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Abstract
Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and
architectural attributes of histological structures (glands and nuclei), have been found to be highly
correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly
correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1–3
tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a
pathologist visually examining glass (or digital) slides subtle morphologic and architectural
differences of histological attributes, in addition to other factors, may result in grading errors and
hence cause high inter-observer variability. Recently some researchers have proposed
computerized decision support systems to automatically grade Gleason patterns by using features
pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated
characterization of gland morphology has been shown to distinguish between intermediate
Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate
a low dimensional manifold representation of a higher dimensional feature space while
simultaneously preserving nonlinear relationships between object instances. Classification can
then be performed in the low dimensional space with high accuracy. However ML is sensitive to
the samples contained in the dataset; changes in the dataset may alter the manifold structure. In
this paper we present a manifold regularization technique to constrain the low dimensional
manifold to a specific range of possible manifold shapes, the range being determined via a
statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the
SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples
which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly
acquired samples onto a manifold constrained by the SSMM. We demonstrate these applications
of the SSMM in the context of distinguish between Gleason patterns 3 and 4 using glandular
morphologic features in a prostate histopathology dataset of 58 patient studies. Identifying and
eliminating noisy samples from the manifold via the SSMM results in a statistically significant
improvement in area under the receiver operator characteristic curve (AUC), 0.832 ± 0.048 with
removal of noisy samples compared to a AUC of 0.779 ± 0.075 without removal of samples. The
use of the SSMM for OSE of newly acquired glands also shows statistically significant
improvement in AUC, 0.834 ± 0.051 with the SSMM compared to 0.779 ± 0.054 without the
SSMM. Similar results were observed for the synthetic Swiss Roll and Helix datasets.
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1. Introduction
Blinded needle sextant biopsy is the current gold standard for prostate cancer (CaP)
diagnosis; each biopsy yields 12–18 needle cores which are then analyzed under a
microscope by a pathologist [1, 2]. If CaP is identified, a pathologist will then assign a
Gleason score to the biopsy samples, determined as a summation of the two most prevalent
Gleason patterns which range from 1 to 5, hence, Gleason score has a range of 2–10 [3].
Low Gleason patterns (1–3) are characterized by a coherent spatial architecture with distinct
gland lumen surrounded by cell nuclei [3, 4]. For higher Gleason patterns (4 and 5), the
arrangement and morphology of histological structures begins to breakdown with gland
lumen becoming indistinct and crowded with an increase in the concentration of cell nuclei.
The most dominant Gleason patterns seen on needle biopsies are patterns 3 and 4 [5].
Accurately distinguishing intermediate Gleason patterns 3 and 4 manually is a difficult
problem; previous studies having reported an inter-observer agreement between pathologists
of 0.47–0.64 (reflecting low to moderate agreement) [6, 7]. Gleason score aids in
determining the course of treatment, patients with less aggressive CaP (Gleason score 6 and
under) may be enrolled in active surveillance programs while patients with more aggressive
CaP (Gleason score 7 and above) will undergo radiation therapy or surgery [8].

Availability of digital prostate histology samples [9] has led to the development of computer
assisted decision support tools which allow for quantification of subtle morphologic changes
in prostate tissue and may potentially allow for better and more reproducible discrimination
between Gleason patterns [10–19]. Previous attempts at building computer aided decision
support tools for Gleason scoring have employed the use of image texture [10, 14, 18],
arrangement and morphology of nuclei [12, 13, 15, 19], or morphology of glands [16, 17].
However, a large number of features are typically necessary to accurately perform Gleason
grading of histology images, resulting in a high dimensional feature space [12, 15]. The high
dimensional feature space may have more dimensions than samples in the dataset, referred
to as the curse of dimensionality, which makes classification infeasible [20].

Dimensionality reduction offers a way to overcome the curse of dimensionality by
constructing a low dimensional space in which to perform classification while not
compromising object-class relationships. Manifold learning (ML) refers to a class of
nonlinear dimensionality reduction methods that aim to learn a low dimensional embedding
space that can preserve subtle relationships between samples in the high dimensional space
[21–23]. Previous applications of ML to histopathology datasets have demonstrated that the
low dimensional embedding space is better suited to classification compared to the original
high dimensional space [11, 17, 24].

ML finds a low dimensional manifold representation  from a dataset O which preserves
relationships between samples in O. Most ML methods assume that O is contained in a high
dimensional space ℝD [21–23, 25]. Additionally, ML assumes that O is densely clustered
and concentrated within a small region of ℝD. An example of dense clustering can be seen
in Figure 1(a) which shows an example of the synthetic Swiss Roll dataset. In ℝ3 the
samples cluster along a 2D planar structure.

To calculate , ML techniques typically construct a dissimilarity matrix A which quantifies
dissimilarity between samples in ℝD [21–23]. For a dataset O containing N samples, A is a
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N × N dissimilarity matrix defined such that A(oi, oj) quantifies the differences between the
samples oi, oj ∈ O. Typically A(oi, oj) = ψ(oi, oj) where ψ(·, ·) is a dissimilarity measure
(e.g. heat kernel [11, 26], geodesic distance [22], Diffeomorphic Based Similarity [17])
which is dataset and feature set dependent. ML then calculates  to best preserve the
relationships in A. ML techniques preserve relationships in A differently, some methods
such as Local Linear Embedding (LLE) [21] try to preserve the local neighborhood
relationships between samples. Isomaps [22] and Graph Embedding (GE) [23] find the best
embedding space to preserve the global structure of A, albeit with different underlying
algorithms.

ML schemes tend to be sensitive to the dataset considered, and changes in the dataset may
cause changes to the learned manifold [27]. Consider a sample oi ∈ O perturbed by some
error ε; the new location for oi would be ôi = oi + ε. A would have to be altered such that
Â(ôi, oj) = ψ(ôi, oj) for all oj contained in O, resulting in changes to 2N − 2 elements in A.
The manifold  learned from Â will reflect those changes. Hence even a small change in O
may cause large changes to . Figure 2 demonstrates this phenomenon for a prostate
histology dataset comprising 888 glands. Two manifolds were generated by applying ML to
90% of samples in the dataset (800 glands) such that for each manifold a different set of 88
samples were excluded. Each manifold has a distinct structure evident by (a) changes in the
planar structure of the manifold and (b) changes in object-class relationships on the
manifold, displayed as color differences between manifolds.

Consider a large dataset O from which the manifold  is generated. In the absence of
knowing the true manifold,  is the best manifold representation to capture the relationships
between samples in the dataset. If we consider a subset Ô ⊂ O then Ô can be used to create
an alternative manifold  which approximates . Manifold regularization constrains the
structure of  giving a better approximation of  and hence resulting in a better
representation of the relationships between samples in Ô.

In this work we present a statistical shape model of manifolds (SSMMs) to perform
manifold regularization. SSMM merges the theory of ensemble learning [28] with statistical
shape models (SSMs) [29]. The theory behind ensemble learning is that an ensemble of
weak classifiers has higher accuracy compared to any single weak classifier [30]. Similarly,
consensus clustering takes a ensemble of weak clusterings of a dataset, obtained by applying
an unstable clustering method such as k-mean clustering to a dataset multiple times, and
combines the ensemble to generate a strong clustering of the dataset [31]. Viswanath et. al.
[32] demonstrated that consensus embedding, obtained by generating an ensemble of
manifolds from a single dataset, produced a more stable low dimensional manifold
compared to any single manifold in the ensemble. In this work we hypothesize an ensemble
of manifolds will have a more accurate representation of the manifold shape that any single
manifold. The concept of SSMMs is that an ensemble of manifolds can be modeled with a
SSM. SSMs have been proposed to model shape variation in anatomical structures [29]. In
much the same way, we utilize a SSM to model which manifold shapes are statistically most
likely to occur. The SSMM describes the maximum likelihood estimate (MLE) of the
manifold shape and primary modes of variation for a series of different manifolds
constructed by randomly selecting a subset of samples from a dataset. For a new, related
dataset, the resulting manifold can be constrained to only the range of shapes dictated by the
SSMM. Hence every sample on the new manifold is spatially and locally constrained to
within 2 standard deviations of its location on the average manifold shape.

The SSMM can be utilized in several ways. (1) Regions on a new, related manifold which
deviate from the SSMM can be identified. By identifying these regions, meaningful
differences between the dataset and the SSMM may be determined. (2) Noisy samples on a
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manifold can be identified based on their deviation from the SSMM. Removing these
samples from the dataset may result in a more accurate low dimensional manifold, and
hence improve classification accuracy. (3) A classifier can be trained on the SSMM which
would allow for (a) classifier decision boundaries to be applied to a new, related manifold
without retraining the classifier or (b) new, related samples could be projection onto the
SSMM. The projection of newly acquired samples onto a previously calculated manifold can
be performed by out-of-sample extrapolation (OSE) [33].

The remainder of the paper is organized as follows. Section 2 describes previous work in
Gleason grading of prostate histology and manifold regularization. An overview of SSMM
construction and its novel contributions are discussed in Section 3. In Section 4 an ensemble
based theoretical framework for the SSMM is presented. Section 5 describes the
methodology to construct a SSMM and its application to (a) outlier identification and (b)
OSE of newly acquired samples onto the SSMM. Section 6 describes the experimental
design and results for two synthetic datasets as well as a prostate histology dataset.
Concluding remarks are presented in Section 7.

2. Previous Work
2.1. Automated Gleason Grading

Pathologists perform Gleason grading of prostate cancer tissue specimens via qualitative,
visual evaluation of a tissue section previously stained with Hemotoxilyin and Eosin (H& E)
[3]. The primary discriminating traits of Gleason patterns on histopathology are the
difference in the arrangement and morphology of the nuclei and glands within a tissue
sample [3, 4]. In devising automated pattern recognition methods for distinguishing different
Gleason patterns on histopathology, the key questions to consider are (1) what is the best
feature set to distinguish between Gleason patterns? and (2) what is the best method to
reduce the dimensionality of the feature set prior to classification?

Jafari et. al. [10] characterized tissue patch texture via wavelet features and classified
Gleason patterns with an accuracy of 97% for the best performing feature. Huang et. al. [14]
characterized tissue patch texture via Fractal Dimension and achieved an accuracy of 95%.
However, a limitation of these approaches were that the image patches were manually
selected to obtain regions which contained only one tissue class on the digitized slide.
DiFranco et. al. [18] characterized tissue patch texture for each color channel independently
showing 90% accuracy classifying images on a per tile. Although tiles were automatically
determined, tiles which contained more than one tissue class were removed from the dataset.

Structural features (as opposed to texture features) have also been explored by some
researchers for automated categorization of Gleason patterns. Veltri et. al. [13] and Ali et. al.
[19] showed that the quantitative characterization of the shape of individual nuclei on tissue
microarrays can distinguish between Gleason patterns with high accuracy. In a preliminary
study by Veltri et. al. [13] characterization of manually segmented nuclei were able to
distinguish between Gleason pattern 3, 4, and 5 with 73–80% accuracy. Ali et. al. [19]
automated the nuclear segmentation and classification steps in [13], yeilded an 84%
accuracy on 80 tissue microarrays. Doyle et. al. [15] characterized manually selected image
patches according to nuclear arrangement, reporting a predictive positive value of 76.0% in
distinguishing between Gleason patterns 3, 4, and 5 within a multi-classification scheme.

In previous work we have shown that gland morphology, quantified by Diffeomorphic
Based Similarity (DBS), is able to distinguish between Gleason 3 and 4 patterns with 88%
accuracy in 58 patient studies [17]. DBS is calculated by constructing shape models for each
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gland contained in a set of histology images and then quantifying the differences between
shape models.

Tabesh et. al. [12] combined gland morphology, texture features, color channel variance,
and nuclear arrangement to classify different Gleason patterns with 81.0% accuracy.
Golugula et. al. [24] used proteomic data in conjunction with histology derived image
features to distinguish between prostate cancer patients who following radical prostatectomy
had biochemical recurrence within 5 years from patients who did not.

Most automated Gleason grading systems are described by a high dimensional feature space
[12, 15, 17, 18, 24]. To perform accurate classification, the high dimensional feature space
must be reduced to a lower dimensional space [20]. One approach to reduce the high
dimensional feature space is to perform feature selection, thereby determining a small subset
of the original feature space in which accurate classification can be performed [12, 15, 18].
Difranco et. al. [18] utilized a random forest feature selection algorithm. Doyle et. al. [15]
utilized a cascaded classification approach to perform feature selection for a series of
pairwise classification tasks. Feature selection schemes have the advantage of selecting
those features that give the most accurate classification while discarding features, which
may contain noise, that have relatively poorer classification accuracy [12, 15]. However, a
limitation of these approaches is that the excluded features may contain important
classification information, and their removal may diminish classification accuracy in some
tasks [34].

Dimensionality reduction methods learn a low dimensional embedding space which best
preserves the original high dimensional feature space [11, 17, 24]. For instance Golugula et.
al. [24] performed dimensionality reduction via supervised canonical correlation analysis to
learn a low dimensional space in which patient classification was performed. Naik et. al.
[11] demonstrated that GE is well suited for the preservation of a high dimensional feature
space which characterized histological differences in texture, nuclear architecture, and gland
morphology. Similarly, DBS features in conjunction with GE resulted in 88% classification
accuracy for Gleason pattern 3 and 4 glands [17]. However, all of these schemes have
utilized the full dataset to perform ML and then trained a classifier within the low
dimensional embedding space. These methods are sensitive to noise in the high dimensional
feature space as well as the samples considered when learning the low dimensional space. If
newly acquired samples or samples which contain noise are included in these systems they
will alter the low dimensional embedding space and may detrimentally affect classification
performance. Manifold regularization can alleviate this problem by constraining the
manifold shape to only shapes which are most likely to occur.

2.2. Manifold Regularization
ML is well known to be sensitive to the dataset considered, as well as noise and outliers
contained within a dataset [26, 27]. Perturbations in the manifold structure may reduce
classification performance in the low dimensional embedding space as object-class
relationships may be obscured. Manifold regularization techniques have been proposed
which impose additional constraints on ML to better preserve object-class relationships in
the low dimensional space. For instance, Chang et. al. [27] proposed a weighted ML
scheme, where outlier samples were assigned low weights, to reduce the effect outliers have
on learning the manifold. Other manifold regularizers perform local smoothing on the
learned manifold [35]. Manifold regularization techniques may add a smoothness constraint
into the ML algorithm [26, 36]. All of these methods over smooth the manifold, as they
reduce the effects of outliers which including meaningful information as well as noise.
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Another type of regularization learns a consensus embedding (CE) from a set of manifolds.
Hou et. al. [37] learned a set of manifolds by obtaining multiple views for each sample in the
dataset and then generated a consensus manifold across the views. Other CE schemes have
varied the parameters or samples considered to find a manifold set, and then generated a CE
from the set [38, 39]. These methods rely on the manifolds in the set being independent,
which may not be a valid assumption when generating manifold sets across ML parameters.
Additionally, relationships between samples across the individual manifolds are not taken
into account when determining a CE.

3. Brief Overview and Novel Contributions
A flowchart of the proposed SSMM methodology is displayed in Figure 3. Table 1 list the
notation used throughout the paper. To construct the SSMM we (1) generate a set of
manifolds  for a dataset O. For this task we divide the dataset O into K folds, and then
generate  using a leave-one-fold-out scheme. (2) As manifolds in  will be misaligned,
primarily due to rotational and translational differences, a Procrustes based registration
scheme aligns all the manifolds in . (3) Calculate the MLE and primary modes of variation
for . Once constructed the SSMM constrains a new manifold instance  of related
datasets to only those shapes statistically most likely to occur resulting in the regularized
manifold . In this work we demonstrate that the SSMM can (a) determine noisy samples
by identifying samples which deviate from the SSMM, and (b) accurately perform OSE of
newly acquired samples onto a manifold constrained by the SSMM.

The novel contributions of the SSMM are:

• A computerized decision support system which utilizes a SSMM based on the
morphologic features of glands on prostate histopathology to automatically
distinguish between Gleason patterns 3 and 4.

• A novel combination of SSMs and ensemble learning theory to generate a more
accurate manifold representation of O.

• A novel method to generate , an set of K manifolds, containing all samples in O.

• A novel manifold registration to align all manifolds in . As each sample oi ∈ O
has a corresponding embedding location yi,k on the manifold , the registration
algorithm minimizes the differences between yi,k for all k ∈ {1, …, K} and all oi ∈
O via Procrustes registration [40].

4. Statistical Shape Model of Manifolds Theory

—We prove theoretically that SSMMs are appropriate to determine the MLE of a manifold
shape. Specifically, we prove that constructing a SSMM from a set of manifolds is
guaranteed to represent the underlying manifold structure at least as well as any manifold
contained in the set. To perform the theoretical analysis we utilize the theory of ensemble
learning [28].

A dataset of N samples is defined as O = {o1, …, oN }. A sample oi ∈ O is defined as a
point in a D-dimensional space ℝD.

Definition 1: A true manifold  ∈ ℝd is defined by a set of N true embedding locations 
= {x1, …, xN }. Each true embedding location xi ∈ ℝd corresponds to a sample oi ∈ ℝD

where d ≪ D.
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Definition 2: A manifold  estimates  by a set of N embedding locations  = {x̂1, …,
x̂N }. Each embedding location x̂i ∈ ℝd corresponds to a sample oi ∈ ℝD where d ≪ D.

Definition 3: The manifold  approximates  with an error ε  given as,

(1)

where Ei is the mean over i = {1, …, N}.

Proposition 1: Given a set of K independent, identically distributed manifolds  = { , …,
}, a manifold  exists such that  →  as K → ∞.

Proof: Each estimated manifold  is defined by the embedding locations x̂i,k ∈ : i ∈ {1,
…, N }, k ∈ {1, …, K}. Assuming that each embedding location x̂i,k ∈ : i ∈ {1, …, N }, k
∈ {1, …, K} is normally distributed about xi, the Central Limit Theorem states,

(2)

where Ek is the mean over k = {1, …, K}. Therefore  exists and is defined  = Ek(x̂i,k): i
∈ {1, …, N}.

The error between  and  is defined as (similar to Equation 1),

(3)

where x̄i = Ek(x̂i,k). From Equation 1 the error over K embeddings is given as,

(4)

Proposition 2: Given K independent, identically distributed manifolds,  ∈ , εK,  ≥
ε .

Proof: Comparing Equation 4 and Equation 3 in a manner analogous to Bagging [28] gives
the proof. In Bagging, an ensemble classifier is constructed from a set of weak classifiers.
Similarly, the  obtained from the SSMM can be viewed as an ensemble embedding
constructed from a set of weak embeddings . Hence the result follows.

5. Construction of Statistical Shape Manifold Model (SSMM)
In this section we present our methodology for constructing a SSMM. In Section 5.1 we
provide an overview of ML. We then describe our novel K fold algorithm to calculate  in
Section 5.2. Section 5.3 presents the Procrustes based registration of manifolds in . In
Section 5.4 we discuss SSMM construction and Section 5.5 describes the fitting of  to the
SSMM. Finally we present two novel algorithms for (a) noise identification and removal in
Section 5.6 and (b) OSE of newly acquired samples onto the SSMM in Section 5.7.
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5.1. Review of Manifold Learning
5.1.1. Graph Embedding (GE)—In this work, we implemented the ML scheme GE [23]
to perform nonlinear dimensionality reduction as it has few parameters to optimize over
(only γ an empirically determined scaling term) and is relatively computationally efficient.
GE learns a manifold estimate  for a dataset OT ∈ ℝD.  is described by a set of
embedding locations ŷ ∈ ℝn where n ≪ D. ŷ is obtained by performing the eigenvalue
decomposition (EVD),

(5)

where W(a, b) = e−A(a,b)/γ, γ is an empirically determined scaling term, and L is the
diagonal matrix L(a, a) = Σb W (a, b). ŷ is defined as the n eigenvectors which correspond to
the top n eigenvalues in λ̂.

5.1.2. Out-of-Sample Extrapolation (OSE)—A sample not in the original dataset, i.e.
ok ∉ OT, will not have a corresponding embedding location in ŷ. To calculate the
embedding location ŷk the dissimilarity matrix A and the EVD would have to be
recomputed to include ok in OT. Repeating ML for every new sample acquired is
computationally infeasible [33]. The aim of OSE is to determine embedding locations ỹ for
samples in a newly acquired dataset defined as OR.

The Nsytröm Method (NM) is a OSE algorithm which estimates ỹ as a weighted sum of the
known embeddings ŷ [33]. Given ŷ for OT generated in Section 5.1.1, ỹ for OR are
calculated as,

(6)

where d ∈ {1, …, n} is the dth embedding dimension corresponding to the dth largest
eigenvalue λ̂d. OSE does not alter the underlying relationships contained in ŷ. Furthermore
the samples contained in OR in no way alter or affect the relationships contained in ŷ.

5.2. Construction of the Manifold Set
A set of K manifolds  = { , …, } are obtained from a dataset of N samples defined as
O = {o1, …, oN}.  is generated utilizing a K fold scheme via the following steps:

1. Samples in O are randomly divided into K equal partitions such that O = {O1 ∪ …
∪ OK}.

2. Testing and training sets are obtained via a leave one fold out scheme. A testing set
is defined as OR,k = Ok: k ∈ {1, …, K} and the corresponding training set is
defined as OT,k ∈ OR,k = O.

3. Each training set OT,k is utilized to find ŷk which defines  via GE as described in
Section 5.1.1. The samples in OT,k are then used to determine the structure of the
manifold .

4. Each test set OR,k is extrapolated into the manifold  to determine ỹk via NM as
described in Section 5.1.2.
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5. Training and testing sets are combined to determine yk = {ŷk, ỹk}. This
combination allows for point correspondence between manifolds in  to be
estimated.

In this work K = 10 was chosen to construct , and the steps described above were
performed 5 times for a total of 50 constituent manifolds in . GE and NM were chosen for
experiments showcased in this work, but it is worth noting any ML [21–23, 25] and OSE
[33, 41] scheme can be used to construct .

5.3. Manifold Alignment via Procrustes Based Registration
Manifolds contained in  may not align, the algorithm for ML preserves pairwise
relationships between samples but may not preserve the global relationship of samples in the
low dimensional embedding space. Procrustes registration is applied to align all manifolds in

 [40]. Procrustes registration can be performed since there are point correspondences
between all manifolds in  as each sample in O has a location on every manifold in .

A reference manifold : a ∈ {1, …, K} is randomly selected. All other manifolds, : b ≠ a
are registered to  by minimizing,

(7)

where yi,a is a embedding location in  for a sample oi and yi,b is a embedding location in
 for a sample oi. The transform Ta,b selected was a rigid transform, to take into account

scale and rotational differences between  and . ||·|| denotes the L2-norm. Registration is
performed for all  ∈  to obtain the aligned set of manifolds .

5.4. Statistical Shape Manifold Model (SSMM)
Once all manifolds are aligned the statistical properties of the manifold set can be
determined. The SSMM is defined via the mean and principal modes of variation for . The
mean of  is calculated by,

(8)

The principal modes of variation for the manifold defined as P are obtained by performing
PCA on  [29]. Only the P corresponding to the top 95% of variance in the sample locations
yi,k for all k ∈ {1, …, K} are retrained to constrain the SSMM to those shapes within 2
standard deviations of the mean shape.

5.5. Constraining a New Manifold Instance to the SSMM
A new manifold  is obtained by applying GE to O.  is constrained to only likely shapes
as defined by the SSMM obtained in Section 5.4.

(9)

where b controls the shape of  and Ta,K+1 is a rigid transformation between the SSMM and
. b is found via a linear least squares fit between the SSMM and  and is constrained to 

± 2σ to limit the SSMM to only those shapes statistically most likely to occur [29].
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5.6. Application of SSMM to Identify Noisy Samples
The SSMM can aid in the identification of samples which contain noise. The algorithm
FilterManifold assumes samples which contain noise are those samples which deviate most
from the SSMM.

A dataset contains N samples defined as Q = {q1, …, qN }. The following algorithm can be
used to identify the samples which contain noise Qn and the samples which do not contain
noise Qc within Q given a user defined threshold τ. The value assigned to τ is dataset
specific as sample variation across datasets may vary. In this work τ was chosen such that
5% of the samples in the dataset were excluded.

Algorithm

FilterManifold

Input: Q, τ

Output: 

begin

 1. Obtain  from Q via application of the SSMM.

 2. Obtain  from Q by GE (Eq. 5).

 3. Calculate e(qi) = ||ŷi − ỹi||.

 4. Obtain Qn = qi: qi ∈ Q, e(qi) ≥ τ.

 5. Obtain Qc: Qc ∩ Qn = ∅.

 6. Obtain  for Qc via GE (Eq. 5)

end

5.7. Application of SSMM to OSE
The SSMM can be utilized for robust OSE, by generating a more accurate manifold
representation of a dataset. The algorithm OSE-SSMM demonstrates how the SSMM can be
used for this purpose.

A dataset Q is divided into training samples Qtr and testing samples Qte such that Qtr ∩ Qte
= ∅. To find a set of testing embeddings  for a filtered manifold we apply the following
algorithm,

Algorithm

OSE-SSMM

Input: Qtr, Qte, τ

Output: 

begin

 1. Obtain  for Qtr via FilterManifold.

 2. Obtain  for Qte via NM (Eq. 6) with  as the training manifold.

end
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6. Experimental Design and Results
6.1. Dataset Description

6.1.1. Synthetic Datasets—Two synthetic datasets, Swiss Roll and Helix, described in
Table 2 were utilized to demonstrate the application of SSMM to manifold regularization.
The Swiss Roll is a 2D planar manifold divided into two classes which exists in a 3D space.
The Helix is a 1D circular manifold divided into six classes which exists in a 3D space. The
benefit of both datasets is that the high dimensional 3D space and the low dimensional 2D
embedding space may be visualized. Gaussian noise was added to 5% of samples within
each dataset where the standard deviation of the noise was set equal to 15% of the standard
deviation of samples in the dataset. The dissimilarity measures for both datasets are reported
in Table 2.

6.1.2. Prostate Histopathology—Prostate needle core tissue biopsies were obtained
from 58 patients. Biopsies were stained with H & E and digitized at 40× optical
magnification using an Aeperio scanner. An expert pathologist selected regions of interest
(ROIs) on each biopsy. In total 120 ROIs were selected across. Each ROI was assigned a
Gleason pattern of either BE, G3, or G4. All glands contained within each ROI were
manually segmented to obtain a total of 888 glands from BE (N = 93), G3 (N = 748), and
G4 (N = 47) ROIs. For this set of experiments only G3 and G4 glands were considered
during classification. DBS was the dissimilarity measure utilized to quantify morphologic
differences between glands [17].

6.2. Evaluation Measures
6.2.1. Silhouette Index (SI)—SI is a measure of how well samples cluster by class label
[42] with 1 corresponding to perfect clustering by class and −1 corresponding to no

clustering by class. SI is calculated as,  where C(i) = Σj,lj=li||ỹi − ỹj|| and
G(i) = Σj,lj≠li||ỹi − ỹj||.

6.2.2. Area Under the Receiver Operator Characteristic (ROC) Curve (AUC)—A
probabilistic boosting tree (PBT) classifier [43] was trained and evaluated using a 5×2 cross
validation scheme [44]. For each of the 5 runs, the dataset was divided into 2 folds such that
all samples from a single patient were contained in the same fold and all folds maintained
class balance. The PBT classifier assigns a probability value to each sample of belonging to
the positive class. Altering the threshold level of the PBT classifier allows for the
construction of a ROC Curve. For each ROC Curve the area under the curve (AUC) is
calculated.

6.3. Experiment 1: Application of SSMM to Filtered Manifold Learning
For each dataset Q in Table 2, a manifold  was calculated from Q using GE as described
in Section 5.1.1. Similarly a filtered manifold  was found by FilterManifold as described
in Section 5.6. The measures described in Section 6.2 were used to evaluate  and . A
Student’s t-test was calculated to determine the statistical significance between  and 
for each evaluation measure described in Section 6.2.

Experimental results for all datasets are reported in Table 3. Across all datasets 
outperforms  in terms of SI and AUC. In the prostate histology dataset these increases in
SI and AUC were statistically significant (p ≤ 0.1). Hence  is better able to preserve
object-class relationships in the datasets evaluated.
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For the synthetic datasets, changes in SI and AUC are not always statistically significant.
However, as may be noted in Figure 1 (d)  is a closer approximation to the true
embedding (Figure 1 (b)) than compared to  (Figure 1 (c)). In Figure 1 the samples are
colored according to their location on the true embedding to aid in visualization.

6.4. Experiment 2: Application of SSMM to Filtered OSE
For each dataset Q in Table 2, a training set Qtr and a testing set Qte were defined so that Qte
is 10% of Q and Qtr ∪ Qte = ∅. Qtr and Qte were used to construct an original manifold 
and filtered manifold .  is generated by applying GE as described in Section 5.1.1 and
then applying NM as described in Section 5.1.2 to Qte where  is the training manifold.
The filtered manifold  is calculated by OSE-SSMM as described in Section 5.7. The
measures described in Section 6.2 were used to evaluate  and . A Student’s t-test was
calculated to determine the statistical significance between  and  for each evaluation
measure described in Section 6.2.

Experimental results for all datasets are reported in Table 4. For the histopathology dataset
 outperforms  in terms of SI and AUC. The synthetic datasets, the Swiss Roll and

Helix, do not show a significant improvement in performance.

7. Concluding Remarks
In this paper we presented a statistical shape model of manifolds (SSMM) which is a novel
integration of statistical shape models (SSMs) with ensemble learning for regularizing low
dimensional data representations of high dimensional spaces. New, related manifolds may
then be constrained by the SSMM to only those shapes statistically most likely to occur.

The SSMM may be utilized for several applications including (a) identification of noisy
samples based on their deviation from the SSMM. Removing these samples from the dataset
may result in higher area under the receiver operator characteristic (ROC) curve (AUC). (b)
A classifier could be trained on the SSMM allowing for (i) classifier decision boundaries to
be applied to a new related manifold without retraining the classifier or (ii) new, related
samples to be classified by projection of the samples onto the SSMM. (c) identification of
regions on a new, related manifold which deviate the SSMM. Identifying these regions may
aid in determining meaningful differences between the dataset and SSMM.

To construct the SSMM we (1) generate a set of manifolds  for a dataset O, (2) align
manifolds in , and (3) calculate the maximum likelihood estimate (MLE) of the manifold
shape and its primary modes of variation. The SSMM allows for constraining a new, related
manifold instance to only those shapes statistically most likely to occur.

We have demonstrated in this work that SSMM can improve AUC in the context of Gleason
grading of prostate histopathology utilized quantitative morphologic features of glands. For
the dataset considered, the tissue samples corresponded to either Gleason pattern 3 or pattern
4. Improvements in AUC via the SSMM were demonstrated for two applications:(a) We
demonstrated that outlier samples within a manifold can be identified as those samples
which deviate from the SSMM via FilterManifold. Removal of outlier samples increased
AUC and SI. (b) We demonstrated via OSE-SSMM that manifold regularization by the
SSMM improves SI and AUC when performing OSE on never before seen samples onto the
SSMM.

In future work we intend to explore the ability of the SSMM to identify regions of a new,
related manifold which deviate from the SSMM. These regions will then be further
investigated to determine subtle difference between the dataset and the SSMM. Secondly,
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we plan on investigating the effects of dataset size on the SSMM by evaluating how
accurately the mean manifold shape and primary modes of variation of the manifold shape
are represented for SSMMs trained on different dataset sizes.
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Highlights

• Statistical shape model of manifold (SSMM) constructs an ensemble of
manifolds.

• SSMM constrains the shape of a manifold resulting in a more stable low
dimensional space.

• The SSMM improves area under the receiver operator characteristic (ROC)
curve (AUC) in the context of Gleason grading of prostate histopathology.

• The SSMM can project new samples into a low dimensional space with high
accuracy.
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Figure 1.
(a) Original 3D Swiss Roll dataset with Gaussian noise added to 2% of samples in the
datasest. (b) 2D manifold  in the absence of noise. This manifold structure best preserves
the relationships between samples in the original high dimensional space. (c) Manifold 
found by applying ML to a dataset containing noise and (d) the manifold  found by
regularization of  using the SSMM.
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Figure 2.
(a), (c) Two manifolds  and  generated by performing ML on quantitative morphologic
features extracted from 800 prostate histopathology glands. The manifolds  and  were
generated from two distinct datasets O1 and O2 such that 88 glands excluded from either O1
or O2. (b), (d) Manifold region enclosed by the black box in (a) and (c) respectively.
Representative glands for (f) benign (BE), (e), (g) Gleason pattern 3 (G3), and (h) pattern 4
(G4) classes. A classifier trained in the reduced dimensional space allows for assignment of
a single class to each region on the manifold, such that blue regions correspond to BE, green
regions correspond to G3, and red regions correspond to G4. Differences between the
manifolds can be seen in changes in global structure as well as class-object relationships on
the manifold, which are evident by changes in region color. In the case of (h) a
representative G4 gland, in one manifold ( (c)) the gland was incorrectly projected on to the
G3 class region.
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Figure 3.
Flowchart which describes the construction of the SSMM and its application to manifold
regularization for the synthetic Helix dataset. SSMM construction consists of dividing the
dataset O into K folds, denoted as {O1, …, OK}. The K folds of O are utilized to find the
manifold set  = { , …,  }. The manifolds in  are then aligned via Procrustes based
registration scheme resulting in the aligned manifold set  = { , …,  }. The SSMM
finds the MLE ( ) and primary modes of variation for . Shown are the modes of variation
corresponding to the statistical extremes of the model  − 2σ and  + 2σ. Given a new
manifold instance  the SSMM constrains the structure to only those statistically likely to
occur (  ± 2σ). This results in the regularized manifold  which is a better approximation
of the underlying relationships in O than any constituent manifold in . For the synthetic
Helix dataset shown in this flowchart the ideal manifold is a 2D circular structure.
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Table 1

Notation used in the paper.

Symbol Description

O Dataset

oi, oj Samples contained in O

Ok kth fold of O for k ∈ {1, …, K}

ℝD High dimensional feature space

ψ(·, ·) Dissimilarity measure

A Dissimilarity matrix defined as ψ(oi, oj) evaluated for all oi, oj ∈ O

γ GE scaling term

ℝn Low dimensional embedding space

Ensemble manifold set

kth manifold in 

ŷk Embedding locations on 

yi,k Embedding location for oi on 

Ta,b Transformation to align  to 

||·|| L2 norm

Aligned manifold set

MLE for 

P Primary modes of variation for 

New manifold instance

Manifold constrained via the SSMM

Q New dataset instance

Qn Samples which contain noise in Q

Qc Samples which do not contain noise in Q

τ Threshold to determine sample deviation from the SSMM

Manifold generated from Qc

Qte Testing samples not contained in Q

Manifold with samples in Qte projected onto .
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Table 2

Description of datasets and their dissimilarity measures.

Dataset Sample Size Dissimilarity Measure

Synthetic Swiss Roll [22] 3000

 is a neighborhood parameter.

Synthetic Helix [22] 3000

 is a neighborhood parameter.

Prostate Histology 888 (58 patients) Diffeomorphic Based Similarity (DBS) [17]
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Table 3

(a) SI and (b) AUC are reported for  and . The best value for each dataset is bolded. p-values are reported
for a Student’s t-test comparing  and .

(a)

Dataset p-value

Swiss Roll 0.56 ± 0.01 0.57 ± 0.03 0.063

Helix 0.44 ± 0.05 0.47 ± 0.02 0.138

Prostate 0.02 ± 0.01 0.05 ± 0.03 0.032

(b)

Dataset p-value

Swiss Roll 0.876 ± 0.067 0.935 ± 0.065 0.071

Helix 0.995 ± 0.002 0.996 ± 0.002 0.240

Prostate 0.779 ± 0.075 0.832 ± 0.048 0.073
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Table 4

(a) SI and (b) AUC are reported for  and . The best value for each dataset is bolded. p-values are
reported for a Student’s t-test comparing  and .

(a)

Dataset p-value

Swiss Roll 0.57 ± 0.01 0.58 ± 0.01 0.061

Helix 0.47 ± 0.01 0.47 ± 0.01 0.77

Prostate −0.04 ± 0.01 −0.02 ± 0.02 0.005

(b)

Dataset p-value

Swiss Roll 0.997 ± 0.003 0.999 ± 0.002 0.102

Helix 0.994 ± 0.002 0.996 ± 0.002 0.089

Prostate 0.779 ± 0.054 0.834 ± 0.051 0.032
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