amount of events with
intermediate values (e.g., 0.2 < score < 0.8). Such values can be due to uncertainty of the low-level
analysis or non-modeled situations.

As future work, we will investigate the inclusion of feedback-based analysis for studying events
with intermediate probability as well as the application of the proposed approach to other domains.
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