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Abstract

End-effectors are usually related to the location of limbs, and their reliable detection enables robust body tracking as
well as accurate pose estimation. Recent innovation in depth cameras has re-stated the pose estimation problem. We
focus on the information provided by these sensors, for which we borrow the name 2.5D data from the Graphics com-
munity. In this paper we propose a human pose estimation algorithm based on topological propagation. Geometric
Deformable Models are used to carry out such propagation, implemented according to the Narrow Band Level Set
approach. A variant of the latter method is proposed, including a density restriction which helps preserving the topo-
logical properties of the object under analysis. Principal end-effectors are extracted from a directed graph weighted
with geodesic distances, also providing a skeletal-like structure describing human pose. An evaluation against refer-
ence methods is performed with promising results. The proposed solution allows a frame-wise end-effector detection,
with no temporal tracking involved, which may be generalized to the tracking of other objects beyond human body.
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1. Introduction

Human pose estimation strategies are being widely
applied to countless applications. Knowledge on the po-
sition of different body parts, specially that of the head
and limbs, is the key aspect of many interactive systems.
Human pose estimation techniques are extremely help-
ful for a wide range of applications, from simple point-
ing and scrolling on a menu to complex gesture recog-
nition. In order to provide a truly immersive experience,
marker-less body pose estimation is a must in this field
[1, 2].

Recent innovation in consumer oriented depth cam-
eras has received growing interest in marker-less hu-
man pose estimation. Such cameras provide a pixel-
wise depth estimation of the recorded scene in a work-
ing range, the most common ones operating in a typical
range between 0.5 and 5 meters. Therefore, such new
sensors provide straight-forward 3D information of the
scene. Since the acquired data is restricted to a single
viewpoint, we denote it as 2.5D data.

Geometric deformable models (GDM), proposed in-
dependently by Caselles et al. [3] and Malladi et al. [4],
have proved performance and flexiblility at describing
topology, as stated by Han et al. [5]. GDM have been

widely applied in the field of image [6] and volume [7]
segmentation and component analysis.

Even if the GDM theory is formulated on the con-
tinuum, it may be implemented in a discrete domain.
An efficient and simple implementation of the GDM is
known as the Narrow Band Level Set method (NBLS),
introduced by Adalsteinsson and Sethian [8], which re-
stricts computation in thin bands surrounding a zero
level. Periodic updates of these bands gradually cover
the full area (or volume) of the analyzed data set, pre-
serving its topology. The NBLS method is defined for
organized points in an evenly spaced grid (pixels in 2D,
voxels in 3D), which limits accuracy due to resampling.
Recently, Rosenthal et al. [9] have proposed an im-
plementation of the NBLS method for unorganized 3D
points, preserving their actual position.

In this paper, we propose an adapted version of the
NBLS method in the context of 2.5D data. The objec-
tive is to exploit connectivities over the depth surface
in order to extract topological features. More precisely,
the proposed method locates the end-effectors of any 3D
object. Since our work focuses on body pose estimation,
the end-effectors are mainly the four extremities of a hu-
man body (Figure 1). However, other 3D objects have
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Figure 1: Summary of the steps involved in the proposed algorithm
for human pose estimation. From left to right: Foreground mask, R-
NBLS propagation, R-NBLS filtering, end-effector graph nodes and
end-effectors found with the associated skeleton.

been studied, with special emphasis on the extraction of
fingers of a human hand.

Human pose is inferred from the NBLS result and the
obtained end-effectors: firstly populating a graph from
the previously computed NBLS and, secondly, extract-
ing extremity pose with a shortest path algorithm from
the end-effectors.

The proposed method is evaluated against reference
methods in Section 6.

2. Related Work

Marker-less human pose estimation has been classi-
cally carried out in multi-view environments, involving
a considerable amount of regular cameras. Results in
this area are impressive since complete 3D movement
information is available. Gall et al. [10] go beyond pose
estimation and cover possible non-rigid deformations of
the body, such as moving clothes. Sundaresan and Chel-
lappa [11] predict pose estimation from silhouettes and
2D/3D motion queues. Corazza et al. [12] generate a
person-wise model which is updated through Iterative
Closest Point (ICP) measures on visual-hull data. Pons-
Moll et al. [13] combine video images with a small
number of inertial sensors to improve smoothness and
precision of the human body pose estimation problem.
Nevertheless, these 3D capture environments are very
expensive and cumbersome to setup, since they require
precise calibration and, usually, controlled illumination
conditions. In addition, the computational cost of 3D
methods is prohibitive and real-time is hardly achieved.

On the other hand, very interesting works have stud-
ied how to extract human pose from single color cam-
eras. In this direction, Guan et al. [14] obtain a syn-
thetized shaded body. Body pose is estimated by search-
ing into the learned poses, reflectance and scene light-
ing which most likely produced the observed pose.

Yan and Pollefeys [15] recover the articulated struc-
ture of a body from single images with no prior in-
formation. In their work, trajectories of segmented
body parts are mapped on linear subspaces to model
the global body movement. Brubaker et al. [16] use
a simple lower-body model based on physical walk-
ing movement called Antropomorphic Walker, proposed
by Kuo [17]. Hasler et al. [18] propose a pose esti-
mation algorithm which performs on mono and multi-
ple uncalibrated cameras. Unfortunately, single color
cameras inherently provide poor information, due to in-
formation loss originated from perspective projection.
Single-camera based methods are usually very specific
and hardly generalize to different kinds of movement,
scenes and view points.

Human pose estimation from 2.5D data is a current
research topic as a result of the mentioned increasing
performance of depth sensors. Shotton et al. presented
in [19] a method to classify body parts using a Ran-
dom Forests strategy. Body pose is then inferred from
the body parts’ centroids. Baak et al. [20] combine lo-
cal feature matching with a database lookup, achieving
a fast and robust end-effector tracking. Zhu et al. [21]
propose a tracking algorithm which exploits temporal
consistency to estimate the pose of a constrained human
model. Knoop et al. [22] propose a fitting of the 2.5D
data with a 3D model by means of ICP. Grest et al. [23]
use a non-linear least squares estimation based on sil-
houette edges, which is able to track limbs in adverse
background conditions. While these three methods fo-
cus on upper-body pose, Plagemann et al. [24] present
a fast method which localizes body parts on 2.5D data
at about 15 frames per second. Ganapathi et al. [25]
extend the work in [24] and extract full body pose by
filtering the 2.5D data, using body parts’ locations.

3. Preliminary concepts on 2.5D data

3.1. Input Point Cloud

2.5D data consists of a set of 3D points which cor-
responds to a sampling of the scene surface from the
camera viewpoint. The object of interest is usually seg-
mented using depth cues. In this work, the set of 3D
points corresponding to the object of interest is denoted
as the input point cloud D.

3.2. Apparent vs. physical area

Since 2.5D data is obtained from a single viewpoint,
the concept of apparent area arises. A pixel on the
captured image corresponds to a physical surface Ap(z)
which varies quadratically with the distance z to the
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camera. Indeed, one may find a function ΓC relating
the physical area of a given pixel to its apparent area, as
a function of z. We propose to find it empirically (Fig-
ure 2) using a physical surface of known area (a DIN A2
sized surface at various distances).

Let S be a surface of unknown physical area AS and
an apparent area of NS pixels. We assume that S is
sufficiently perpendicular to the camera axis (we will
see that this hypothesis is verified in this work), then
AS ≈ ΓC(zS ) · NS is approximated as the physical area
of a pixel at the average depth level zS of S, times the
number of pixels in S.

Knowing the physical area of a pixel avoids dealing
with the apparent area, which is a great advantage of
2.5D sensors.

ΓC  = 1,12E-06 z2 + 8,41E-05z - 4,64E-03 
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Figure 2: Empirical estimation of the law ΓC for the Kinect camera,
which gives the actual size of a pixel at a given depth level.

3.3. Connectivity
The raw data used in this paper consists of a point

cloud of unorganized 3D points. In order to find con-
nected regions in the point cloud, a connectivity condi-
tion should be defined. We state that a point p is (λ, ρ)-
connected if the number of points in a ball of radius ρ
centered at p is greater than λ. Thus, a region will be
(λ, ρ)-connected if all its points are (λ, ρ)-connected too.

4. Geodesic distance estimation using Geometric
Deformable Models and Narrow Band Level Sets

Geometric deformable models are based on the the-
ory of curve evolution and the level set method [26].
The basic idea is to deform an initial curve or contour,
which is registered to the data domain, depending on
some pre-defined external and internal forces. Internal
forces will expand the actual curve over the data keep-
ing it smooth. External forces are computed from the
available data and have an effect on the curve evolu-
tion. By way of example, imagine a drop of corrosive
acid eating an object. The initial curve will be the drop
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Figure 3: R-NBLS propagation example. The green points are the
actual zero level set L0

t , and those with a thick black boundary form
the actual contour C(s, t). The blue points in the middle are the candi-
date narrow band of with δL, with its contour also marked with thick
point boundaries. Points labeled A (orange) are rejected because of
the density condition in Equation (2). Points labeled B (red) are re-
jected because of the proximity condition also in Equation (2).

at time zero, internal forces depend on the amount of
acid in the drop, its corrosive power, etc. and external
forces depend on the resistance of the underlying mate-
rial. Thus, corrosion will slow down in resistive zones
of the material and advance faster in areas more prone
to corrosion.

In our case, external forces are computed from the
2.5D data D = {xi} ∈ R3 and are defined to respect and
preserve data features like topology or borders. We re-
call that D is the point cloud corresponding to the object
of interest.

Let φ(x, t) : R3 → R be a level set function whose
sole purpose is to provide an implicit representation of
the evolving curve. Let also C(s, t) : R2 → R3 be
a contour parameterized by s as the zero level set of
φ(x, t) and L0

t ⊂ D be the subset enclosed by C(s, t). Re-
mark that C is parametrized in a two dimensional space,
which is particular to the 2.5D data case. Equation (1)
defines φ at a given time instant t. In the level set no-
tation, time represents the advance of C(s, t), t = 0 be-
ing the time-stamp of the initial curve. In order to effi-
ciently perform nearest neighbor queries to evaluate the
Euclidean distance distE between points, D is organized
as a kd-tree structure.

φ(x, t) =

{ 0 ∀x ∈ L0
t

min {distE(x,C(s, t))} ∀x < L0
t

(1)

The objective is to make the contour C evolve over
D preserving the topological properties of the latter. As
cited in [5], the Narrow Band Level Set method is a sim-
ple solution to implement GDM evolution. An NBLS
version for unorganized R3 points has also been pre-
sented in [9]. In the NBLS method, the level set func-
tion φ is evaluated in a thin layer surrounding the actual
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zero level set in order to update the zero level set for the
next time instant. Such approach limits the number of
calculations to these few surrounding points.

In this paper, we propose to add a density condition to
the existing proximity condition. The role of this den-
sity condition is to filter the data, especially those points
near depth edges. Using the above mentioned acid drop
example, the density condition may be considered as
an external force, since it is implicitly derived from the
dataset. Propagation will slow down or stop in zones
with low data density, and continue in highly populated
zones. Thus, only those end-effectors densely connected
to the main body will be considered, filtering sparsely
represented or very thin ones.

We propose to update the zero level set according to
Equation (2). We note that time t may be considered as
a discrete time, where tk := t + k with k ∈ {0,N}.

Lt+1 = {xi} if


φ(xi, t) < δL (proximity)

and
xi is (ηL, δL)-connected (density)

L0
t+1 = L0

t ∪ Lt+1

(2)

The candidate narrow band is noted as Lt+1 and its
maximal width is δL, determined by the proximity con-
dition. The connectivity property of xi is used as den-
sity condition, ensuring that the space surrounding xi is
dense enough (at least ηL are close enough to xi), as
shown in Figure 3. Therefore, δL and ηL are parameters
of the proposed NLBS variant, called Restricted-NBLS
or R-NBLS.

In order to complete the formulation, we should de-
fine how the contour C is updated in the 2.5D context.
In practice, the candidate points Lt+1 which are farther
from the previous zero level set are taken as the new
contour C(s, t + 1) as shown in Equation (3).

C(s, t + 1) = {xs} ∈ Lt+1 with φ(xs, t) ∈
[

3
4δL, δL

]
(3)

Thus, iterating through Equations (1), (2) and (3) from
an initial zero level set L0

t0=0, the sufficiently dense zones
of D will be covered.

The geodesic distance between L0
t0 and a given point

xk which was added to L0 at the time instant tk (or itera-
tion k) may be calculated with Equation (4).

distG(L0
t0 , xk) ≈ k · δL + φ(xk, tk) (4)

The iterative R-NBLS method stops when the number
of points NC

t of the actual contour C(s, t) is smaller than
a given stop threshold. The proposed iterative frame-
work stops when NC

t = 0 (see the second shape in Fig-
ure 1 for an example).

4.1. Narrow band filtering by physical area
Zones of the scene being strongly oblique with re-

spect to camera image plane will be sparsely sampled
with 3D points, and will not be taken into account when
constructing narrow bands. Consequently, the consid-
ered narrow band points are relatively parallel to the
image plane axes, and the hypotheses in Section 3.2 are
valid.

Narrow bands cover the visible and connected parts
of the scene surface. However, a given band may be
composed of points from both arms, since they contain
points at similar distG (Equation (4)). In order to sepa-
rate points of a same band that belong to different con-
texts, narrow bands are filtered depending on their phys-
ical area. Indeed, a maximal area Amax is set, so that any
narrow band b with a physical area Ab larger than Amax

is divided into a maximum of α regions, as shown in
Equation (5).

Nregions 6 α = d
Ab

Amax e (5)

Let N(b) be the number of points in b and z̄b its
mean depth. By applying the approximation of Section
3.2, there exists a maximum number of points Nmax(zb)
which keeps α constant at every depth level zb (Equa-
tion (6)). Therefore, if z̄b varies (i.e. a person moving
towards or away from the camera), narrow bands will
still be divided into no more than α regions.

Nmax(z̄b) =
Amax

ΓC(z̄b)
(6)

Remark that a standalone Amax restriction could result
in very small residual regions as shown in Figure 4.
Therefore, besides the maximal area condition given by
Amax, some additional restrictions must be verified in
the narrow band filtering step. More precisely, the fil-
tered regions must be (ηL, δL)-connected regions them-
selves (which implicitly forces a minimal region size of
ηL points). After the filtering step, a set of regions is ob-
tained for every narrow band, all of them being (ηL, δL)-
connected. Some examples of the filtering step are pre-
sented in Figure 5.

5. Detecting end-effectors in a topologically
weighted graph

End-effectors are topologically prominent protuber-
ances in the object under study, restricted to the view-
point of the range camera. A method to detect end-
effectors from the result of the R-NBLS method is dis-
cussed in this Section (see Figure 1).
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Figure 4: On the left, a narrow band filtering with a standalone Amax

restriction, which results in a Nmax = 10 maximal size. Note the
residual region of 5 points (in orange). On the right, the filtering step
with the additional restriction on connectivity with ηL = 5. The non-
filled points have been filtered since they are not (ηL, δL)-connected.

Figure 5: Three examples of narrow band filtering. The obtained re-
gions are randomly painted. In this case, an Amax = 70 cm2 has been
applied together with a (ηL = 30, δL = 4 cm)-connectivity.

5.1. Graph root

The proposed R-NBLS method requires the specifi-
cation of an initial zero level set L0

t0=0 as starting point.
Such origin region, called graph root, may be a single
3D point or a set of points. The definition of the graph
root will strongly depend on the application. In this pa-
per, the cases of a whole human body and a human hand
are studied, with their specific graph roots.

The human body case. For this specific case, we pro-
pose to use a straight line as graph root (blue line in
Figure 1). Such line connects the centroid xC of D with
xM , the latter being the midpoint between xC and the
head position xH , which is obtained with [27]. Those
points placed at a given distance δ0 of lC are labeled as
initial zero level set L0

t0 , from which the R-NBLS prop-
agation can start. Despite head estimation, which ex-
ploits some temporal information to increase tracking
robustness [27], the rest of the proposed algorithm is
frame-wise, without any temporal dependency.

5.2. End-effector graph construction

In general, R-NBLS filtered regions belong to promi-
nent parts of the analyzed object (i.e. arms, legs) due
to the band splitting considering connectivity (Section
4.1). The objective of this paper being that of finding
end-effectors, it seems reasonable to use these context-
wise regions.

In a consecutive phase to the narrow band filtering
(Section 4.1), a graph is constructed on the filtered re-
gions. The centroid of every region is taken as a graph
node, with an associated creation time tk coming from
the R-NBLS propagation step explained in Section 4.

Graph nodes are linked in pairs with graph edges. We
propose to only include those edges which link a source
node ni with time ti and a sink node n j with time t j such
that i < j, resulting in a directed graph (from inner to
outer narrow bands). This way, any path constructed
on the graph will be consistent with the node creation
instants, not linking nodes with previously created ones.

A distance weight wi, j is calculated for every edge
linking nodes ni and n j, with an additional distance
penalty depending on the time elapsed between the cre-
ation of the nodes. Such penalty limits the construction
of graph paths with strong jumps in creation time, this
effect happening only in strictly necessary occasions. A
10% gain is added to the penalty α = 1.1, so that it pe-
nalizes slightly more than an integer number of jumps.
The proposed node weights are calculated with Equa-
tion (7).

wi, j = |ni − n j|︸  ︷︷  ︸
distance

+ ( j − i − 1) · δL · α︸                ︷︷                ︸
penalty

(7)

5.3. End-effector Estimation: Shortest Path from Far-
thest Level

A Dijkstra shortest path algorithm is run on the graph
constructed in Section 5.2. End-effectors are extracted
as the shortest paths from the farthest nodes to the graph
root. Paths are searched starting at the node with greater
tk and ending at xM (arms) or xC (legs). If it does not ex-
ist any path from that node, successive nodes are taken
as path sources by decreasing tk until all paths have been
found. Indeed, two paths ending at xM are searched and
labeled as arms, and two other paths are searched to end
at xC , which are taken as legs. Since our work focuses
on human body, end-effectors are often referred as ex-
tremities. Some conditions should be verified in order
to accept a path as and end-effector of a human body.

• A path must have at least 3 segments, avoiding too
short noisy detections.

• For a given graph, those nodes which belong to an
already accepted path become unaccessible for fur-
ther path estimations.

• Those nodes at a geodesic distance smaller than
30 cm from the central line lC are not taken into ac-
count, since we are looking for human extremities.
Such restriction limits the detection of extremities
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starting close to the body centroid. We assume this
draw-back of the algorithm, as shown in Figure 8.

When both arms and both legs have been found, path
search stops. The result computed by the presented
algorithm constitutes the end-effector positions along
with a skeletal-like structure describing the limbs. It
should be noted that some poses may result in unde-
tectable extremities, since their topological prominence
is not clear enough. Therefore, only those end-effectors
which are sufficiently detached from the body will be
detected. Figure 1 presents a summary of the proposed
algorithm, containing from left to right: raw depth es-
timation, R-NBLS propagation with ηL = 80 and δL =

4 cm, narrow band filtering with Amax = 50 cm2, graph
nodes, and the obtained end-effector estimation on the
right of the figure. The head has been found as in [27].
Nevertheless, note that it could be detected as an extra
path from xM .

5.4. Right and Left extremity decision

Taking advantage of the extremity graph, a decision
whether a limb corresponds to the right or left hand is
taken. Remark that no temporal cues are involved in the
decision.

For hands, the direction of first segment (t0 to t1) of
every graph path (gA and gB) is calculated, obtaining
two vectors fA and fB. A simple decision depending on
the orientation of fA and fB is performed, taking as right
hand the path with fi more oriented to the horizontal
axis to the right (positive X coordinates). Remark that
using the first graph segment is strongly invariant to the
position of the end-effector associated to the graph path.
A similar reasoningh is done for feet, using their two
graph paths.

Yet being a basic classification approach, experimen-
tal results show that the proposed decision framework is
effective (Section 6.3).

6. Experimental results

The following results have been obtained with a
Kinect sensor which delivers both depth and color im-
ages at a frame-rate of about 25 f ps with a resolution
of 640 × 480 pixels. The color information is discarded
and only the depth estimation is exploited in the exper-
iments below. In Section 6.3, the proposed method is
compared to two reference methods [19, 25].

6.1. Effect of the parameterization on the human pose
estimation

Some aspects related to the tuning of the parameters
of the proposed algorithm are shown in this section.
Only δL and Amax are important parameters, ηL being
a filtering parameter which may be kept invariant for
a given sensor. For the Kinect camera, a value of 0.5
points per cm2 during propagation has proven to be ade-
quate. Therefore, the value of ηL is tightly related to the
δL parameter (ηL = 0.5 · π · δL

2).
The narrow band maximal width, δL, determines the

resolution of the propagation, and also the areas which
will be covered. A too low value of δL leads to propa-
gation cuts, the advancing contour being too poor (few
or no points) at some topologically narrow zones. On
the other hand, a high δL value affects precision and ex-
tremities are less frequently detected (greater topolog-
ical prominence is needed). Figure 6.a shows two R-
NBLS propagations with δL = 4 cm and δL = 10 cm.
Both arms are close to the body and their topological
prominence cannot be detected with a large δL.

The maximal area Amax controls the population of the
end-effector graph. The smaller Amax, the more nodes
are included in the graph, allowing more freedom for
finding plausible paths. However, extremity detection is
less stable with very low Amax values. On the contrary,
if Amax is increased, the graph is poorly populated, re-
sulting in a very rigid extremity estimation. In Figure
6.b, three examples are shown to illustrate the effect of
various Amax values on the extremity detection.

Figure 6: (a) Low values of δL provide more precision for the de-
tection of topological prominence, even if the resulting paths are less
straight (noticeable at the legs). (b) The maximal area parameter (left
to right, Amax = 20 cm2, 70 cm2 and 200 cm2) determines the popula-
tion of the end-effector graph. Values of Amax which allow a proper
detection of close legs are considered as trade-off values. Indeed, the
narrow bands covering the legs will split into two regions, allowing
the computation of two paths to xC . In the example, 20 cm2 is too low
and 200 cm2 too high, while 70 cm2 seems to be a convenient trade-
off.

6.2. Effect of the parameterization on the detection er-
ror and detection rate

In order to evaluate the proposed method, more than
1000 depth images have been manually marked (hands
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and feet) as ground-truth. Only those extremities notice-
able to the naked eye on the depth images are marked,
avoiding guessing limbs’ position from the input data.
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Figure 7: Detection error vs. detection rate (%) for various param-
eterizations (δL, Amax). A = (10 cm, 120 cm2), B = (8 cm, 70 cm2),
C = (6 cm, 60 cm2), D = (5 cm, 50 cm2) and E = (4 cm, 40 cm2). Pa-
rameterization B seems to provide the best trade-off, with an average
error of about 3.94 cm and a standard deviation of 4.79 cm for a detec-
tion rate of about 70%.

Results after various parameterizations are summa-
rized in Figure 7. The error is measured as the Euclidean
distance between the 3D ground-truth points and the es-
timated ones. In order to include the variance of the es-
timation, we plot ε̄ and σε on the horizontal axis, where
ε̄ is the average error and σε the standard deviation. On
the vertical axis, the percentage of detections over the
number of ground-truth detections is plotted, taking into
account only those detections with an error smaller than
30 cm. Therefore, parameterizations with higher detec-
tion rate and lower (ε̄+σε) will provide the best results.

Experimental results show that parameterization B =

(δL = 8 cm, Amax = 70 cm2) obtains the best results with
the Kinect camera. More precisely, it achieves extrem-
ity detection with an error smaller than 30 cm (maxi-
mal size of a foot or hand) in about 77% of the over
one thousand annotated frames. The average error is
ε̄ = 3.94 cm and its standard deviation σε = 4.79 cm.
The percentage of detection increases while the error
does so. Such effect shows the trade-off between ob-
taining many poor detections or less precise detections.

A summary of different situations has been pre-
sented in Figure 8 to show how the proposed human
pose estimation algorithm performs with various human
poses. Both easy situations (cross pose, farther left) and
more difficult ones (punching, farther right) are prop-
erly solved, providing a 3D estimation of the position
of the extremities. When extremities are not topologi-
cally prominent (i.e. third pose from the left), they are
not detected. This is a logical draw-back of the pro-
posed method. Remark that these estimations are ob-
tained without any temporal tracking of the extremities,

Figure 8: Some examples of the proposed human pose estimation al-
gorithm. Remark that we do not perform any temporal tracking of the
extremities, estimating human pose independently at each frame. One
may notice how the strategy copes well with some adverse situations
(i.e. . punching or bending the body). On the other hand, not promi-
nent enough extremities are not detected with the proposed algorithm
(i.e. third from the left, walking man).

providing a frame-wise solution to the human pose esti-
mation problem.

6.3. Evaluation against reference methods

Two reference methods are used to evaluate the pro-
posed method. In [19], Shotton et al. propose a body
part classification by means of a Random Forest strat-
egy. Ganapathi et al. propose in [25] a model-based ap-
proach exploiting temporal consistency. They also pro-
vide a dataset consisting of 27 sequences of increasing
difficulty, recorded with a Time-of-Flight (TOF) cam-
era. Moreover, ground-truth positions obtained with a
motion capture device are provided. The experiments
presented hereafter are obtained on the dataset in [25].

6.3.1. Classification Precision
The proposed method detects head, hands and feet

of a human body. Therefore, we select the subset of
markers in the dataset of [25] that represent these body
parts. In Figure 9, a summary of the obtained average
precision (AP) is provided. The proposed method out-
performs [25], only being slightly surpassed in the cases
of the head and right foot. The method in [19] obtains
slightly better results in average. However, it is a spe-
cific classification method, whilst the other two meth-
ods are focused on detection, making no classification
effort.

Regarding the average detection error, we compute
the 3D error between the obtained end-effectors and the
selected ground-truth markers. Results are presented in
Figure 10, compared to the results obtained by [25]. The
proposed method behaves in a similar manner over the
whole dataset, obtaining an average error of about 9 cm
even in the most challenging sequences (24-27). The
method in [25], obtains a slightly better detection er-
ror in the first sequences, strongly degrading its results
when facing the challenging sequences.
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Figure 10: Detection 3D error comparison with [25] over the 27 sequences provided by [25].
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Figure 9: Average precision comparison with [19, 25] over the 27
sequences provided by [25].

As far as processing speed is concerned, the proposed
method executes at about 57 f ps using the dataset in
[25] (176×144 resolution). In this paper, we have used a
single core of an Intel Xeon CPU at 3GHz. The work in
[25] achieves a frame rate of about 4−10 f ps with a spe-
cific GPU implementation. The method in [19] claims
a 50 f ps execution frame-rate on full Kinect images
(640 × 480) using an 8-core desktop CPU, and 200 f ps
using a dedicated powerful GPU. In [20], a frame-rate
of 60 f ps is achieved using a commercial CPU and a
similar resolution.

6.4. Application to finger detection

The proposed algorithm to detect end-effectors may
be applied to other objects besides the already presented

Figure 11: Application to finger detection. Hands have been obtained
from the work in [27] (first row).

human body case. With a suitable zero level set L0
t0 and

an adapted parameterization (δL, Amax), the prominent
end-effectors of any object may be found.

In [27], a fast and robust algorithm for head and hand
detection is proposed. We utilize the obtained hand
positions, onto which we apply the proposed R-NBLS
end-effector detector, aiming to detect the number of ex-
tended fingers.

Some finger detection examples are shown in Figure
11, where one, two, three and four fingers are detected.
In this example, the person is located about 2.5 meters
far from the range camera. The initial zero level set L0

t0
is set as the centroid of the hand blob (graph root), and
the parameterization (δL, Amax) = (2 cm, 7 cm2).

7. Conclusion

We propose an end-effector detection algorithm
based on topological propagation over 2.5D data. In
order to carry out such propagation, Geometric De-
formable Models are used. An extension of the Narrow
Band Level Set formulation, named R-NBLS, is pro-
posed to implement the GDM, adding a density restric-
tion to better respect the topological properties of the
analyzed object. The obtained level set provides a fast
method to calculate geodesic distances over the original
2.5D data.

A skeletal-like structure of the object under analysis
is estimated independently at each frame, without any
temporal tracking of the extremities. In the specific hu-
man body case, such skeleton is tightly related to hu-
man pose. We provide a simple model to initialize the
R-NBLS method in the case of human body.

The proposed method performs about 5× to 50×
faster than [25], even in the adverse case of comparing
our CPU implementation to the GPU implementation
in the reference work. Our proposal is also faster than
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[19], even if they use 8 CPU cores instead of the single
core used in our proposal. Using a similar resolution, a
frame-rate of 60 f ps is achieved by [20], taking advan-
tage of using a pre-computed training dataset.

R-NBLS outperforms the method in [25] in classifi-
cation precision, and achieves similar results in terms of
detection error. The method in [19] obtains a slightly
better classification precision, taking advantage of a
large training dataset and a dedicated classification task.

Other objects have been studied besides human body,
with special interest in finger detection given a hand ob-
ject. Fingers are detected at low resolutions, with a per-
son placed about 2.5 meters far from the range camera.

Including topological borders or frontiers is one of
the main foreseen points for further work. Such borders
could help to improve the propagation in order to better
respect the topology. We envisage to use color infor-
mation and other local descriptors to complement the
depth estimation, which will help solving ambiguities,
increasing the detection rate.
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in vision-based human motion capture and analysis, Computer
Vision and Image Understanding 104 (2-3) (2006) 90–126.

[2] R. Poppe, Vision-based human motion analysis: An overview,
Computer Vision and Image Understanding 108 (2007) 4–18.
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