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Abstract

Scale is a widely used notion in computer vision and image understanding that evolved in the form 

of scale-space theory where the key idea is to represent and analyze an image at various 

resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor 

scale” using an ellipsoidal model that yields a unified representation of structure size, orientation 

and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach 

and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the 

previous framework is not practical due to high computational complexity. In this paper, an 

analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local 

structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D 

using several novel differential geometric approaches is presented and the accuracy of results is 

experimentally examined. Also, a matrix representation of tensor scale is derived facilitating 

several operations including tensor field smoothing to capture larger contextual knowledge. 

Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented 

and the performance of their results is examined in comparison with respective state-of-art 

methods. Specifically, the performance of tensor scale based image filtering is compared with 

gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the 

performance of tensor scale based n-linear interpolation is evaluated in comparison with standard 

n-linear and windowed-sinc interpolation methods.
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1. Introduction

Scale [1–3] may be thought of as the spatial resolution, or a range of resolutions ensuring a 

sufficient yet compact data representation facilitating a target knowledge learning process. 

Scale plays an important role in determining the optimum trade-off between noise 
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smoothing and perception/detection of structures. In image analysis and computer vision 

literature, the notion of scale evolved from Marr–Hildreth–Koenderink–Witkin scale-space 

theory [1–4] whose key idea is to represent and analyze an image at various resolutions. 

This theory aids in breaking a computer vision and image-processing task into a hierarchy of 

tasks starting with macro-structural properties and gradually progressing toward micro-

structures or the inverse. Often, an image representation at a specific scale is obtained by 

convolving the original image with a Gaussian smoothing kernel whose width is related to 

the chosen scale. While scale-space theory has been proven to be useful in a wide range of 

applications [5–17], the notion of “local scale” or “space-variant resolution scheme” [18–22] 

emerged to overcome two major practical hurdles – (1) lack of a common mechanism 

unifying knowledge extracted at multi-scale analyses, and (2) absence of optimal scale 

localization. A knowledge of “local scale” may allow us to spatially tune the neighborhood 

size in different processes leading to selection of small neighborhoods in regions with fine 

detail or near an object boundary, versus large neighborhoods in deep interiors [23]. Also, 

“local scale” may be a vital piece of information leading to developments of effective space-

variant parameter controlling strategies [24].

A knowledge of “local scale” may lead to an effective and automatic mechanism to spatially 

control a process as a function of local scale [23,24]. Towards this direction, Saha and 

Udupa introduced a local morphometric scale using a spherical model in [23,24] and studied 

its effectiveness in various image processing applications including image segmentation 

[23,25–27], filtering [24], registration [28], and removal of partial volume effects in 

rendering [29]; see [30] for a survey on local scale. However, both the scale-space as well as 

the local scale theory implicitly utilizes an isotropic model of scales while most structures in 

the real world are anisotropic justifying the notion of a “tensor scale”, or “t-scale” in short, – 

a regime of unified and simultaneous representation of local structure size, orientation and 

anisotropy. T-scale carries the promise of serving as a rich parametric descriptor of local 

structure and geometry that may benefit several applications including object recognition, 

image preprocessing, registration and compression. Several applications, including 

biomedical, geological and satellite imaging, demand quantitative architectural analyses of 

quasi random mesh-like structures [31,32]. Such applications are likely to directly benefit 

from the notion of t-scale that provides a unified knowledge of local size, orientation and 

anisotropy. Previously, we introduced a formulation of t-scale using an ellipsoidal model 

[30] and studied its usefulness in various image processing applications [30,31,33]. Andaló 

[33,34] presented an efficient computational solution for t-scale in binary images and 

demonstrated its usefulness in detecting salient points on a given contour. However, our 

earlier formulation lacks a precise analytic definition of t-scale and its computational 

solution in 3- or higher-dimensional images is, often, infeasible. Recently, the theory of 

generalized and curvature based local scale and their applications have been studied by 

Udupa and his research group [35–38].

In this paper, we introduce an analytic formulation of t-scale that describes the local 

structure geometry using a local structure adaptive orthogonal system and presents an 

efficient computational solution. Also, we demonstrate the applications of t-scale in image 

filtering and interpolation. Several papers are available in the literature on structure tensor 
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[39–42] computed by convolving tensor products of intensity gradients with a Gaussian 

kernel. Although, structure tensor is a useful concept, it primarily captures information 

derived from local gradient field and may not directly relate to local object geometry. For 

example, in a homogeneous region, structure tensor may not carry meaningful information. 

Here, we formulate t-scale from a geometric perspective where, at each image point, the 

tensor provides direct information of local object geometry as opposed to the gradient field 

and thus provides more precise structural information useful in many applications.

2. Theory and algorithms

In our previous work [30], we introduced the concept of t-scale using an algorithmic 

approach but without a precise analytic definition. Also, the previous algorithmic framework 

is unrealistic for 3- and higher-dimensional images due to high computational complexity. In 

the following, first, we will briefly describe the previous algorithmic definition [30] of t-

scale which will be followed by a new analytic approach to define a local morphometric 

scale using a tensor model [43] and an effective computational solution in two and three 

dimensions (2-D and 3-D). Also, in the later part of this section, we introduce the theory and 

algorithms related to applications of t-scale to image filtering and interpolation.

2.1. Earlier algorithmic approach to t-scale

The notion of t-scale was motivated by the thought of representing local structures by an 

ellipsoid and, in an earlier work, Saha [30] attempted to define t-scale at any image point p 

in a 2-D plane (or, 3-D space) as the largest ellipse (ellipsoid in 3-D) that is centered at p 

and is contained inside the same object region defined by the continuity of homogeneity. 

However, in the previous approach, no analytic definition for the “largest ellipse” or “largest 

ellipsoid” was provided. Rather, t-scale was defined using an algorithmic approach as 

follows. Primarily, t-scale at an image point p is computed by locating edge points visible 

from p along different directions which are then used to compute the t-scale ellipse 

(ellipsoid in 3-D) at p. Basic steps for t-scale computation are as follows (see Fig. 1):

Step 1: Trace image intensity along a set of pairs of radially opposite sample lines 

emanating from p and approximately uniformly distributed over the angular space 

around p.

Step 2: Locate the closest edge point on each sample line (triangles and black dots).

Step 3: Reposition the edge locations on each pair of opposite sample lines according to 

the axial symmetry of an ellipse (black dots to white dots).

Step 4: Compute the t-scale at p using the best-fit ellipse derived from the repositioned 

edge points (triangles and white dots).

2.2. T-scale: an analytic definition

Let ℝ denote the set of real numbers and let us consider an image in ℝn where multiple 

objects are defined as partitions by M number of (n – 1)-D pseudo-Riemannian manifolds, 

say, m1, m2, …, mM; we refer to these manifolds as partitioning manifolds. Now, let us first 

consider a point p ∈ ℝn; we will refer to mi as the nearest partitioning manifold for p if the 
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distance between p and mi is shorter than that between p and mj for all i ≠ j. Now, consider p 

and a set of i orthogonal vectors τ1, τ2, …, τi; there exists a unique subspace Wi that is 

parallel to each of the vectors τ1, τ2, …, τi and passes through the point p. An image is 

formed over the orthogonal complement  of Wi where the partitioning manifolds are: 

; let us refer to this image as an orthogonal 

complement image of induced by the vectors τ1, τ2, …, τi; and the point p. Finally, t-scale at 

a point p ∈ ℝn in an image is an ordered sequence of n orthogonal vectors 〈τ1(p), τ2(p), …, 

τn(p)〉 inductively defined as follows:

1. τ1(p) is the vector from p to the closest point on the nearest partitioning manifold of 

2. Given the first i orthogonal vectors, τ1(p), τ2(p), …, τi(p), the (i + 1)th vector 

τi+1(p) points from p to the closest point on the nearest partitioning manifold in the 

orthogonal complement image of induced by τ1(p), τ2(p), …, τi(p) and the point p.

Thus, although, the nearest partitioning manifold defines the t-scale at a point, the above 

analytic formulation embrace the case when there are multiple objects. In 2- and 3-D, we 

refer to τ1(p), τ2(p) and τ3(p) (only, for 3-D) as primary, secondary and tertiary t-vectors of 

p; in general, “t-vector” will refer to any of the three vectors. The notion of t-scale defined 

as above is schematically illustrated in Fig. 2 using a 3-D rabbit femur bone surface m1 

(medium dark gray). As illustrated in the figure, t-scale at a given point p (solid black dot) in 

a 3-D image is an ordered sequence 〈τ1(p), τ2(p), τ3(p)〉 of three orthogonal t-vectors. The 

primary t-vector τ1(p) (black) defines the direction and distance to the closest point on the 

femur surface. The orthogonal complement plane  and the 1-D partitioning manifold 

 on  are shown in the figure; note that the 1-D partitioning manifold (light 

gray) is essentially the intersection between the plane  (dark gray) and the original 

partitioning surface m1 in the 3-D image. The secondary vector τ2(p) (medium dark gray) is 

defined by the point on  that is closest to p. Once τ1(p) and τ2(p) are found, the 

line (light gray) on which the tertiary vector τ3(p) lies is confirmed; the final direction and 

the length of τ3(p) is defined by finding the closest point on the partitioning surface along 

the line. It may be noted that, often, projections of the two dotted lines (light and medium 

dark gray) indicates to two principal directions on m1 where it meets τ1(p); this observation 

is utilized in our computational solution for t-scale in 3-D.

Here, we will present a matrix representation T(p) of t-scale at p derived from the ordered 

sequence of orthogonal t-vectors 〈τ1(p), τ2(p), …, τn(p)〉 facilitating use of conventional 

tensor algebra. Let ij(p) denote the unit vector along τj(p) and let λj(p) be the magnitude. The 

matrix representation of t-scale is defined as follows:
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The above equation represents t-scale using a symmetric positive semi-definite matrix, an 

equivalence of covariance matrix. Such a compact formulation will facilitate efficient 

realization of a direction-dependent anisotropic parameter control strategy under a 

predetermined physical model; see Sections 2.4 for an example. Also, a matrix formulation 

of t-scale will be helpful in understanding the interaction between local t-scale structure and 

the scaling, rotation, translation and shear components of local Jacobian matrix of an image 

deformation field [44–46].

2.3. An efficient computation of t-scale

A direct algorithmic formulation of t-scale computation from its definition faces two major 

hurdles − (1) object partitions are unknown in real images and (2) high computational 

complexity in three- or higher-dimensions. Here, we outline our algorithmic solution for 3-D 

images involving edge detection, distance transform and differential geometric approaches 

which may be extended to higher dimensions. In an image, often, we do not know the 

partitioning manifolds used to define t-scale. However, we may realistically assume that 

detected edge points in an image lie on these hypothetical manifolds. Also, because of the 

fact that these edge points are dense samples on these manifolds, the distance transform 

from these edge points is a close approximation to the unknown distance transform from the 

hypothetical partitioning manifolds. With this understanding, t-scale may be computed by 

using gradient analyses and computational geometric approaches to the distance transform 

map from the image edge locations; in the rest of this section, by “distance transform” we 

will refer to the distance transform from image edge locations.

Based on the above convention, it is observed that the gradient of the distance transform 

map at any given point provides the direction to the nearest partitioning manifold, i.e., the 

direction of the primary t-vector. The magnitude of the primary t-vector is defined by the 

distance transform value at the candidate point. Once the primary t-vector is determined, in 

2-D, the secondary t-vector may be computed by locating the closet manifold along the line 

perpendicular to primary t-vector. However, this computation is not so trivial in 3-D where 

the first step is to determine the principal directions on the local partitioning manifold (Fig. 

2). This task is accomplished using a new algorithm that is based on computational 

geometric analysis of distance transform. In the following we describe different steps in t-

scale computation starting with basic definitions and notations.

In this paper, all computational and algorithmic developments are confined to 2- and 3-D 

images, although, these methods may generalize to higher dimensions. Let ℤ denote the set 

of integers. It may be noted that ℝ2 and ℝ3 represent a 2-D plane and a 3-D space while ℤ2 

or ℤ3 denote a digital space in 2- or 3-D, respectively. We will use ℤn as a common 

reference to ℤ2 and ℤ3. An n-D digital image is defined with an image intensity function f : 

ℤn → ℝ. Each element of an n-D digital space is referred to as a spel (an abbreviation of 

“spatial element”) whose position is denoted by Cartesian coordinates (x1, x2) or (x1, x2, x3) 

where x1, x2, x3 ∈ ℤ. For any two spels p, q ∈ ℤn, |p – q| denotes the Euclidean distance 

between the two spels. For any vector v ∈ ℝn, |v| gives its magnitude.
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2.3.1. Edge detection and distance transform computation—The purpose of edge 

detection is to compute sample points on unknown partitioning manifolds in a digital image. 

Here, we have adopted an edge detection approach combining both Laplacian of Gaussian 

(LoG) and Derivative of Gaussian (DoG) operators. Specifically, an edge is located at the 

zero crossing of LoG if absolute value of its DoG exceeds a predefined threshold. It may be 

noted that edge locations in an image form a set of points in ℝn, therefore, a zero crossing of 

LoG may not coincide with a spel having integral coordinates. This problem is solved by 

analyzing topological consistency of sign alteration for LoG values at spels over a 2n 

neighborhood; see Fig. 3 for geometric classes of possible alteration patterns over a 2 × 2 × 

2 neighborhood. Alteration patterns in a geometric class are identical under mirror reflection 

and/or rotations by integral multiple of 90°. Topologically consistent cases of LoG sign 

alterations are shown in Fig. 3a where the points with identical LoG sign are 6-connected 

[47–49]; a few examples of topologically inconsistent alteration patterns are shown in Fig. 

3b. Here, 6-connectivity is enforced for topological consistency as 26-connectivity allows 

two voxels with identical LoG sign to meet at a vertex and such an object may not be locally 

separated by a pseudo-Riemannian manifold.

A zero crossing of LoG is identified for topologically consistent cases, only. To determine 

the edge location, first, a zero crossing is located for each pair of points with alternating 

LoG values in the 2n neighborhood. Finally, the edge is located at the mean of these zero 

crossings. The DoG value at the edge location is determined using n-linear interpolation of 

DoG values at grid locations in the 2n neighborhood depending upon image dimensionality. 

To our knowledge, the idea of using topological consistency to locate zero-crossings is new 

and was not used earlier. Finally, two thresholds thrhigh and thrlow of DoG values and a 

technique similar to hysteresis, originally proposed in Canny’s edge detection algorithm 

[50], are used to select both strong and weak edges while avoiding noisy zero-crossings. The 

two thresholds thrhigh and thrlow were determined using the hysteresis threshold detection 

algorithm for the Canny edge detector [51,52]. Saha et al. [53] described an application-

dependent training approach to determine different gradient parameters.

Distance transform is defined as a function or an image DT : ℤn → ℝ, where, DT(p)|p ∈ ℤn 

gives its Euclidean distance from the closest partitioning manifold. Here, the basic idea is to 

use edge locations in ℝn and then compute an Euclidean distance transform from these 

locations. Let E denote the set of all edge points in an image; the binding box of an edge 

location e ε E is the 2n neighborhood surrounding that point. For every edge location e ε E, a 

distance transform value is initialized at the 2n vertices of e’s binding box by directly 

measuring their distances from e. Following this initialization, the Euclidean distance 

transform values are perfused inside using a wave propagation algorithm similar to one 

adopted in [54,55]. See Fig. 4 for results of edge location and distance transform 

computation.

2.3.2. T-scale computation—As mentioned earlier, the primary t-vector τ1(p) at a spel p 

∈ ℤn is computed by analyzing the gradient of DT map at p as follows:
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and the unit vector i1(p) along τ1(p) is

In this paper, we have used the Sobel gradient operator.

Once, the primary t-vector τ1(p) is determined, computation of the secondary t-vector τ2(p) 

in 2-D is straightforward because the vector lies on the straight line Lp perpendicular to 

τ1(p). Thus, τ2(p) may be computed by locating the closet partitioning manifold along the 

straight line Lp. However, a difficulty here is that the edge locations representing 

partitioning manifold form a discrete set of points in ℝn and, therefore, a simple sampling 

approach along a straight line for locating a manifold may raise the problem of missing the 

target manifold. This challenge is overcome by modifying the search process as follows. Let 

p + iΔLp |i = 1,2, … be the sample points on a line Lp; the jth sample point is sufficiently 

close to the target manifold along Lp if it satisfies the following two conditions:

1. DT(p+jΔLp) ⩽ δDT.

2. The angular difference between the two primary t-vectors τ1(p +jΔLp) and τ1(p 

+jΔLp + ΔLp) at the two successive sample points p + jΔLp and p +jΔLp + ΔLp is 

close to 180°; in this paper, we have used “⩾ 135°” to account for artifacts due to 

finite precision and other errors. It may be noted that, if the angular difference is 

less than 90°, the two points are on the same side of the partitioning manifold. 

Thus, the threshold of 135° was picked at the middle of the ideal situation of 180° 

and 90° when the two points fall on the same side of the partitioning manifold.

The value of δDT is determined by the density of edge locations and it should also define the 

sample interval size ΔLp; in this paper, we have used δDT = 1. Finally, the target manifold is 

located on the line Lp at a distance of jΔLp + DT(p + jΔLp) from p.

Computation of the secondary t-vector τ2(p) is more challenging in 3-D as compared to 2-D. 

The primary reason behind the difficulty is that, the determination of τ1(p) narrows down 

τ2(p) onto a plane P perpendicular to τ1(p). However, τ2(p) may lie along any direction on 

the plane. Although, τ2(p) is uniquely defined in Section 2.2, its computation demands a 

search on image geometry on the plane P. To keep the computation of t-scale confined in the 

local neighborhood, we choose the vector τ2(p) along the maximum curvature direction at 

the closest point r on a partitioning manifold (see Fig. 2). A challenge is how to compute the 

maximum curvature direction at r because an analytic expression of the partitioning surface 

is unknown; instead, discrete sample points, i.e., edge locations, on the surface are available. 

The estimation of curvature for discrete 3-D objects has been an important topic in computer 

graphics, and several methods have been proposed [56–59]. The basic idea behind our 

algorithm of detecting the maximum curvature direction is to first, determine the primary t-

vector τ1 at every spel in the neighborhood of p. The primary t-vector τ1 at a neighboring 

spel of p intersects the partitioning surface at the vicinity of r (see Fig. 5). More importantly, 

the angular inclination of τ1 with the plane P, perpendicular to τ1(p), changes most rapidly 

along the direction of maximum principal curvature and it changes slowly along the 
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minimum principal curvature direction. In other words, the projection of the unit vector 

along τ1 on P takes larger values along the maximum curvature direction and it takes 

smaller values along the minimum curvature. Although our method is primarily based on 

this theory, to reduce the effect of noise and discretization, we determine the principal 

curvature direction using principal component analysis (PCA) of these projection vectors on 

P as follows. Let q1, q2, …, qm be m points in the neighborhood of p and let i′1 (q) (solid 

vectors in Fig. 5b and c) be the projection of the unit vectors i1(q) on P. To enforce axial 

symmetry of projection vectors, each projection vector i′1 (q) (solid line; Fig. 5c) is 

accompanied with an opposite vector –τ′1 (q) (dotted line). PCA of the all points represented 

by these vectors is applied to compute the two principal directions; the eigenvector 

corresponding to larger eigenvalue gives the direction for maximum principal curvature 

while the other eigenvector provides the direction of the minimum curvature (see Fig. 5d). 

The secondary t-vector τ2(p) is chosen along the maximum curvature direction; the exact 

value of the t-vector is determined using the same algorithm adopted for detecting τ2(p) in 

2-D. Finally, once the primary and secondary t-vectors are known, the task of finding the 

tertiary t-vector in 3-D is equivalent to determining the secondary t-vector in 2-D.

2.3.3. T-scale smoothing—A smoothing filter is often used to reduce noise in intensity 

images. However, smoothing of a t-scale image may not be as trivial as smoothing a scalar 

image. First, a matrix representation T(p) of t-scale at p is obtained as described at the 

beginning of Section 2 to enable various tensor operations and statistical analyses [60]. 

Weickert [39] has used component-wise Gaussian convolution on local structure tensors to 

obtain a smooth representation. To avoid producing negative eigenvalues in a component-

wise averaging that contradicts the basic definition of t-scale, we have adopted the Log–

Euclidean distance (L–E) approach [61]. Effectiveness of the L–E approach in diffusion 

tensor image (DTI) interpolation has been demonstrated in [61].

Let A = QΛQT|Q: unitary matrix, Λ: diagonal matrix with real nonnegative elements, be a 

symmetric positive semi-definite matrix. The logarithm and the exponential of this matrix 

are defined as follows:

A smoothing function using the L–E approach is defined using a discrete Gaussian kernel 

Gσ : ℤn → ℝ

where Gsupport is the support of the kernel and K is the scalar normalizing factor ensuring 

that ∑a∈GsupportGσ(a) = 1. Finally, the L–E based tensor smoothing algorithm is designed as 

follows using the kernel function Gσ defined as above:
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where ‘*’ is the convolution operator.

2.4. T-scale based image filtering

In this section, we describe a t-scale based diffusive filtering that is primarily developed on 

the theory of anisotropic diffusion originally proposed by Perona and Malik [62] and 

subsequently, studied by others [24,63]. The primary objective of the new t-scale based 

filtering is to govern the diffusion process in a space-variant and orientation-dependent 

fashion to optimally fit with local image structures captured in the form of t-scale. 

Anisotropic diffusion [62] was originally described to encourage diffusion within a region 

(characterized by low intensity gradients) while discouraging it across object boundaries 

(characterized by high intensity gradients). The anisotropic diffusion process at any spel p 

may be defined as follows:

where f is image intensity function; t is time variable; “div” is divergence operator; V = GF 
is diffusion flow vector; G is diffusion conductance function; F is intensity gradient vector; 

Δτ is the volume enclosed by the surface s surrounding p; and ds = u ds where u is a unit 

vector which is orthogonal and outward-directed with respect to the infinitesimal surface 

element ds. The key idea of anisotropic diffusion [62] is to spatially vary the conductance 

using a nonlinear and non-increasing function of gradient magnitude, e.g. G = exp(–|F2/2σ2|) 

resulting into a non-monotonic behavior of flow against gradients. Guided by the original 

theory by Perona and Malik, a diffusive filtering process in a digital image is formulated as 

an iterative process as follows:

where fi represents image intensity at the ith iteration; µα is pixel adjacency relation; KD is a 

diffusion constant; Vi−1 is intensity flow vector at (i − 1)th iteration (see below for a precise 

definition); and D(p, q) is unit vector along the direction from p to q and ‘·’ is the vector dot 

product operator. Assuming a uniform pixel adjacency relation, the diffusion constant KD 

should satisfy the following inequality to ensure a monotonic intensity variation with 

iterations [63]
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Using standard 26-adjacency in 3-D, KD = 1/27. The flow vector Vi is determined by the 

following equation:

where

and Gi is an orientation- and space-adaptive conductance function at ith iteration. As 

mentioned before, Gi should be a nonlinear function of local intensity gradient Fi that 

eventually leads to a non-monotonic behavior of flow with gradients. Gaussian functions, as 

follows, have popularly been used for Gi

where σ is the control parameter determining the degree of filtering. When σ is large, the 

degree of filtering is high and possibilities of blurring across boundaries and of smearing out 

regions containing fine details increase. On the other hand, when σ is small, the filtering 

process performs conservatively and more noise survives after filtering. In conventional 

diffusive filtering methods [62,63], the diffusion process adapts to local gradient while the 

controlling parameter σ is kept fixed limiting the fine control on and adaptivity to local 

image structural properties. Weickert [39] introduced the notion of structure tensor to 

control the σ parameter and demonstrated its use in along-structure smoothing. The 

motivation of our work is to use geometric tensor representation of local structures in 

filtering that facilitates along-structure smoothing while preserving boundary sharpness by 

discouraging cross-structure diffusion flow; a preliminary version of t-scale based image 

filtering algorithm was presented in [30] using the old formulation of t-scale. Here, the 

controlling parameter σ is determined by local t-scale in a space- and direction-variant 

manner as follows:

The above formulation ensures a minimum diffusion of σmin during the filtering process; the 

second component in the expression on the r.h.s. uses a monotonically non-decreasing 

function χ to control local diffusion process in a direction-variant manner using the two t-

scale derived measures ζp(q) and ζq(p). The term σψ determines the sensitivity of the 

diffusion process with local t-scale measures. The t-scale measure ζq(p) is defined as 

follows:
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where ipq is the unit vector along the direction from p to q. Note that, by considering t-scale 

T(p) as a covariance matrix, the measure ζp(q) gives the square root of the variance of the 

system along the vector ipq. Here, ζp(q) is treated as an approximate measure of the radial 

length of the ellipsoid T(p) along the direction ipq. In this paper, we have used the following 

functional form for χ

where σL is the maximum expected radial length of t-scale ellipse computed as the 

maximum DT value in the image. In all experimental results presented in Section 4, the 

parameters σψ is determined as the overall noise level in the image computed in the same 

way as described in [24]; the value the parameter σmin is chosen as 25% of the value of σψ. 

Finally, for all experimental results of the filtering process was run for twenty iterations.

2.5. T-scale based n-linear image interpolation

Linear interpolation is a widely used technique for image resampling [64]. In a one 

dimensional discrete signal, the linear interpolation in between two successive sample 

values is defined by the straight line joining the sample points. In an n-D digital image, 

image intensity values are known at spels p ∈ ℤn with integral co-ordinate values. Following 

the principle of linear interpolation, the intensity value at a location pc ∈ ℝn is determined as 

a weighted sum of intensity values at 2n vertices of the binding box of pc = (x1, x2, …, xn). 

Let ⌊·⌋ and ⌈·⌉ denote the floor and ceiling operators. The vertices of the binding box of pc 

are p1 = (⌊x1⌋, ⌊x2⌋, …, ⌊xn⌋), p2 = (⌈x1⌉, ⌊x2⌋, …, ⌊xn⌋), …, p2n = (⌈x1⌉, ⌈x2⌉, …, ⌈xn⌉). 

The estimated intensity value at pc is given as follows:

where

The basic idea of using t-scale in n-linear image interpolation is to bring the notion of an 

anisotropic space where distance increases slower along the direction of the local structure 

while it increases faster in the cross-structure direction. A smaller value of ζpi (pc) indicates 

that the vertex pi is close to the partitioning manifold along the vector ipjpc and therefore, the 

weight of pi in interpolating the intensity value at pc should be discouraged to avoid cross-

region mixing. On the other hand, a larger value of ζpj(pc) means that pj is relatively far from 

the partitioning manifold along the vector ipjpc and therefore a generous value of weight for 

pj may be used along-the-edge smoothing. Therefore, the t-scale based weights for linear 

interpolation are defined as follows:
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Finally, the t-scale based linear interpolation procedure is defined by the following equation:

3. Experimental methods

In this section, we describe our experimental methods to examine the performance of the 

new t-scale computation as well as the performance of t-scale based filtering and 

interpolation methods. Three different experiments were designed as follows:

1. T-scale computation: To evaluate the accuracy of the new efficient t-scale 

computation method using 3-D Brainweb phantoms at various levels of noise and 

blur.

2. T-scale based image filtering: To evaluate the performance of the t-scale based 

anisotropic diffusive method and compare it with gradient and structure tensor 

based anisotropic diffusive methods on both 2- and 3-D images.

3. T-scale based n-linear image interpolation: To evaluate the performance of t-scale 

based n-linear image interpolation method in comparison with standard n-linear 

and windowed-sinc interpolation methods.

3.1. Accuracy of t-scale computation method

The purpose of our accuracy evaluation study is to examine the difference in t-scale 

obtained using the efficient differential geometric approach as compared to the true value 

directly computed as per the definition. To perform this test, we generated phantom images 

at five different levels of noise (noise: 8–20%) and blurs (σblur: 0.5–2.5) from the simulated 

brain MR image available at brainweb.bic.mni.mcgill.ca/brainweb and a 3-D pulmonary 

human computed tomography (CT) image. The Brainweb MR phantom data was 

downloaded with the following parameters – matrix size: 181 × 217 pixels, number of slices: 

181, isotropic voxel size: 1 mm, noise: 3% and intensity non-uniformity: 20%. The 

pulmonary CT images was acquired using the following protocol − 120 kV, 100 effective 

mAs, pitch factor: 1.0, nominal collimation: 64 × 0.6 mm, image matrix: 512 × 512, number 

of slices: 518, in-plane resolution: (0.55 mm)2 and slice thickness: 0.5 mm.

Following the fact that the definition of t-scale is based on an image representation with 

partitioning manifold, true t-scale may not be computed from a general image. To define the 

manifolds, we partitioned the image into three regions, namely, white matter, gray matter 

and background (Figs. 6b and 7b). True measure of t-scale was obtained from the partitioned 

image using a sample-line based approach [30] with a high angular sampling of 10 K lines 

over the 3-D angular space. Test images for t-scale computation using the new differential 
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geometrical approach were derived from the original image after adding a blur and a white 

Gaussian noise (Figs. 6d and g, and 7d and g).

Let WT(p) be the true t-scale matrix at a spel p computed from the partitioned image and let 

Wtest(p) denote to the t-scale matrix representation obtained from a test image by applying 

the differential geometric algorithm. Although, t-scale computation methods were applied 

on entire image, the error analysis was confined to white and gray matter regions only to 

avoid background; better results were obtained when the background region was included in 

error analysis. Let Ω denote the region over which the error analysis is performed. The error 

of t-scale computation is defined as the average normalized Log–Euclidean distance 

between the true and the computed t-scales over the target region Ω as follows:

‖·‖; is the Euclidean norm of a positive definite symmetric matrix.

3.2. Evaluation of t-scale based image filtering

The purpose of the experiment is to examine the performance of t-scale based filtering 

methods as compared to intensity based and structure tensor based diffusive filtering 

algorithms. ITK implementation [65] of gradient-based diffusive filtering and their 

recommended values of 0.125, 3.0 and 5 were used for the time step, conductance parameter 

and the iteration number for 3-D image. An algorithm was implemented for structure based 

diffusive filtering in accordance to the description of [39] and the parameter value settings 

of 0.001 for regularization parameter α, 1 for threshold parameter C, 0.3 for noise scale σ, 2 

for integration scale ρ, and 10 for iteration time t were used as suggested by the author. 

Three images were used in this experiment − (1) a phantom image generated with geometric 

structures at various scales, (2) a photographic image of an aquarium and (3) a lung CT 

image. Both phantom and CT images were corrupted with five different levels of noise (8–

20%) and different filtering algorithms were applied to the noisy images to qualitatively 

evaluate their performance. A measure of residual noise was used to assess the performance 

a method and also, a measure of structure blurring was examined for the phantom image 

since the knowledge of structures is needed to define this measure.

Let I be an original phantom or lung image; I was corrupted by adding a zero-mean 

Gaussian noise n generating a noisy test image In = I + n. Noise level was defined over the 

test region Ω in an image as follows:

It may be noted that percent of noise is essentially an inverse measure of signal to noise ratio 

or SNR widely used as a measure of noise level. Let InF denote the image obtained by 
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applying a filtering algorithm to the noisy image In. Thus the residual noise in the filtered 

image is nr = InF – I, and an overall measure of residual noise is defined as follows:

Relative contrast is defined for the phantom image to measure structure preserving property 

of a filtering method in terms of object to background contrast relative to residual noise. Let 

Oj and Bj denote the set of object and background pixels in a phantom image that are no 

further than m pixels from the object/background interface. Such pixels are identified in a 

binary image using standard morphological operations. We did not use the entire object/

background regions for measure relative contrast as the notion of structure blurring is absent 

in deep interior and thus, inclusion of such regions in analysis only reduces the sensitivity of 

the measurement. The performance of different methods was analyzed for two values of 1 

and 2 for m. Finally, the relative contrast in an image I is defined as

where µOj and σOj are the mean and standard deviation of intensities over Oj while µBj and 

σBj denote same entities over Bj.

3.3. Evaluation of t-scale based n-linear interpolation

The performance of the t-scale based n-linear image interpolation method was evaluated 

using a phantom image and several medical images from different applications and was 

compared with standard n-linear and windowed-sinc interpolation methods [64]. A 3-D 

phantom image of size 512 × 512 × 512 was generated a sinusoidal wavy (along the slice 

direction) pattern of geometric structures with its scales varying from 5 to 10 voxels. Also, 

the following sets of medical images were used in our experiment:

1. The Brainweb MR phantom data described in Section 3.

2. Seven human pulmonary multi-detector CT images with voxel size of 0.55 × 0.55 × 

0.5 mm3 and in-plane matrix grid size of 512 × 512 with the number of slices 

varying between 519 and 728.

3. Micro-CT images of four cadaveric distal tibia specimens at 28.8 µm isotropic 

resolution and 3-D image grid size of 768 × 768 × 512.

4. Five abdominal CT with voxel size of 0.59 × 0.59 × 1.00 mm3 and in-plane matrix 

grid size of 512 × 512 with the number of slices varying between 64 and 319.

Starting from an original image I, a sub-sampled images Id was obtained with different sub-

sample rates of 2, 3 or 4. A given image interpolation method was applied to each sub-

sampled image producing an interpolated image Iint at the original resolution. The 

performance of the underlying interpolation method is then measured by computing the 
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average normalized absolute difference between the interpolation and the original image as 

follows:

4. Results and discussion

In this section, we discuss experiments results of the previous section. Performance of the t-

scale computation algorithm is qualitatively illustrated in Fig. 4 using 2-D image slices from 

the Brainweb MR phantom data and the 3-D pulmonary human CT image. The result of the 

2-D t-scale computation algorithm on a Brainweb MR phantom image slice randomly 

selected from mid-brain region is illustrated in Fig. 4a – d. Results of edge location and gray 

scale distance transformation are presented in Fig. 4b. The color coding scheme by Saha 

[30] was adopted to display the 2-D t-scale image at a pixel p that represents an ellipse Г(p). 

A color value is assigned for the t-scale Г(p) such that the hue component of color indicates 

its orientation while the saturation and intensity components of the color denote the 

anisotropy and thickness, respectively. The color coding disk at maximum intensity is 

shown in Fig. 4d. Results of 3-D t-scale computation on the pulmonary CT image are 

presented in Fig. 4e – j. 3-D t-scale at a spel p essentially represent an ellipsoid Г(p). Using 

three components of color-space, we may display an ellipse. Therefore, in 3-D, the 

intersection between Г(p) and the display plane forming an ellipse is depicted (Fig. 4g and 

j). Results of both 2-D and 3-D t-scale computation are visually satisfactory. The new 

algorithm takes 3 s to compute 2-D t-scale for the Brainweb phantom image slice running in 

a desktop with a 2.53 GHz Intel(R) Xeon(R) CPU and Linux OS; the original sample line 

based t-scale computation algorithm [30] takes 83 s for the same image. Since a 3-D 

implementation of the original sample line based t-scale computation algorithm is not 

available, we calculated the expected computation time as follows. The 2-D sample line 

based algorithm with 60 sample lines and 60 sample points per line takes approximately 1 

min for an image of size 256 × 256. Therefore, in 3-D with 900 sample lines (to maintain a 

comparable angular sampling rate) the total run time for a 512 × 512 × 518 image should be 

approximately

The multiplication by ‘2’ is added to account for tri-linear interpolation in 3-D image instead 

of bilinear interpolation in 2-D. On the other hand, the new 3-D t-scale computation 

algorithm takes approximately 50 min to compute t-scale for the 3-D CT image.

4.1. Results of accuracy analysis

Results of accuracy analysis of the efficient t-scale computation algorithm as compared with 

the results directly obtained from the analytic definition are qualitatively illustrated in Figs. 

6 and 7. As observed in both figures, at moderate blur and noise, the agreement of the 
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efficiently computed t-scale with the analytic t-scale computed in absence of noise and blur 

is visually satisfactory. However, at very high noise and blur, the fine structures are lost in t-

scale. Results of quantitative analysis are presented in Table 1. As observed in the table, the 

performance of the algorithm decreases, i.e., error increases with noise as well as blur. 

Based on these results, it may be reasonable to conclude that the computational geometric 

approach to t-scale is efficient and produces acceptable t-scale at moderate blur and noise.

4.2. Results of t-scale based image filtering

Here we discuss the performance of t-scale based image filtering algorithm with the gradient 

and structure tensor based methods in both 2- and 3-D. Fig. 8 illustrates results of three 

filtering algorithms on a photographic image of a fish in an aquarium containing visible 

noise. Results of application of the three filtering algorithms are presented in Fig. 8b – d. As 

observed in these figures, among the three results, the maximum visual perceptual noise 

cleaning and boundary sharpening is achieved using the t-scale based method (Fig. 8d). This 

observation is confirmed in enlarged views (Fig. 8e – h) of a small box selected from the 

matching region in the original and the three filtered images. Fig. 9 illustrates results of 

different filtering methods on a 2-D phantom image. As observed in the figure, at the finest 

scale, the gradient and structure tensor based filtering algorithms have failed to maintain the 

separate identity of the three sinusoidal curves at several locations. On the other hand, the t-

scale based algorithm has successfully preserved the separation of the three curves at the 

finest scale while maximally cleaning noise over homogenous regions. The superiority of 

the t-scale based filtering method on the phantom image is further confirmed in the results of 

quantitative analysis (Tables 2 and 3) where the t-scale based method has achieved 

minimum residual noise and maximum enhancement in relative contrast measures among all 

three method algorithms. In these tables, G-, S- and T-algorithms are used as abbreviations 

for gradient, structure tensor and t-scale based diffusive filtering algorithms.

Fig. 10 illustrates the results of three filtering methods on a 3-D pulmonary CT image. Fig. 

10a presents an axial image slice from the original CT data; here, a MIP display of the 

image region covering ±10 image slices around the target slice is used to depict partial 3-D 

information of the local pulmonary vasculature. The same image region after adding a 12% 

white Gaussian noise is shown in Fig. 10b while the results of gradient, structure tensor and 

t-scale based filtering algorithms are presented in Fig. 10c – e. As observed in these results, 

the diffusive filtering algorithm has reduced some noise (Fig. 10c) although, it has blurred 

fine structures at several locations and also the residual noise is visually apparent. While the 

structure blurring is visually less prominent using the structure tensor based method (Fig. 

10d), the presence of residual noise is visible and the peripheral vessels are visually blurred. 

On the other hand, the t-scale based filtering algorithm has successfully cleaned noise (Fig. 

10e) while preserving almost every fine structure visible in Fig. 10a. As mentioned in 

Section 3.2, relative contrast may not be computed for this experiment and the results of 

quantitative evaluation of residual noise for different filtering methods at various noise 

levels are presented in Table 2 where it shows that, at all noise levels, the t-scale-based 

method has significantly outperformed the other two methods.
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4.3. Results of t-scale based n-linear interpolation

The performance of t-scale based n-linear image interpolation method has been examined 

and compared with standard linear and windowed-sync interpolation method using a 3-D 

phantom and a set of medical images selected from different applications. Fig. 11 show the 

results of applications of the three interpolation methods on the 3-D phantom image after 4 × 

4 × 4 down sampling. Improvement in interpolations results using t-scale based interpolation 

in terms of structure smoothness is visually apparent. The results of application of the three 

interpolation methods on the Brainweb MR phantom data after 4 × 4 × 4 down sampling is 

shown in Fig. 12. It appears in the results the t-scale based method reduces the blur along 

object boundaries and also the ringing effects of windowed-sinc algorithm is absent in the t-

scale based interpolation results (Fig. 12e). It may be mentioned that, for all interpolation 

experiments, t-scale was computed from the sub-sampled images. For quantitative analyses, 

the three methods were compared under 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 down sampling 

rates and the results are presented in Figs. 13–15.

The t-scale based interpolation method has improved the interpolation results for datasets at 

every down sampling rates and the enhancements are statistically significant except for a 

few cases as indicated in Figs. 13 and 14. As compared to windowed-sinc algorithm, the t-

scale based method has improved the interpolation results except for the ankle dataset at 2 × 

2 × 2 down sampling. However, for the lung and abdomen datasets, the windowed-sinc 

interpolation method has performed even worse than basic n-linear method.

It general, it may be observed that, as sample rate gets lower, t-scale extends its 

improvement in results as compared to basic n-linear interpolation while the results using 

the windowed sinc methods get worse. This observation may be explained by the fact that, 

the use of structure information in the t-scale method leads to a local context adaptive metric 

space partially healing for the sub-sampling loss. On the other hand, for windowed sinc 

method, inclusion of a larger neighborhood may not add further meaningful information and 

may even worsen the results due to influence by locally disconnected structures falling 

inside the extended neighborhood leading to increase of ringing artifacts.

5. Concluding remarks

In this paper, we have presented an analytic formulation for t-scale for n-D images and have 

presented an efficient computational solution in 2- and 3-D. Also, we have provided an 

efficient computational solution for t-scale in 2-D and 3-D that is based on several new 

methods including gray scale distance transform and computation of local principal 

curvature directions on the closest partitioning manifold represented by discrete edge points. 

Experimental results in comparison with theoretical results derived under the ideal condition 

of object partitions with no noise and blur have demonstrated that the proposed efficient 

computation method yields acceptable results at moderate noise and blur with image 

structures being visually apparent. Applications of t-scale in diffusive image filtering and n-

linear interpolation has been presented and the performance of their results in comparison 

with respective state of art methods has been examined. Specifically, the performance of t-

scale based filtering has been compared with gradient and structure tensor based diffusive 

filtering algorithms and both qualitative and quantitative results have demonstrated 
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improvements in image filtering using t-scale. The performance of t-scale based n-linear 

interpolation is compared standard n-linear and windowed-sinc interpolation results. 

Experimental results have shown a clear improvement using t-scale in n-linear interpolation; 

in comparison with the windowed-sinc interpolation method, the t-scale based n-linear 

interpolation has shown improved results except for the ankle data set at low sub-sampling. 

In summary, the new analytic formulation of t-scale captures rich contextual information of 

local structure with a practical computational solution and may benefit a large class of image 

processing and computer vision applications including image filtering and interpolation. 

Currently, we are investigating theoretical properties of t-scale and its applications to other 

image processing tasks including image segmentation, registration and quantitative morpho-

metric analysis.
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Fig. 1. 
A schematic description of the algorithmic approach to define t-scale in 2-D. The method 

starts with edge locations (triangles and black dots) on sample lines emanating from the 

candidate image point. Following the axial symmetry of an ellipse, the edge points on each 

pair of radially opposite sample lines are repositioned (black dots to white dots). Finally, t-

scale ellipse is computed from repositioned edge points (triangles and white dots).

Xu et al. Page 21

Comput Vis Image Underst. Author manuscript; available in PMC 2015 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An illustration of t-scale using a rabbit femur bone surface (medium dark gray) forming a 2-

D manifold m1. The candidate spel p (solid black dot); the point r on m1 closest to p gives 

the primary t-vector τ1(p) (black). The orthogonal complement plane  and the 1-D 

manifold  are shown in dark and light gray, respectively. Secondary t-vector τ2(p) 

(solid medium dark line) is defined by the point on  closest to p; finally, τ3(p) 

(solid light gray line) is given by the closest point on  along the line orthogonal to 

τ2(p). It may be noted that τ2(p) and τ3(p) coincide with principal directions of m1 at r; this 

observation is utilized for efficient computation of 3-D t-scale.
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Fig. 3. 
Different patterns of LoG sign alteration in a 2 × 2 × 2 neighborhood. Spels in a 2 × 2 × 2 

neighborhood are marked with ± or ∓ (light gray) indicating that if the sign of LoG at a spel 

marked with ± is positive then that at spel marked with ∓ is negative or vice versa. (a) All 

possible geometric classes of LoG sign alterations with a valid zero crossing. (b) A few 

examples of topologically inconsistent LoG sign alterations without a valid zero crossing.
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Fig. 4. 
Results of t-scale computation. (a) A 2-D image slice from the Brainweb MR brain phantom 

data. (b) Computed edge locations (red) and gray scale distance transform. (c) A color coded 

illustration of 2-D t-scale. (d) Color coding disk at full intensity. (e–g) Same as (a–c) but for 

3-D t-scale computation. Results are shown on one image slice; see text for further 

explanation. (h–j) Same as (e–g) but from another view. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Computation of the secondary t-vector τ2(p) in 3-D. (a) A partitioning surface with primary 

t-vector τ1(p) (black) at the candidate point p and τ1(p)s (gray) for several qs in the 

neighborhood. The plane P orthogonal to τ1(p) is indicated. (b) τ′1(q), projection of the unit 

vectors τ1(q)/|τ1(q)| on P, are indicated for several qs in the neighborhood of p along with 

the curve formed by the intersection of P and the partitioning surface. (c) Computation of 

principal directions using PCA of τ′1(q)s (solid) and – τ′1(q)s (dotted). (d) Projection of 

principal directions onto partitioning surfaces.
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Fig. 6. 
Accuracy of t-scale computation results. (a) An original image slice from the Brainweb MR 

phantom data. (b) Partitions of white and gray matter regions used for ground true values for 

t-scale image. (c) True 3-D t-scale image computed by a dense spatial sampling approach on 

the hard partition image of (b). (d) Phantom image slice with blur and noise. (e) Computed 

3-D t-scale image for (d) using the proposed method. (f) Log–Euclidean error map for (e) as 

compared to (c). (g–i) same as (d–f) but for the phantom at higher noise and blur.
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Fig. 7. 
Same as Fig. 6 but from the coronal view.
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Fig. 8. 
A qualitative comparison among different diffusive filtering methods. (a) The original 

digital image with natural noise. (b–d) Smooth images obtained by using gradient (b), 

structure tensor (c) and t-scale (d) based diffusive filtering methods. (e–h) Zoomed in 

displays of the matching region cropped from (a–d), respectively. It may be noted that the t-

scale based method has outperformed the other two methods in smoothing along the 

structures while preserving boundaries and effect is more prominent in the zoomed displays 

in (e–h).
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Fig. 9. 
Comparative results of image filtering in a 2-D phantom. (a) The original phantom image. 

(b) Degraded image after adding Gaussian white noise. (c–e) Results of gradient (c), 

structure tensor (d) and t-scale based (d) anisotropic diffusive filtering methods.
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Fig. 10. 
Results of 3-D image filtering. (a) An original image slice from a pulmonary CT image of a 

patient. (2) Degraded image after adding Gaussian white noise. (c–e) Results of 3-D image 

filtering using gradient (c), structure tensor (d) and t-scale (e) based diffusion.
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Fig. 11. 
Results of image interpolation on a phantom data. (a) An original image slice. (b) Sub-

sampled image at the rate 4. (c–e) Result using standard n-linear (c), windowed-sinc (d) and 

t-scale based n-linear image interpolation. (f–j) Same as (a–e) but for a zoomed part marked 

in (a). (k–o) Same as (a–e) but for another zoomed region. It may be observed that t-scale 

helps preserving small structures and it produces smooth edges without causing ringing 

artifacts which is visible for result produced by the windowed-sinc method.
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Fig. 12. 
Results of image interpolation on the Brainweb MR phantom image. (a) An original image 

slice. (b) An image slice from sub-sampled image at the rate of 3. (c-e) Results using 

standard n-linear (c), windowed-sinc (d) and t-scale based n-linear (e) interpolation methods. 

It may be observed that t-scale has produced crisper edges as compared to the standard n-

linear interpolation without causing ringing artifact associated with the windowed-sync 

method.
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Fig. 13. 
Performance of three interpolation methods on the different phantom and medical images 

selected from various clinical applications at sub-sampling rate of 2 × 2 × 2. The percentage 

error was computed over the entire 3-D image while a paired t-test was performed based on 

the percentage error from individual slices. As compared with the standard n-linear and 

windowed-sinc methods, the t-scale based n-linear method has outperformed the first 

method while comparative performance with the windowed-sinc method varies for different 

images. An “NS” (non-significant) mark is used to indicate statistical insignificance of 

difference in results by two methods.
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Fig. 14. 
Same as Fig. 13 but for subsample rate of 3 × 3 × 3.
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Fig. 15. 
Same as Fig. 13 but for subsample rate of 3 × 3 × 3.
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Table 2

Results of quantitative comparison among three different methods in terms of residual noise after filtering on 

different images.

Image Original noise (%) Residual noise (%)

G-algorithm S-algorithm T-algorithm

3-D Phantom 8.0 7.8 7.7 5.9

10.0 9.5 9.5 6.8

12.0 11.1 11.3 7.8

15.0 13.6 13.7 9.3

20.0 17.3 17.8 11.4

3-D Lung CT 8.0 7.5 8.7 4.4

10.0 7.7 9.3 5.3

12.0 9.5 9.9 5.9

15.0 11.7 10.9 7.0

20.0 14.8 14.5 9.4
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Table 3

Results of quantitative comparison among three different methods in terms of relative contrast after filtering 

on 3-D phantom image.

Radius Original relative
contrast

Relative contrast after filtering

G-algorithm S-algorithm T-algorithm

1 voxel 9.1 8.3 8.1 9.5

8.6 7.1 7.7 9.0

8.0 7.3 7.3 8.5

7.1 6.1 6.7 7.8

6.0 4.9 5.5 6.7

2 voxels 9.8 8.6 8.4 10.5

9.2 7.3 8.0 10.1

8.6 7.7 7.7 9.4

7.7 6.5 7.1 8.8

6.5 5.3 5.9 7.6
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